University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Computational studies of defects in graphene and carbon nanotubes

Thumbnail
View/Open
10.Mb

Downloads:  
Show download detailsHide download details  
Published in
Research report / Department of Physics, University of Jyväskylä
Authors
Malola, Sami
Date
2009
Discipline
Fysiikka

 
Carbon structures have a big role in nanoscience today because of their rich and promising electrical, mechanical and optical properties. However, advancing these properties requires understanding the underlying structure and its behavior. In addition to ideal systems, defects are frequently unavoidable in experiments; hence their e ects, along with their possibilities to enrich the functionalities of carbon nanostructures, should be investigated. This thesis concentrates on computational studies of various defects in graphene and carbon nanotubes. It combines investigations of changes in Raman-active modes of single-walled carbon nanotubes due to vacancies and bending, reconstructions for graphene edges, and adsorption and di usion mechanism of single gold atoms in graphene. Most of the results can be understood in terms of simple physical principles and relations to experiments are discussed in detail. E ects of carbon atom vacancies on Raman-active phonons are understood via their symmetry properties and structural weakening. However, the e ect of tube bending on Raman-active modes is complicated to understand. Bending proved to be computationally challenging, but our so-called wedge boundary conditions o ered a way to practical modeling. Wedge boundary conditions are free from constraints and nitesize e ects, and really make bending the only disturbance in the system. This kind of approach will be useful for other physical problems as well. In this thesis we found a new ground state for graphene edges a new edge beyond armchair and zigzag. We show that this speci c reconstruction of zigzag selfpassivates the edge against molecular hydrogen adsorption and increases the rigidity of the graphene edge. We discuss about the possibilities to identify the edge structure from scanning tunneling microscope (STM) images, Raman-active modes and vibrational properties relating the di erences to physical properties. This thesis also shows that gold atoms are thermally stable in-plane with graphene opening possibilities to tune the properties of carbon nanostructures. Our results con rm that, in addition to imaging, transmission electron microscope (TEM) has a great potential as a preparation tool for samples of carbon nanomaterials containing metals. Because contacts may dominate behaviour in nanosize systems, understanding the metal-carbon interface through defects like vacancies is important. With the help of TEM-beam there can be a way to selectively make direct contacts with metals and carbon nanostructures at any point of the lattice, not only at the edges. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-3580-1
ISSN Search the Publication Forum
0075-465X
URI

http://urn.fi/URN:ISBN:978-951-39-3580-1

Metadata
Show full item record
Collections
  • Väitöskirjat [3032]

Related items

Showing items with similar title or keywords.

  • Experimental studies on carbon nanotubes and graphene functionalized via physical adsorption with cellulose and avidin 

    Shao, Dongkai (University of Jyväskylä, 2018)
    In this Thesis I have experimentally studied structural, electronic, and optical properties of hybrids of nanocarbon materials, carbon nanotubes (CNT) and graphene, and certain biomacromolecules. The latter are especially ...
  • On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes 

    Hokkanen, Matti; Lautala, Saara; Shao, Dongkai; Turpeinen, Tuomas; Koivistoinen, Juha; Ahlskog, Markus (Springer, 2016)
    Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT) have been proven to be of high quality, but their use is very limited due to difficulties in obtaining them in a clean and undamaged form. Here, we present ...
  • Measurements on electric breakdown in dielectric barriers between carbon nanotubes and electrodes 

    Gröhn, Tuuli (2009)
  • Surface plasmon effects on carbon nanotube field effect transistors 

    Isoniemi, Tommi; Johansson, Andreas; Hakala, Tommi; Rinkiö, Marcus; Törmä, Päivi; Toppari, Jussi; Kunttu, Henrik (American Institute of Physics, 2011)
    Herein, we experimentally demonstrate surface plasmon polariton (SPP) induced changes in the conductivity of a carbon nanotube field effect transistor (CNT FET). SPP excitation is done via Kretschmann configuration while ...
  • Fabrication of carbon nanotube field-effect transistors 

    Saunajoki, Ville (2014)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre