Minimum Description Length Based Hidden Markov Model Clustering for Life Sequence Analysis
Helske, J., Eerola, M., & Tabus, I. (2010). Minimum Description Length Based Hidden Markov Model Clustering for Life Sequence Analysis. In Workshop on Information Theoretic Methods in Science and Engineering. http://sp.cs.tut.fi/WITMSE10/Proceedings/index.html
Päivämäärä
2010Tekijänoikeudet
© The Authors 2010
In this article, a model-based method for clustering life
sequences is suggested. In the social sciences, model-free
clustering methods are often used in order to find typical
life sequences. The suggested method, which is based on
hidden Markov models, provides principled probabilistic
ranking of candidate clusterings for choosing the best solution. After presenting the principle of the method and
algorithm, the method is tested with real life data, where
it finds eight descriptive clusters with clear probabilistic
structures.
Kuuluu julkaisuun
Workshop on Information Theoretic Methods in Science and Engineering
Alkuperäislähde
http://sp.cs.tut.fi/WITMSE10/Proceedings/index.htmlJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/20099158
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Statistical analysis of life sequence data
Helske, Satu (University of Jyväskylä, 2016) -
Analysing Complex Life Sequence Data with Hidden Markov Modelling
Helske, Satu; Helske, Jouni; Eerola, Mervi (LIVES - Swiss National Centre of Competence in Research; Swiss National Science Foundation; Université de Genevè, 2016)When analysing complex sequence data with multiple channels (dimensions) and long observation sequences, describing and visualizing the data can be a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) ... -
Mixture Hidden Markov Models for Sequence Data : The seqHMM Package in R
Helske, Satu; Helske, Jouni (Foundation for Open Access Statistics, 2019)Sequence analysis is being more and more widely used for the analysis of social sequences and other multivariate categorical time series data. However, it is often complex to describe, visualize, and compare large sequence ... -
Cluster priors in the Bayesian modelling of fMRI data
Taskinen, Ilkka (University of Jyväskylä, 2001) -
Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions
Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.