Näytä suppeat kuvailutiedot

dc.contributor.authorTaimisto, Marjaana
dc.contributor.authorBajorek, Tom
dc.contributor.authorRautiainen, J. Mikko
dc.contributor.authorPakkanen, Tapani A.
dc.contributor.authorOilunkaniemi, Raija
dc.contributor.authorLaitinen, Risto S.
dc.date.accessioned2022-08-17T11:47:14Z
dc.date.available2022-08-17T11:47:14Z
dc.date.issued2022
dc.identifier.citationTaimisto, M., Bajorek, T., Rautiainen, J. M., Pakkanen, T. A., Oilunkaniemi, R., & Laitinen, R. S. (2022). Experimental and computational investigation on the formation pathway of [RuCl2(CO)2(ERR′)2] (E = S, Se, Te; R, R′ = Me, Ph) from [RuCl2(CO)3]2 and ERR′. <i>Dalton Transactions</i>, <i>51</i>(31), 11747-11757. <a href="https://doi.org/10.1039/D2DT02018A" target="_blank">https://doi.org/10.1039/D2DT02018A</a>
dc.identifier.otherCONVID_150955957
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82664
dc.description.abstractThe pathways to the formation of the series of [RuCl2(CO)2(ERR′)2] (E = S, Se, Te; R, R′ = Me, Ph) complexes from [RuCl2(CO)3]2 and ERR′ have been explored experimentally in THF and CH2Cl2, and computationally by PBE0-D3/def2-TZVP calculations. The end-products and some reaction intermediates have been isolated and identified by NMR spectroscopy, and their crystal structures have been determined by X-ray diffraction. The relative stabilities of the [RuCl2(CO)2(ERR′)2] isomers follow the order cct > ccc > tcc > ttt ≈ ctc (the terms c/t refer to cis/trans arrangement of the ligands in the order of Cl, CO, and ERR′). The yields were rather similar in both solvents, but the reactions were significantly faster in THF than in CH2Cl2. The highest yields were observed for the telluroether complexes, and the yields decreased with lighter chalcogenoethers. PBE0-D3/def2-TZVP calculations indicated that the reaction path is independent of the nature of the solvent. The substitution of one CO ligand of the intermediate [RuCl2(CO)3(ERR′)] by the second ERR′ shows the highest activation barrier and is the rate-determining step in all reactions. The observed faster reaction rate in THF than in CH2Cl2 upon reflux can therefore be explained by the higher boiling point of THF. At room temperature the reactions in both solvents proceed equally slowly. When the reaction is carried out in THF, the formation of [RuCl2(CO)3(THF)] is also observed, and the reaction may proceed with the substitution of THF by ERR′. The formation of the THF complex, however, is not necessary for the dissociation of the [RuCl2(CO)3]2. Thermal energy at room temperature is sufficient to cleave one of the bridging Ru–Cl bonds. The intermediate thus formed undergoes a facile reaction with ERR′. This mechanism is viable also in non-coordinating CH2Cl2.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.ispartofseriesDalton Transactions
dc.rightsCC BY 4.0
dc.titleExperimental and computational investigation on the formation pathway of [RuCl2(CO)2(ERR′)2] (E = S, Se, Te; R, R′ = Me, Ph) from [RuCl2(CO)3]2 and ERR′
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202208174206
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineEpäorgaaninen ja analyyttinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineEpäorgaaninen kemiafi
dc.contributor.oppiaineInorganic and Analytical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineInorganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange11747-11757
dc.relation.issn1477-9226
dc.relation.numberinseries31
dc.relation.volume51
dc.type.versionpublishedVersion
dc.rights.copyright© The Royal Society of Chemistry 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysoNMR-spektroskopia
dc.subject.ysokemiallinen synteesi
dc.subject.ysolaskennallinen kemia
dc.subject.ysoröntgenkristallografia
dc.subject.ysokompleksiyhdisteet
dc.subject.ysoreaktiomekanismit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26254
jyx.subject.urihttp://www.yso.fi/onto/yso/p8468
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
jyx.subject.urihttp://www.yso.fi/onto/yso/p29058
jyx.subject.urihttp://www.yso.fi/onto/yso/p30190
jyx.subject.urihttp://www.yso.fi/onto/yso/p21536
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1039/D2DT02018A
jyx.fundinginformationFinancial support from Finnish Cultural Foundation Lapland Regional Fund, The Finnish Concordia Fund, and Emil Aaltonen Foundation (M. T.), as well as the generous provision of computational resources by Prof. Heikki Tuononen (University of Jyväskylä) (J. M. R.) are also gratefully acknowledged.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0