Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency

Abstract
Semiparametric inference on average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst has to make a delicate choice between these models. In this paper, we study three identifying assumptions based on the potential outcome framework: the back-door assumption, which uses pre-treatment covariates, the front-door assumption, which uses mediators, and the two-door assumption using pre-treatment covariates and mediators simultaneously. We provide the efficient influence functions and the corresponding semiparametric efficiency bounds that hold under these assumptions, and their combinations. We demonstrate that neither of the identification models provides uniformly the most efficient estimation and give conditions under which some bounds are lower than others. We show when semiparametric estimating equation estimators based on influence functions attain the bounds, and study the robustness of the estimators to misspecification of the nuisance models. The theory is complemented with simulation experiments on the finite sample behavior of the estimators. The results obtained are relevant for an analyst facing a choice between several plausible identifying assumptions and corresponding estimators. Our results show that this choice implies a trade-off between efficiency and robustness to misspecification of the nuisance models.
Main Authors
Format
Articles Research article
Published
2023
Series
Subjects
Publication in research information system
Publisher
JMLR
Original source
https://jmlr.org/papers/v24/21-1392.html
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202309195189Use this for linking
Review status
Peer reviewed
ISSN
1532-4435
Language
English
Published in
Journal of Machine Learning Research
Citation
  • Gorbach, T., de Luna, X., Karvanen, J., & Waernbaum, I. (2023). Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency. Journal of Machine Learning Research, 24, Article 197. https://jmlr.org/papers/v24/21-1392.html
License
CC BY 4.0Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Research profiles, AoF
Profilointi, SA
Research Council of Finland
Additional information about funding
This work was supported by the Marianne and Marcus Wallenberg Foundation (grant 2015.0060), FORTE (grant 2018-00852), the Swedish Research Council (grants 2018-02670 and 2016-00703) and the Academy of Finland (grant number 311877). This research was conducted using the resources of High Performance Computing Center North (HPC2N).
Copyright© 2023 Tetiana Gorbach, Xavier de Luna, Juha Karvanen, Ingeborg Waernbaum

Share

_version_ 1824577746120998912
accesslevel_txtF openAccess
author Gorbach, Tetiana de Luna, Xavier Karvanen, Juha Waernbaum, Ingeborg
author_facet Gorbach, Tetiana de Luna, Xavier Karvanen, Juha Waernbaum, Ingeborg
content_txtF fulltext
converis_txtF yes
departments_txtF_mv Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics
description Semiparametric inference on average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst has to make a delicate choice between these models. In this paper, we study three identifying assumptions based on the potential outcome framework: the back-door assumption, which uses pre-treatment covariates, the front-door assumption, which uses mediators, and the two-door assumption using pre-treatment covariates and mediators simultaneously. We provide the efficient influence functions and the corresponding semiparametric efficiency bounds that hold under these assumptions, and their combinations. We demonstrate that neither of the identification models provides uniformly the most efficient estimation and give conditions under which some bounds are lower than others. We show when semiparametric estimating equation estimators based on influence functions attain the bounds, and study the robustness of the estimators to misspecification of the nuisance models. The theory is complemented with simulation experiments on the finite sample behavior of the estimators. The results obtained are relevant for an analyst facing a choice between several plausible identifying assumptions and corresponding estimators. Our results show that this choice implies a trade-off between efficiency and robustness to misspecification of the nuisance models.
digitoitu_txtF no
discipline_txtF Tilastotiede
file_count_txtF 1
files_txt [{"restricted": "no", "bundleName": "ORIGINAL", "format": "Adobe PDF", "mimeType": "application/pdf", "name": "21-1392.pdf", "description": "publishedVersion", "retrieveLink": "/rest/bitstreams/1434112e-1487-43c9-b75c-75e4d114a2d4/retrieve"}, {"restricted": "no", "bundleName": "TEXT", "format": "Text", "mimeType": "text/plain", "name": "21-1392.pdf.txt", "description": "Extracted text", "retrieveLink": "/rest/bitstreams/3fad81ae-e653-4a50-83d9-208a4651e8c5/retrieve"}, {"restricted": "no", "bundleName": "THUMBNAIL", "format": "JPEG", "mimeType": "image/jpeg", "name": "21-1392.pdf.jpg", "description": "Generated Thumbnail", "retrieveLink": "/rest/bitstreams/dab1dbc7-5364-4d2a-b6fd-b356d82bd1f8/retrieve"}]
format 0/Artikkelit/ 1/Artikkelit/research article/
fullrecord
key : dc.contributor.author
value : Gorbach, Tetiana
language :
element : contributor
qualifier : author
schema : dc
key : dc.contributor.author
value : de Luna, Xavier
language :
element : contributor
qualifier : author
schema : dc
key : dc.contributor.author
value : Karvanen, Juha
language :
element : contributor
qualifier : author
schema : dc
key : dc.contributor.author
value : Waernbaum, Ingeborg
language :
element : contributor
qualifier : author
schema : dc
key : dc.date.accessioned
value : 2023-09-19T08:53:38Z
language :
element : date
qualifier : accessioned
schema : dc
key : dc.date.available
value : 2023-09-19T08:53:38Z
language :
element : date
qualifier : available
schema : dc
key : dc.date.issued
value : 2023
language :
element : date
qualifier : issued
schema : dc
key : dc.identifier.citation
value : Gorbach, T., de Luna, X., Karvanen, J., & Waernbaum, I. (2023). Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency. Journal of Machine Learning Research, 24, Article 197. https://jmlr.org/papers/v24/21-1392.html
language :
element : identifier
qualifier : citation
schema : dc
key : dc.identifier.other
value : jyu-pub.184924702
language :
element : identifier
qualifier : other
schema : dc
key : dc.identifier.uri
value : https://jyx.jyu.fi/handle/123456789/89172
language :
element : identifier
qualifier : uri
schema : dc
key : dc.description.abstract
value : Semiparametric inference on average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst has to make a delicate choice between these models. In this paper, we study three identifying assumptions based on the potential outcome framework: the back-door assumption, which uses pre-treatment covariates, the front-door assumption, which uses mediators, and the two-door assumption using pre-treatment covariates and mediators simultaneously. We provide the efficient influence functions and the corresponding semiparametric efficiency bounds that hold under these assumptions, and their combinations. We demonstrate that neither of the identification models provides uniformly the most efficient estimation and give conditions under which some bounds are lower than others. We show when semiparametric estimating equation estimators based on influence functions attain the bounds, and study the robustness of the estimators to misspecification of the nuisance models. The theory is complemented with simulation experiments on the finite sample behavior of the estimators. The results obtained are relevant for an analyst facing a choice between several plausible identifying assumptions and corresponding estimators. Our results show that this choice implies a trade-off between efficiency and robustness to misspecification of the nuisance models.
language : en
element : description
qualifier : abstract
schema : dc
key : dc.format.mimetype
value : application/pdf
language :
element : format
qualifier : mimetype
schema : dc
key : dc.language.iso
value : eng
language :
element : language
qualifier : iso
schema : dc
key : dc.publisher
value : JMLR
language :
element : publisher
qualifier :
schema : dc
key : dc.relation.ispartofseries
value : Journal of Machine Learning Research
language :
element : relation
qualifier : ispartofseries
schema : dc
key : dc.relation.uri
value : https://jmlr.org/papers/v24/21-1392.html
language :
element : relation
qualifier : uri
schema : dc
key : dc.rights
value : CC BY 4.0
language :
element : rights
qualifier :
schema : dc
key : dc.subject.other
value : causal inference
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : efficiency bound
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : robustness
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : back-door
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : front-door
language :
element : subject
qualifier : other
schema : dc
key : dc.title
value : Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
language :
element : title
qualifier :
schema : dc
key : dc.type
value : research article
language :
element : type
qualifier :
schema : dc
key : dc.identifier.urn
value : URN:NBN:fi:jyu-202309195189
language :
element : identifier
qualifier : urn
schema : dc
key : dc.contributor.department
value : Matematiikan ja tilastotieteen laitos
language : fi
element : contributor
qualifier : department
schema : dc
key : dc.contributor.department
value : Department of Mathematics and Statistics
language : en
element : contributor
qualifier : department
schema : dc
key : dc.subject.discipline
value : Tilastotiede
language : fi
element : subject
qualifier : discipline
schema : dc
key : dc.subject.discipline
value : Statistics
language : en
element : subject
qualifier : discipline
schema : dc
key : dc.type.uri
value : http://purl.org/eprint/type/JournalArticle
language :
element : type
qualifier : uri
schema : dc
key : dc.type.coar
value : http://purl.org/coar/resource_type/c_2df8fbb1
language :
element : type
qualifier : coar
schema : dc
key : dc.description.reviewstatus
value : peerReviewed
language :
element : description
qualifier : reviewstatus
schema : dc
key : dc.relation.issn
value : 1532-4435
language :
element : relation
qualifier : issn
schema : dc
key : dc.relation.volume
value : 24
language :
element : relation
qualifier : volume
schema : dc
key : dc.type.version
value : publishedVersion
language :
element : type
qualifier : version
schema : dc
key : dc.rights.copyright
value : © 2023 Tetiana Gorbach, Xavier de Luna, Juha Karvanen, Ingeborg Waernbaum
language :
element : rights
qualifier : copyright
schema : dc
key : dc.rights.accesslevel
value : openAccess
language : fi
element : rights
qualifier : accesslevel
schema : dc
key : dc.type.publication
value : article
language :
element : type
qualifier : publication
schema : dc
key : dc.relation.grantnumber
value : 311877
language :
element : relation
qualifier : grantnumber
schema : dc
key : dc.subject.yso
value : mallit (mallintaminen)
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : kausaliteetti
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : estimointi
language :
element : subject
qualifier : yso
schema : dc
key : dc.format.content
value : fulltext
language :
element : format
qualifier : content
schema : dc
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p510
language :
element : subject
qualifier : uri
schema : jyx
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p333
language :
element : subject
qualifier : uri
schema : jyx
key : jyx.subject.uri
value : http://www.yso.fi/onto/yso/p11349
language :
element : subject
qualifier : uri
schema : jyx
key : dc.rights.url
value : https://creativecommons.org/licenses/by/4.0/
language :
element : rights
qualifier : url
schema : dc
key : dc.relation.funder
value : Research Council of Finland
language : en
element : relation
qualifier : funder
schema : dc
key : dc.relation.funder
value : Suomen Akatemia
language : fi
element : relation
qualifier : funder
schema : dc
key : jyx.fundingprogram
value : Research profiles, AoF
language : en
element : fundingprogram
qualifier :
schema : jyx
key : jyx.fundingprogram
value : Profilointi, SA
language : fi
element : fundingprogram
qualifier :
schema : jyx
key : jyx.fundinginformation
value : This work was supported by the Marianne and Marcus Wallenberg Foundation (grant 2015.0060), FORTE (grant 2018-00852), the Swedish Research Council (grants 2018-02670 and 2016-00703) and the Academy of Finland (grant number 311877). This research was conducted using the resources of High Performance Computing Center North (HPC2N).
language :
element : fundinginformation
qualifier :
schema : jyx
key : dc.type.okm
value : A1
language :
element : type
qualifier : okm
schema : dc
files : [{"restricted":"no","bundleName":"ORIGINAL","format":"Adobe PDF","mimeType":"application\/pdf","name":"21-1392.pdf","description":"publishedVersion","retrieveLink":"\/rest\/bitstreams\/1434112e-1487-43c9-b75c-75e4d114a2d4\/retrieve"},{"restricted":"no","bundleName":"TEXT","format":"Text","mimeType":"text\/plain","name":"21-1392.pdf.txt","description":"Extracted text","retrieveLink":"\/rest\/bitstreams\/3fad81ae-e653-4a50-83d9-208a4651e8c5\/retrieve"},{"restricted":"no","bundleName":"THUMBNAIL","format":"JPEG","mimeType":"image\/jpeg","name":"21-1392.pdf.jpg","description":"Generated Thumbnail","retrieveLink":"\/rest\/bitstreams\/dab1dbc7-5364-4d2a-b6fd-b356d82bd1f8\/retrieve"}]
funders_txtF_mv Research Council of Finland Suomen Akatemia
id jyx_123456789_89172
isbn_txtF no
ispartofseries_txtF_mv Journal of Machine Learning Research
issn 1532-4435
issued_txtF 2023
language_txtF_mv eng
mimetype_txtF_mv application/pdf
okm_txtF A1
online_urls_str_mv URN:NBN:fi:jyu-202309195189
publishDate 2023
publisher_txtF_mv JMLR
reviewstatus_txtF peerReviewed
rights_txtF CC BY 4.0
series Journal of Machine Learning Research
seuranta_id_txt_mv jyu_15_1
seuranta_label_txtF_mv Tilastotiede Statistics
seuranta_txtF_mv TIL
spellingShingle Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency Gorbach, Tetiana de Luna, Xavier Karvanen, Juha Waernbaum, Ingeborg causal inference efficiency bound robustness back-door front-door mallit (mallintaminen) kausaliteetti estimointi Journal of Machine Learning Research
subject_count_txtF 5
thumbnail https://jyx.jyu.fi/bitstreams/dab1dbc7-5364-4d2a-b6fd-b356d82bd1f8/download.jpg?sequence=99
title Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
title_full Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
title_fullStr Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
title_full_unstemmed Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
title_short Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
title_sort Contrasting Identifying Assumptions of Average Causal Effects Robustness and Semiparametric Efficiency
topic causal inference efficiency bound robustness back-door front-door mallit (mallintaminen) kausaliteetti estimointi
yso_count_txtF 3