Radio frequency fingerprinting for outdoor user equipment localization

Abstract
The recent advancements in cellular mobile technology and smart phone usage have opened opportunities for researchers and commercial companies to develop ubiquitous low cost localization systems. Radio frequency (RF) fingerprinting is a popular positioning technique which uses radio signal strength (RSS) values from already existing infrastructures to provide satisfactory user positioning accuracy in indoor and densely built outdoor urban areas where Global Navigation Satellite System (GNSS) signal is poor and hard to reach. However a major requirement for the RF fingerprinting to maintain good localization accuracy is the collection and updating of large training database. The Minimization of Drive Tests (MDT) functionality proposed by 3GPP LTE Release 10 & 11 has enabled cellular operators to autonomously gather and update necessary amount of RF fingerprint samples by utilizing their subscriber user equipments (UEs). The main objective of this thesis is to propose a framework for RF fingerprint positioning (RFFP) of outdoor UEs using MDT data and to further improve its performance capability to provide better localization. In the first part only LTE base-station (BS) RSS values were used to improve grid-based RF fingerprint positioning (G-RFFP) by using novel approaches: using overlapped grid-cell layouts (GCL), weighting based grid-cell unit selection and Artificial Intelligence based G-RFFP method. In the second part real measurement RSS values from LTE BS and WLAN access points (APs) were utilized and a generic measurement method referred to as GMDT was proposed to correlate WLAN RSS to LTE RSS measurements and its significance to RFFP was studied using a partial fingerprint matching technique. To remove the computational cost associated with training data preprocessing a new cluster-based RF fingerprint positioning (C-RFFP) method was proposed. This thesis provides a good source of information and novel techniques for cellular operators to build a low cost RF fingerprint positioning system which can deliver acceptable results in emergency user localization
Main Author
Format
Theses Doctoral thesis
Published
2017
Series
Subjects
ISBN
978-951-39-7285-1
Publisher
University of Jyväskylä
The permanent address of the publication
https://urn.fi/URN:ISBN:978-951-39-7285-1Use this for linking
ISSN
1456-5390
Language
English
Published in
Jyväskylä studies in computing
License
In CopyrightOpen Access

Share

_version_ 1824577933532987392
accesslevel_txtF openAccess
author Mondal, Riaz Uddin
author_facet Mondal, Riaz Uddin
converis_txtF no
description The recent advancements in cellular mobile technology and smart phone usage have opened opportunities for researchers and commercial companies to develop ubiquitous low cost localization systems. Radio frequency (RF) fingerprinting is a popular positioning technique which uses radio signal strength (RSS) values from already existing infrastructures to provide satisfactory user positioning accuracy in indoor and densely built outdoor urban areas where Global Navigation Satellite System (GNSS) signal is poor and hard to reach. However a major requirement for the RF fingerprinting to maintain good localization accuracy is the collection and updating of large training database. The Minimization of Drive Tests (MDT) functionality proposed by 3GPP LTE Release 10 & 11 has enabled cellular operators to autonomously gather and update necessary amount of RF fingerprint samples by utilizing their subscriber user equipments (UEs). The main objective of this thesis is to propose a framework for RF fingerprint positioning (RFFP) of outdoor UEs using MDT data and to further improve its performance capability to provide better localization. In the first part only LTE base-station (BS) RSS values were used to improve grid-based RF fingerprint positioning (G-RFFP) by using novel approaches: using overlapped grid-cell layouts (GCL), weighting based grid-cell unit selection and Artificial Intelligence based G-RFFP method. In the second part real measurement RSS values from LTE BS and WLAN access points (APs) were utilized and a generic measurement method referred to as GMDT was proposed to correlate WLAN RSS to LTE RSS measurements and its significance to RFFP was studied using a partial fingerprint matching technique. To remove the computational cost associated with training data preprocessing a new cluster-based RF fingerprint positioning (C-RFFP) method was proposed. This thesis provides a good source of information and novel techniques for cellular operators to build a low cost RF fingerprint positioning system which can deliver acceptable results in emergency user localization
digitoitu_txtF no
discipline_txtF Tietotekniikka
faculty_txtF Informaatioteknologian tiedekunta
file_count_txtF 1
files_txt [{"restricted": "no", "bundleName": "THUMBNAIL", "format": "JPEG", "mimeType": "image/jpeg", "name": "978-951-39-7285-1_vaitos13122017.pdf.jpg", "description": "Generated Thumbnail", "retrieveLink": "/rest/bitstreams/02eb227b-6a9f-41c6-8bbf-5fad0abc38c9/retrieve"}, {"restricted": "no", "bundleName": "ORIGINAL", "format": "Adobe PDF", "mimeType": "application/pdf", "name": "978-951-39-7285-1_vaitos13122017.pdf", "description": null, "retrieveLink": "/rest/bitstreams/48aa84d4-7989-4b70-ad4d-f3cef969367a/retrieve"}, {"restricted": "no", "bundleName": "TEXT", "format": "Text", "mimeType": "text/plain", "name": "978-951-39-7285-1_vaitos13122017.pdf.txt", "description": "Extracted text", "retrieveLink": "/rest/bitstreams/651ad646-77dd-4a3f-b0d0-37ff76f9cb54/retrieve"}]
format 0/Opinnäytteet/ 1/Opinnäytteet/doctoral thesis/
fullrecord
key : dc.contributor.author
value : Mondal, Riaz Uddin
language :
element : contributor
qualifier : author
schema : dc
key : dc.date.accessioned
value : 2017-12-11T07:47:08Z
language :
element : date
qualifier : accessioned
schema : dc
key : dc.date.available
value : 2017-12-11T07:47:08Z
language :
element : date
qualifier : available
schema : dc
key : dc.date.issued
value : 2017
language :
element : date
qualifier : issued
schema : dc
key : dc.identifier.isbn
value : 978-951-39-7285-1
language :
element : identifier
qualifier : isbn
schema : dc
key : dc.identifier.other
value : oai:jykdok.linneanet.fi:1805096
language :
element : identifier
qualifier : other
schema : dc
key : dc.identifier.uri
value : https://jyx.jyu.fi/handle/123456789/56222
language :
element : identifier
qualifier : uri
schema : dc
key : dc.description.abstract
value : The recent advancements in cellular mobile technology and smart phone usage have opened opportunities for researchers and commercial companies to develop ubiquitous low cost localization systems. Radio frequency (RF) fingerprinting is a popular positioning technique which uses radio signal strength (RSS) values from already existing infrastructures to provide satisfactory user positioning accuracy in indoor and densely built outdoor urban areas where Global Navigation Satellite System (GNSS) signal is poor and hard to reach. However a major requirement for the RF fingerprinting to maintain good localization accuracy is the collection and updating of large training database. The Minimization of Drive Tests (MDT) functionality proposed by 3GPP LTE Release 10 & 11 has enabled cellular operators to autonomously gather and update necessary amount of RF fingerprint samples by utilizing their subscriber user equipments (UEs). The main objective of this thesis is to propose a framework for RF fingerprint positioning (RFFP) of outdoor UEs using MDT data and to further improve its performance capability to provide better localization. In the first part only LTE base-station (BS) RSS values were used to improve grid-based RF fingerprint positioning (G-RFFP) by using novel approaches: using overlapped grid-cell layouts (GCL), weighting based grid-cell unit selection and Artificial Intelligence based G-RFFP method. In the second part real measurement RSS values from LTE BS and WLAN access points (APs) were utilized and a generic measurement method referred to as GMDT was proposed to correlate WLAN RSS to LTE RSS measurements and its significance to RFFP was studied using a partial fingerprint matching technique. To remove the computational cost associated with training data preprocessing a new cluster-based RF fingerprint positioning (C-RFFP) method was proposed. This thesis provides a good source of information and novel techniques for cellular operators to build a low cost RF fingerprint positioning system which can deliver acceptable results in emergency user localization
language :
element : description
qualifier : abstract
schema : dc
key : dc.format.extent
value : 1 verkkoaineisto (68 sivua, 16 sivua useina numerointijaksoina, 26 numeroimatonta sivua) : kuvitettu
language :
element : format
qualifier : extent
schema : dc
key : dc.language.iso
value : eng
language :
element : language
qualifier : iso
schema : dc
key : dc.publisher
value : University of Jyväskylä
language :
element : publisher
qualifier :
schema : dc
key : dc.relation.ispartofseries
value : Jyväskylä studies in computing
language :
element : relation
qualifier : ispartofseries
schema : dc
key : dc.relation.isversionof
value : Yhteenveto-osa ja 9 eripainosta julkaistu myös painettuna.
language :
element : relation
qualifier : isversionof
schema : dc
key : dc.rights
value : In Copyright
language :
element : rights
qualifier :
schema : dc
key : dc.subject.other
value : RF fingerprinting
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : LTE
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : WLAN
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : Mahalanobis distance
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : Kullback-Leibler divergence
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : K-Nearest Neighbor
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : K-means clustering
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : hierarchical clustering
language :
element : subject
qualifier : other
schema : dc
key : dc.subject.other
value : Fuzzy C-means Clustering
language :
element : subject
qualifier : other
schema : dc
key : dc.title
value : Radio frequency fingerprinting for outdoor user equipment localization
language :
element : title
qualifier :
schema : dc
key : dc.type
value : doctoral thesis
language :
element : type
qualifier :
schema : dc
key : dc.identifier.urn
value : URN:ISBN:978-951-39-7285-1
language :
element : identifier
qualifier : urn
schema : dc
key : dc.type.dcmitype
value : Text
language : en
element : type
qualifier : dcmitype
schema : dc
key : dc.type.ontasot
value : Väitöskirja
language : fi
element : type
qualifier : ontasot
schema : dc
key : dc.type.ontasot
value : Doctoral dissertation
language : en
element : type
qualifier : ontasot
schema : dc
key : dc.contributor.faculty
value : Faculty of Information Technology
language : en
element : contributor
qualifier : faculty
schema : dc
key : dc.contributor.faculty
value : Informaatioteknologian tiedekunta
language : fi
element : contributor
qualifier : faculty
schema : dc
key : dc.contributor.organization
value : University of Jyväskylä
language : en
element : contributor
qualifier : organization
schema : dc
key : dc.contributor.organization
value : Jyväskylän yliopisto
language : fi
element : contributor
qualifier : organization
schema : dc
key : dc.subject.discipline
value : Tietotekniikka
language : fi
element : subject
qualifier : discipline
schema : dc
key : dc.type.coar
value : http://purl.org/coar/resource_type/c_db06
language :
element : type
qualifier : coar
schema : dc
key : dc.relation.issn
value : 1456-5390
language :
element : relation
qualifier : issn
schema : dc
key : dc.relation.numberinseries
value : 271
language :
element : relation
qualifier : numberinseries
schema : dc
key : dc.rights.accesslevel
value : openAccess
language :
element : rights
qualifier : accesslevel
schema : dc
key : dc.type.publication
value : doctoralThesis
language :
element : type
qualifier : publication
schema : dc
key : dc.subject.yso
value : paikannus
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : mobiililaitteet
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : radioaallot
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : matkaviestinverkot
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : langattomat lähiverkot
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : koneoppiminen
language :
element : subject
qualifier : yso
schema : dc
key : dc.subject.yso
value : klusterianalyysi
language :
element : subject
qualifier : yso
schema : dc
key : dc.rights.url
value : https://rightsstatements.org/page/InC/1.0/
language :
element : rights
qualifier : url
schema : dc
files : [{"restricted":"no","bundleName":"THUMBNAIL","format":"JPEG","mimeType":"image\/jpeg","name":"978-951-39-7285-1_vaitos13122017.pdf.jpg","description":"Generated Thumbnail","retrieveLink":"\/rest\/bitstreams\/02eb227b-6a9f-41c6-8bbf-5fad0abc38c9\/retrieve"},{"restricted":"no","bundleName":"ORIGINAL","format":"Adobe PDF","mimeType":"application\/pdf","name":"978-951-39-7285-1_vaitos13122017.pdf","description":null,"retrieveLink":"\/rest\/bitstreams\/48aa84d4-7989-4b70-ad4d-f3cef969367a\/retrieve"},{"restricted":"no","bundleName":"TEXT","format":"Text","mimeType":"text\/plain","name":"978-951-39-7285-1_vaitos13122017.pdf.txt","description":"Extracted text","retrieveLink":"\/rest\/bitstreams\/651ad646-77dd-4a3f-b0d0-37ff76f9cb54\/retrieve"}]
id jyx_123456789_56222
isbn 978-951-39-7285-1
isbn_txtF yes
ispartofseries_txtF_mv Jyväskylä studies in computing
issn 1456-5390
issued_txtF 2017
language_txtF_mv eng
mimetype_txtF_mv application/pdf
online_urls_str_mv URN:ISBN:978-951-39-7285-1
publishDate 2017
publisher_txtF_mv University of Jyväskylä
rights_txtF In Copyright
series Jyväskylä studies in computing
spellingShingle Radio frequency fingerprinting for outdoor user equipment localization Mondal, Riaz Uddin RF fingerprinting LTE WLAN Mahalanobis distance Kullback-Leibler divergence K-Nearest Neighbor K-means clustering hierarchical clustering Fuzzy C-means Clustering paikannus mobiililaitteet radioaallot matkaviestinverkot langattomat lähiverkot koneoppiminen klusterianalyysi Jyväskylä studies in computing
subject_count_txtF 9
thumbnail https://jyx.jyu.fi/bitstreams/02eb227b-6a9f-41c6-8bbf-5fad0abc38c9/download.jpg?sequence=99
title Radio frequency fingerprinting for outdoor user equipment localization
title_full Radio frequency fingerprinting for outdoor user equipment localization
title_fullStr Radio frequency fingerprinting for outdoor user equipment localization
title_full_unstemmed Radio frequency fingerprinting for outdoor user equipment localization
title_short Radio frequency fingerprinting for outdoor user equipment localization
title_sort Radio frequency fingerprinting for outdoor user equipment localization
topic RF fingerprinting LTE WLAN Mahalanobis distance Kullback-Leibler divergence K-Nearest Neighbor K-means clustering hierarchical clustering Fuzzy C-means Clustering paikannus mobiililaitteet radioaallot matkaviestinverkot langattomat lähiverkot koneoppiminen klusterianalyysi
yso_count_txtF 7