Quasiconformal Jordan Domains
Ikonen, T. (2021). Quasiconformal Jordan Domains. Analysis and Geometry in Metric Spaces, 9(1), 167-185. https://doi.org/10.1515/agms-2020-0127
Julkaistu sarjassa
Analysis and Geometry in Metric SpacesTekijät
Päivämäärä
2021Tekijänoikeudet
© 2021 Toni Ikonen, published by De Gruyter.
We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (Y,dY). We say that a metric space (Y,dY) is a quasiconformal Jordan domain if the completion Y of (Y,dY) has finite Hausdor 2-measure, the boundary ∂Y=Y\Y is homeomorphic to S1, and there exists a homeo-morphism φ:D→(Y,dY) that is quasiconformal in the geometric sense. We show that φ has a continuous, monotone, and surjective extension Φ:D→Y. This result is best possible in this generality. In addition, we find a necessary and suffcient condition for Φ to be a quasiconformal homeomorphism. We provide suffcient conditions for the restriction of Φ to S1 being a quasisymmetry and to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.
Julkaisija
Walter de Gruyter GmbHISSN Hae Julkaisufoorumista
2299-3274Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101837523
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The author was supported by the Academy of Finland, project number 308659 and by the Vilho, Yrjö and Kalle Väisälä Foundation.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Singular quasisymmetric mappings in dimensions two and greater
Romney, Matthew (Academic Press, 2019)For all n ≥2, we construct a metric space (X, d)and a quasisymmetric mapping f:[0, 1]n→X with the property that f−1 is not absolutely continuous with respect to the Hausdorff n-measure on X. That is, there exists a Borel ... -
Reciprocal lower bound on modulus of curve families in metric surfaces
Rajala, Kai; Romney, Matthew (Suomalainen tiedeakatemia, 2019) -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.