Study of linear response in Hubbard chains using Many-body Perturbation Theory

Author:

Bostan, Irina

Abstract:

In this work the basic formalism of non-equilibrium Green’s functions is presented and then applied to study a Ward identity in linear response theory, namely the frequency sum-rule. It can be proven that the frequency sum-rule is satisfied when the quantities involved are calculated using perturbation theory within a conserving approximation for the self-energy. To illustrate this equality
along with other properties of the response function, a numerical application that solves the Kadanoff-Baym equations for systems of Hubbard chains was used. The results showed that the frequency sum-rule was satisfied to the same extent by all the conserving approximations used as by the exact diagonalization numerical results. The density response function was analyzed diagrammatically
for a series of conserving approximations for the self-energy and this demonstrated that even for a first order in perturbation theory approximation for the self-energy, the response function has a corresponding complex, third order in the perturbation diagrammatic structure.
...

This publication is copyrighted. You may download, display and
print it for Your own personal use. Commercial use is
prohibited. Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.