Degradation of bioplastic in anaerobic conditions
Abstract
Muovien hajoamattomuus on synnyttänyt ympäristöongelman, jota yritetään
ratkaista biohajoavien muovien avulla. Samalla mädätys kerää suosiota
orgaanisen jätteen käsittelymenetelmänä biokaasupotentiaalin ja
maanparannusaineeksi soveltuvan mädätysjäännöksen ansiosta. Muovien on
kuitenkin havaittu haittaavan mädätyslaitosten toimintaa Muovien
biohajoamistutkimukset ovat myös painottuneet aerobisiin oloihin, kuten
kompostointiin ja maaperäkokeisiin. Tämä tutkimus pyrkii tarkastelemaan
muovin määrää biojätteessä ja termoplastisesta tärkkelyksestä valmistetun
biomuovin hajoamista anaerobisissa oloissa. Tutkimus tehtiin mesofiilisena
märkämädätyskokeena. Tässä tutkimuksessa tarkastelulla biomuovilla on
EN13432-sertifikaatti, joka osoittaa tuotteen hajoavan teollisessa kompostoinnissa.
Tutkimukseen kuului kaksi aikajännettä; 30 ja 90 vuorokautta.
Tutkimusmateriaalit olivat termoplastinen tärkkelys, LLDPE ja paperi, joista
LLDPE:tä käytettiin negatiivisena kontrollina, eli materiaalina, jonka ei odotettu
hajoavan ja paperi taas oli positiivinen kontrolli. Materiaalien hajoamista
tarkasteltiin visuaalisten havaintojen, massahäviön ja tuotetun biokaasun avulla.
Termoplastinen tärkkelys menetti keskimäärin 14,9 ± 0.3 % massastaan 30
vuorokaudessa ja 21 ± 1 % 90 vuorokaudessa. Biokaasun tuottoon perustuvat
mineralisaatioasteet ovat erittäin epävarmoja, koska materiaalien
hiilipitoisuudesta ei ollut varmaa tietoa ja reaktorit kärsivät osin merkittävästä
happi-inhibitiosta. Vähäinen biohajoaminen on mahdollista, sillä suurin
saavutettu mineralisaatioaste termoplastiselle tärkkelykselle oli 14 % 30:ssä
vuorokaudessa, mutta lukeman todettiin olevan virhemarginaalissa. Pidemmän
aikajakson hyödyistä suurempana mineralisaatioasteena ei saatu todisteita, vaikka
termoplastinen tärkkelys menettikin 6 prosenttiyksikköä enemmän massaa 90
vuorokaudessa 30 vuorokauden kokeeseen verrattuna, mikä oli tilastollisesti
merkitsevä ero. Biokaasun tuotanto hidastui 30:n vuorokauden jälkeen, joten
suuremman massahäviön 90 vuorokauden kokeessa ajateltiin johtuvan suurelta
osin ympäristötekijöistä. Tässä työssä tarkastellun termoplastisen tärkkelyksen ei
todettu hajoavan merkittävästi anaerobisisssa olosuhteissa EN13432 sertifikaatista
huolimatta, mikä osoittaa etteivät aerobisissa olosuhteissa hajoavat muovit hajoa
mädätyksessä.
Plastics once applauded for their durability are now causing environmental harm for the same reason. To mitigate this issue, biodegradable plastics have been developed. Degradation studies however have mostly been conducted in aerobic conditions such as composting and soil. Anaerobic digestion has some advantages over aerobic digestion, for example anaerobic digestion produces methane rich biogas that can be used as a fuel. Plastics have been noted to be problematic for anaerobic digestion. This study aims to examine plastic contents in biowaste and provide insight on anaerobic degradability of thermoplastic starch, a kind of plastic made out of starch. The study was conducted as a wet digestion batch experiment in 37 °C with retention times of 30 and 90 days. Digestate from Mustankorkea anaerobic digestion plant was used as inoculum and leftover food from Ylistö restaurant was used to provide nutrients for the microbes. Sample materials were thermoplastic starch, LLDPE and paper. Degradability was assessed as relative mass loss and as amount of biogas produced out of theoretical maximum while also observing the materials visually. Theoretical maximum biogas yield was calculated assuming all carbon in a sample was converted into biogas. Thermoplastic starch lost on average 14.9 ± 0.3 % of mass in 30 days and 21 ± 1 % in 90 days. Meanwhile paper was completely disintegrated in 30 days and LLPDE gained mass possibly due to biofilm formation. Statistically signifigant increase in mass loss shows that degradation of thermoplastic starch continued throughout the last 60 days of test, albeit at reduced rate, despite minimal microbial activity. Plastics yielded less biogas than the mixture of inoculum and food waste resulting in the mineralization degrees being mostly negative. A low level of mineralisation may be achievable for the TPS studied here, as the highest mineralisation degree reached was 14 % in 30 days. However the margin of error for mineralisation degrees in this study is remarkable due to uncertainty regarding the carbon contents of the sample materials and notable oxygen inhibition, so 14 % is quite likely within the margin of error.
Plastics once applauded for their durability are now causing environmental harm for the same reason. To mitigate this issue, biodegradable plastics have been developed. Degradation studies however have mostly been conducted in aerobic conditions such as composting and soil. Anaerobic digestion has some advantages over aerobic digestion, for example anaerobic digestion produces methane rich biogas that can be used as a fuel. Plastics have been noted to be problematic for anaerobic digestion. This study aims to examine plastic contents in biowaste and provide insight on anaerobic degradability of thermoplastic starch, a kind of plastic made out of starch. The study was conducted as a wet digestion batch experiment in 37 °C with retention times of 30 and 90 days. Digestate from Mustankorkea anaerobic digestion plant was used as inoculum and leftover food from Ylistö restaurant was used to provide nutrients for the microbes. Sample materials were thermoplastic starch, LLDPE and paper. Degradability was assessed as relative mass loss and as amount of biogas produced out of theoretical maximum while also observing the materials visually. Theoretical maximum biogas yield was calculated assuming all carbon in a sample was converted into biogas. Thermoplastic starch lost on average 14.9 ± 0.3 % of mass in 30 days and 21 ± 1 % in 90 days. Meanwhile paper was completely disintegrated in 30 days and LLPDE gained mass possibly due to biofilm formation. Statistically signifigant increase in mass loss shows that degradation of thermoplastic starch continued throughout the last 60 days of test, albeit at reduced rate, despite minimal microbial activity. Plastics yielded less biogas than the mixture of inoculum and food waste resulting in the mineralization degrees being mostly negative. A low level of mineralisation may be achievable for the TPS studied here, as the highest mineralisation degree reached was 14 % in 30 days. However the margin of error for mineralisation degrees in this study is remarkable due to uncertainty regarding the carbon contents of the sample materials and notable oxygen inhibition, so 14 % is quite likely within the margin of error.
Main Author
Format
Theses
Master thesis
Published
2019
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201906273484Use this for linking
Language
English