On FE-grid relocation in solving unilateral boundary value problems by FEM
Haslinger, J., Neittaanmäki, P. & Salmenjoki, K. (1992). On FE-grid relocation in solving unilateral boundary value problems by FEM. Applications of Mathematics, 37 (2), 105-122. Retrieved from https://eudml.org/doc/15703
Julkaistu sarjassa
Applications of MathematicsPäivämäärä
1992Tekijänoikeudet
© the Authors & Akademie věd České republiky, Matematický ústav, 1992.
We consider FE-grid optimization in elliptic unilateral boundary value problems.
The criterion used in grid optimization is the total potential energy of the system.
It is shown that minimization of this cost functional means a decrease of the discretization
error or a better approximation of the unilateral boundary conditions, Design sensitivity
analysis is given with respect to the movement of nodal points. Numerical results for the
Dirichlet-Signorini problem for the Laplace equation and the plane elasticity problem with
unilateral boundary conditions are given. In plane elasticity we consider problems with and
without friction.
Julkaisija
Akademie věd České republiky, Matematický ústavISSN Hae Julkaisufoorumista
0862-7940
Alkuperäislähde
https://eudml.org/doc/15703Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Optimal shape design and unilateral boundary value problems. I.
Haslinger, Jaroslav; Neittaanmäki, Pekka; Tiihonen, Timo; Kaarna, Arto (Wiley, 1988)In the first part we give a general existence theorem and a regularization method for an optimal control problem where the control is a domain in R″ and where the system is governed by a state relation which includes ... -
Optimal shape design and unilateral boundary value problems. Part II.
Haslinger, Jaroslav; Neittaanmäki, Pekka; Tiihonen, Timo; Kaarna, Arto (Wiley, 1988)The shape optimization of an elastic body in contact with a rigid surface is considered. An existence result for optimal shapes as well as a numerical realization are stated. From several numerical results it can be seen ... -
On the convergence of the finite element approximation of eigenfrequencies and eigenvectors to Maxwell's boundary value problem
Neittaanmäki, Pekka; Picard, Rainer (Suomalainen tiedeakatemia, 1981) -
A Steepest Descent Method for the Approximation of the Boundary Control in Two-Phase Stefan Problem
Neittaanmäki, Pekka; Tiba, D. (Cluj-Napoca : Éditions de l'Académie Roumaine, 1987) -
The radiation problem for the Schrödinger operator in some domains with noncompact boundaries
Neittaanmäki, Pekka; Saranen, Jukka (Societas Scientiarum Fennica, 1982)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.