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Abstract

One formulation of Marstrand’s slicing theorem is the
following. Assume that ¢ € (1,2], and B C R? is a Borel
set with 7!(B) < oo. Then, for almost all directions e €
S, H' almost all of B is covered by lines # parallel to e
with dimy (B n¢) =t — 1. We investigate the prospects
of sharpening Marstrand’s result in the following sense:
in a generic direction e € S', is it true that a strictly less
than t-dimensional part of B is covered by the heavy
lines # C R?, namely those with dimy;(BN#) >t — 17 A
positive answer for ¢-regular sets B C R? was previously
obtained by the first author. The answer for general
Borel sets turns out to be negative for t € (1, %] and pos-
itive for ¢t € (%, 2]. More precisely, the heavy lines can
cover up to a min{t,3 — ¢t} dimensional part of B in a
generic direction. We also consider the part of B cov-
ered by the s-heavy lines, namely those with dim(B N
¢) > s for s > t — 1. We establish a sharp answer to the
question: how much can the s-heavy lines cover in a
generic direction? Finally, we identify a new class of
sets called sub-uniformly distributed sets, which gen-
eralise Ahlfors-regular sets. Roughly speaking, these
sets share the spatial uniformity of Ahlfors-regular sets,
but pose no restrictions on uniformity across different
scales. We then extend and sharpen the first author’s
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previous result on Ahlfors-regular sets to the class of
sub-uniformly distributed sets.

MSC 2020
28A80 (primary), 28A78 (secondary)
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1 | INTRODUCTION

We start by stating Marstrand’s slicing theorem [10] as formulated in Mattila’s book [11, Theorem
6.9]. For e € S' and z € R?, we use the notation 7, , := z + span(e).

Theorem 1.1 (Marstrand, ’54). Let t € (1,2], and let B C R? be a Borel set with H'(B) < co. Then
there exists a H'-null set E C S* such that the following holds foralle € S* \ E:

dimy(Bnz,,)=1t—1 (L)
forH' a.e. z € B.

It was shown by the second author [13] that in fact dimy E < 2 — ¢t. Very roughly speaking,
Marstrand’s theorem says that the lines # C R? failing (1.1) are exceptlonal’. There are two ways
in which (1.1) can fail: either ¢ is light or heavy:

dimpBn7¢)<t—1 or dimg(Bne)>t—1.

In [11, section 6.4], Mattila proposes to study, how large a proportion of B can be covered by such
exceptional lines. Marstrand’s theorem states, in a generic direction, that this proportion has van-
ishing H' measure, but can one do better? The problem only makes sense in a generic direction:
for example, if B = A X A with dimy A = % dimy B, then all of B is covered by heavy horizontal
(or vertical) lines.
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In the current paper, we focus on the problem of heavy lines. Let us briefly formalise our key
notions. Given A C R?, we say that a line # C R? is heavy (for A) if

dimy(A N £) > max{dim;; A — 1, 0}.

More specifically, for a parameter s > max{dimy A — 1, 0}, we say that a line # C R? is s-heavy if
dimp(AN?) = s.

Definition 1.1. Let A C R%. For e € S', let H(A, e, s) be the family of s-heavy lines parallel to e.
The s-heavy part of A in direction e is the set

H(A,e,s) :={z€A:7¢,, € H(Ae,s)}

We also define H(A, e) as the union of the families H(A4, e, s) for s > max{dimy A — 1,0}, and
finally

H(A,e) :={z€A:7¢,, € H(A e}
Then, we set h(A, s) := esssup,cq1 dimy; H(A, e, s) and h(A) : = esssup,cs1 dimyy H(A, e).

The quantities h(A, s) and h(A) encode the answer to the question: how much of A can (at most)
be covered by the (s-)heavy lines in a generic direction? In a previous paper [6, Theorem 1.3], the
first author proved the following in the case where A C R? is compact and Ahlfors-regular:

hlA) < 1. 1.2)

In particular, the value of (the upper bound for) §(A) is independent of dimy; A, and becomes non-
trivial if dimy A > 1. Note that (1.2) implies h(A4, e, s) < 1 for all s > min{dimy A — 1,0}. When
starting the research, it seemed reasonable to believe that

(a) Ahlfors-regularity should not be necessary for (1.2), and
(b) sharper estimates might hold for s > min{dimy; A — 1, 0}.

For readers familiar with the Furstenberg set problem, it will not come as a surprise that Problem

1.1 is somehow related to Furstenberg sets. We clarify this connection presently.

Definition 1.2. Lets € [0,1]and ¢ € [0,2]. Aset F C R? is an (s, t)-Furstenberg set if there exists
a family £ of lines in R? with dimy £ > t such thatdimy(FNn¢) > sforall € L.

Here dimy; £ refers to the Hausdorff dimension of £ viewed as a subset of .A(2, 1), the (metric)
space of all affine lines in R?. A concrete metric in .A(2, 1) is given by the formula

dyon(€1,83) = lmy, — 7 llop + lay — asl,

where 7, = L, + a; and 7, = L, + a,,and L,, L, € G(2, 1) are 1-dimensional subspaces of R? par-
allel to £y, ¢, respectively, a; € L].l, and 7y R L ; refers to the orthogonal projection to L;
for j € {1,2}.
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In recent work, the third author with Ren [15] proved the following (sharp) lower bound for the
Hausdorff dimension of (s, t)-Furstenberg sets:

Theorem 1.2 (Ren-Wang). Let F C R? be an (s, t)-Furstenberg set with s € (0,1] and t € [0, 2].
Then,

dimHF>min{s+t,%,s+1}.

In Theorem 1.2, it is not necessary to assume any measurability of F. Using this information,
we can make progress on the problem of heavy lines:

Proposition 1.1. Let A C R? bea setwithdimy; A =t € [1,2]. If s > %(Zt — 1), then H(A,s,e) =
foralmost all e € S, therefore h(A,s) = 0. Fort —1 < s < %(Zt — 1), we have

H(A, s) < min{2t — 3s, t}.
In particular, H(A) < min{3 — ¢, t}.

Proof. Assume first that s > (2t — 1)/3. Assume to the contrary that H(A, s, e) # @ for positively
many directions e € S'. This implies that there exist positively many e € S* such that dimy(A N
¢,) > s for at least one line #, parallel to e. Consequently, A is an (s, 1)-Furstenberg set, and by
Theorem 1.2

3s+1 2t—1)+1
35+l o =D+l

=t.
This is a contradiction.

Assume next t — 1 < s < (2t — 1)/3 (the endpoint s = %(Zt — 1) can be eventually treated by
resorting to a sequence s; / %(2t —-1)).

Let H(A,s) 1= J,eq1 H(A,e,s) be the collection of all s-heavy lines in all directions. Abbre-
viate §) := (A, s). As the bound §) < t is trivial, it suffices to prove that § < 2t — 3s. We make a
counter assumption: f) > 2t — 3s. In particular, ) > 1 by the assumption s < (2t — 1)/3. By defini-
tions, for any ' € (1, h) there exist positively many directions e € S* such that dimy; H(A, e, s) >
Y. For all such directions e € S!, we have

dimy H(A,e,s) > 4 —1,

because the lines in H(A, e, s) need to cover a set of dimension at least §’. Letting §’ /' §, it follows
that dimy; H(A, s) > b, and therefore A is an (s, §)-Furstenberg set. By Theorem 1.2, we deduce
that dimy; A > min{s + §, 3S;h,s + 1L

All the three possibilities lead to a contradiction. If the minimum is the first term, then
dimy A > s+ (2t — 3s) = 2t — 25 > t, because s < (2t — 1)/3 < t/2.If the minimum is the second
term, then dimy A > %(38 + 2t — 35) = t by the hypothesis § > 2t — 3s. Finally, if the minimum
is the third term, then dimyy; A >s+1>t,ass >t — 1.

This completes the proof, except for final ‘in particular’ part. However, the estimate for §(A)

follows from the cases s > t — 1 treated above by letting s \, ¢ — 1. O
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Let us then compare Proposition 1.1 to (1.2), namely the previously established result for
Ahlfors-regular sets. Have we made progress with hypotheses (a)-(b)?

Let A C R? be a Borel set with dimy; A =t € [1,2]. If A is Ahlfors-regular, (1.2) states that
H(A) < 1.In contrast, Proposition 1.1 only yields §(A) < min{3 — ¢, t}. For instance, if t < %, Propo-
sition 1.1 only returns the trivial bound }(A) < t. So, we have made virtually no progress in
confirming hypothesis (a), especially if dim;; A < %

How about hypothesis (b)? Indeed, if s > %(2[ — 1), we have shown that §(A4, s) = 0, which is
certainly sharper than (1.2). However, for s = %(2t — 1) Proposition 1.1 only promises that §(A, s) <

1. So, we are unable to improve on (1.2), unless s > %(Zt — 1). Thus, for Borel sets, Proposition 1.1
verifies neither (a) nor (b).
It turns out that the bound in Proposition 1.1 is sharp:

Theorem 1.3. Foreveryt € (1,2] ands € [t — 1, %(2[ — 1)] there exists a compact set K C R? such
that dimy K = t and )(K, s) = min{2t — 3s, t}. In fact, K can be selected so that

dimy H(K, e, s) > min{2t — 3s, t}
foreverye € S..

Remark 1.1. We can now answer the question on how much Theorem 1.1 can be sharpened for
heavy lines. If dimp; A =t € (%, 2], then the heavy lines in H! almost every direction can only
cover a (3 — t)-dimensional set (by Proposition 1.1), where 3 — ¢t < t.

Ifte(, %], the heavy lines in every direction may cover a t-dimensional set. For ¢ € (1, %), a
fortiori, the g-heavy lines in every direction may cover a t-dimensional set.

(Fort = % the example showing that heavy lines can cover a t-dimensional set is constructed

as a union of the sets K = K in Theorem 1.3 with s; = % + %.)

Remark 1.2. Proposition 1.1 and Theorem 1.3 tell us something about dim; H(A, e) for generic
e € S'. A related question concerns dimy; H(A, e). For this problem, a sharp answer was given
earlier by Fu and Ren [7, Corollary 1.7]. In fact dimy; H(A,e) <2 — ¢ for H! almost every e €
S'. An easy generalisation of their argument shows, more generally, that if s € (¢t — 1,1], then
dimy; H(A,e,s) <1 —sfor H! almost every e € S*.

Given these bounds, one may be tempted to pursue the following formal ‘proof’ of the inequality
dimy H(A,e) < 1. For s € (t — 1,1] and € > 0, we ‘sum up’ the dimension of the line family and
the upper bound for the heaviness to obtain

dimy[H(A,e,s) \ HA,e,s+¢)] <1 —5)+(s+e)=1+e. 1.3)

Then,wevary s € (t — 1, 1] and finally lete — 0to deduce thatdimy H(A, e) < 1. Of course (1.3) is
suspicious, as the argument relies on a ‘Fubini theorem for Hausdorff dimension’ that is generally
false. In fact, Theorem 1.3 shows that this argument is impossible to make rigourous, at least for
general compact sets.
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1.1 | Sub-uniformly distributed sets

Theorem 1.3 says that Proposition 1.1 is sharp in the class of Borel, or even compact, sets. For
Ahlfors-regular sets (1.2) says something much stronger. Which property of Ahlfors-regular sets
explains this discrepancy?

The examples constructed for Theorem 1.3 have the form K = K; U K,, where both K, K, are
Cantor-type sets of dimension ¢, but with wildly different ‘branching’ behaviour. Informally speak-
ing, the set K; looks 2-dimensional between certain scales [§,,, A, ] and ¢-dimensional between
otherscales[A,,, 1, J,]. The set K, has the same properties, but with the roles of the scales reversed.
In particular, it would be ill-defined to say that K; U K, looks s-dimensional between the scales
[6,,4,], for any s € [0, 2].

To improve on Theorem 1.3, we introduce the following definition that aims to (i) extend
Ahlfors-regular sets, and (ii) rule out the adverse behaviour described above:

Definition 1.3 (Sub-uniformly distributed sets). We say that a bounded set K ¢ RY is sub-
uniformly distributed if there exists a constant C > 0 such that

Kl - IKNQ|, < CIK],, QEDR(K), 0<r<R<o0. (1.4)

The notation Dg(K) refers to dyadic cubes of side-length R intersecting K, and in (1.1) we
assume implicitly that r, R only range over dyadic values 2! for i € Z. The notation |K|, refers
to the cardinality of D,.(K).

Remark 1.3. At first we considered the slightly stronger definition of uniformly distributed sets
that would otherwise be defined as above, except that we require a 2-sided estimate |K N Q|, ~
|K|,/|K|g- The caveat of the stronger definition is that the uniformity of a set might depend on the
choice of a dyadic system, or whether the set Q is taken to be an R-disc or an R-square. The notion
of sub-uniformly distributed sets is blind to such nuances, yet strong enough for our purposes.

Clearly t-Ahlfors-regular sets are sub-uniformly distributed: |K N Q|, S (R/r)" ~ |K|,/|K|g for
all Q € Dy and 0 < r £ R < diam(K). For R > diam(K) the estimate (1.4) follows simply from
|K|gr ~ 1. However, sub-uniformly distributed sets are much more general than Ahlfors-regular
sets: for example, any Cantor type set obtained by replacing squares of level n by C(n) € N squares
squares of level n + 1 is sub-uniformly distributed.

The union of two sub-uniformly distributed sets is generally not sub-uniformly distributed.
Indeed, the sets in Theorem 1.3 can be written as a union of two sub-uniformly distributed sets,
and they fail the conclusion of Theorem 1.4.

Finally, we mention that the notion of (sub-)uniformly distributed sets was inspired by the
notion of {A;}"" _ -uniform sets that has proved useful in dealing with Furstenberg sets and related
problems in approximate incidence geometry [14-16].

We then arrive at our main result for sub-uniformly distributed sets:

Theorem 1.4. Let K C R? be compact and sub-uniformly distributed with dimy(K) = t € (0, 2).
For max{t — 1,0} < s < 1 we have

H(K,s) < max{t — s, 0}. (1.5)

In particular, h(K) < 1.
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In fact, we prove this estimate for a slightly larger ‘heavy part’, where heaviness is measured
using box-counting dimension; see Proposition 4.1 for details.

Remark 1.4. For s > % we see from (1.5) that dimy; H(K, e, s) < % <sforae.ecSl. Asa single
s-heavy line satisfies dimy(K N #) > s, it follows that for a.e. e € S! there are no s-heavy lines
parallel to e, that is, H(K,e,s) = @. Compare this to Proposition 1.1, which stated that typically
there are no s-heavy lines as soon as s > %(Zt —1).

As % > %(Zt — 1), the threshold of Proposition 1.1 is lower than the one we can obtain from
Theorem 1.4. In other words, for s > %(Zt — 1) the estimate from Proposition 1.1 (valid for general

Borel sets) beats Theorem 1.4. On the other hand, fort — 1 < s < %(ZI — 1) the bound from Theo-
rem 1.4 beats Proposition 1.1. Regardless, in this range we suspect that the bound (1.5) is not sharp
in the class of sub-uniformly distributed sets, let alone Ahlfors-regular sets.

1.2 | Further literature

If we restrict to sets with an underlying dynamical system, there are significantly stronger answers
to the heavy lines problem than we presented above for Ahlfors-regular and sub-uniformly dis-
tributed sets. For instance, solving an old conjecture of Furstenberg [8], Shmerkin [16] and Wu [17]
independently established the following. Assume that K = A X B, where A is Xp-invariant, B is
xg-invariant, and log p/logq ¢ Q. Then H(K,e) = fforalle € S' \ span{(0, 1), (1,0)}. A similar
conclusion holds (without any exceptional directions) if K C R? is a self-similar set where one of
the generators contains an irrational rotation, see [17, Theorem 1.6]. For more recent work related
to Furstenberg’s intersection conjecture, see, for example, [1-4, 18]
Finally, we refer the reader to the recent survey of Mattila [12] on various slicing problems.

1.3 | Structure of the paper

After a brief section on notation and preliminaries, Theorem 1.4 on sub-uniformly distributed sets
is proved in Sections 3 and 4. The proof is Fourier-analytic, and based on the high—low method
introduced in Subsection 2.1. Theorem 1.4 will be derived from a new J-discretised incidence
estimate stated as Proposition 3.1.

The sharpness examples in Theorem 1.3 are constructed in Section 5. The examples are fun-
damentally based on ‘folklore’ sharpness examples for the (s, t)-Furstenberg set problem, and
related projection problems. It seems, however, that these examples are not available in the lit-
erature in the quantitative form we require in Section 5. The Appendix is devoted to filling in
the details.

2 | NOTATION AND PRELIMINARIES

Notation 2.1. We write f < g if there exists an absolute constant C > 0 such that f < Cg. If C
depends on some parameter ¢, we will write f <. ¢g. In case f < g S f we write f ~ g, while

f ~c gdenotes f <. g <. f.
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Notation 2.2 (Families of dyadic cubes). The notation Da(Rd) will refer to the standard dyadic
cubes of R9. More generally, if P C R or P C D5([Rd), and A € 277, we will use the notation

P, :=D\(P) :={p € D\(RY) : pnP # @}

We will also write |P|, := |P,]| to denote the (dyadic) A-covering number of P. We set |P|, := oo
if P meets infinitely many dyadic A-cubes.
In the special case P = [0, 1)?, we abbreviate

D5 = D5([0, 1)2)

Ifp € D,(RY) and P € Ds(R?) with § < A < 1, we will also (ab-)use the notation P np :={p €
P . pcCph

Notation 2.3. Let § € 27N. The dyadic &-tubes T° are the images of elements of Ds under the
‘point-line duality map’

D(a,b) :={(x,y) € R? : y = ax + b}.

More precisely, each T € 79 has the form T = UD(p) for some p = p; € D;. (It is a choice of
normalisation, not a typo, that we only consider images of D instead of Ds(R?).) In other words,
T is the subset of R? obtained by taking the union of the lines D(a, b) with (a, b) € p. For more
information, see [14, section 2.3]. If T € 72,and 7 ¢ 7% with 0 < 6 < A < 1, we will (ab-)use the
notation 7 NT :={T €7 : T CT}

Remark 2.1. Elements of 79 contain lines of multiple different slopes, so they do not resemble
‘ordinary’ §-tubes (§-neighbourhoods of lines) at large scales. However, inside bounded subsets
of R?, where all of our analysis happens, dyadic 5-tubes look roughly like ordinary §-tubes. More
precisely, for every bounded set B C R?, there exists a constant C = Cy > 1 such that the following
holds: if T € 79, then T N B is contained in the (C8)-neighbourhood of some line # C R?.

The benefits of considering dyadic tubes over ‘ordinary’ tubes are the same as the benefits of
working with dyadic cubes over arbitrary cubes, or Euclidean balls: the dyadic structure is a great
technical convenience, although typically not a necessity.

Notation 2.4. For every dyadic cube p € D we associate the disc B, that is concentric with p and
has diameter 106 (in particular p C B)). Similarly, for every dyadic tube T = uD([a + &) x [b +
)eT 6 8§ € 27N, we associate the ‘ordinary’ tube T that has width 106 and whose core line is
D(a, b). In particular,

TnB(1) CTy.

The notions B, and Ty were defined so that the inclusion ordering of the discs and ordinary tubes
respects the inclusion ordering of the dyadic objects: if p,p € (J; D5 with p C p, then B, C B,
and similarly if T, T € | J5 7° with T C T, then T N B(2) C Ty N B(2).

In the sequel, dyadic tubes are denoted with font T, T’ and ordinary tubes with font T, T’.
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Notation 2.5. If B is a collection of &-balls in R? and 7 is a collection of ordinary &-tubes in R?,
we define the incidences between 5B and 7 as

I(B,T) :={B,T)eEBXT : BNT # @}

We also extend this notation to families of dyadic §-squares and §-tubes as follows. Whenever
P C Dsand T C T°, we will consider the set of incidences

I(P,T) :={(p.T) EPXT : B,n Ty # B} 2.1)

The correct meaning of 7 will always be clear from context. We remark that the notion of inci-
dences between dyadic squares and tubes is defined as a set of incidences between a family of
balls and ordinary tubes. This will enable using existing estimates on incidences that generally
concern Euclidean balls and ordinary tubes. The following property is worth recording:

pCp, TCTandB,NT;NBQ2)#0¥ = B,NTr#0. (2.2)

This follows immediately from B » CBp and Tt N B(2) C Ty N B(2).
It will occasionally be fruitful to view the set of incidences Z(P,7) as a subset of Ds(R*) by
identifying the pair (p, T) with the §-cube

p®T :=pxpr € Ds(RY).

IfH c I(P,T)and A € 27N N [§, 1], the notation | H| , refers to the number of elements in D, (R*)
intersecting H.

Lemma2.1. Let§ € 27N n (0, 1%)0], P CDsand T C T°. Then,

(P, T))s C L(Py, Th), Ae2Nnls,1].

Proof. Let Q € (I(P,T)), C D,(R*). Thus, Q contains at least one §-cube p ® T with p € P,
T € T,and B,NnTy # @. The hypothesis § < ﬁ ensures that B, C B(2), and therefore B,nTrN
B(2) # ). Now the dyadic A-parents of p and T also satisfy B, N Ty # #J, as recorded in (2.2), so
PR®T e I(P),T,) - Butasp®T e DA([R“) is a dyadic A-cube containing p ® T, we must have
Q=p®Te L(Ps,Ty). O

Remark 2.2. The converse inclusion Z(P,,T,) C (Z(P,T)), is false in general. It is possible that
B, N Ty # @ for some p € P, and T € 7, and thus p ® T € I(P,, 7,), but there exists no pair
pPEPNnpandT e TnTsuchthath NTy; #@. Inthiscase,p @ T & (Z(P,T))s-

2.1 | The high-low method

A main technical tool for us will be the high-low method, pioneered by Guth, Solomon and Wang
in [9]. We will employ the technique in the form formalised by Bradshaw [5, Proposition 2.1]:
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10 of 33 | DABROWSKI ET AL.

Proposition 2.1. Fixe,d € (0, %]. Let B be a family of 5-balls contained in B(1) C R?, and let T be
a family of (ordinary) §-tubes. Fix A € [§7¢,571]. Then, we have either

IZ(B, T)| Sc VASBI|T], (23)

or
|Z(B,T)| <. 6 A HI(BA, T4, (2.4)

where BA ={BA : B€ B} and T4 ={T” : T € T} consist of the A-thickenings of the balls and
tubes in B and T, respectively.

This proposition is known as the ‘high-low method’, because its proof shows that (2.3) occurs
in the ‘high-frequency dominated case’, whereas (2.4) occurs in the ‘low-frequency dominated’
case.

Remark 2.3. We make a few clarifying remarks about Proposition 2.1. First, as can be expected,
IB,T)={B,T)EBXT : BNT # @} The families B4 and T4 consist of (A5)-balls and ordi-
nary (Ad)-tubes, but, in a typical application, these families will be far from (AJ)-separated. The
right intuition is that the families 3 and 7 typically consist of §-separated objects, but when the
objects in these families are thickened by A, they tend to have heavy overlap.

3 | ANEW INCIDENCE ESTIMATE

To prove Theorem 1.4, we establish a new incidence estimate. It is valid for discretised variants of
sub-uniformly distributed sets, as defined below.

Definition 3.1. LetC > Oand let{A,, ..., Ay} C 27V be an increasing sequence of scales. Suppose
that P is either a subset of B(0,1) or a subfamily of D4([0,1)?) with § < A,,. We say that P is
sub-{A j};.’zo—uniform with constant C if for every j € {0, f ..., n — 1}

Pla, - PPy, <CIPly,,.  PEDyP).
Proposition 3.1. For every C> 0, x € (0,1) and n € N with n :=n"! € (0, g] the follow-
ing holds for all 5 € 27N small enough such that S := 6~ € 2V, Consider the scale sequence
{6,586,5%6,..,1} = {A,, A, 1., Ay} C 27N Letboth T C T%andP C Ds be sub-{Aj}’J?zo—uniform
with constant C. Assume that

|Z(P,T)| > 8" IPIIT].

Then, there exists a scale A € {A,,...,A,} C [8,8"] such that

|Z(Pa, TA)I Sc,y 827072 (3.1

Here P, := D,(P)and T, = T2(T) are the dyadic A-covers of P and T, respectively.
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Proof. The main idea is to apply the high-low method along the scale sequence {A j}?zo (in
increasing order) and observe that that the incidence quotient

I(P,, T,
(A :=| (P A)l'
A[Ppl Tl

is (roughly) non-decreasing as long as the ‘low case’ of Proposition 2.1 occurs. Eventually, this
will show that the high case must occur, indeed well before scale ‘1, and this is the scale at which
(3.1) holds.

Monotonicity of incidence quotients. Fix A = A; with j € {1,...,n}, in particular, A € [§, 87].
Let ¢ > 0 be an absolute constant to be determined a little later. We apply Proposition 2.1 at
scale A with parameters ¢ = 72 and A := ¢S and to the families {B p i DE Prtand{T; : T € Tp}
(recall that I(P,, T,) is defined using these balls and ordinary tubes). The proposition requires
A € [A™7, A1), and this is satisfied because A < S = §~7 < A™L.

The conclusion is that, for a suitable constant C = C(#) > 0, either

IZ(Pa, Tl < Cy/AATHPL| T, (32)

or
IT(Py, Ta)l < CA™7 A~MI(PL, T (3:3)

Here Pz‘ and T, AA refer to the families of ordinary balls (resp., tubes) of diameter (resp., width)
10AA which are the A-times enlargements of the families {B, : p € Pytand{T; : T € T)}

If (3.2) holds, we say that the high case occurs at scale A. If (3.2) fails (therefore (3.3) holds), we
say that the low case occurs at scale A. (We point out that these definitions depend on our choice
of 7.) We claim that if the low case occurs at scale A, then

1(A) Sc,) A7 USA). (3.4)

Recall that both P and 7 are assumed to be sub-{A j}s.’zo-uniform. Given A € {A,, ..., A} let
M = |P5|/|Psal and N = |T,|/|Ts,l, so that

[PyNnp|<CM and |[T,NT|<CN (3.5
for all p € Dgy(P) and T € Dg, (7). We now claim that
IZ(PL, T < CMN - |I(Psp, Ts)l- (3.6)

To see this, let (p, T) € P, X T, be such that AB,, N AT # J (these are the pairs we are counting
on the left-hand side of (3.6)). Let p € Dg,(P) and T € T, (T) be the dyadic parents of p and
T, respectively. We claim that B, N Ty # @, or equivalently (p, T) € Z(Pg,, Tga). Once proven,
together with (3.5) this implies (3.6).

Proving that B, N Ty # @ is an exercise in using the triangle inequality: indeed AB p NATr # @
implies that dist(p, T) < AA = c¢SA, and in particular dist(p, T) < SA if ¢ > 0 was chosen small
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12 0f 33 | DABROWSKI ET AL.

enough. Recalling that B, is a disc of diameter 10SA around p and Ty is an ordinary tube of width
10SA around T, it follows that B, N Ty # @.

Now, combining (3.3)+(3.6), and the fact that M /|P,| = 1/|Pga| and N/|Tx| = 1/|Tgl, we
may deduce that

) |Z(Pa, Tp)I (3‘3<)+(3'6) A’STIMN - |Z(Pgp, Tsp)l
l =— 3
INNIEARS INVAEA

| T(Psa, Tsa)l
(S Psall Tsal

= A" (SA).

This completes the proof of (3.4).

Conclusion of the proof

By hypothesis «(8) > 67, and on the other hand trivially «(1) < 1. From these facts, and the
monotonicity of the incidence quotients (3.4) in the ‘low’ cases, we may easily infer that the ‘high’
case must occur at some scale A = A j with j € {1,..., n}. Indeed, if this were not the case, we
could ‘chain’ the inequalities (3.4) for all scales A = A g with j € {1, ..., n} to deduce, for a suitable
constant ¢ = ¢(C,7) > 0, that

13 1(Ag) = (€87 )Y N(A,) 3 M7 87 5 ML 5x/2, (3.7)

recalling that 7 < x/2. Provided that § > 0 is small enough, we reach a contradiction. Therefore,
the high case must occur for some index j € {1, ..., n}, and we choose the largest index at which
this happens: thus A := A; is the smallest ‘high’ scale. As the low case occurred at all larger
indices, repeating the argument at (3.7) shows that

[Z(Py, Tp)

=(A) > ¢!/ . 7%, (3.8)
A|Pp| Tl

Note thatif j = n (i.e. the high case occurs immediately, and A = &), we have an even better lower
bound ((A) = «(6) > 67 .
On the other hand, as the ‘high’ case occurs at scale A, we have (3.2) at our disposal:

(3.8)
L(Py TYI S, \/SAUPAITL| Sy |/ 27021y, Ty,

Rearranging this yields | Z(P,, T)| Sc, 6¥7*7A72, as claimed in (3.1). O

4 | APPLICATION TO SUB-UNIFORMLY DISTRIBUTED SETS

In this section, we use Proposition 3.1 to prove Theorem 1.4. First, we need the following
decomposition lemma:
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Lemma 4.1. Letn > 2 be an integer, ) := n~te(0,1), 5§ €27, and set S := §7". Suppose that
{6,56,5%5,...,1} ={A,, ..., Ay} C 27N, Given P C Dj, there is a partition

r=|]pr

1

=

I
—

1
such that P; are pairwise disjoint, each P; is sub-{A j};’zo—uniform with constant 2, and N <

(—Cn~'log &)™

Proof. Note that for any j € {0,...,n —1}eachp € PAj contains at most S? cubes from PAj+1' For

any p € P, we will denote by p/ the dyadic A j-parent of p.
For 0 < k < log, S? we set

Pi={pepr : 2t < p" I np| <2k
Clearly, the sets P* are sub-{A,,, A,,_;, Ap}-uniform.

We proceed inductively. Suppose that PcCPis sub-{A,,, ..., A,,, Ap}-uniform, where m > 2. For
0 < k < log, S? we set

ﬁk:{peﬁ : 2k‘1<|p’”‘1n73Am|<2k}.

It follows that the sets PK are sub-{A,,, ..., A, A,,_1, Ag}-uniform
After performing this subpartitioning procedure n times, we end up with sub-{A; };.’:O-uniform

sets. Each time, we increased the number of partitions at most by a factor of log, S? + 1 ~
—nlogé. O

We use Proposition 3.1 and the decomposition lemma above to get an estimate on incidences
between a sub-uniform set 77 and a family of tubes 7~ consisting exclusively of ‘heavy tubes’.

Lemma 4.2. Forevery C > 0,x € (0,1)andn € Nwithn :=n"" € (0, 5] the following holds for all
& € 27N small enough such thatalso S := 5" € 2N. Consider the scale sequence {5, SS, 52%5,..,1} =
{A,, A1, ..., Ap} Suppose that P C Dy is sub-{AJ-};’:O-uniform with constant C, and that T C T°
satisfies

IIPATHI={peP :B,NnT #B|>8"¥|P|, TeT. (4.1)
Then,

Ho AP, T)) e,y 672 (4.2)

Proof. We apply Lemma 4.1 to the tube family 7 to obtain a partition of 7" into sub-{A };’zo—uniform
(with constant 2) subfamilies 73, ..., 7. It follows from (4.1) that

IZ(P,T)I > 6 |P|IT;], i€fl,..,N}L
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14 0f 33 | DABROWSKI ET AL.

Thus, we may apply Proposition 3.1 for each 1 < i < N to obtain A(i) € {A,, ..., A, } such that
IZ(Pagiy Tina)| S 821002 (4.3)
ASI(P,T)= Uf\il I(P,T;), we note that
N L21 N
1P, 1) c | Ja®. 1)y, € |JIPaw» Tiaey):
i=1 i=1

We may then use this covering to obtain (4.2):

N
HG TP, T < Y AGP N T(Pyy, Tra)!
i=1

@43 N
Sc,n Z A(i)—K+3n57<—2n
i=1

< Nak—2n5—1c+377 5 577/2’

' < 677/2 for & small enough. Ol

where in the last estimate we used N < (log %)’77

Recall from Definition 1.3 that a bounded set K is sub-uniformly distributed if it satisfies
IK|g - IKNQl|, < CIK],, for all Q € Dg(K), 0 <r <R < co. Below, dim K denotes the lower
box-counting dimension of K.

Lemma 4.3. If K is compact and sub-uniformly distributed, then dimy K = dim K.

Proof. As dimy K < dim K is always true, we only need to show dimy K > dim K. Set ¢ :=
dim, K. By the definition of dim K, for every ¢ > 0 there exists 7. > 0 such that |K|, > r~'*< forall
r € (0,r.]. Now, fix € > 0, and let U" be an open cover of K such that diam(U) < r. forallU € V.
We will show that ;. diam(U)'~¢ 2 1, where the constant only depends on the sub-uniformity
constant of K.

As K is compact, there exists a finite sub-cover U, C U'. Let § € 27N be so small that § <
min{diam(U) : U € V,}. For this §, by the sub-uniformity of K, we have

IKnUls _ IK|s
IKls ™ IKlgiam(w) - 1Kls

< diam(U)' ¢, U €V,

using diam(U) < r, in the second inequality. Further, choosing § > 0 smaller if necessary, we may
assume that every p € Ds(K) is contained in at least one element of U},. Then,

Z diam(U) < > —— Z KNU|s>1,
. IKls
€V Uev,
as claimed. This shows that dimy; K > t — €, and letting € — 0 completes the proof. [l
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Remark 4.1. In the lemma above, one cannot replace dim K by dimgK. To see this, think of any
Cantor set K whose construction involves alternating scales with large covering numbers and
small covering numbers, so that dimgK > dim K.

Givenz € R*ande € S',recall that £, , = z + span(e). We consider the following modification
of the heavy part H(K, e, s) defined in the introduction:

H(K,e,s)={z €K : dimy(Kn7,,)> s}

We may also consider H(K,e,s), where dim,(KNn7,,) is replaced by di_mB(K NC,,). As
dimy(A) < dimg(A) < mB(A) for every bounded set A C R?, it is clear that

H(K,e,s) C HK,e,s) C E(K, e,s).
Therefore, Theorem 1.4 is a consequence of the following slightly stronger estimate.

Proposition 4.1. Let K C R? be a compact sub-uniformly distributed set with dimy K = t € (0, 2).
For everymax{t — 1,0} < s < land a.e.e € S

dimy H(K, e, s) < max{t —s,0}. (4.4)
Additionally, if K is t-Ahlfors regular, then dimy E(K, e,s) < max{t — s,0}.

Proof. We assume that s < t, otherwise the problem is trivial. Fix 0 < 7 < %(s —t+1).

Let T := uD([0,1)?) be the ‘top’ dyadic tube (see Notation 2.3). Let J C S! be the arc corre-
sponding to directions of lines from D([0, 1)?). Note that there is a ball B C T such that for any
e €J and z € B we have 7, , € D([0,1)?) and in particular #, , C T. Without loss of generality
let us assume K C B. We will establish (4.4) for a.e. e € J, and then the full result follows by the
rotational invariance of the problem.

Given § € 27N, we say that T € 77 is roughly parallel to e € J if T contains some line parallel
to e. For each e € J denote by H, 5 the family of all T € T % roughly parallel to e satisfying

|Z(Ks,{TP| > 6" *|K|5. (4.5)
Set
Hs = JH,s.
ec]

Note that the tubes T € H; are heavy in the sense of Lemma 4.2: more precisely, according to
(4.5), they satisfy (4.1) withx :=s—t+1—2n € (0,1) and P = Kj.

Recall that for each z € H(K, e, s) we have dim (K n ¢, ;) > s. It follows that for all sufficiently
small § € 27N there exists a tube T € 7 containing Z, . and satisfying

|Z(K5,{T}| > 5. (4.6)
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16 of 33 | DABROWSKI ET AL.

Indeed, as z € K C B, and e € J, we know that Z, , € D([0, 1)?). It follows that Z,, € D(p) for
some p € D, and in particular#, , CT =UD(p) € T 9. Now (4.6) follows from the fact that |[K N
£, ;s > 67+ for § small enough.
Let 6, — 0 be a sequence of dyadic numbers such that |K| 5, < 5:_’7 for all k € N (such a
sequence exists by Lemma 4.3). Then, for T € 7 % satisfying (4.6) we have
11K, {THI > 647 > 6, K5, 4.7)

and in particular, T € H, s . This shows that for every z € H(K, e, s) there exists k, = ko(e, z) such
that for all k > k, we have z € K N Jr¢y,, T.Hence, forany N € N
g

HKes)cknl]) (J T (4.8)

k>N TEHe,Sk

For brevity of notation, we set K; := K5, = D5, (K), Hoy :=H,5,, H; :=Hs and H,; :=Kn
UTeHe,k T

Observe that, as K is sub-uniformly distributed, the family K, is sub-{A j};’zo—uniform (with
some constant C > 1) for any sequence of scales {A; }’J?:O larger than 6, . In particular, Lemma 4.2
tells us that for all §; < &, = 8,(x, 7, C), where 7 and « are as above, we have the following bound
for the incidences between the heavy tubes 7 = H; and P = K;:

HEL A 1) S, 607 (4.9)

From now on, we assume that §, < §, for all k € N.
By the definition of Hausdorff content, there exists a family of dyadic cubes R ={R;} €
D([0,1)*) covering I(Ky, H;) C [0,1)* such that

> diam(R, > < HE T (K, Hy)), (4.10)
R,ER

Each R; can be written as R; = p; ® T; = p; X pr,, with p;, pr, € D([0,1)*). Fore € S let R, C R
be the family of cubes R; for which T; is roughly parallel to e, and set

P,={p; : Ri=p;®T; ER,}

We claim that P, is a covering of H, .. Indeed, note that R, are a covering of the set of incidences
I(Ky, H, ). At the same time, for every z € H, , we have that the cube p € Ky containing z is
incident to some heavy tube T € H, ;. Thus, p @ T € I(Ky, H, ), and there exists some R; =
Di®T; € R,suchthatp® T C p; ® T;, and in particular p C p;.

Using the fact that for any R; € R

H'(fe€J : R, € R,}) S diam(R)),
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HOW MUCH CAN HEAVY LINES COVER? 17 of 33

and the fact that P, covers H, ., we get

/ Mo (H, ) dH () $ / Y. diam(p)' ™ dH' (e)
J J

Piepe

< / Z diam(R)'™**37 dH'(e)
J

Ri€R,

= ) diam(R)' - H'(fe €T : R €R,})
RE€R

@10) (4.9)
< Z diam(R,)> ¥ < HL NI, Hy)) Sy 52/2'
ReR

Recalling that by (4.8) for any N € N we have H(K, e, s) C | J kN He k» We arrive at
/ Ho " (H(K e, ) dH(e) < liminf ), / Ho " (H, ) dH (e)

S,climinf Y 672 =0,
> N—-oo k
k>N

Thus, for a.e. e € J we have HL, *"(H(K,e,s)) = 0. As 1 —x + 35 =t — s + 57, letting 7 — 0
gives (4.4).

In the case of Ahlfors-regular K, it is straightforward to modify the proof above to show the
estimate for H(K ,e,s) instead of H(K, e, s). In this case, we have |K|5 < 6! for all §, and not just

for some sequence §, — 0. At the same time, for every z € H(K, e, s) we have a dyadic sequence
0y (z) — 0such that every 6, (z)-tube containing 7, , satisfies

|Z(K 5,20 {TDHI 2 8 (2)~*H" 2 8,.(2) K 5, 5)-

This means that T € M, 5, (). Hence, for every N € N

H(K,e,s)CKn U U T,

5<2 N TEH, 5

which corresponds to (4.8). After that, we may proceed exactly as before. O

5 | CONTINUOUS SHARPNESS EXAMPLES

In this section, we construct the examples claimed in Theorem 1.3. The statement is repeated
below, except that we have decoded the §) and H notation of the introduction:

Theorem 5.1. Foreveryt € (1,2]ands € [t — 1, %(Zt — 1)], there exists a compact set K C R? with
the following properties.
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18 of 33 | DABROWSKI ET AL.

* dlmHK =1.
 Fore €S, let L, be the family of lines £ C R? parallel to e such that dimy(K N¢) > s. Then
dimy (K N (UL,)) > min{2t — 3s,t} foralle € S'.

In fact, our construction gives the following variant of Theorem 5.1, from which Theorem 5.1
as stated follows by point-line duality; we explain this in a remark afterwards. If £ is a family
of lines, and A C R? is a set, we write L(A) :={f €L : An?¢ # B}. If A = {z}, we abbreviate

Lz =: L(2).

Theorem 5.2. Foreveryt € (1,2]ands € [t — 1, %(Zt — 1)] there exists a compact set L C A(2,1)
consisting of non-vertical lines, and with the following properties.

° dimH L: =1t.
» Forx € [0,1], let

R, :={z e {x} xR : dimy L(z) > s}.
Then, dimy L£(R,) > min{2t — 3s, t}.

Remark 5.1. We clarify why Theorem 5.2 implies Theorem 5.1. Assume that £ C A(2,1) satis-
fies the claims in Theorem 5.2. As L consists of non-vertical lines, we may write £ = D(X,) for
some set K, C R2. Here D(a,b) = {(x,y) : y = ax + b} is the point-line duality map introduced
in Notation 2.3; it is easy to check that D is dimension preserving as a map R? - (A(2,1),d A(Z,l))’
so also dim;; K = t.

To understand the connection between the second stated properties in Theorems 5.2 and 5.1,
let R C R? be arbitrary. We claim the key relationship

D Y(L(R)) =K, N U D(—x, ). (5.1)
(x,y)ER

To see this, fix (a,b) € D7Y(L(R)), thus # = D(a, b) € L(R), and (a,b) € K. As £ € L(R), there
exists a point (x,y) € R n D(a, b). This implies (a, b) € K, N D(—x, ). The converse inclusion is
proved similarly.

To proceed proving Theorem 5.1, fix x € [0,1], and let R, = {z € {x} X R : dimy; £(z) > s} be
as in Theorem 5.2. By (5.1) applied to R, and the conclusion of Theorem 5.2,

dimy[Kon () D(—x,»)|=dimy £R,) > min{2t - 35,8,  x€[0,1].  (52)
(x,y)ER,

Moreover, the lines D(—x,y) with (x,y) € R, have constant slope (namely —x), and by (5.1)
applied to R = {(—x, y)},

dimy (K, N D(—x,y)) = dimy L(x,y) = s, (x,y) ER,.

This equation, combined with the definition of R, shows that the family {D(—x,y) : (x,y) €
R, } consists exactly of those lines # C R? with slope —x satisfying dimy (K, N ¢) > s. Equation
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HOW MUCH CAN HEAVY LINES COVER? | 19 of 33

(5.2) then demonstrates that these lines cover an at least min{2t — 3s, t}-dimensional part of K.
This establishes Theorem 5.1 for all those e € S! such that the slope of e lies in [—1, 0].

The full version of Theorem 5.1 (for all directions e € S') can now be obtained by defining K as
a finite union of rotated copies of the set K, above.

5.1 | The building block

The basic building block of our construction uses the notion of (6, s)-sets, defined below. Heuris-
tically, a (8, s)-set can be pictured as a maximal §-separated subset inside a set K C R? with
dimy K = s. Unfortunately, this heuristic is not literally valid in general. It is valid, for example,
if K is is s-Ahlfors regular, that is, H5(K n B(x,r)) ~ r® forall x € K and 0 < r < diam(K).

Definition 5.1((3, s, C)-set). For § € 2~N, s € [0,d], and C > 0, a non-empty bounded set P ¢ R4
is called a (8, s, C)-set if

|P N B(x,r)|, < Cr’|P|s, xeRY rels,1].

If P is a finite union of dyadic cubes (possibly of different side-lengths), we say that P isa (8, s, C)-
set if the union UP is a (8, s, C)-set in the sense above.

It is useful to note that if P is a (6, s, C)-set, then |P|s > §—*/C. This follows by applying the
defining inequality with r : = § and to any B(x, r) intersecting P.

Let 7 := min{2t — 3s,t}. The proof of Theorem 5.2 is based on the existence of sets P, C D,,
A € 27N, with the following properties (P1)—(P2).

(P1) Ifx €[0,1], then P, N ({x} X R) contains a non-empty (A, 7 — 1,C)-set. Note that 7 —1 > 0
by the hypothesis s < %(ZI —1).Ift = 1, we are merely claiming here that P, N ({x} X R) # @
for all x € [0, 1].

(P2) There exists a AS-separated set £, C D, (S') such that A= < |, < A5, and

17 (P)la S A2 e e UE,.

As a sanity check, note that (s + 7)/2 < (2t — 25)/2 < 1 because s > t — 1 by assumption. It may
also be fun to know that P, is a (A, 7, C)-set, but this will not be explicitly needed. Further, we
will need the following ‘quasi nested’ property of the sets £,:

(E) If the sequence {A,,},cy C 27" decays so rapidly that A, < A”_, then the set

E:=()(Ué&,) (5.3)

neN

satisfies dimy; E = s.

We suspect that the existence of P, and &, is ‘well-known’, but as a precise reference was difficult
to come by, we give the full details in the Appendix.
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5.2 | The generalidea

To prove Theorem 5.2, we will construct three objects simultaneously: a compact (Cantor-type)
set R C [0,1]%, and two compact line sets £ and L. These objects will satisfy the following
properties.

* dimy Lp < (3s+1)/2 < tand dimy L < 7 < ¢ (here still 7 = min{2t — 3s, }).

* dimy Ly(z) > sforallz € R.

* dimy Lo(RN ({x} x R)) =t forall x € [0,1].

Once this has been accomplished, we define £ := Ly U L. Then dimy £ < ¢,
dimy £(z) > dimy Lp(2) > s, Z €R,
and
dimy L(R,) = dimy L5(R N ({x} X R)) = min{2t — 35,1}, x € [0,1].
This will complete the proof of Theorem 5.2.

Note that that the interesting inequality in Theorem 5.2 is ‘dimy £ < ¢’ The inequality
dimy £ > t follows from the properties of £, and recalling that Theorems 5.1-5.2 provide sharp-
ness examples to Proposition 1.1. That proposition (via point-line duality as in Remark 5.1) shows
that the lower bound for dimy; £(R, ) is not possible if dimy; £ < ¢.

Remark 5.2. As L = L U L, it may first seem that we can deduce the stronger bound dimy; £ <
max{(3s + 7)/2, 7}. However, the right-hand side equals ‘¢’ in both possible cases T = 2t — 3s and

T=1I.

The construction of all the objects R, L, L will be based on a fixed but very rapidly decreasing
‘double’ scale sequence {A,,, §,,} of the form

1=:0>6,>A;>6>..>0,

where §,,A, € 27V, It will always be crucial to choose §, much smaller than A, and also A,

. . 2n+1
much smaller than §,,. In fact, the only requirements will be that §, < A2*and A,,; < § n("+ ) for

all n > 0. We now fix a sequence {A,, §,,} with these properties.

53 | ThesetR

We define the set R C [0, 1]? by the following iterative procedure. We will have

R= ﬁ R, ,
n=0

where R,y is the union of a finite family R, of closed dyadic A,-squares. Write R, = :={[0, 1%}
and R, := [0,1]?. Assume that Ry, » Ry, have already been constructed. Fix §,, € 2~Nwith 6, <
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FIGURE 1 The setQNR, forQ e Rs, .-
A,, and let
Ran = {Q S Dan . Q C RAn}. (54)

Thus, R = D;,. (In this section, the notation Ds will refer to closed dyadic sub-squares of
[0,1]2.) Next, fix A, ; < &, and consider the ‘building block’

pn = 7)An+1/5n :

For each square Q € R; C D , let P be a copy of P, that has been rescaled by &, and then
translated inside Q, thus

PQ = SQ(pn) C DAn+1 (Q),
where S, is the homothety taking [0, 1]? to Q. We then define

U PocD,,, and R, :=UR, (5.5)

QeR;,

Apy1 " ntl’

This completes the definitions of the families R Ay Rén, and the set R.

Figure 1 shows how the set Ry, ., might look inside a single square Q € R, . Note that first
Q is replaced by the ‘r-dimensional’ set P, ,s . Next there follows a period of “2-dimensional
branching’ between the scales A,, > §,,, and finally another period of ‘z-dimensional branching’
between the scales §,, > A, ;.

5.4 | Theline family £,

We will next define the line family £ announced in Subsection 5.2. We will also verify all the
stated properties of £ immediately. The idea is that the set R constructed above has small pro-
jections in many directions. The line family £ will be defined as the family of all pre-image lines
of all of these small projections.
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Lemma 5.1. Assuming that A, < 52" Joralln > 1, we have

A;(s+'r)/2—1/n i

|7 (R, s, < e€UE, 15 s n21.

Proof. Fix n > 1. Note that 77,(R, ) equals the union of the projections 7,(P,) forQ € R5  .On
the other hand, by (P2) we have

17 (PQls, = 17e(Pa, 5, lass,, <872 eeug, s
As 5;31 < A;l/ " by assumption, it follows from the above, and |R5n_1| < 5n 19 that
|7Te(RAn)|A,, < 5;31 .A;(S+T)/2 < Ar—l(S+T)/2—1/n, ec UgAn/ﬁn_l
This completes the proof of the lemma. O

‘We now define

= (e, /5,0 CS",

n=1

and the line family

ri=JLr@ = Jir Hm(2)} s z € RY.

ec€E ecE

Proposition 5.1. Assuming that A, 52” forn > 1, we have
dimy L < 3s+1)/2.
Proof. Fix n > 1 and recall from (P2) that
|Ela, <O;% 1€, | S5 - (8,/8, ) <8, ", neN.

On the other hand, for each e € E C USAn I the lines of Lp(e) can be covered by <
_(S+T)/ 271" tubes of width A, by Lemma 5.1 (and one can use the same A, -tubes to cover all
hnes L (e) whose angular components are within < A,,). Consequently, [Lp|, A;(ssw)/ 2=2/n,

This implies that dimy; £ < dim L < (35 +17)/2. O
The following proposition is immediate from the definitions:
Proposition 5.2. We have

dimy Lz(2) = s, z€E€R.
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Proof. Evidently dimy L(z) > dimy E. Moreover, dimy E = s by (E), provided that the ratios
A, = A, /3, decay so rapidly that A, < A”__, or equivalently

5 n
An<AZ_1<5"_;> , n>l
n—

i 3 . 2n n n
This follows from our assumptions: A, <4&,", <A |67 . O

5.5 | Theline family L

We then define the line family £, announced in Subsection 5.2. We restate here the required
properties of L.

(Gl) dimy L5 = 7 = min{2t — 3s, t}.

(G2) dimy L;(R,) = 7 for all x € [0, 1]. Here and below, R, := R N ({x} X R).

A slightly informal description of L is the following: £ is a uniform set with 7-dimensional
branching between scales A, > §,, and 2-dimensional branching between scales §, > A, ;.
Therefore, L has exactly the opposite features as the set R, which instead had 2-dimensional
branching between scales A,, > &§,, and 7-dimensional branching between scales §,, > A, ;.

‘We now give a more precise definition. We define £ as the set of lines that are contained in the
intersection of the following nested sequence of dyadic tube families (recall Notation 2.3). First,
recall that Ay = 1, and let 7, A, C T4 consist of all the dyadic 4-tubes intersecting [0, 1]%.

Next, assume that 7, C 7 4An has already been constructed for some n > 0. For every T € 7, A,
we define 7’5n (T) C 7% to be a maximally separated set of dyadic (43,,)-tubes contained in T of
cardinality |75 (T)| =(A,/8,)". Infact, the property of Ta,, (T) we really need is this: if the tubes in
Ts, (T) are rescaled by (4A,,)~1, and the resulting family (in the parameter space [0, 1]?)is restricted
to a square Q C [0, 1]? of side-length ﬁ, then the remaining family of dyadic (§,,/A,,)-tubes is a
(8,/A,, 7, C)-set for an absolute constant C > 0. So, informally speaking, we need Tan (T)tobea
moderately well-distributed (5,,/A,,, 7)-set of tubes, modulo rescaling by (4A,)~L.

Then, we set

7,= U 7,m. (5.6)

TET,,

We note that |75 | < A2 5T L 6,7_1/" for n > 0, recalling that &, < A"
Finally, foreach T € 75 ,wedefine 7,  (T)to consist of all the dyadic (4A,,,,)-tubes contained
in T, and we set

Ta,,, 1= U s, (D). (5.7)

TeTs,

We then define

Lo = [)WTs) =T,

neN neN

Property (G1) is rather clear by construction:
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Proposition 5.3. dimy; £; < 7.

Proof. Note that all the lines in £ can be covered by the dyadic tubes in 7'5n, n>0.As |T5n| <

5,7_1/” for n > 0, it follows that dimy; £, < dim, £ < 7. O

To understand the subsets L£;(R,) C L, and to prove (G2), we start by setting up some
notation. We write L, := {x} X R, and identifying L, = R, further

Ia,,(x) ={l e Da,,(Lx) IC Ran} and IAn(x) ={l e DAn(Lx) IC RAW}'

We agree that the dyadic intervals above are closed (and recall also that Rs ,R, are defined as
unions of closed dyadic squares).

ForI € ZAn(x), let I5n(I) ={l e Ian(x) : I c I} and similarly for I € I5n(x), let IA”+1(I) 1=
el Ay (x) : I C I} (we suppress ‘x’ from the notation for simplicity). Now,

I, )=D; D, T1eI, (x) (5.8)

This is because the set R 5 consisted of all the §,,-squares contained in R, .
By similar reasoning,

|IA,H_1(I)| ~ (6n/An+1)1_T’ I'e I6n(x)' (59)

This is a direct consequence of (P1), and the definition of R A, 3@ union of the sets Pj. In

1
fact, we can more precisely say that the &, L-dilation of the family 7 Apiy (I) contains a non-empty

(A41/8,,T—1,C)-set for all I € I . As a minor technical point, we will denote by 7} +1(I)
the subset of T Ay (I) whose &, L dilation is a (A,41/8,,7 — 1,C)-set (then (5.9) remains true for
Z/AW (D).

We then arrive at the key property (G2) of the line family L.

Proposition 5.4. We have
dimy Lo (R,) =7, x € [0,1].
The proof will be based on Lemma 5.2, which uses the following slightly ad hoc notion of a
relative (8, u, C)-subset of Q. Fix0 < § < A (both §,A € 27V)and Q € D,(R?). For C,u > 0, we say

that E N Q is a relative (8, u, C)-subset of Q if the rescaled set So(E N Q) C [0, 1]? is a non-empty
(8/A,u, C)-set, or equivalently

u
Endl;<C(%) -IENQls,  aeD@Q.8<r<A

Here S, is the homothety mapping Q to [0, 1)%.
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Lemma 5.2. Letd > 1, and let E C [0,1]¢ be a Cantor set of the form

where each E,, is a union of closed dyadic §,,-cubes, and {5,,,};>_ C 27N be a super-geometrically
decaying sequence: for every € > 0 there exists m, € N such that §,, < €5,,_, forallm > m,.

ForeachQ € Dam (E), assume that E N Q is a relative (§,,,,1, u, C)-subset of Q, where C,u > 1 are
fixed constants. Then dimy E > u.

Proof. Without loss of generality, we may assume that §, = 1 and E, = [0,1]¢. We define a
measure u on E in the obvious way, requiring ([0, 1]%) = 1, and then

Q")
= € Ds (E),n>1,
HQ = e, Q€D ®
where Q"1 e Ds | (E) is the unique §,_;-cube containing Q. Iterating the definition, and
applying the fact that the p-covering number of a non-empty (p, t, C)-set is at least p~*/C, we
find

Jj—1

n n u

p@=[1EnQU s <[] <j—f> =C"sy, Q€ D; (B

Jj=1 ' Jj=1

This would roughly show that u satisfies a (u — €)-dimensional Frostman condition for radii r €
{0, nen- To treat the intermediate radii §,, < r < §,_;, we need to apply the relative (J,,, u, C)-set
property of the sets E N Q in a stronger way than above. Fix§,, <r <& andlet Q € D,(E). Let
Q-1 g Dén,l(E) be the unique J,_;-cube containing Q. Then,

n—1»

(n—1)
u(Q" ) <c( r

u
" JEnQD|,  \3 ) HQY) e,
Sy

Q) =1QNEl;

n—1

Now, it remains to note that C"*! 8., <r ¢ for all n > n. by the super-geometric decay of
{8,},,en- Therefore, u(B(x,r)) S, r*~¢foralle > 0and all 0 < r < r,, and consequently dimy E >

u. O

Proof of Proposition 5.4. We prove the proposition by constructing a r-dimensional Cantor-type
subset £(x) C L;(R,) that satisfies the hypotheses of Lemma 5.2 (applied to dyadic tubes instead
of dyadic cubes).

Define 7, Ao (x) to consist of all the elements T € 7, A, Such that

I, :=[0,1]c TNL,.

Assume next that 7, (x) has already been defined for some nn > 0, with the property that whenever
Te TAn (x), then T N L, contains an interval Iy € T A, (x).
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FIGURE 2 The grey tubes are in the family 7; (T, x), but the red tube is not.

FixT € T, A, (x). We define Tén (T, x) to consist of all those tubes T € 7'5n that are contained in T,
and such that T N L, contains an interval I € T (x) with I C Iy. We remark that T 0 L, may
contain more than one interval from 7 (x) with this property, and we simply choose one of them
and denote it by I. At the same time, there are at most < 1 possible choices, as all dyadic tubes
in 7% form an angle > 1 with L, which means that H'(T nL,) S §,.

We set

75,0 := |J 75,(T.x.
TET,, (x)

It remains to define 7, Apey” FixT € 7'5n (x). We define TAn+1(T’ X) to consist of all those tubes T €

T,,, thatare contained in T, and such that T 0 L, contains an interval Iy € T A X () withI C Ir.
n n+

We then set

TAn+1 (x) = U TAn+1 (T’ x).
TeT;, (x)

We are then prepared to define the Cantor set £(x) C L;(R,), whose dimension will equal 7.
We say that # € £(x) if there exists a sequence of tubes T;, T, T,,T5, ... such that T, € 7, A, (x),
T,€T7;s (x),andT, CT,_, CT,_foralln>1,and

[s9) oo
£=(Ty=)Tn
n=1 n=1

We record that £ € L;(R,). The reason is that the tubes T,,, T, come with associated intervals
I,€I; (x)andI, €1 gn (x) (as in the construction above) with the property thatI, c T, NL,.
Asn — oo, the intervals I, (or I,,) converge to a unique point z € R, and therefore # € L;({z}) C
LR

It remains to show that dimy £(x) = 7. This work divides into two claims:

Claim 5.10. Forall T € TAn (x), n > 0, the family 7'5n (T, x) C 79 is a relative (8,, 1, C)-subset of
T with an absolute constant C > 0.

Proof. Fix T € T (x), n > 0. The family 75 (T, x) is depicted in Figure 2. Recall that by the def-
inition of T € 7, An(x), there exists an interval It € I’A (x) (also shown in Figure 2) such that
I; € TN L,.Note that T is a dyadic (4A,,)-tube, so the width of T is 4 times the length of I .
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IeZn, (I7) "

FIGURE 3 The grey tubes are in the family 7, (T, x).

Next, recall that the entire family 7’5n (T) (defined above (5.6)) consists of a maximally separated
setof §,,-tubes contained in T and satisfying |75 (T)| = (4,/6,). However, 75 (T, x) only consists
of those T € 7 (T) with the additional property that there exists an interval I € I (Ip) such
thatI; C T NL, and I; C I. We claim that (at least) all the tubes T € Ta,, (T) with

TnL, ClIy (511)

have this additional property. Indeed, the width of these tubes if 45,,, so T N L, contains some sub-
interval I+ € Ds, (It). However, recall from (5.8) that Is, (Ip) = Ds, (It), soin fact I € Is, (Ip),
as desired.

Now, as the tubes of 7'5n (T) are fairly well-distributed inside T (as discussed above (5.6)), a
positive absolute fraction of them satisfies (5.11). It follows that 7’5n (T, x) is a relative (5, 7, C)-
subset of T, with an absolute constant C > 0. O

Claim 5.12. ForallT € T(;n(x), n > 0, the family TAW(T, x) C T4+ is a relative (8, 7, C)-subset
of T with an absolute constant C > 0.

Proof. FixT € 75, (x). The family 7, (T, x) is depicted in Figure 3. Recall that by the definition
of T € 7}n (x), there exists an interval I € s, (x) (also shown in Figure 3) such that I, c TN L,.
As before, the width of T is 4 times the length of I.

Next, recall that the entire family 7, An+1(T) (defined above (5.7)) consists of all the dyadic
(4A,,1)-sub-tubes of T, or in other words

_ 744,
T, (1) = T70m(T).
However, not (even nearly of) all of these tubes belong to Ay (T, x). Namely, the condition for
TeT, +1(T’ X) is that there exists an interval I € I’A 1(IT) suchthatICTNL,.
n n+
Recall from below (5.9) that T ’A 1(I r)isarelative (A, 1,7 — 1, C)-subset of I;. Now, it remains
n+

to observe that the subset of 742+ (T) = T, Ay (T) of tubes containing at least one interval I €

1y, (I7) is a T-dimensional set, or more precisely a relative (A, ;, 7, C)-subset of T. We omit the
details: this tube family is essentially a product of a (7 — 1)-dimensional set with an interval. []

The previous two claims together show that the Cantor set £(x) of lines is the intersection of ‘a
nested sequence of 7-dimensional sets’, and satisfies the hypotheses of Lemma 5.2. Consequently,
dimy; £5;(R,) = dimy £(x) > 7, as claimed in (G2). O
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We have now verified that the sets R, L, L satisfy the properties stated in Subsection 5.2, so
the proof of Theorem 5.2 is complete.

APPENDIX: CONSTRUCTION OF THE BUILDING BLOCK
The purpose of this section is to provide a construction for the ‘building block’ sets P, described
in Subsection 5.1. We repeat the properties here for the reader’s convenience:

Al | The building block

Fixt € [1,2]and s € [0, 2 — 7] for this section. (These restrictions on s, 7 are valid in Subsection 5.1
by the assumption in Theorems 5.1-5.2 thatt € (1,2]and s € [t — 1, %(Zt — 1)].) We claim that for
all A € 27N sufficiently small, there exists a set P, C D, with the following properties (P1)—~(P2).

(P1) If x € [0,1], then P, N ({x} X R) contains a non-empty (A, 7 — 1,C)-set. If 7 = 1, this just
means that P, N ({x} X R) # @ for all x € [0,1].
(P2) There exists a AS-separated set £, C D, (S?) satisfying |€,| ~ A~ and

|7, (Pp)ls S ATCHO/2, e € U&,.

Additionally, we will need the following ‘quasi nested’ property of the sets £,:

(E) If the sequence {A, },cn C 27N decays so rapidly that A, < A" _, then the set

n-1’

E:=[)(UE,) (A1)

neN

satisfies dimy E = s.

We will only give the details in the case T € (1,2). The case T = 2 is trivial (then s = 0 and we
can take P, = D,). The case 7 = 1 requires minor modifications that we leave to the reader. So,
we fix 7 € (1,2) and A € 27N, and for convenience we assume that {A~7/2, A7/2-1} ¢ N. We will
suppress A in our notation from now on. We start with the auxiliary set

P = {(AT/Zk,Af/21> o<k l<A T/ 1} c [0, 1)

By the assumption A™/2~1 € N, we have A”/2 = An for some n € N. Therefore, P’ C (A - N)?, and
further

P’ :=P +[0,A)? C D,.
The set P’ would satisfy property (P2) (we will return to this later), but it severely fails (P1), being
a product set. To fix this, we need to rotate P’ slightly, as in Figure A.1.
Set 6 := A'"7/2 and consider
Ry(x,y) :=(x+0y,y) and P :=Ry(P").

We finally define P := P + [0, A)2. Note that if (x,y) = (A7/2k, A7/2]) € P, then

Ry(x,y) = (A %k + AL AT/?1) c (A - N)?,

SUONIPUOD PUE SWLR L 3L 885 *[7202/50/60] U0 AR1gIT8UIIUO MBI ‘ARIQIT RIASRALL JO AISIAINN AQ OTEZT'SWI(/ZTTT'0T/10p/W0d /5| 1M ARR1q) 1 BUI|UO"O0SUTRWPUO|//'SANY LU0} PBPEOIUMOQ 'S ‘¥20 ‘0SLL69YT

- Ao A1 B0

o),

85UBD 17 SUOLILLOD BAIEER1D a|qea|dde sy Ag peusenoh ae sajpile YO ‘88N JO Sa|ni Joj Akiq 1 aulluO A3|IAA Lo (Suon



HOW MUCH CAN HEAVY LINES COVER? 29 of 33
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FIGURE A.1 Thesets P’ and P.

so P C D,(R?). Some of the squares in P lie slightly outside [0, 1], and we simply discard those
squares from P (only a tiny fraction is discarded, as 8 = 0,_,4(1)).

We plan to verify (P1). The idea is roughly to show that if (x,y) € P, then also the vertical
translates (x, y) + m(0,A™"!) € P for m € {0, ..., %Al‘f}. Write v 1= (0,AT71).

Claim A.2. Assume that x € (AZ)n [%, 1], and A > 0 is sufficiently small in terms of 7 — 1 > 0.
Then there exists y € [0, %) such that (x,y) + mv € P form € {0,..., %Al‘f}.

Proof. Fix x € (AZ)n [%, 1]. Then we may express x in the form x = A7/ 2k, + AL, for some

%A‘T/z <k,<A/2—-land0<l, <A1« %A‘T/z — 1, using 7 > 1. In particular,
(x,y) := (A7 %k, + AL, A7/?1) € P.

To proceed, we view P as the image of the grid G = {0, ., A77/2 —1}2 under the map uk,l) =
(A™/2k + AL, AT/2]). 1t is easy to check that

Wk, ) + mv = uk — m,1 + mA™/?>71), (k,)ez* mez.
Consequently, as (x,y) = u(k,,l,) € P, also (x,y + mv) = (ky,l,) + mv € P aslong as
(ky —m, L, + mA"/*™) € G.

It remains to note that this is the case for m € {0, ..., %Al‘f}. First,as k, > %A‘T/ 2, we have k, —
m > 0forallm € {0, ..., %Al‘f} (noting that A1~ < A~7/2), Similarly, as I, < %A‘T/z — 1, we have

I+ mA™/271 (%A_T/Z -1+ %A—T/Z —AT/2_1

for all m {0, ..., %Al‘f}. Thus, (k, —m,?, + mA/> ) eG for me{o,.., %A‘T/Z}, as
claimed. O

The previous claim implies that if x € [%, 1], then P N ({x} X R) contains a (A, 7 — 1, C)-set for
an absolute constant C > 0. In Property (P1), we desired the same for all x € [0, 1], but this prob-
lem can be fixed by replacing P by P U [P — (%, 0)]. This substitution has no impact on property
(P2), which we verify next.
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For notational convenience, we will here parametrise orthogonal projections as
m(x,y) =x+ Ay, 1 ER.
With this notation
TRo(x, ) = (x +6Y) + Ay = m16(x,),  (x,y) €R%

In particular, 7;(P) = m; 4(P’) for all 1 € R, where we recall that 6 = A=T/2 0,1].
We then consider the following ‘direction set’

8=5A={/1—e:A:B,osp,qu—S/Z}. (A3)

=]

We remark at this point that clearly |£] < A™5.
Claim A.4. Ife € &, or even dist(e, £) < A, then |7, (P)|, S A~G+0/2,

Proof. As P =P +[0,A)?, it suffices to show that |7,(P)| S A~(+9/2 Fix e = 1 — 6 € £. Then
7,(P) = m;(P"), so it suffices to show that |7;(P")| S A~(+)/2,
Write A = £ as in the definition of &, then fix r € 7,(P’), and let (x,y) = A"/?(k,1) € P’ with

m;(x,y) = r. Notice that also
i ((x,y) + AT/Z(mp, -mq))=r+ A2 (p — § . q) =r, meZ.

As p,q < A~/2, we have mp, mq < A~7/2 for all m € N n [0, AG=9/2], For such values of ‘m’, we
observe that

(x,y) + A2 (mp, —mq) € AT/? {=A"T/2, . ATTPP =1 H.

We have shown that |77 {r} n H| > AG=/2, As this was true for all r € 77;(P'), we deduce that
|7, (P)| < AT=9/2|H| ~ A=6+9)/2 a5 claimed. O

To complete the proof of property (P2), it remains to show that £ contains a A’-separated subset
of cardinality ~ A™%. We prove the following stronger claim:

Claim A.5. LetI C [0,1] be an interval with |I| > CA%/21og(1/A) for a sufficiently large constant
C > 0. Then |ENI|ps ~ |[I|A7S. In particular, |E]ps ~ A5,

Remark A.1. This claim is no doubt well-known, and follows from the equidistribution properties
of the Farey sequence. We nevertheless give the brief details.

Proof of Claim A.5. Recall Dirichlet’s theorem on diophantine approximation: for every x € [0, 1]
and N := A~%/2 € N, there exist p,q € Z such that 1 < ¢ < A~%/2 and

s/2
<A (A.6)
q

x__
q
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In particular, this is true for x € %I , where I C [0,1] is the interval from the statement. In this
case, it follows from (A.6) that additionally dist(p, q(%] )) < AS/2 < 1. Therefore, p € Z must lie in

an interval I, D q(%I) oflength |I,| < q|I| + 1.
We rewrite the conclusion of Dirichlet’s theorem as the inclusion

Afs/Z
s/2
uey U (2l
2 q q
q=1 pel;nZ

Let us consider the question: how much of %I can be covered by that part of the previous union

where g < cA~%/2? Here ¢ > 0 is a suitable constant to be determined in a moment. By sub-
additivity, and taking into account that card([, gN Z) < 2q|I| + 2, the measure of this ‘bad’ part

1.
Ipaq C 51 is at most

cA™S/2
s/2
gl < Y qlI1+2)- AT < el + A2 1og(1/A) < 2¢l1),
q=1

recalling our assumption that |I| > CA%?log(1/A). Now, we choose ¢ >0 small enough
(depending on the implicit constants above) that |I,4] < 4—1‘|I |. Then |%I \ Tyl = ilI [, and

A—S/2 A—S/2
1 p &2 <£ —1p8
e U U B(q,q c U UB(2.ea).
q=cA-s/2 PENZ g=1 p<q

As each ball (or interval) on the right has length 2¢~' A%, in order to cover %I \ Ij,4, We need at
least ~ |I|A~ distinct centres p/q. We may assume that B(p/q,c 1A%) n %I #  for all these p/q,

which implies that p/q € I by our assumption |I| > A%/2. In summary, we have now found ~
|I|A~* distinct rational numbers p/q € I with p < g < A™/2. As the separation of such rationals

P1/% # P2/ 4 is automatically

PP
a 9

>— 2 A5,

we have proved the claim. O

Finally, let us verify property (E), namely that if the sequence {A, } decays so rapidly that A, <
AZ—1 forall n > 1, then

E={)WU&,)=s. (A7)

neN

There is a slight inconsistency in our notation: in (A.3) we defined &y, to consist of all shifted

rationals of the form p/q — 6, where 8 = A1=7/2 = 0a_0(1). However, in (A.7) the set Ex, stands
for the A, -neighbourhood of this set. In fact, in the argument below we will view and handle
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320f33 | DABROWSKI ET AL.

Ep, as 2 union of closed A, -intervals. Notice that Claim A.4 and property (P2) are blind to
such distinctions.

The idea is to apply Lemma 5.2 to a suitably constructed Cantor subset of E. Namely, for
sufficiently large indices n > 1 it follows from the rapid decay of {A,} that

A,y > CAY?log(1/A,).

For these indices Claim A.5 implies that
1Ea, N I1as ~ Ay_1 A, Ieg,  withlIc]|o,1]

In particular, applying once more the rapid decay of {A,}, we have |€y NI|ps > (A,_1/ A,)sH/n
for all these I € SAH, and for n > 1 sufficiently large. In particular, SAn N1 is a relative (A, s —
%, C)-subset of I for all I € En, with I C [0,1], and n > 1 sufficiently large. Now (A.7) follows
from Lemma 5.2.
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