Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model

Abstract
Prevalent electrolyte effects across a wide range of electrocatalytic reactions underscore the general importance of the local reaction conditions in the electrical double layer (EDL). Compared to traditional EDLs, the electrocatalytic siblings feature partially charged chemisorbates that could blur our long-held views of surface charge densities and differential capacitances—two interrelated quantities shaping the crucial local reaction conditions. Herein, five variants of surface charge density and three variants of differential capacitance in the presence of chemisorbates are defined and compared. A semiclassical model of electrocatalytic EDLs is developed for a quantitative analysis of the differences and interrelationships between these variants of surface charge densities and differential capacitances. It is revealed that the potential- and concentration-dependent net charge on these chemisorbates dramatically changes the surface charge densities and differential capacitances. Specifically, the free surface charge density could decrease as the electrode potential becomes more positive, implying that the corresponding differential capacitance is negative. The relationship between the free and total surface charge densities is analyzed with aid of the concept of electrosorption valency. By linking the electrosorption valency with the differential capacitance in the absence of chemisorbates, we explain the potential and concentration dependence of the former. The conceptual analysis presented in this work has important implications for experimental characterization and first-principles-based atomistic simulations of electrocatalysis and EDL effects. Particularly, we disclose a hidden yet potentially crucial disadvantage of widely employed atomistic simulation models that fix the coverage of chemisorbates. Proposing the self-consistent implicit model as an expedient remedy for this disadvantage, this work contributes to more realistic modeling of electrocatalytic EDLs.
Main Authors
Format
Articles Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
American Physical Society
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202411197346Use this for linking
Review status
Peer reviewed
ISSN
2768-5608
DOI
https://doi.org/10.1103/prxenergy.3.043008
Language
English
Published in
PRX Energy
Citation
  • Huang, J., Domínguez-Flores, F., & Melander, M. (2024). Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model. PRX Energy, 3, Article 043008. https://doi.org/10.1103/prxenergy.3.043008
License
CC BY 4.0Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Academy Research Fellow, AoF
Akatemiatutkija, SA
Research Council of Finland
Additional information about funding
This work is supported by the Initiative and Networking Fund of the Helmholtz Association (Grant No. VH-NG-1709) and the Academy of Finland through Project No. 338228. Computational resources were provided by the CSC-IT Center for Science, Espoo, Finland.
Copyright© Authors 2024

Share

_version_ 1824577731815276544
accesslevel_txtF openAccess
author Huang, Jun Domínguez-Flores, Fabiola Melander, Marko
author_facet Huang, Jun Domínguez-Flores, Fabiola Melander, Marko
content_txtF fulltext
converis_txtF yes
departments_txtF_mv Kemian laitos Department of Chemistry
description Prevalent electrolyte effects across a wide range of electrocatalytic reactions underscore the general importance of the local reaction conditions in the electrical double layer (EDL). Compared to traditional EDLs, the electrocatalytic siblings feature partially charged chemisorbates that could blur our long-held views of surface charge densities and differential capacitances—two interrelated quantities shaping the crucial local reaction conditions. Herein, five variants of surface charge density and three variants of differential capacitance in the presence of chemisorbates are defined and compared. A semiclassical model of electrocatalytic EDLs is developed for a quantitative analysis of the differences and interrelationships between these variants of surface charge densities and differential capacitances. It is revealed that the potential- and concentration-dependent net charge on these chemisorbates dramatically changes the surface charge densities and differential capacitances. Specifically, the free surface charge density could decrease as the electrode potential becomes more positive, implying that the corresponding differential capacitance is negative. The relationship between the free and total surface charge densities is analyzed with aid of the concept of electrosorption valency. By linking the electrosorption valency with the differential capacitance in the absence of chemisorbates, we explain the potential and concentration dependence of the former. The conceptual analysis presented in this work has important implications for experimental characterization and first-principles-based atomistic simulations of electrocatalysis and EDL effects. Particularly, we disclose a hidden yet potentially crucial disadvantage of widely employed atomistic simulation models that fix the coverage of chemisorbates. Proposing the self-consistent implicit model as an expedient remedy for this disadvantage, this work contributes to more realistic modeling of electrocatalytic EDLs.
digitoitu_txtF no
file_count_txtF 1
files_txt [{"restricted": "no", "bundleName": "ORIGINAL", "format": "Adobe PDF", "mimeType": "application/pdf", "name": "PRXEnergy.3.043008.pdf", "description": "publishedVersion", "retrieveLink": "/rest/bitstreams/62023199-1968-4c05-8610-5ef9a9dcec2b/retrieve"}, {"restricted": "no", "bundleName": "TEXT", "format": "Text", "mimeType": "text/plain", "name": "PRXEnergy.3.043008.pdf.txt", "description": "Extracted text", "retrieveLink": "/rest/bitstreams/e85a7611-af63-4b52-8759-1bbf5f514877/retrieve"}, {"restricted": "no", "bundleName": "THUMBNAIL", "format": "JPEG", "mimeType": "image/jpeg", "name": "PRXEnergy.3.043008.pdf.jpg", "description": "Generated Thumbnail", "retrieveLink": "/rest/bitstreams/8d8da7c9-cd1c-4aee-ac19-8a55ed7689dc/retrieve"}]
format 0/Artikkelit/ 1/Artikkelit/research article/
fullrecord
key : dc.contributor.author
value : Huang, Jun
language :
element : contributor
qualifier : author
schema : dc
key : dc.contributor.author
value : Domínguez-Flores, Fabiola
language :
element : contributor
qualifier : author
schema : dc
key : dc.contributor.author
value : Melander, Marko
language :
element : contributor
qualifier : author
schema : dc
key : dc.date.accessioned
value : 2024-11-19T09:46:01Z
language :
element : date
qualifier : accessioned
schema : dc
key : dc.date.available
value : 2024-11-19T09:46:01Z
language :
element : date
qualifier : available
schema : dc
key : dc.date.issued
value : 2024
language :
element : date
qualifier : issued
schema : dc
key : dc.identifier.citation
value : Huang, J., Domínguez-Flores, F., & Melander, M. (2024). Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model. PRX Energy, 3, Article 043008. https://doi.org/10.1103/prxenergy.3.043008
language :
element : identifier
qualifier : citation
schema : dc
key : dc.identifier.other
value : jyu-pub.243981749
language :
element : identifier
qualifier : other
schema : dc
key : dc.identifier.uri
value : https://jyx.jyu.fi/handle/123456789/98509
language :
element : identifier
qualifier : uri
schema : dc
key : dc.description.abstract
value : Prevalent electrolyte effects across a wide range of electrocatalytic reactions underscore the general importance of the local reaction conditions in the electrical double layer (EDL). Compared to traditional EDLs, the electrocatalytic siblings feature partially charged chemisorbates that could blur our long-held views of surface charge densities and differential capacitances—two interrelated quantities shaping the crucial local reaction conditions. Herein, five variants of surface charge density and three variants of differential capacitance in the presence of chemisorbates are defined and compared. A semiclassical model of electrocatalytic EDLs is developed for a quantitative analysis of the differences and interrelationships between these variants of surface charge densities and differential capacitances. It is revealed that the potential- and concentration-dependent net charge on these chemisorbates dramatically changes the surface charge densities and differential capacitances. Specifically, the free surface charge density could decrease as the electrode potential becomes more positive, implying that the corresponding differential capacitance is negative. The relationship between the free and total surface charge densities is analyzed with aid of the concept of electrosorption valency. By linking the electrosorption valency with the differential capacitance in the absence of chemisorbates, we explain the potential and concentration dependence of the former. The conceptual analysis presented in this work has important implications for experimental characterization and first-principles-based atomistic simulations of electrocatalysis and EDL effects. Particularly, we disclose a hidden yet potentially crucial disadvantage of widely employed atomistic simulation models that fix the coverage of chemisorbates. Proposing the self-consistent implicit model as an expedient remedy for this disadvantage, this work contributes to more realistic modeling of electrocatalytic EDLs.
language : en
element : description
qualifier : abstract
schema : dc
key : dc.format.mimetype
value : application/pdf
language :
element : format
qualifier : mimetype
schema : dc
key : dc.language.iso
value : eng
language :
element : language
qualifier : iso
schema : dc
key : dc.publisher
value : American Physical Society
language :
element : publisher
qualifier :
schema : dc
key : dc.relation.ispartofseries
value : PRX Energy
language :
element : relation
qualifier : ispartofseries
schema : dc
key : dc.rights
value : CC BY 4.0
language :
element : rights
qualifier :
schema : dc
key : dc.title
value : Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
language :
element : title
qualifier :
schema : dc
key : dc.type
value : research article
language :
element : type
qualifier :
schema : dc
key : dc.identifier.urn
value : URN:NBN:fi:jyu-202411197346
language :
element : identifier
qualifier : urn
schema : dc
key : dc.contributor.department
value : Kemian laitos
language : fi
element : contributor
qualifier : department
schema : dc
key : dc.contributor.department
value : Department of Chemistry
language : en
element : contributor
qualifier : department
schema : dc
key : dc.type.uri
value : http://purl.org/eprint/type/JournalArticle
language :
element : type
qualifier : uri
schema : dc
key : dc.type.coar
value : http://purl.org/coar/resource_type/c_2df8fbb1
language :
element : type
qualifier : coar
schema : dc
key : dc.description.reviewstatus
value : peerReviewed
language :
element : description
qualifier : reviewstatus
schema : dc
key : dc.relation.issn
value : 2768-5608
language :
element : relation
qualifier : issn
schema : dc
key : dc.relation.volume
value : 3
language :
element : relation
qualifier : volume
schema : dc
key : dc.type.version
value : publishedVersion
language :
element : type
qualifier : version
schema : dc
key : dc.rights.copyright
value : © Authors 2024
language :
element : rights
qualifier : copyright
schema : dc
key : dc.rights.accesslevel
value : openAccess
language : fi
element : rights
qualifier : accesslevel
schema : dc
key : dc.type.publication
value : article
language :
element : type
qualifier : publication
schema : dc
key : dc.relation.grantnumber
value : 338228
language :
element : relation
qualifier : grantnumber
schema : dc
key : dc.subject.yso
value : elektrokatalyysi
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : sähkökemia
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : laskennallinen kemia
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : tiheysfunktionaaliteoria
language :
element : subject
qualifier : yso
schema : dc
key : dc.format.content
value : fulltext
language :
element : format
qualifier : content
schema : dc
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p38660
language :
element : subject
qualifier : uri
schema : jyx
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p8093
language :
element : subject
qualifier : uri
schema : jyx
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p23053
language :
element : subject
qualifier : uri
schema : jyx
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p28852
language :
element : subject
qualifier : uri
schema : jyx
key : dc.rights.url
value : https://creativecommons.org/licenses/by/4.0/
language :
element : rights
qualifier : url
schema : dc
key : dc.relation.doi
value : 10.1103/prxenergy.3.043008
language :
element : relation
qualifier : doi
schema : dc
key : dc.relation.funder
value : Research Council of Finland
language : en
element : relation
qualifier : funder
schema : dc
key : dc.relation.funder
value : Suomen Akatemia
language : fi
element : relation
qualifier : funder
schema : dc
key : jyx.fundingprogram
value : Academy Research Fellow, AoF
language : en
element : fundingprogram
qualifier :
schema : jyx
key : jyx.fundingprogram
value : Akatemiatutkija, SA
language : fi
element : fundingprogram
qualifier :
schema : jyx
key : jyx.fundinginformation
value : This work is supported by the Initiative and Networking Fund of the Helmholtz Association (Grant No. VH-NG-1709) and the Academy of Finland through Project No. 338228. Computational resources were provided by the CSC-IT Center for Science, Espoo, Finland.
language :
element : fundinginformation
qualifier :
schema : jyx
key : dc.type.okm
value : A1
language :
element : type
qualifier : okm
schema : dc
files : [{"restricted":"no","bundleName":"ORIGINAL","format":"Adobe PDF","mimeType":"application\/pdf","name":"PRXEnergy.3.043008.pdf","description":"publishedVersion","retrieveLink":"\/rest\/bitstreams\/62023199-1968-4c05-8610-5ef9a9dcec2b\/retrieve"},{"restricted":"no","bundleName":"TEXT","format":"Text","mimeType":"text\/plain","name":"PRXEnergy.3.043008.pdf.txt","description":"Extracted text","retrieveLink":"\/rest\/bitstreams\/e85a7611-af63-4b52-8759-1bbf5f514877\/retrieve"},{"restricted":"no","bundleName":"THUMBNAIL","format":"JPEG","mimeType":"image\/jpeg","name":"PRXEnergy.3.043008.pdf.jpg","description":"Generated Thumbnail","retrieveLink":"\/rest\/bitstreams\/8d8da7c9-cd1c-4aee-ac19-8a55ed7689dc\/retrieve"}]
funders_txtF_mv Research Council of Finland Suomen Akatemia
id jyx_123456789_98509
isbn_txtF no
ispartofseries_txtF_mv PRX Energy
issn 2768-5608
issued_txtF 2024
language_txtF_mv eng
mimetype_txtF_mv application/pdf
okm_txtF A1
online_urls_str_mv URN:NBN:fi:jyu-202411197346
publishDate 2024
publisher_txtF_mv American Physical Society
reviewstatus_txtF peerReviewed
rights_txtF CC BY 4.0
series PRX Energy
seuranta_id_txt_mv jyu.wisdom jyu_14_4 jyu_14_5 rc_26
seuranta_label_txtF_mv Resurssiviisausyhteisö School of Resource Wisdom Fysikaalinen kemia Physical Chemistry Kemia Chemistry Nanoscience Center Nanoscience Center
seuranta_txtF_mv JYU.Wisdom KEF KEM NSC
spellingShingle Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model Huang, Jun Domínguez-Flores, Fabiola Melander, Marko elektrokatalyysi sähkökemia laskennallinen kemia tiheysfunktionaaliteoria PRX Energy
subject_count_txtF 0
thumbnail https://jyx.jyu.fi/bitstreams/8d8da7c9-cd1c-4aee-ac19-8a55ed7689dc/download.jpg?sequence=99
title Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
title_full Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
title_fullStr Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
title_full_unstemmed Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
title_short Variants of Surface Charges and Capacitances in Electrocatalysis : Insights from Density-Potential Functional Theory Embedded with an Implicit Chemisorption Model
title_sort Variants of Surface Charges and Capacitances in Electrocatalysis Insights from DensityPotential Functional Theory Embedded with an Implicit Chemisorption Model
topic elektrokatalyysi sähkökemia laskennallinen kemia tiheysfunktionaaliteoria
yso_count_txtF 4