Application of mathematical modeling for water environment problems
2009:29 | 2010:113 | 2011:40 | 2012:34 | 2013:29 | 2014:61 | 2015:42 | 2016:65 | 2017:68 | 2018:112 | 2019:51 | 2020:48 | 2021:33 | 2022:46 | 2023:71 | 2024:85 | 2025:2
Viatcheslav Solbakov käsittelee väitöstutkimuksessaan saasteiden leviämisen laskentaa luonnonvesissä. Tässä virtauksilla ja aineiden turbulenttisella sekoittumisella on keskeinen merkitys. Solbakov vertaili erilaisia turbulenssin matemaattisia kuvauksia ja niiden vaikutusta leviämislaskennan tarkkuuteen. Hän kehitti erityisesti aiempaa tarkempia menetelmiä erikseen sekä satunnaispäästön ja toisaalta jatkuvan päästön sekoittumisen laskentaa varten. Näitä menetelmiä hän sitten käytti kiintoaineen leviämisen laskennassa. Mallin runkona hänellä oli tunnettu hydrodynaaminen ”Princton Ocen Model (POM)”-malli joka on vapaasti saatavilla ja jota käytetään erittäin paljon ympäri maailmaa erilaisten virtausten laskemiseen. In the first part of the thesis we present a thorough analysis of pollutant dispersion in water environment and physical mechanisms of its turbulent dispersion in water. While analyzing two turbulent diffusion models we find analytically that the Richardson model with variable coefficients is substantially better in comparison with constant coefficients. Also we are interested in modeling of shot and continuous intrusion of contaminants. For the 2D transport and diffusion equation with homogeneous coefficients we manage to construct analytical solution both for shot and continuous intervention cases. The latter case is treated via a specially devised “cloud method”. This method enables to account for the turbulence and “4/3” law which seems to be new for the case of continuous intervention. The method is expanded to the case of suspended solids dispersion. The case of 3D transport and diffusion equation is also considered. The solution method based on Gaussian clouds is applied to 3D transport and diffusion of sediment substances. The numerical method based on momentum approach is used for the definition of the cloud parameters. The way to introduce the “4/3” law for the 3D transport and diffusion equation in the case of substances sedimented on the bottom is also given. The approach of implementation of connection of near field and far field regions is considered. In the second part of the thesis the task of calculations of hydrodynamics parameters (sea level, current velocity and temperature distribution) is formulated for various environments based on 3D geophysical hydrodynamics equations. Special emphasis made on the circumstance that opens boundary conditions must be compatible both for the 3D and for the shallow water formulation. For a numerical solution of the three-dimensional nonstationary equations of geophysical hydrodynamics we use finite-difference equations which conserve the main variables (water and heat) and take into account the timedependence variability of the solution area. Some illustrations and simulation results are represented for various pools and different environment conditions. The results of simulations for a short-term variability of circulation and thermal structure in Lake Jyväsjärvi are presented. Common problems arising while designing information systems are examined from the point of view of joined operation of mathematical models, data bases and Geographic information system. The problems considered here are of interest for both academic and practical applications in the field of environment modeling.
...
Julkaisija
University of JyväskyläISBN
951-39-2041-0ISSN Hae Julkaisufoorumista
1456-5390Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3612]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Mathematical models and simulation of Costas loops
Yuldashev, Marat (University of Jyväskylä, 2013) -
Mathematical models and stability analysis of induction motors under sudden changes of load
Solovyeva, Elena (University of Jyväskylä, 2013) -
Mathematical models and stability analysis of three-phase synchronous machines
Zaretskiy, Alexander (University of Jyväskylä, 2013) -
Analysis of errors caused by incomplete knowledge of material data in mathematical models of elastic media
Mali, Olli (University of Jyväskylä, 2011) -
Hidden attractors in Chua circuit : mathematical theory meets physical experiments
Kuznetsov, Nikolay; Mokaev, Timur; Ponomarenko, Vladimir; Seleznev, Evgeniy; Stankevich, Nataliya; Chua, Leon (Springer Science and Business Media LLC, 2023)After the discovery in early 1960s by E. Lorenz and Y. Ueda of the first example of a chaotic attractor in numerical simulation of a real physical process, a new scientific direction of analysis of chaotic behavior in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.