Näytä suppeat kuvailutiedot

dc.contributor.authorHuang, Zhishuo
dc.contributor.authorLiu, Dan
dc.contributor.authorMansikkamäki, Akseli
dc.contributor.authorVieru, Veacheslav
dc.contributor.authorIwahara, Naoya
dc.contributor.authorChibotaru, Liviu F.
dc.date.accessioned2021-03-05T10:41:32Z
dc.date.available2021-03-05T10:41:32Z
dc.date.issued2020
dc.identifier.citationHuang, Z., Liu, D., Mansikkamäki, A., Vieru, V., Iwahara, N., & Chibotaru, L. F. (2020). Ferromagnetic kinetic exchange interaction in magnetic insulators. <i>Physical Review Research</i>, <i>2</i>(3), Article 033430. <a href="https://doi.org/10.1103/PhysRevResearch.2.033430" target="_blank">https://doi.org/10.1103/PhysRevResearch.2.033430</a>
dc.identifier.otherCONVID_51774793
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74503
dc.description.abstractThe superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms or groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First-principles calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling (−10 meV) between the iron ions in a Fe3+-Co3+-Fe3+ complex. Furthermore, we find that the ferromagnetic exchange interaction turns into antiferromagnetic by substituting the diamagnetic bridge with magnetic one. The phenomenology is observed in two series of materials, supporting the significance of the ferromagnetic kinetic exchange mechanism.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review Research
dc.rightsCC BY 4.0
dc.subject.othermagnetic coupling
dc.subject.othermagnetic insulators
dc.subject.otherdensity functional theory
dc.subject.otherWannier function methods
dc.titleFerromagnetic kinetic exchange interaction in magnetic insulators
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202103051863
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineEpäorgaaninen ja analyyttinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineInorganic and Analytical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2643-1564
dc.relation.numberinseries3
dc.relation.volume2
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2020
dc.rights.accesslevelopenAccessfi
dc.subject.ysomagneettiset ominaisuudet
dc.subject.ysoelektronit
dc.subject.ysomagneettikentät
dc.subject.ysoteoriat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p597
jyx.subject.urihttp://www.yso.fi/onto/yso/p4030
jyx.subject.urihttp://www.yso.fi/onto/yso/p19032
jyx.subject.urihttp://www.yso.fi/onto/yso/p127
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevResearch.2.033430
jyx.fundinginformationZ.H. and D.L. were supported by the China Scholarship Council. A.M. acknowledges funding provided by the Magnus Ehrnrooth Foundation. V.V. received support as a postdoctoral fellow of the Research Foundation, Flanders (FWO). N.I. was partly supported the GOA program of KU Leuven and Scientific Research Grant No. R-143-000-A80-114 of the National University of Singapore. The computational resources were provided by the VSC (Flemish Supercomputer Center).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0