Harri Erme

CHALLENGES OF QUALITY ASSURANCE OF
SOFTWARE DEVELOPED BY A SUBCONTRACTOR: A
CASE STUDY

JYVASKYLAN YLIOPISTO
INFORMAATIOTEKNOLOGIAN TIEDEKUNTA

ABSTRACT

Erme, Harri

Challenges of quality assurance of software developed by a subcontractor : A
case study

Jyvéaskyla: University of Jyvaskyld, 2024, 72 pp.

Information Systems, Master’s Thesis

Supervisor: Marttiin, Pentti

Outsourcing of software development to subcontractors has been a popular
business strategy for a long time. Subcontracting at its best enables acquisition
of missing competencies, dampening of demand fluctuations, and cost savings
due to the subcontractor's benefits from economies of scale. However, it's
important to carefully assess a subcontractor's capabilities, as a poorly managed
subcontracting relationship can cause significant issues in quality and delays
delivery timelines. Quality problems in particular can widely affect the
cooperation between the client and subcontractor. The risks have materialized
in the case company of this thesis, where unexpectedly significant quality issues
have led to slow and difficult quality assurance processes. This thesis conducts
a case study in an international IT company in order to map out the challenges
the case company has experienced in the subcontracting relationship from the
perspective of software quality assurance. Additionally, solutions to these
problems are explored by interviewing employees of the case company. The
empirical part of the thesis results in a comprehensive and categorized
collection of challenges and solutions. Based on these findings, the target
company, as well as other organizations in a similar situation, can create a
strategy and take actions to start improving the subcontracting relationship.
The study was conducted using qualitative research methods. Data was
collected by interviewing employees of the case company in focus groups.
Semi-structured interviews covered different phases of quality assurance, after
which the transcribed data was analyzed. Content analysis revealed a total of 28
challenges and 20 solutions. Many of the identified problems can be traced back
to the subcontractor. On the other hand, the target company itself has its own
problems but also the capabilities to correct them. For example, by focusing
particularly on requirements engineering, the target company can create better
conditions for the subcontractor to produce higher quality software.

Keywords: software testing, software quality assurance, software outsourcing,
subcontracting

TIIVISTELMA

Erme, Harri

Alihankkijan kehittdmé&n ohjelmiston laadunvarmistuksen haasteet :
Tapaustutkimus

Jyvaskyla: Jyvaskyldn yliopisto, 2024, 72 s.

Tietojdrjestelmdtiede, pro gradu -tutkielma

Ohjaaja: Marttiin, Pentti

Ohjelmistokehityksen ulkoistaminen alihankkijalle on ollut jo pitkddn suosittu
lilketoimintastrategia. = Alihankinta mahdollistaa parhaimmillaan mm.
puuttuvien kyvykkyyksien hankinnan, kysynndn vaihteluiden vaimentamisen,
sekd kustannussdastot alihankkijan mittakaavaetujen myotd. Alihankkijan
kyvykkyydet kannattaa kuitenkin arvioida tarkkaan, silld pieleen mennyt
alihankintasuhde voi aiheuttaa merkittivida ongelmia laadussa ja
toimitusaikatauluissa. Erityisesti laatuongelmat voivat hyvinkin laajasti
heijastua ja vaikuttaa asiakkaan ja alihankkijan viliseen yhteistyohon. Ndin on
kdynyt tamdn tutkielman kohdeyrityksessd, jossa odotettua suuremmat
laatuongelmat ovat johtaneet laadunvarmistusprosessien merkittdvaan
hidastumiseen ja vaikeutumiseen. Tdman tutkielman tarkoituksena on tuottaa
tapaustutkimus kansainvilisessda IT-yrityksessd ja kartoittaa kohdeyrityksen
haasteita alihankintaympaéristossa ohjelmiston laadunvarmistuksen
ndkokulmasta. Tamdn lisdksi ndihin ongelmiin pyritddn etsimddn vastauksia
haastattelemalla kohdeyrityksen tyontekijoitd, sekd tieteellisen kirjallisuuden
perusteella. Tutkielman empiirisen osuuden tuloksena on kattava ja
kategorisoitu kokoelma haasteita ja ratkaisuja, jonka perusteella kohdeyritys,
sekd muut vastaavassa tilanteessa olevat organisaatiot voivat suunnitella
kehitystoimenpiteitd alihankintasuhteen kehittdmiseksi. Tutkielma toteutettiin
laadullisia tutkimusmetodeja hyodyntden. Aineisto kerdttiin haastattelemalla
kohdeyrityksen tyontekijoita fokusryhmissa. Puolistruktroiduissa
haastatteluissa kaytiin ldpi laadunvarmistuksen eri vaiheita, jonka jilkeen
litteroitu aineisto analysointiin. Sisdltdanalyysi paljasti yhteensd 28 haastetta,
sekd 20 ratkaisua. Suuri osa havaituista ongelmista voidaan jdljittda
alihankkijaan. Toisaalta kohdeyritykselld itselldidn on omat ongelmansa, mutta
myos kyvykkyyksid korjata niitd. Esimerkiksi keskittymalld erityisesti
vaatimusmaddrittelyiden kehittdmiseen, kohdeyritys voi luoda alihankkijalle
paremmat ldhtokohdat tuottaa laadukkaampia ohjelmistoja.

Asiasanat: ohjelmistotestaus, ohjelmistojen laadunvarmistus,
ohjelmistokehityksen ulkoistaminen, alihankinta

FIGURES

FIGURE 1 Software testing V-model 15
FIGURE 2 Software defect management life cycle 17
FIGURE 3 Example defect workflow 19
TABLES

TABLE 1 Four cooperation models based on companies’ legal
relationship and team setup 26
TABLE 2 Classification of enterprises in software industry 27
TABLE 3 Experienced quality assurance issues in case company 40

TABLE 4 Proposed solutions for the case company 41

TABLE OF CONTENTS

ABSTRACT
THVISTELMA
FIGURES
TABLES
1 INTRODUCTION
2 QUALITY ASSURANCE IN THE SOFTWARE INDUSTRY
2.1 Factors influencing poor software quality
2.2 Requirements engineering
2.3 Software testing lifecycle
2.4 Software testing levels
2.5 Software defect lifecycle
2.6 Non-functional testing
2.7 Test automation
3 SOFTWARE SUBCONTRACTING
3.1 Software development contracts
3.2 Subcontracting models
3.3 Criteria for selecting software subcontractors
3.4 Financial considerations
3.5 Risk management
3.6 Building and managing relationships
4 SUMMARY OF THEORETICAL BACKGROUND
5 METHODOLOGY
5.1 Selected methodology
5.2 Case description
5.3 Data collection
5.4 Data analysis
5.5 Research ethics
6 RESULTS
6.1 Subcontractor’s internal issues
6.2 Case company’s internal issues
6.3 Issues in partnership structure
6.4 Cooperation issues
7 DISCUSSION
8 CONCLUSIONS
8.1 Limitations
8.2 Future research

APPENDIX1 INTERVIEW STRUCTURE

11
12
14
17
20
21
23
23
25
28
28
30
32
33
35
35
36
37
38
39
40
42
47
50
53
60
63
64
65

72

1 INTRODUCTION

Outsourcing of software development has been a popular business strategy
already for decades. Despite the potential benefits, subcontracting relationships
can prove to be complex and difficult to manage. Even so, software outsourcing
is expected to grow as an industry as especially global software development is
gaining popularity (Shah et al., 2014). This thesis aims to investigate difficulties
of software subcontracting through the lens of quality assurance (QA). QA
processes should be put in place to align the subcontractor’s output with the
company’s standards and regulatory requirements, especially in industries
where software reliability and safety are non-negotiable. However, aligning the
operations between the client and the subcontractor can prove to be difficult
and imposes risks to the overall success of the project. This thesis aims to
investigate what issues subcontracting relationship can cause in terms of quality
assurance and its activities. Additionally, the thesis tries to shine a light on
possible solutions and improvements.

This thesis aims to fill the gap in academic literature by investigating and
documenting the practical implications to QA activities when the subcontractor
does not perform up to expectations. Prior research has addressed risk factors
and hidden costs in outsourcing software development. Additionally, QA and
software testing as a practice is a well researched area but combination of
outsourcing and QA has been mostly a side note in prior literature. Shah et al.
(2014) has investigated the topic of global software testing and revealed the
vendor-side difficulties when software testing and development are conducted
in separate locations internationally as different entities. However, existing
literature has not comprehensively considered the perspective of the client in
discussions about quality assurance activities for software developed by
subcontractors.

To shine a light on what quality assurance is and intricacies of software
outsourcing, literature review is conducted to first establish a theoretical basis
for the thesis. Literature review is conducted using multiple databases which
include ACM Digital Library, IEEE Xplore, AIS eLibrary and Google Scholar.
An effort was made to include only peer-reviewed journal articles in the source

7

material. In certain special cases, field textbooks and standardized industry
vocabulary are also used to illustrate the practical point of view. Multiple search
queries were used to collect the articles depending on the topic. The core
queries were “software subcontracting”, “software development outsourcing”
and “software quality assurance”.

The goal of the empirical part of the study is to describe and categorize
challenges in assuring the quality of software developed by a subcontractor
experienced by the case company’s employees, as well as their respective
solutions. Furthermore, the solutions proposed by scientific literature are taken
into consideration and discussed whether they are applicable to the case
company’s scenario and whether they support the solutions proposed by the
study’s participants. Empirical portion of the thesis is conducted by
interviewing the case company’s employees that are involved in quality
assurance related tasks and either directly or indirectly with the subcontractor.
To achieve this goal, the following research questions are established:

1. What challenges and issues subcontracting relationship can cause for quality
assurance?
2. How can these challenges and issues be solved or alleviated?

The structure of this thesis is as follows. In chapters 2, 3 and 4, theoretical
background for the thesis is layed out. The chapters 2 and 3 discuss key themes
in software quality assurance and outsourcing of software development, while
chapter 4 summarizes these findings. In chapter 5, the methodology of
empirical portion of this thesis is described. Additionally, description about the
scenario of the case company is presented. In chapter 6, results of the study are
revealed. Chapter 7 discusses these results further by taking existing scientific
literature into account. Chapter 8 concludes the thesis and presents the
limitations of the study, as well as directions for further research.

2 QUALITY ASSURANCE IN THE SOFTWARE
INDUSTRY

As software grows in complexity, the challenge of ensuring its reliability and
robustness intensifies. This chapter delves into quality assurance (QA) within
software development, defining it as:

A set of activities that define and assess the adequacy of software process to provide
evidence that establishes confidence that the software processes are appropriate for
producing software products of suitable quality, for their intended purposes, or for
their intended operation services and fulfils the requirements of schedule and budget
keeping (Galin, 2018, p. 5)

From this definition, we can extract meaning for quality, which aligns with
Axelsson & Skoglund (2016) and Nistala, Nori & Reddy (2019) definitions.
Software quality can be thought of as the degree to which a software product
satisfies stated and implied requirements in operational use (Axelson &
Skoglund, 2016; Nistala et al., 2019).

This chapter discusses various key topics related to software quality
assurance that are relevant to the context of the case study. First, the chapter
explores why making high quality software is so difficult. Second, requirements
engineering is discussed to highlight the meaning of well defined requirements
to software quality. Thirdly, the general process of software testing is explained
to elaborate the activities performed by test engineers. Fourth topic delves
deeper into how software is tested in different abstraction levels and phases of
development. Fifth subchapter explains a general process of how software
defects, resulting from testing activities, are fixed and resolved. Sixth
subchapter briefly explains different types of non-functional testing. Finally, test
automation and it’s ability to reduce test engineers’ workload is discussed.

2.1 Factors influencing poor software quality

Software development is a human-centric activity, which means that it is
influenced by various organizational, psychological, and behavioral factors
(Ghanbari et al, 2019). This means that software is subject for mistakes.
Utilizing recommended software development and quality assurance practices
can help minimize the amount and severity of software defects. However,
research suggests that these deficiencies often arise due to the omission of
quality practices. Such omissions can stem from organizational decisions
influenced by resource limitations or market pressures. Ghanbari et al. (2019).

Historical data indicates that these deficiencies are significant causes of
software failures and vulnerabilities, leading to substantial financial impacts on
both software stakeholders and the wider society (Fonseca & Vireira, (2008).
Minor defects might be perceived by users as just technical hitches, while severe
bugs in software can escalate into safety and security threats that cause
far-reaching consequences for stakeholders and even society at large. (Ghanbari
et al. 2019.)

Over the past four decades, significant amount of effort and research has
been made to enhance the quality of software development processes by
introducing various methods, best practices, and tools (Arcos-Medina &
Mauricio, 2019). Though these tools and practices can aid developers in spotting
and addressing mistakes, some might remain undiscovered until after product
delivery. Addressing such deficiencies post-delivery is both costly and
time-consuming, particularly for complex systems (Kuutila et al., 2020). Hence,
the initial prevention of these issues is the key in maintaining time and budget
goals (Ghanbari et al., 2019).

While there has been a concerted effort towards refining the
technological and procedural aspects of software development in order to
reduce bugs, the psychological and social dimensions have been relatively
overlooked (Ghanbari et al., 2019). This oversight is concerning, given that
many software deficiencies can arise from bypassing recommended practices or
adopting expedient shortcuts. In situations driven by urgency or by other
external factors, software professionals, such as requirement analysts,
programmers, testers or project managers, might ignore best practices for
quicker results, which Ghanbari et al. (2019) refer to as the omission of quality
practices. This phrase essentially means that professionals knowingly ignore or
bypass established processes and instead opt for practices that risk the overall
software quality. Let’s discuss this further and examine how and why software
professionals decide to ignore quality practices.

Based on Ghanbari et al. (2019) analysis, market environments that firms
are active in influence software development approaches and the extent to
which they are followed by organizations. Ghanbari et al. (2019) suggest two

10

main factors: organization’s business objectives and the requirements of
customers within market environments.

From the business viewpoint, growing up sales and expanding market
presence are the key for boosting revenue. On the other hand, reducing
development timelines and costs not only increase profits but can be vital for a
firm's survival in a competitive business landscape. Driven by these short-term
business goals, there's an incentive for companies to accelerate development
processes, ensuring they outpace competitors in introducing new or innovative
features and products to the market. This proactive approach not only secures
an early market entry but can also enhance revenue streams and attract external
funding, as suggested by Lim et al. (2012), allowing further product
enhancement.

However, moving too fast can lead to shortcuts. In order to reach
business goals, development teams might choose to discard some activities
related to quality assurance. Ahonen & Junttila (2003) give an example: when
sales teams work on offers for clients, they might try to cut costs and time by
not involving technical experts, seeing their input as an extra expense and
delay. The importance of including tech savvy professionals in project planning
has been proven many times and this kind of lack of understanding and aim for
short term goals is really hurtful for the overall success of the project (Ghanbari
et al., 2019; Kuutila et al., 2020).

In fact, time pressure has been widely reported to lower the quality of
developed software (Kuutila et al., 2020). They mention that time pressure
during the initial product design and development lowers quality of the code,
thus leading to rework and redesign during later product development.
Moreover, Kuutila et al. (2020) highlight the risk of unrealistic deadlines causing
minimal effort on quality assurance. Regarding this issue, Jones (2006) raises an
interesting fact, which is that project managers’ might often have an realistic
and conservative idea about the estimated development and testing time, but
are unable to defend them or convince upper management about the realities of
the project’s situation.

Another reason for skipping quality steps comes from trying to meet
customer needs. Customer requirements are often unclear at the start of
software projects. Misunderstanding these requirements can lead to extra work
later on as designs need changes. Sometimes, this lack of clarity is used as an
excuse to make development quicker or easier. However, as the project goes on,
everyone tends to get a clearer picture of what's needed, which again means
changes to the initial plans. Therefore, development teams might decide to
ignore certain quality practices to aid in being responsive to customers’ needs.

Software defects are not just about human and business factors but from
the inherent difficulty of software development (Corral et al., 2015). Advanced
mobile applications are an example of this as they must operate in constrained
environment (Corral et al., 2015). The constraints in this case would be twofold:
evolving constraints and inherent constraints. Evolving constraints, such as
bandwidth, signal coverage, and current technological limitations (eg.,
computing power and size of the battery), might eventually be overcome as

11

technology advances. For instance, a slow data network today may become
faster in the future. Conversely, inherent constraints are intrinsic to mobile
platforms and unlikely to change soon. Examples include navigating via a
limited keyboard or interacting with a relatively small touchscreen. These
intrinsic characteristics make designing intuitive and error-free applications a
challenge. Additionally, the rapid evolution of terminal devices and the need to
incorporate multiple development standards mean that mobile app developers
must constantly adapt and innovate. They face the laborious task of ensuring
compatibility across diverse protocols, network technologies, and multiple
platforms, all while catering to the specific needs of mobile users. This
complexity is further amplified by previously discussed strict time-to-market
requirements. Software defects, then, can be seen as almost inevitable
byproducts of this business. (Corral et al., 2015.)

2.2 Requirements engineering

As discussed already, the quality of a software system depends on how well it
tulfills its requirements. To bridge the gap between developers and other
stakeholders, such as end user and business partners, in understanding of
requirements, requirements engineering (RE) is used to define, document and
maintain stakeholder needs for software systems (Shah & Patel, 2014). The main
activities of RE is requirements elicitation, requirements analysis, requirements
representation, requirements validation and requirements management
(Laplante & Kassab, 2022). Of course, different domains face their own
intricacies when performing RE, thus the overview of RE by Laplante & Kassab
(2022) is not complete. For example, machine learning (ML) systems have
introduced a paradigm shift and thus Vogelsang & Borg (2019) argue that
traditional RE methods are not applicable as is to ML systems and they require
alternative and more extensive methods. Nevertheless, RE activities presented
by Laplante & Kassab (2022) is very much valid for most system development,
so let’s discuss them in more detail.

Requirements elicitation means discovering what the customer wants
and needs (Laplante & Kassab, 2022). This activity is not at all trivial, and as
Laplante & Kassab (2022) puts it: “elicitation is not like harvesting low-hanging
fruit from a tree”. The reason for this metaphor is that many requirements are
often hidden and require well-defined approaches to be discovered (Laplante &
Kassab, 2022). Also, as an important sidenote, common mistake during
requirements elicitation is overlooking non-functional requirements (Laplante
& Kassab, 2022).

Requirements extracted during requirements elicitation usually include
number of problems (Laplante & Kassab, 2022). Requirements analysis is
therefore conducted to deal with these problems found from the “raw”
requirements. However, the number of problems is often reduced if

12

requirements elicitation is conducted with good elicitation techniques (Laplante
& Kassab, 2022). Possible issues discovered from the raw requirements may be
incoherence, contradiction to each other, inconsistency, incompleteness, just
plain wrong things or they might have problematic dependencies (Laplante &
Kassab, 2022).

Requirements representation takes the analyzed requirements and
converts them into some model, such as natural language, mathematics or
visualizations (Laplante & Kassab, 2022). This ensures that the requirements are
communicated and discussed accurately and are easily understandable.
Additionally, proper representation helps the conversion of requirements into
system architecture and design (Laplante & Kassab, 2022). Representing
requirements can be informal (sketches or natural language), formal
(mathematical models), or semiformal. Most often, a combination of these
methods is used to achieve comprehensive documentation of requirements
(Laplante & Kassab, 2022).

Requirements validation ensures that the gathered and represented
requirements truly describe what the customers needs. Requirements validation
basically answers the question: "Are we building the right product?" Techniques
employed for validation range from inspections and visualizations to text-based
tools and other formal methods. (Laplante & Kassab, 2022.)

Software development is a dynamic process, and requirements can
change over time. Requirements management deals with the evolving nature of
these changes, ensuring traceability and clear communication of any
modifications. It's also about managing the broader aspects, such as combating
scope creep by using tools that track the mentioned changes to maintain
traceability. (Laplante & Kassab, 2022.)

2.3 Software testing lifecycle

Software testing is one of the most essential activities in software quality
assurance. This phase within software development life cycle puts software
under a series of systematic phases, from test analysis and planning to
preparation, execution, and closure. The primary objective of software testing is
to evaluate and execute the software to expose any differences between
expected and actual functionalities. Software testing aims to validate if the
system aligns with its specified requirements by manually testing the software,
or by using test automation tools. Through the various phases of the software
testing life cycle, errors are not only detected but also fixed.

Software testing lifecycle can be separated into four phases as presented
by Hooda & Chhillar (2015). Hooda & Chillar (2015) present the order of the
phases as follows: test analysis, test planning and preparation, test execution
and test closure. Let’s discuss these phases individually in more detail.

13

In the software testing lifecycle, the test analysis phase marks the
beginning of the testing activities. During this stage, the focus is on analysis of
both functional and non-functional requirements, which includes everything
from business needs to specific technical specifications. The test team
communicates with stakeholders to clarify these requirements that describe the
expected outcomes of the test cases. This is also the stage where the team
should identify any gaps in both functional and non-functional requirements.
Not all requirements, however, are feasible for testing due to certain constraints
within the system or the testing environment itself. These untestable elements
are important to be communicated by the testing team back to the business
stakeholders to ensure transparency and to set realistic expectations. The test
team reviews and analyzes all the gathered requirements, determining what
tests need to be conducted and assigning priorities to them. (Hooda & Chhillar,
2015.)

Test planning and preparation phase stands as a set up stage that
includes several key activities designed to prepare for the actual testing. This
phase commences with the creation of a test plan. This document defines the
testing scope, objectives, features that will undergo testing, those that won't, the
various testing methods to be employed, the roles of each member of the testing
team, and the criteria that will determine when testing begins and when it
concludes. Central to this phase is the creation of test cases, which are
structured documents detailing the steps necessary to test specific
functionalities. Each test case includes an action and an expected result. Also,
test data is prepared. This data, both valid and invalid, corresponds to each test
case, ensuring comprehensive testing coverage. This data can be created by
testers or generated through specialized algorithms and tools. The setting up of
a test environment usually assigned to a specialized team dedicated to
maintaining these testing environments. Once development of the software that
is going under testing has reached a certain milestone, the code undergoes a
review. After that, a test build is developed, signaling testers to initiate the test
execution process. (Hooda & Chhillar, 2015.)

The test execution phase is where the actual testing is conducted. During
this phase, testers run the software according to the test cases defined earlier.
When differences arise between expected and actual results, testers mark the
test case as failed and log these failures as defects and assign them to
developers to be resolved. Each found defect goes through a comprehensive
logging and tracking cycle which is discussed in more detail in the following
subchapter. Just like software development teams, also testing teams use
regular reports and meetings, usually daily or weekly, to monitor the project's
velocity. These periodic reviews allow teams to discuss the testing progress,
giving the testers and project manager overall picture of the project’s status.
(Hooda & Chbhillar, 2015.)

Finally, test closure includes a review of all test reports, ensuring that the
software has been properly tested with an acceptable pass/fail ratio. A
conclusive evaluation is made at this stage where it is determined whether all
the requirements have been effectively tested and if any critical bugs remain

14

unresolved or their fixes unverified. Once the manager has reviewed and
approved all these artifacts, the software is green-lit for release. A retrospective
analysis is conducted with the testing team to reflect upon the entire testing
process, identifying successes, setbacks and areas for improvement. (Hooda &
Chbhillar, 2015.)

In conclusion, through systematic phases including test analysis,
planning, execution, and closure, software testing lifecycle ensures that
software meets both functional and non-functional requirements. Each phase
has its significance, from understanding business and technical requirements to
executing test cases and ensuring the software's readiness for release. The
software testing lifecycle's goal is to validate the system against its specified
requirements, identify errors, and implement fixes. Any differences between
expected and actual outcomes are reported and resolved.

24 Software testing levels

In order to effectively manage software development, it is abstracted into
various levels like modules or components which are tailored specifically for
the system or reused from previous systems or libraries (Baresi & Pezzé, 2006).
These components are integrated together to form subsystems which in turn are
compiled together to form the final system or application (Baresi & Pezzé,
2006). Software testing is conducted in all of these levels, often illustrated by the
widely adopted V-model (figure 1). The V-model is a well known methodology
that allows effective and systematic software verification and validation (Han et
al., 2016). Different testing levels are distinguished as component, integration,
system and acceptance testing (Baresi & Pezzé, 2006). As Han et al. (2016) points
out, there are multiple variations of the V-model and different research articles
use different terminology when discussing about the same concepts. Therefore,
this thesis uses the terminology defined by the the International Software
Testing Qualifications Board (ISTQB) to comply with industry standards while
discussing the software testing V-model. ISTQB is a globally recognized
organization responsible for defining standardized guidelines and practices for
software testing standardization and certification.

15

REQUIREMENTS
ANALYSIS

ACCEPTANCE
TESTING

SYSTEM DESIGN SYSTEM TESTING

ARCHITECTURE
DESIGN

INTEGRATION
TESTING

COMPONENT
DESIGN

COMPONENT
TESTING

CODING

FIGURE 1 Software testing V-model (adapted from Han et al. (2016); ISTQB Glossary,
2023)

Component testing, often referred to as module or unit testing, is a test level
that focuses on individual hardware or software components (ISTQB Glossary,
2023). Component testing is conducted in isolation from other software
components by the developer (Baresi & Pezzé, 2006). In test driven
development, automated component tests are written prior the actual code
which yields superior external code quality according George & Williams
(2004). In other methods, component tests are written during or after the code is
being developed, if at all, as component testing is often viewed as a waste of
time or uninteresting by developers (Ghanbari et al., 2019). The goal of
component testing is to identify and resolve issues at the component level to
achieve a level of confidence in that the new code will not introduce faults or
hide existing faults in the current code base (George & Williams, 2004). When
talking about component test coverage and adequacy, it implies how much the
software is tested and how effective these tests are in covering different aspects
of the component such as statements, branches and the ability to handle faulty
inputs or other errors (Zhu et al., 1997). According to Baresi & Pezzé (2006),
acceptable coverage should be around 85-90%, otherwise it might indicate bad
design or neglect for quality.

Integration testing is a test level that focuses on interactions between
components or systems (ISTQB Glossary, 2023). In software development, the
whole is greater than the sum of it's parts, which means that testing single
components is not enough to ensure the quality of the system (Baresi & Pezzé,
2006). Therefore integration testing is conducted to reveal faults when two or
more components communicate with each other. It is performed at the
component level rather than at the statement level (Leung & White, 1990; Baresi
& Pezzé, 2006). As both Leung & White (1990) and Baresi & Pezzé (2006)
highlight, all possible interactions cannot be tested as it might prove to be too
difficult or cost-ineffective. Baresi & Pezzé (2006) speculate a reason for this,
which is that it’s very hard to predict interactions between seemingly unrelated
components. There are different strategies related to integration testing. One of
the least effective ones is the Big bang testing which waits until all components
are integrated (Baresi & Pezzé, 2006). More Agile solution is testing the modules
incrementally, like in feature-driven strategy where components are integrated

16

in an order that produces working executable systems as early as possible
(Baresi & Pezzé, 2006).

System testing is a test level that focuses on verifying that a system as a
whole meets specified requirements (ISTQB Glossary, 2023). System and
acceptance testing evaluate the complete system's behavior, including both
functional and non-functional aspects (Baresi & Pezzé, 2006). Unlike module
and integration testing, which are internal and do not require user involvement,
system and acceptance testing consider the end-user perspective (Baresi &
Pezzé, 2006). Most module and integration tests focus on functional properties.
Some non-functional properties, like modularity, maintainability, and testability,
are ensured through design rules, static analysis tools, and manual inspection
during development. However, properties like usability and performance
require testing with the entire system in addition to user involvement for
accurate assessment (Baresi & Pezzé, 2006). Performance and usability tests on
early prototypes can guide critical design decisions and mitigate development
errors, but final testing on the deployed system is essential to gain reliable data.
Other non-functional properties, such as safety and security, are typically
handled by specialized teams or individuals working in parallel with the testing
team (Baresi & Pezzé, 2006; Camacho et al., 2016).

Final and highest level of the V-model is acceptance testing which
focuses on determining whether the system is generally sufficient. Acceptance
testing should involve validating the software in a real setting and by the
intended audience (Otaduy & Diaz, 2017). Acceptance testing can also be
conducted by test engineers or other stakeholders depending on the project.
Acceptance testing can be therefore very similar to system testing depending on
the situation, but generally the main aim is not anymore to validate the defined
requirements (although should still be considered), but to ensure that the
software satisfies the customer’s needs (Otaduy & Diaz, 2017). One common
way to conduct acceptance testing throughout the development process is with
software demos (Otaduy & Diaz, 2017). It is also important to point out, that
acceptance testing is usually very critical phase from the contractual and
business point of view as it often serves as a milestone where money changes
hands and warranty and other legal aspects come into play (Atkins, 2005).
These topics are discussed in more detail in later chapters.

In conclusion, the V-model illustrates a structured approach to testing at
various levels to ensure comprehensive integration and validation. Component
testing focuses on individual components, conducted in isolation from other
aspects of the system. Integration testing examines interactions between these
components to identify issues that are not evident when testing modules
separately. System testing evaluates the entire system against specified
requirements and takes into account both functional and non-functional
aspects, which include user-focused properties like usability and performance.
Finally, acceptance testing validates the software in real-world settings to
ensure it meets customer needs and often marking a critical milestone in terms
of contractual aspects. Each testing level, from component to acceptance, plays a

17

vital role in ensuring the overall quality and efficacy of the software and each
discovering faults that other levels won't find (Leung & White, 1990).

2.5 Software defect lifecycle

A significant majority of software organizations and IT departments employ a
defect management process to identify, track and resolve software defects found
within their products (Rahman & Hasim, 2015). According to the model by
Rahman & Hasim (2015), key phases of software defect management are defect
identification, defect analysis, defect prevention, defect resolution, defect
monitoring and defect process improvement. Defect management life cycle
(DMLC) is illustrated in figure 2.

DEFECT
IDENMTIFICATION

DEFECT PROCESS
IMPROVEMENT DEFECT ANALYSIS
Y
¥
DEFECT DEFECT
MONITORING PREVENTION

Y

DEFECT
RESOLUTION

-

FIGURE 2 Software defect management life cycle (adapted from Rahman & Hasim,
2015)

First phase in the DMLC is defect identification (Rahman & Hasim, 2015). When
a defect occurs, it needs to be identified and recorded to the defect management
system (Rahman & Hasim, 2015). Discovery of a defect must be communicated
to the development team as soon as possible (Lambdatest, 2023). Then, it is the
development team’s task to acknowledge or reject the defect and move forward
with either fixing it or documenting why the defect was invalid (Lambdatest,
2023)

Second phase of DMLC is defect analysis (Rahman & Hasim, 2015). In
this phase, Defects are categorized utilizing specific naming conventions for
coherence. Such classification offers insights into the various stages and
activities within the software development cycle where the defect might have
originated. (Rahman & Hasim, 2015.)

18

Third phase of DMLC is defect prevention (Rahman & Hasim, 2015).
Here, the focus shifts to understanding the root cause of the defect. By
conducting a root cause analysis, the core issues of the defects are figured out.
This knowledge makes it possible to implement preventive strategies to ensure
that similar defects don't recur. (Rahman & Hasim, 2015.)

Fourth phase is defect resolution (Rahman & Hasim, 2015). At this point,
the identified defects are fixed by the development team (Rahman & Hasim,
2015). The process of fixing the defect starts with assigning it to a developer,
who then schedules it for fixing according to its priority (Lambdatest, 2023).
Once the issue is fixed, the developer sends a resolution report to the test
manager (Lambdatest, 2023).

Fifth phase is defect monitoring, which ensures that the defect
management process is effectively and correctly performed at a project level
(Rahman & Hasim, 2015). Also, this phase includes defect verification, where
the fixes are validated by the test team to assure that the defect has actually
been resolved (Rahman & Hasim, 2015).

Final phase is defect process improvement (Rahman & Hasim, 2015). All
team members of the project should reflect on and identify the root causes of
issues to enhance the process. While it's essential to address high-priority
defects during the resolution phase, it doesn't mean that lower priority defects
lack importance or don't impact the system's process significantly. Every
detected defect is viewed as vital for process improvement. This perspective
aids in refining foundational documents, reviewing methods, and adjusting
validation processes. By doing so, defects can be identified earlier in the defect
management process, making them less costly to address. (Lambdatest, 2023.)

Let's now discuss in more practical level how newly discovered defect
flows through a defect management process. Following overview (figure 3)
presents a generalized defect management workflow based on industry
recommendations. However, the actual workflow and terminology might vary
across different organizations but the main concepts remain the same.

¥
OPEN
¥
ASSIGNED
Ma
REJECTED
fes
FIXED
v
T BE VERIFIED
Ma
RE-OFENED q D)

VERIFIED/CLOSED

FIGURE 3 Example defect workflow (adapted from Lambdatest, 2023)

As the testing team identifies a defect, they label it as "New" in their chosen
project or defect management tool (eg., Jira). Once assessed and deemed valid
by a test manager, the bug's status transitions to "Open" and awaits assignment
to a developer. The bug is marked "Assigned" when a specific developer is
chosen to investigate and address it. Should the developer deem the bug as
invalid or irrelevant, its status changes to "Rejected". If a defect is reported more
than once or is identical to another, it's labeled "Duplicate". Some defects might
be delayed in their resolution due to constraints, giving them a "Deferred" or
"Postponed" status. When developers face difficulties replicating a reported
defect, they might tag it as "Not Reproducible" or "Need Additional

20

Information," requesting clearer instructions or more information from the
testing team, such as logs or other additional evidence. A known issue in the
production environment is labeled a "Known Defect". After resolving a defect, a
developer marks it "Fixed," and it is then set to "Ready for Retest." If testers
confirm the fix, the defect becomes "Closed." However, if issues persist, the
status reverts to "Reopened" waiting to be assigned to a developer once again.
(Lambdatest, 2023.)

2.6 Non-functional testing

As discussed previously, non-functional requirements describe the general
qualities and attributes of a software system that do not directly define the
functions of the software system (Camacho et al. 2016). The nature of
non-functional requirements makes them inherently more difficult to test, as
they are more vague or less specific compared to functional requirements
(Camacho et al. 2016). Let’s discuss few key non-functional testing methods in
more detail.

First, performance testing validates several characteristics of a given
system, such as speed, velocity, scalability and stability (Meier et al., 2007). The
key question to which performance testing aims to answer is “what is system
performance if we change this software configuration option or if we increase
the number of users?” (Jiang & Hassan, 2015). The idea is to gather information
about the system in terms of response times, throughput and
resource-utilization in order to meet the performance requirements, or if they
are not defined (which often might be the case), a reasonable level of
performance (Crispin & Gregory, 2014). Performance testing can evaluate the
system as a whole, or focus on different components of the system, such as the
graphical user interface or data storage solution (Jiang & Hassan, 2015).
Performance testing can also be used to evaluate and compare design and
architectural decisions, algorithms and system configurations (Jiang & Hassan,
2015).

Secondly, load and stress testing, which is related to performance testing,
inspects the system’s behavior under normal and heavy loads (Camacho et al.
2016). Load and stress testing is important when operating large scale software
systems as the amount of concurrent requests might range from thousands to
millions (Jiang & Hassan, 2015). The purpose is to verify that the system
functions correctly and as expected under load and to identify possible load
related problems such as deadlocks, crashes and memory leaks (Jiang &
Hassan, 2015). The difference between load and stress testing is in the severity
of the imposed load (Jiang & Hassan, 2015). Additionally, stress testing takes
into account component failures (eg., severe database errors) in order to test
overall resilience of the system. Scenarios for load and stress testing can be

21

created using tools, which automatically create requests to the system, or by
reducing the amount of compute resources available (Jiang & Hassan, 2015).

Thirdly, software security testing is the process of assessing and
evaluating a software application to discover vulnerabilities, weaknesses, and
flaws that could be exploited by attackers. The primary objective is to identify
potential threats and ensure that the software is resistant to malicious attacks,
ensuring data protection and system integrity. Techniques include static
application security testing (SAST), dynamic application security testing
(DAST), and penetration testing, among others. The end goal is to ensure that
software operates securely and can resist unauthorized attempts to disclose,
modify, or deny access to data. (Takanen et al., 2018.)

Additionally, there are multiple other ways to evaluate the
non-functional qualities of software systems. Usability testing can be conducted
to evaluate user interfaces to identify design issues from the user’s perspective
to ensure comfortable and efficient user experience (Bandi & Heeler, 2013).
Accessibility testing ensures that that the developed software is usable by as
many people as possible, independent of their physical capabilities (eg., people
with visual impairments) (Bai et al. 2017). Also, in the context of mobile
applications and embedded systems, battery consumption should be
considered and tested (Silva et al., 2017). Finally,, if the system supports multiple
languages, localization tests should be conducted to ensure that the system is
translated fully and correctly for the end user (Camacho et al. 2016).

To summarize, non-functional requirements focus on the overall qualities
and attributes of a software system, separate from its explicit functions. Testing
these requirements can be challenging due to their less specific nature. Key
methods to evaluate non-functional aspects include performance testing, which
assesses system speed, scalability, and stability under various configurations
and user loads. Another vital method is load and stress testing, which observes
the system's behavior under normal and increased loads to detect potential
issues like crashes or memory leaks. Software security testing scans the system
for vulnerabilities and weaknesses, aiming to safeguard it against malicious
threats. Moreover, usability testing examines user interface design from the
user's viewpoint, while accessibility testing ensures the software is usable by
those with physical limitations. For mobile apps and embedded systems,
battery consumption is a critical factor, and systems supporting multiple
languages require localization tests to guarantee accurate translation for users.

2.7 Test automation

Automated software testing involves using technology to perform test activities
that are typically done manually. This automation is carried out using
specialized software known as test tools. (Garousi & Maintyld, 2016.) Study
conducted by Rafi et al. (2012) presents main benefits of test automation, which

22

are reusability, repeatability and effort saved in test executions. These results
highlight the fact that test automation is the superior decision when several
regression testing rounds are needed (Rafi et al., 2012).

Nowadays, most prominent commercial or open-source software
incorporates automated test suites to ensure its proper functionality. This is
particularly true for software projects that undergo multiple iterations, as the
benefits of automated testing are most evident during regression and repetitive
testing. For numerous large scale systems, the size and complexity of
automated test suites continue to grow. (Garousi & Mintyld, 2016.) Therefore,
making informed decisions about when and what to automate is crucial, as
incorrect choices can result in significant waste of resources and efforts (Garousi
& Mantyld, 2016).

When determining which parts of the system should or should not be
automated, it's essential to consider the following factors. First factor is the rate
of change of the component under testing. If what is being tested is subject for
major changes, automation maintenance costs can escalate. Another
consideration is the frequency of test executions. It's important to assess how
valuable each test result is and the associated costs of obtaining it. Lastly, the
ongoing value of automation should be evaluated. Do automated tests
consistently provide value by either identifying bugs or confirming significant
attributes of the software, such as specific scenarios? (Garousi & Mantyld, 2016.)

The theoretical ideal for automated testing is to achieve 100% automation
test coverage. Yet, this goal has not been realized in actual practice and mostly
likely won’t be in the near future. Reason for this according to Rafi et al. (2012)
is that some tests require subjective evaluation of the system (eg., some
non-functional tests such as usability) or extensive knowledge in the domain in
which software is used to which modern testing tools are not yet capable of.
However, by automating all the possible well-defined and repeatable test cases,
the tester’s time is freed up for the types of testing from which manual testing
gets the most value out (Rafi et al., 2012).

23

3 SOFTWARE SUBCONTRACTING

Outsourcing of software development has been a popular practice for decades
now (Dey, Fan & Zhang, 2009). Outsourcing is a management strategy that
allows organization to acquire technical expertise, benefits of economies of scale
or labor to dampen demand fluctuations in order to focus on the core
competencies and business objectives (Assmann & Punter, 2004; Dey et al.,
2009). However, hiring a outside contractor can prove to be a challenging
operation despite the benefits, as the incentives between the client and
subcontractor may diverge in addition to information asymmetry and
communication issues (Dey et al., 2009). Another popular theme in software
outsourcing literature is international outsourcing into developing countries.
Global Software Development (GSD) is widely adopted due to its ability to
decrease software development costs as vendors in developing countries cost
significantly less than in-house operations (O Conchdiir et al, 2009; Deshpande
et al, 2011; Niazi et al., 2016).

In this chapter, software subcontracting is discussed from various points
of view in order to understand what sets subcontracting projects up for either
success or failure. Topics discussed in this chapter include contracts, different
subcontracting models, criterias for selecting a subcontractor, financial
considerations, risk management and finally management of subcontractor
relationships.

3.1 Software development contracts

The world of software contracts is interesting, as software engineering as a
process is highly complex which introduces multiple unique challenges in
terms of contracts that are not present in most industries (Dey et al., 2009). Two
main characteristics of software development contracts are the need to support

24

incomplete requirements specification and difficulty of quality assessment (Dey
et al., 2009). These are the two main reasons why fixed prices are rarely seen in
software development contracts as they impose a high risk to budget overruns
due to change requests and bug fixes (Dey et al., 2009). That being said, a
typical software development contract between a client and a subcontractor
(vendor) includes a variety of interrelated issues (Dey et al., 2009). The main
issues that should be agreed in the contract include quality of the system,
delivery timeline, effort and cost of the project, payment and maintenance of the
system postdelivery (Dey et al.,, 2009). Let’s discuss these characteristics of
software development contracts further.

In Dey et al’s (2009) research paper they analyzed 15 software
outsourcing contracts to uncover factors that are important in the outsourcing
process. Firstly, project type or more precisely project complexity is a major
factor in contractual relationship (Dey et al., 2009). Mission critical projects
require higher resource allocation and effort from the vendor (Dey et al., 2009).
Additionally, the more complex the project, the detailed the customer
specification and requirements become (Dey et al., 2009). As mentioned already,
software development contracts need to deal with certain uncertainties
common for software projects. In most cases, neither functional nor
non-functional requirements are complete at the start of the project (Horkoff et
al., 2019). Therefore software contracts require a certain degree of flexibility
when it comes to project’s scope. It is also important to note that the
uncertainties may increase alongside increasing requirements (Dey et al., 2009).

Software projects along with their associated contracts are usually
separated into milestones along a specified timeline. This timeline may usually
be tied to payment terms (Dey et al., 2009). One of the common milestones in
which payments are made is during acceptance testing where if the client
approves the system, the vendor receives the agreed sum (Atkins, 2005). The
importance of acceptance testing on the contract and on the subcontracting
process in general is discussed later in this chapter.

Software support is another major element in software development
contracts. Most contracts mandate a warranty period where the vendor is
obligated to correct defects after the software's deployment (Dey et al., 2009).
This period varies, but it's essential for ensuring that the software functions as
intended post-delivery. The length and terms of this support are often a point of
negotiation and reflect the project's complexity and the developer's confidence
in their work (Dey et al., 2009).

The sophistication and knowledge of the client in IT and software
development also play a significant role in the contracting process. Clients with
greater understanding and experience in these areas tend to specify contracts in
more detail (Dey et al., 2009). This detailed specification includes aspects like
system functionalities, performance expectations, and the scope of post-delivery
support. Their familiarity with the software development lifecycle enables them
to set more precise expectations and effectively manage potential risks (Dey et
al., 2009).

25

Final characteristic that Dey et al. (2009) mension is the measurability of
project quality. This involves setting clear performance standards and metrics
for the project. When companies can define these quality measures explicitly,
they are more likely to draft detailed contracts incorporating these standards
(Dey et al., 2009).

3.2 Subcontracting models

Subcontracting can take many forms in the software industry. Unfortunately,
there is no definitive model describing all potential intricacies of different ways
to outsource software development. There exists however multiple
classification models for software subcontracting from different perspectives.
Let's go over classifications by Kobitzsch et al. (2001), Penttinen & Mikkonen
(2012) and Minetaki & Motohashi (2009), each taking a unique view to gain a
basic understanding of different ways in which software subcontracting can
take shape.

Kobitzsch et al. (2001) base their categorization model (Table 1) on legal
relation between the participating companies and the setup of the teams as they
argue they are the most distinguishing features based on their experiences. In
Kobitzsch et al. (2001) paper, cooperation models are separated on the team
setup axis by the amount of teams, and legal relationship where the companies
involved are either legally independent or legally related. Model 1, which is
separate teams in basically independent company is the standard
contractor-subcontractor relationship (Kobitzsch et al., 2001). All legal,
knowledge-transfer, development and project management, and quality
management issues apply here (Kobitzsch et al., 2001). In case that the
independent companies are situated on different sides of cultural borders, these
issues are amplified and language, time, and infrastructure issues might emerge
(Kobitzsch et al., 2001). Model 2 is separate teams in legally related companies
which means a specialized contractor-subcontractor relationship between
mother and daughter companies (Kobitzsch et al., 2001). Implications of this
model are the same as model 1, but issues in legal, knowledge-transfer and
project and quality management topics are easier to solve as the mother
company owns the subcontractor which reduces conflicts of interest (Kobitzsch
et al, 2001). According to Kobitzsch et al. (2001), many large companies
(Lucent, Siemens and Nokia) have adopted this model and set up development
sites in India that are legally related to their own company. Model 3 is one team
distributed across multiple sites of legally related companies (Kobitzsch et al.,
2001). Kobitzsch et al. (2001) highlight the importance of project and quality
management due to the scattered nature of this setup. In case the sites are
distributed in different nations, language, time, and infrastructure also become
challenges (Kobitzsch et al., 2001). Model 4 is one team distributed across
multiple sites of several basically independent companies (Kobitzsch et al.,

26

2001). This is the common mode for globally operating company according
Kobitzsch et al. (2001). The implications of this model are the same as model 3’s
but legal issues might additionally become a challenge (Kobitzsch et al., 2001).

TABLE 1 Four cooperation models based on companies” legal relationship and team
setup (adapted from Kobitzscgh et al., 2001)

Independent companies | Legally related
companies
Separate teams Model 1 Model 2
Single team Model 4 Model 3

Penttinen & Mikkonen (2012) on the other hand base their subcontracting
models purely on the team setup. According to Penttinen & Mikkonen (2012),
there are three different types of subcontracting model’s in the software
industry, which are called subcontractor team, mixed team and virtual team.
Subcontractor team is the most straightforward to setup (Penttinen &
Mikkonen, 2012). As the name implies, the team consists only of subcontractors,
but subcontractors do not have to be from the same company but must have
relevant experience (Penttinen & Mikkonen, 2012). Mixed team includes team
members both from within the company and from the subcontractor(s)
(Penttinen & Mikkonen, 2012). The selection of team members is based on
criteria like skills, technical and personal character, suitability, and managerial
tit (Penttinen & Mikkonen, 2012). However, it is important to not become overly
dependent on the subcontracted team member’s, as the nature of their
contracts are not permanent and might change rapidly (Penttinen & Mikkonen,
2012). Therefore, competence transfer to internal team members is important to
ensure continuity after the subcontractor leaves (Penttinen & Mikkonen, 2012).
Third model, virtual team, involves team members who are located at different
locations, often in different countries, working together (Penttinen & Mikkonen,
2012). This is most common in companies practicing global software
development and is more difficult when it comes to communication and
management topics compared to the other models (Penttinen & Mikkonen,
2012). Additionally, virtual teams require robust communication culture,
infrastructure and tools to ensure effective collaboration (Penttinen &
Mikkonen, 2012).

Minetaki & Motohashi (2009) take more economics based perspective on
software subcontracting models (Table 2). Their classification is based on two
factors. First is the outsourcing cost ratio, which is the proportion of total cost
occupied by outsourcing cost (Minetaki & Motohashi, 2009). Second factor is the
intra-industry sales ratio which is the proportion of sales contributing to the
sales within the information service industry as a whole (Minetaki &
Motohashi, 2009). This classification results in four different types of

27

contractors. First, prime contractors are large enterprises that are positioned at
the top of the pyramid of industrial organizations. They tend to have a high
proportion of sales outside the software industry and largely outsource to
subcontractors (Minetaki & Motohashi, 2009). Second, intermediate
subcontractors are enterprises that typically receive orders from prime
contractors and also subcontract to other entities. They have both high
outsourcing costs and high intra-industry sales ratios. Minetaki & Motohashi
(2009) also report that intermediate subcontractors, despite being a significant
part of the industry, have the lowest productivity. Third, end contractors are
enterprises that do not place orders with enterprises beneath them, indicated by
a low outsourcing cost ratio, but they have a high intra-industry sales ratio,
which in turn indicates that their sales are largely for intermediate
subcontractors (Minetaki & Motohashi, 2009). Finally, independent enterprises
are businesses that function autonomously and do not fit into the
subcontractor-prime contractor structure (Minetaki & Motohashi, 2009).

TABLE 2 Classification of enterprises in software industry (adapted from Minetaki &
Motohashi, 2009)

Above average Below average
intra-industry sales ratio intra-industry sales
ratio
Above average Intermediate Prime contractors
outsourcing cost subcontractors
ratio
Below average End-contractors Independent enterprises
outsourcing cost
ratio

To summarize, Kobitzsch et al. (2001) categorize software subcontracting based
on legal relations and team setups into four models: independent teams in
separate companies, teams in legally related companies, a singular team across
multiple sites of related companies, and a singular team across independent
companies. Penttinen & Mikkonen (2012) offer a simpler classification based on
team composition alone: subcontractor teams composed only of subcontractors,
mixed teams combining company employees and subcontractors, and virtual
teams spread across different locations. Minetaki & Motohashi (2009) approach
the categorization economically, identifying four types of enterprises within the
subcontracting hierarchy: prime contractors at the top, intermediate
subcontractors who also outsource, end-contractors selling mainly to
subcontractors, and independent enterprises operating autonomously.

28

3.3 Criteria for selecting software subcontractors

There are multiple aspects to consider while evaluating potential
subcontractors. This subchapter aims to explore some of the most relevant
topics in this subject in order for the reader to gain understanding what to look
for in a subcontractor to avoid most common pitfalls. The assumption is that the
reader has decided that taking in a subcontractor is the best way to execute or
and complete the project. The topics are divided roughly into two categories:
evaluating competence and technical expertise of the team and evaluating
portfolio and past project success.

First of all, overall competence of team members should be one of the
main things to consider. Both Khan et al. (2021) and Rahman et al. (2021) highly
suggest to ensure that the team members are properly trained and skilled in
relevant technologies and tools. On top of this, Seppdnen (2002) and Rahman et
al. (2021) recommend to inquire about subcontractors knowledge on the clients
application and business domain. The client should also ensure that the
subcontractor follows well-established and Agile architecture for their software
development and maintenance processes in addition to maintaining thorough
project documentation (Khan et al., 2021). In regards of subcontractor’s physical
infrastructure, internet connectivity, servers and data centers need to be deemed
robust to enable high quality service delivery and collaboration in distributed
project (Rahman et al., 2021). The client should not forget to also evaluate
subcontractor’s security measures and protocols (Khan et al., 2021).

On more general level, the client should look into the subcontractor’s
portfolio, past project success and reputation within previous clients. By
looking into past projects, the client gets an idea whether their management is
effective and if they are able to maintain collaborative relationships with their
clients (Seppédnen, 2002; Rahman et al., 2021). By going over client testimonials,
it can be verified that wether subcontractors adhere to industry standards, have
a history of reliable and ethical business practices, and possess certifications
that validate their technical competencies (Khan et al., 2021)

3.4 Financial considerations

Switching to a subcontractor will financially impact the company both in short
and long term. According to transaction cost theory (TCT) by Williamson
(1991), organizations will choose to outsource functions when the estimated
overall transaction costs of doing so are lower than the production cost of
performing these functions internally (Dhar & Balakrishnan, 2006). Williamson
(1991) argues that outsourced work translates to lower production costs due to
economies of scale. However, this means that the transaction costs are high as

29

subcontractors need to be managed and monitored. Inversely, performing
functions internally can indicate high production costs but low management
cost (Williamson, 1991). In the context of software development outsourcing,
transaction costs include the cost of searching potential subcontractors as well
as negotiating and managing relationships with them (Dhar & Balakrishnan,
2006).

Second factor that affects both production and transaction cost is asset
specificity (Dhar & Balakrishnan, 2006). Williamson (1991) defines asset
specificity as the degree of customization of the transaction. Asset might refer to
anything from physical or human assets to software assets (Dhar &
Balakrishnan, 2006). In any case, high asset specificity indicates high transaction
costs. High asset specificity also increases production costs because specific
assets have limited utility in other markets (Hirschheim & Lacity, 1993).

Third consideration is exposure to opportunism threats (Williamson,
1991). Both subcontractors and internal employees may show opportunistic
behavior but subcontractors are more likely to do this and in more bigger scale
(Dhar & Balakrishnan, 2006). Managing subcontractors becomes more difficult
if they are opportunistic and thus management costs can increase (Dhar &
Balakrishnan, 2006). Risk for opportunistic behavior increases when there are
only few vendors in the market (Hirschheim & Lacity, 1993). Study by
Kobelsky & Robinson (2010) also confirms this as a major concern and thus
should be thoroughly evaluated. In this case, organization may not save much
by outsourcing because the vendor may charge excess or may not perform as
promised (Dhar & Balakrishnan, 2006). This can be potentially combated in the
contract by imposing penalties for non-performance, but this is also highly
dependent on the clients bargaining position (Dhar & Balakrishnan, 2006).

Study conducted by Gopal & Goka (2010) reveals that the pricing model
should also be considered carefully as they found out that it can impact the
quality of the software either positively or negatively. Gopal & Goka (2010)
differentiates between fixed price (FP) and time and materials (T&M) contracts.
They suggest that FP contracts incentivize vendors to optimize efficiency and
effectiveness due to fixed revenue gap, which leads to higher quality and profit
margins. The incentive structures in FP contracts leads to higher quality because
according to Gopal & Goka (2010), it motivates project managers to allocate
resources more strategically, prioritizing projects with better-trained personnel.

T&M are less riskier for the vendor because it allows overflowing costs to
be passed on to the client (Gopal & Goka, 2010). From the client’s point of view,
this worse model because it offers weaker incentives for efficiency (Gopal &
Goka, 2010). However, in T&M contracts, the link between quality and
profitability is less straightforward, with potential for both higher and lower
quality outcomes depending on the project management and design processes.
(Gopal & Koka, 2010).

30

3.5 Risk management

Outsourcing software development does not come without it’s risks. Shah et al.
(2014) reports that there are many challenges within the industry, such as
cultural differences, information security threats and lacking educational
policies, that clients wanting to outsource their software development need to
take into account. Furthermore, these risks are increased when considering
international outsourcing (Kobitzsch et al., 2001), especially into developing
countries that bring their own intricacies like corruption and legislation issues
into the discussion (Wang & Shi, 2009). In this subchapter, potential risks in
subcontracting in academic literature is discussed. Secondly, viable risk
mitigation strategies are explored and finally, possible exit strategies are briefly
presented.

In global software development there are risks associated with the
stability, infrastructure and government policies of the vendor’s country (Smith
et al., 1996, Kobitzsch et al., 2001; Shah et al., 2014). Intellectual property (IP)
rights and safety of sensitive information should be a major concern when
selecting the country and the vendor, but also when drafting the subcontracting
agreements (Smith et al., 1996). For example, Wang & Shi (2009) report that
outsourcing operations are a widespread phenomenon in China, but Li & Alon
(2020) point out the generally known fact that China is known for gross
intellectual property rights violations in a systematic scale. Li & Alon (2020)
elaborate further that there are no systematic, open and fair channels for the IP
owners to demand independent, unbiased court on such matters as the the only
political party has full control of the courts and may choose to protect or not to
protect international IP owners according to its own agenda. These types of
issues are present all over developing countries on varying levels. Potential risk
for corruption in other forms, such as exploitation or poor working conditions
must also be recognized and evaluated according to the country (Smith et al.,
1996). Unfortunately, legal issues are not limited to information security and
corruption issues, but also compliance issues. Differences in legislation and
legal systems across national borders can make the enforceability of contracts
more difficult when problems or disagreements arise (Smith et al., 1996).
Therefore, matters like cost overruns and quality issues need to be rigorously
defined in order to minimize the risk for legal actions in foreign courtrooms
(Smith et al., 1996). Operating internationally introduces also geopolitical risks,
such as significant currency fluctuations, international sanctions or impact of
armed conflicts (Smith et al., 1996; Wang & Shi, 2009).

As outsourcing software development often means that the client and
vendor operate from different locations and different ways, it increases the
difficulty of effective communication which in turn imposes risks for poor
collaboration, flow of information and knowledge sharing (Smith et al., 1996;
Shah et al.,, 2014). Subcontracting structures may introduce long and rigid
communication chains which often leads to delayed decision-making and

31

unresolved issues (Shah et al., 2014). Shah et al. (2014) mentions that risks of
long communication chains are often realized during time sensitive phases such
as during test executions where testers might struggle to obtain necessary
information in time. This includes difficulties in understanding bug fixes or
identifying appropriate contacts for clarification (Shah et al.,, 2014). Other
communication issues might arise from language barriers, cultural differences
and time zone variations (Smith et al., 1996).

Subcontracted software projects add a layer of difficulty also to
managerial and business topics. When outsourcing their software development,
companies also outsource portion of their reputation to vendors. Therefore,
potential delays or PR issues on the vendor’s side are reflected upon the client
(Smith et al., 1996). Quality of the software developed by the vendor should be
also a major concern (Smith et al., 1996). Unfortunately, Shah et al. (2014) report
that clients often have poor visibility into the vendor’s testing activities and
quality expectations between the client and vendor might differ significantly.
This lack of clarity often resulted in unaddressed issues and hindered smooth
testing operations (Shah et al., 2014). Finally, depending on the project, there is a
risk of becoming overly dependent on the vendor for critical business functions
or proprietary knowledge of the system which might result in a difficult vendor
lock-in (Shawosh & Berente, 2019). Companies may become overly dependent
on a particular vendor due to the specificity of software being developed which
has multiple business implications. Higher asset specificity diminishes client’s
bargaining power in further negotiations for maintenance, change requests etc.
(Shawosh & Berente, 2019). Moreover, the uniqueness of the software indicates
higher vendor switching cost especially in cases where proprietary technologies
or specialized knowledge is required. (Shawosh & Berente, 2019). Also, vendor
locked companies are subject for opportunistic vendor behavior such as price
increases or taking more control over the software development process
(Shawosh & Berente, 2019). To mitigate these risks beforehand, Shawosh &
Berente (2019) propose using popular technologies wherever possible to
maximize the amount of other potential vendors in the market. They also
suggest insisting the vendor to comply with open or widely accepted software
development standards in order for the software to not be tied to proprietary
platforms. Finally, Shawosh & Berente (2019) recommend acquiring and
maintaining key personnel with critical knowledge in-house whenever possible
to not rely entirely on the vendor in domain expertise.

If however, some of these mentioned risks are realized in serious ways,
the project might need to be abandoned. In contrast to total abandonment, Pan
(2008) suggest partial abandonment as a strategic exit option. Partial
abandonment is defined as termination of some, but not all project activities
before the system is fully implemented (Pan, 2008). This approach can help
extract any existing value out of the work already done and mitigate further
losses (Pan, 2008). This strategy is especially relevant in scenarios where
continuing with the original scope is no longer feasible or desirable due to
various constraints or challenges (Pan, 2008).

32

3.6 Building and managing relationships

Establishing strong and fair relationships between the client and subcontractor
is a critical success factor for effective and efficient outsourcing (Assmann &
Punter, 2004). In order to form these tight relationships, strong and honest
communication is required from both sides. To achieve this, Khan et al. (2019)
propose building personal relationships with the subcontractors. Employees
should be encouraged to form these relationships by promoting open
communication channels between stakeholders like face-to-face meetings, direct
instant messages, video conferences and organizing frequent onsite visits
(Kobitzsch et al., 2001; Khan et al., 2019). Khan et al. (2019) also recommend
organizing activities that include knowledge and information sharing between
teams and team members in order to better understand each other. Also,
recruiters should pay attention to candidates cross-cultural skills if the
subcontracting relationship is international in nature (Khan et al., 2019).

Assmann & Punter (2004) writes that outsourcing in the software
industry has evolved from customer-vendor relationship more into partnership.
Hence trust and fair relationship between the customer and subcontractor has
become increasingly important (Assmann & Punter, 2004). Despite open and
freely flowing communication, it can take years to build enough trust to form
smoothly operating software development processes and quality management
systems between the contractor and subcontractor as different sites can view
sensitivity of data very differently (Kobitzsch, 2001). Organizations should
strive for mutual trust because the importance of exchange of development
knowledge cannot be exaggerated (Assmann & Punter, 2004).

Another important aspect of building inter-stakeholder relationships is
team stability. Study by Narayanan et al. (2011) found that team stability
positively influences project management and customer satisfaction and also
interacts with project size, planning capabilities, and communication
effectiveness. Team stability in this case means the consistency and continuity of
team members working on a project (Narayanan et al.,2011). Team stability
manifests itself as low employee turnover, consistent collaboration and in
cumulative knowledge, skills, reliability and predictability, improved efficiency
(Narayanan et al.,2011). This means that in either client or subcontractors side
there are minimal amount of employees leaving or being replaced, which helps
in maintaining a consistent work rhythm and understanding among team
members (Narayanan et al.,2011). A stable team allows for the accumulation
and retention of project-specific knowledge and skills. Team members become
more familiar with the project's requirements, objectives, and challenges.
Familiarity among team members with each other's working styles can lead to
better coordination and fewer misunderstandings. Over time, stable teams often
develop more efficient ways of working together, leading to improved
productivity and better quality (Narayanan et al.,2011).

33

4 SUMMARY OF THEORETICAL BACKGROUND

Chapter 2 presented key concepts and terminology for this thesis based on prior
literature from academia and software industry. Core terms like software
quality, quality assurance and software testing were explored to form a
sufficient understanding to then discuss key processes for this thesis. It was
found that software testing is conducted at various levels, all with their own
methods and tools. Software testing V-model was presented to help
conceptualize these levels. Non-functional testing was discussed in more detail
in order to show that there is a lot more to software testing than verifying
inputs and outputs. Finally in regards of software testing, test automation was
briefly discussed in order to understand how it can help reduce repetitive
testing so that test engineer’s time is freed up for testing types that require skills
that only humans currently posses.

Second half of literature review discussed subcontracting software
development. First, software development contracts were investigated to figure
out what makes them different from other industries. The main finding was
that software contracts need to support ever changing requirements, because all
requirements are rarely known at the beginning of the projects, which makes
the project's scope volatile. Next, different ways to categorize software
subcontracting was presented. Three different models were found, each taking a
different point of view, ranging from team composition into more economical
stance. Lastly, the thesis presents different considerations that should be made
when choosing a subcontractor and wether to choose one at all and do things
in-house. Discussed topics ranged from validating competence of the
subcontracting team to financial aspects like calculating in detail wether
subcontracting is the cost effective option. Heavily related to this, risk
management was another major topic as failed subcontracting projects and
relationships can become very expensive for the client. Therefore different risks
were mapped, some of them mainly affecting off-shore outsourcing to
developing countries and some affecting all scenarios, like long and rigid
communication chains.

34

The thesis will return to these concepts as the discussion chapter
presented in chapter 7 will rely on works presented in the literature review.
Pieces of key literature are used evaluate the findings from the empirical
portion of the study in order explain their implications, strengthen their validity
and to put them into context of existing research. Collection of central literature
consists of scientific papers written about software outsourcing contracts (Dey
et al., 2009), vendor-side experiences of global software testing (Shah et al.,
2014), managing outsourced software projects (2011), vendor lock-ins in
software development (Shawosh & Berente, 2019) and requirements
engineering (Laplante & Kassab, 2022) among others. These contain highly
relevant insights to the findings of the case study in terms of both challenges
and solutions. Before examining these challenges and solutions, the thesis will
explain the selected methodology used to conduct the study.

35

5 METHODOLOGY

The structure of this chapter is the following. First, explanation of the chosen
methodology to answer research questions is presented. Next, the chapter shifts
to an in-depth look at the case company and it’s subcontracting scenario. Report
of data collection and analysis is then presented, and the chapter is concluded
with a discussion on research ethics of this thesis.

5.1 Selected methodology

Qualitative research methodology was chosen for this thesis. Qualitative
research aims to investigate the subject comprehensively in order to understand
it as thoroughly as possible (Hirsjarvi et al., 2009). Qualitative research methods
include observation, interviews and the use of written sources among others
(Hirsjarvi et al., 2009). The results that these methods produce are in-depth
when comparing to quantitative methods (Hirsjdrvi et al., 2009). However, the
trade-off is that qualitative methods are not as generalizable as quantitative
methods. For the purposes of this thesis it was important that the participants
are able to thoroughly describe the issues that they personally have faced in the
subcontracting scenario. According Hirsjarvi et al. (2009) this can be achieved
through interviews.

The chosen interview method was semi-structured interviews. It allows
for flexibility which was important, because the researcher did not want to limit
the participants potential answers, but to enable the participants express their
views, opinions and experiences freely. This also gives room for the researcher
to ask additional questions if something is unclear.

The interviews were decided to be conducted in focus groups. Focus
groups are semi-structured, unofficial meetings where the participants discuss
together about the selected topics, moderated by the researcher (Carey &

36

Ashbury, 2016). Focus groups are used to collect comprehensive and detailed
information, which was required for this thesis. The goal is to arrange the
meetings so that the participants feel at ease and comfortable (Carey &
Ashbury, 2016). The choice was made over individual interviews, because focus
groups allow for interaction between participants which can lead to more
profound observations (Carey & Ashbury, 2016).

5.2 Case description

Company in question is a major IT company with offices all over the world and
diverse product portfolio. The case study examines a team responsible of one of
those products by interviewing employees, such as test engineers and
managers. The project utilizes a subcontractor situated in another country who
is largely responsible for the development of the software system.
Unfortunately, the subcontracting relationship has proven to be difficult largely
due to software quality issues which has significantly affected the company’s
activities.

The subcontracting relationship is slightly complicated and requires
further elaboration. The case company has hired the subcontractor to develop a
system, which is based on the subcontractor’s own product. It is important to
note that the subcontractor also sells the product independently to their own
customers. The case company sells the subcontractor’s software to their own
clients but with additional features and changes that they have requested to be
developed. This means that the case company and the subcontractor compete in
the same markets and with similar products. When the case company’s clients
request changes, bug fixes or new features, the case company handles them and
orders them from the subcontractor. Therefore, there is no contact between the
case company’s clients and the subcontractor. Furthermore, the case company
has also own development activities which are based on the SDK provided by
the subcontractor. The case company also uses separate subcontractor teams in
their own development.

Employees in the case company have found this model difficult. The
main issue has been poor quality which has resulted in slow delivery times and
impacted various processes, especially on the quality assurance side. The
motivation for the case company to participate in this study was to gather the
experienced problems and proposed solutions in one place so that the
cooperation with the subcontractor and internal processes can be improved.

The thesis project was started in summer 2023 by inquiring
representatives of the case company about suitable topics for a master’s thesis.
The issues in quality assurance came up quickly and the idea was refined
further to investigate what unique or interesting aspects and difficulties in
quality assurance might emerge when the software is developed by a

37

subcontractor. The representatives in the case company agreed that this was a
good topic and the writing process could be started in fall of 2023.

5.3 Data collection

For data collection method, semi-structured group interviews were chosen. The
data was collected during December 2023 in four sessions, which three included
three participants and one included only single participant due to scheduling
related reasons. To be noted that all interviewees participated only to one
interview session. The small group size allowed the gathering of more in-depth
information, as everyone had time to speak about their own experiences and
views on the topics.

The chosen topic automatically defines who could be interviewed for the
study. The participant had to be involved in quality assurance and with the
subcontractor either directly or indirectly. 14 individuals were identified to be
suitable for the study. Invitations were sent to all 14 individuals, of which 10
participated. No rewards were provided to the participants either by the
researcher or the case company. Due to relatively small sample size, the
gathering of personal information was left to minimum to protect the
participants” identities. The participants were only asked define themselves
either as a manager or as a test engineer. Participants consisted of 3 test
engineers and 7 managers.

The interview was divided into five topics based on the software testing
lifecycle presented in chapter 2.1.4. The topics included the four phases in
software testing lifecycle (test analysis, test planning and preparation, test
execution and test closure) and additionally general cooperation. The researcher
decided to move creation of test cases from test planning phase to test analysis
phase, so that during test analysis participants would mainly discuss
requirements, documentation and making the test cases based on those.
Participants could then focus on scheduling and environment topics in the test
planning phase. The interview questions and structure can be found in
appendixes of this thesis. In the first four topics, the participants were asked to
tirst describe how the process currently is practiced in the case company and
evaluate the maturity on a 1-5 scale to give the interviewer general idea about
the state of the process. The participants were then asked speak about the
problems and possible solutions about the respective testing phase. The phases
and questions served more as a rough guideline to make sure intuitive flow of
the interview and to achieve good coverage on various topics. The participants
answers often intertwined problems and solutions, overlapping different
phases which was expected and encouraged. If needed, the interviewer asked
additional questions.

The participants were informed in advance by e-mail about the
progression of the interview. They were also asked to provide written consent to

38

data collection and data use and anonymization. The participants were asked in
advance to familiarize themselves with the given information and ask the
questions before the interview. All questions were answered before the start of
the interview session. For every interview, the researcher had reserved 60
minutes. The interviews themselves lasted approximately 55 minutes, as the
first 5 minutes were used to explain the topics one more time and to answer any
remaining questions.

The interviews were recorded using tools provided by the case company,
in the case that the recordings included sensitive information. The recordings
were then transcribed and responses anonymized, while also removing any
sensitive information, such as names of stakeholders, descriptions about
products and technical information.

5.4 Data analysis

Content analysis is a widely adopted systematic way to describe qualitative
research data (Schreier, 2012). The data for this thesis consisted of 47 pages of
transcribed text collected from interviews. Content analysis as a process consists
of building the coding framework, coding the text according to the framework,
testing the coding framework, evaluating and modifying, main analysis and
finally interpreting and presenting the results (Schreier, 2012).

The coding framework contains categories which can be assigned either
deductively or inductively. Deductive means defining categories based on
existing theories, and inductive on the other hand based on the research data
(Schreier, 2012). For this thesis, inductive approach was chosen based on the
purposes of the study.

Transcripted text was first read through multiple times by the researcher,
before starting the coding process. First, identified issues and solutions stated
by the participants were highlighted and extracted from the text. The
statements were then reduced to their core ideas to reveal repeating or similar
answers. Those statements were then grouped together. Based on these core
ideas, the categorization was made. The categories that emerged reflected the
root causes of the issues and who or what has the most influence over them.
The identified categories were subcontractor’s internal issues, case company’s
internal issues, issues in partnership structure and cooperation issues.

39
5.5 Research ethics

The decision to investigate issues in quality assurance of software developed by
a subcontractor only from the client’s (case company’s) perspective might have
resulted in some limitations for this study. The identified issues which root
causes lay in the subcontractor’s side may have been a subject for speculation or
slight inaccuracies as the participants don’t have all the information of what
happens within the subcontractor’s organization, which was to be expected.
Additionally, the subcontracting relationship has caused some frustrations
within the case company, which might have resulted in emotional charges
within the statements. The participants however often recognized their biases
and presented self criticism as well.

Some sensitive information was left out as instructed by the case
company, but their effect on the results can be argued to be minimal.
Information left out included mainly names of different shareholders,
descriptions about various products and technical information.

The participants engaged voluntarily to this study, without persuasion
from the interviewer or the case company’s upper management. Although
unlikely, it is possible that some might have felt obligated to participate to the
study, for example as a consequence of peer pressure. The participants were
given information about the study’s aims, methods and potential implications
in written form beforehand. Some raised concerns about data protection, but
they were assured that the data would be handled anonymously and according
to the university’s and case company’s guidelines. In the interview invitation,
the participants were also offered possibility to see their quotes that would end
up in the thesis, as well as the possibility to remove them for any reason to
ensure open and comfortable interview session. However, no participant chose
to withdraw their quotes.

40

6 RESULTS

In this chapter, results found from the conducted qualitative study are
presented. The following results include both issues in quality assurance of
software developed by the subcontractor and their respective solutions that that
the participants proposed. The found issues are divided into four categories
that emerged from evaluating their possible root causes. The categories are
following: subcontractor’s internal issues, case company’s internal issues,
partnership structure and cooperation issues. In no particular order, table 3
presents the issues distributed under their respective categories and in table 4,
the solutions and ways of improvement proposed by case study’s participants
are presented with the same categorization.

TABLE 3 Experienced quality assurance issues

Subcontractor’s
internal issues

Case company’s
internal issues

Issues in
partnership
structure

Cooperation
issues

Subcontractor’s
attitude towards
solving problems and
improving the system

Lack of requirements
engineering

Unclear partnership
model

Slow communication
process

Poor feature

Technical individuals

Conflict of interest

Long communication

documentation do not validate chain from tester to
requirements developer
Lack of internal testing | Complicated Vendor lock Multiple project/ticket

acceptance process

management systems

Subcontractor’s
resources

Lack of knowledge
about the system

Opponents instead of
partners

Retest requests

(continues)

TABLE 3 (continues)

41

Unexpected software
changes

No test analysis

High cost of small
changes

Test engineers are
disconnected from the
development process

Disconnection between
end clients and the
subcontractor

No visibility into the
subcontractor's
development processes
and progress

Non-Agile operating
frameworks

Lack of trust

Cultural differences

Language barrier

No face-to-face
meetings with the

subcontractor
Defect lifecycle
involves a lot of
bureaucracy
TABLE 4 Proposed solutions for the case company
Subcontractor’s | Case company’s | Solutions in Cooperation
internal internal partnership solutions
solutions solutions structure
Subcontractor to Replan the complete Buy the subcontractor Reduce the amount of

improve their testing

acceptance process

project/ ticket
management systems

Move towards
continuous delivery

Improvement of feature
requirements
specification

Initiate own full
development gradually

Direct communication
channel from test
engineer to developer

Improve installation
tools

Test engineers to
validate new feature
requirements

Aligning common
goals

Move to Agile
frameworks

Perform test analysis

Focus on common
planning and goals

(continues)

42

TABLE 4 (continues)
Investigate and Improve partnership
communicate how the culture
end clients use the
system
Competence for Knowledge sharing
installation activities to
test team
Global defect priority Various process
list improvements

6.1 Subcontractor’s internal issues

Subcontractor’s internal issues means that the subcontractor is mainly
responsible of them, or the issues are most prevalent in their internal context. A
considerable portion of the identified issues were discovered to depend greatly
on the subcontractor, an entity over which the case company has little to no
control. Therefore subcontractor’s internal issues emerged as one of the
categories.

The most often identified theme was subcontractor’s attitude towards
solving problems and improving the system. In every interview, it was recognized
that the subcontractor appears to often prioritize resolving tickets with minimal
effort over actually solving the underlying problems.

When we ask questions from [the subcontractor] and try to quickly solve things, [the
subcontractor’s] answers appear as they haven’t thought of our problem as how they
can solve it, but how they can resolve the ticket.

It was mentioned that the same thing applies when something might not be
considered as a defect based on the argument that something works as
specified, but causes significant issues in user friendliness.

I often feel like they do not have interest in developing their product on the basis of
what we find. They just want to get the ticket ignored or refused based on the
argument that it works as specified even though it is very user unfriendly.

When the subcontractor does acknowledge that there is a problem they are
obligated to solve, their solutions are made adhoc and not thoroughly.

They do easy or light solutions. They do not do things as they should be done to
improve the product.

43

It was also reported that the subcontractor has various ways that they can try to
play time to avoid fixing something. These included a “gatekeeper” for
incoming tickets and arbitrarily changing requirements for defect logs.

They have hired persons to just play time and protect developers from direct
questions.

Suddenly we were supposed to provide these [additional] logs or they
[subcontractor] weren’t able to do anything even though we had done things the
same way for years.

However, the need or reason for a gatekeeper was understood so not to waste
the developer’s time but the downside is that it's a very bureaucratic step
where the use of common sense is not possible. The lack of common sense
refers to a scenario where there might be a simple Ul bug that can be identified
and understood fully from a screenshot, but the subcontractor anyway requires
various logs that are unnecessary and take a long time to take.

The subcontractor has a gatekeeper that meticulously inspects that the defects have
good descriptions, all the required logs etc. I understand that this is to make sure that
the developer’s time isn’t wasted but this is very bureaucratic step and doesn’t allow
the use of common sense.

Poor feature documentation was another common theme. Feature documentation
was also recognized on the case company’s side, but the issues are slightly
different in the subcontractor’s context. The features that were designed from
the beginning by the subcontractor, were recognized to be badly documented
on a general level. This has also lead to a situation where case company has to
process the documentation and requirements after they have received them.

Documentation of features originating from the needs of either the subcontractor or
their own clients can be very poor.

We get maybe two requirements for it [feature] from our partner, which our architect
needs split into ten requirements. This means that we need to process [the
documentation] quite a lot once we have received it.

Some more precise issues were identified. Firstly, the documentation frequently
contains errors, including typos, incorrect words, and improper terminology,
which can significantly alter the intended meaning of a feature, making writing
of test cases more difficult. Additionally, deficiency in configuration guidance
was observed. While descriptions of functionalities are provided, instructions
on how to configure the system to enable these new features are often missing.
This was recognized as particularly challenging due to the system's complexity
and the requirement for the configuration to be done from multiple places to
enable new features.

44

There are mistakes in the documentation like typos or even wrong terminology and
words which can make the description of the feature to something different, or it
might not make sense.

We see only the feature, but usually there is configuration involved. Configurations
might need to be made from multiple places. We do not initially know where each
configuration is done and how, as well as to what they have affect on.

The issues in feature documentation are amplified by the chosen way of
working with project management tools. All the information about the feature
need to be included verbally under one ticket, such as user stories, acceptance
criterias and support for different platforms etc. As the system is very complex,
this is not the most effective way. One of the participants hinted that if the
whole system was developed internally, they would for example create a Jira
epic for a new feature, under which dozens of user stories etc are collected as
separate tickets, making their management easier. This could potentially work
in the subcontractor context as well.

Usually converting a big new feature into verbal form to user stories and acceptance
criterias where every aspect is noted, like support for [different platforms] etc. is very
challenging because they are so vast systems.

If this was done internally, we might have an epic, under which we would have
dozens of user stories. Now we just try to include everything under one ticket which
is challenging.

From the test engineer’s perspective, it was reported that using exclusively user
stories is not a good place to start writing test cases. It was wished that user
stories and acceptance criterias would be kept as separate things.

Requirements are often replaced by user stories and I would like to see them as two
separate things. It is very constricted to make test cases based on just user stories.

Lack of internal testing is the fundamental root cause for many of the issues in
this subcontracting relationship. This was reported in all interviews and the
common understanding was that reason behind poor software quality was the
apparent lack of testing on the subcontractor’s side. This means that when the
software releases arrive to the case company for acceptance testing, the software
has significant amount of defects. This is not even limited to major releases, as
regression, sometimes very severe, emerges in fix versions as well. This can lead
to a never ending loop in the acceptance process, until some concession
agreements are made.

Testing on the subcontractor side has been minimal which has lead to a situation
where regression emerges in fix versions that only includes bug fixes and not any
new features. This forms a never-ending loop until management decides that it is
good enough as long as long as some concessions are made.

45

During acceptance we and our clients find a lot of defects that shouldn’t be found in
such a late stage

The subcontractor does not think about what is sufficient testing and how to test
sufficiently during early stages of development.

One participant mentioned that the subcontractor has a different understanding
of where software quality comes from compared to modern software
development principles. They seem to be fixated to processes instead of quality.

It seems that they think quality is a by-product of their processes. If they just handle
the tickets correctly and handle changes in some meeting the quality will come. In
my understanding this is against the current principles of software development
where the number one goal is quality. If the current processes do not enable quality,
the processes must be changed, but in this case current processes seem to be the most
important thing.

Subcontractor’s resources do not match the project’s needs. Combined with the
suboptimal software quality, the subcontractor only has resources to fix the high
priority defects. Many low and medium priority defects are left without a fix,
which decreases the overall quality of the system over time.

Resources, whether skills or personnel, are insufficient on the subcontractor’s side.

The subcontractor is only able to fix escalated defects. [...] The outcome of this is that
there is increasing amount of medium and low priority defects that are not fixed and
the overall quality of the system decreases even though it should get better by every
update.

Unexpected software changes reduce testability and make installation of test
environments more difficult. Significant changes should be included only in
major versions, but sometimes they are introduced without a notice in fix
versions.

The subcontractor sometimes includes new content or major changes in fix versions
which reduces testability and makes test runs more challenging.

There might be changes that can cause the installation of test environments to take
undefined amount of time from one week to three months.

Lack of automation was also recognized as a problem. The subcontractor has
minimal test automation and it isn’'t developed in cooperation with the case
company. Lack of automation is also apparent in the way subcontractor delivers
their software, which doesn’t enable end-to-end installation and test
automation pipelines so these things must be kept separate.

The subcontractor only has little test automation and it is not developed together
with us.

46

At the moment there is no possibility to build automation pipelines due to the way
the subcontractor delivers their releases.

The identified issues in the coding process above are primarily or entirely the
responsibility of the subcontractor, and only they have the ability to address
and rectify them. Let’s now discuss what actions participants suggested that the
subcontractor could potentially take.

Subcontractor to improve their testing is the core solution which benefits
would cascade over the entire project. If the releases only included minor
defects, the acceptance process would be quickly streamlined and would release
pressure also on the case company’s side. It would also mean a return to the
intended partnership model where subcontractor develops and tests the
software and the case company only validates that the functionalities are what
they hoped for.

The subcontractor must improve their testing so that the software would only
include minor defects. Then we would easily be able to pass the acceptance in a week
or two.

Our role should change from testing to assuring quality. They are philosophically
different things even though the same actions are taken.

Try to get back to a model where the subcontractor tests their own code and we only
validate that the functionalities are what we wanted.

One concrete action that the subcontractor could make is hire a test lead as
currently there isn’t one.

No test lead or equivalent on the subcontractor’s side.

Move towards continuous delivery would require fundamental changes to the way
the organization operates but would solve a lot of problems with quality as well
as with delivery and installation times and the case company wouldn’t need to
test in big bangs. Unfortunately this would be very difficult to realize in practice
currently.

If their model was closer to continuous delivery, we would avoid a lot of these
problems.

If we would get versions more often we could practice the installation more and
become better quickly.

Improve installation tools is a solution that is already being implemented by the
subcontractor. They are moving from context dependent scripts to a single
general one which is expected to help a lot. Alongside this subcontractor should
also be required to focus on creating detailed and easily understandable
documentation for the installation process.

47

The subcontractor has started to improve their installation tool.

Demand and get the subcontractor to improve quality of their installation
documentation.

The subcontractor is changing the installation scripts from customer specific scripts
to standardized scripts, which should hopefully help a lot.

6.2 Case company’s internal issues

Not all issues can be attributed to the subcontractor, as there are numerous
challenges originating from the case company's side, over which the
subcontractor has no control over. Therefore company’s internal issues were
selected as the second category.

Lack of requirements engineering in terms of the features that originate from
the needs of case company’s clients or from the case company itself stands out
as one of the main problems. There seems to be missing a process where the
given requirements are scrutinized and thought about systematically. Instead,
someone just creates them without proper analysis. Also, knowledge about
what the feature benefits actually are for the client in the testing team seems to
be sometimes missing.

It feels like there is no real process for creating requirements, instead someone makes
them arbitrarily.

We rarely talk about what is the expected benefit for the customer. What the feature
is really? Who uses this and what is the problem we are trying to solve?

Related to this, technical individuals do not validate requirements was another
concern in the case company. For example, customer’s requirements go straight
from the product business managers to the subcontractor, which might result in
technically vague requirements and thus makes the feature vulnerable for
unwanted qualities.

Technical individuals do not audit or verify the requirements before development.
There is no test engineer involved in feature design.

Complicated acceptance process is another issue that needs to solved. There has
been efforts to speed up the acceptance process but greater efforts need to
made. Currently, the software needs to be accepted four times which puts the
releases at risk if they are rejected late in the process.

48

There is an effort to speed up the acceptance process but as long as the software
quality is bad when it undergoes acceptance testing, acceptance will take time.

The complete acceptance process is complicated and difficult. The software needs to
be accepted four times. First by the subcontractor internally, secondly by us, thirdly
by the end client and finally by the end-user team.

When the client finds defects that they think are blockers, we wind up changing the
software half a year after we had accepted the software from the subcontractor. The
result is that we get one major release through per year when we should get them
constantly accepted.

Solution for this is to replan the complete acceptance process. Obviously this is a
large and difficult change to initiate at such a late stage.

Complete acceptance process should be planned again.

Lack of knowledge about the system is an occasional issue within the case company.
This is a natural consequence from using an outside entity to develop the
system.

We do not know the system that well because we operate a system made by
somebody else.

No test analysis phase exists as it is defined in literature. Test analysis is replaced
by an order process in which test engineer’s are not involved. However, there is
some feature analysis made by test engineers late in the development process.
Nevertheless, when test analysis is not done or done late in the process, it can
lead to delays or barriers for testing. A lot of these issues can be avoided if test
analysis is done early to ensure that all required elements are in place.

The requirements come from the client and they are prioritized by PBM’s which isn’t
always that easy. So we basically we haven’t had this kind of test analysis phase. In
our case it’s more like an order process that we go through where test engineers are
not involved.

Because test analysis phase is missing, we sometimes might be in a situation where
testing the new feature is not possible, or at least not on a short timeframe because
some platform or configuration is missing or it’s otherwise impossible.

We have ordered a test environment and noticed during acceptance testing that some
components are missing which then takes time. It depends on situation whether this
is our or the subcontractor’s problem.

The coding process revealed few internal solutions that the case company could
do on their behalf. Improvement of feature requirements specification seems to be
one of the core solutions. The requirements need to be made more accurate
before development in order to minimize problems that can be sensed

beforehand.

49

If we put more effort towards requirements specification then we would know what
we get. We know that if we wish something with low specificity we get something
with low specificity. The only solution is to make the specification so accurate that we
can avoid a lot of problems that we sense beforehand.

A kind of sub-solution for this was identified, which is test engineers to validate
new feature requirements. This was mentioned during all interview sessions by
both test engineers and managers. In other words requirements engineering
should be done early on by test engineers or other technical individuals
alongside PBM’s and other relevant business stakeholders. Collaboration and
discussion is important to make sure that there is a collective understanding of
the feature and it’s benefits to the customer. This could be done using a benefit
hypothesis introduced by the SAFe model.

When new feature is under design, test engineer should be involved in it and give
input.

As many technical people with understanding about the system as possible should
be included in the requirements specification.

Involve the test team in addition to PBM’s and architects before submitting the
feature request to the subcontractor.

Collectively discuss about the new features to improve collective understanding
about the feature what the benefit is to the user.

SAFe model suggest that when designing a feature, do a benefit hypothesis.

Perform test analysis is a solution that has already been partially implemented in
the case company, which was time allocation for test engineers to familiarize
with the features before they are installed. It was reported that this has
improved test planning and preparation, but to collect all it’s benefits, it should
be done already when requesting new features.

Partial solution has been time allocation for the test engineer to familiarize with the
features before they are installed or released by analyzing the documentation. This
has improved test planning and preparation as it has improved overall
understanding of the feature before testing.

Perform test analysis when we request new features.

As there is not a direct access from the subcontractor to the case company’s
clients, the case company needs to more effectively investigate and communicate
how the end clients uses the system. Currently there is no way for the
subcontractor to understand how the case company’s clients use the system
because it isn’t communicated to them. This can be problematic to solve as some
confidentiality aspects might come into play. However, if this is managed to be
solved, the subcontractor could in some cases explain that some new features

50

might not be necessary if the end user’s would for example use the system in
some other way to achieve the same results and thus saving money.

We should better explain how our clients use the system and their problems for the
subcontractor if we do not want to give the subcontractor communication access to
our clients.

The subcontractor owns the product and knows the system better than we or the
clients do so there is no point implementing the customer requirements when the
subcontractor could tell the customer to use the system this other way and achieve
the same result.

Inorder to alleviate some setup and configuration issues, transferring competence
for installation activities to test team could be a solution so that they could
independently solve at least minor issues. This would reduce the devops team'’s
workload and they could focus on more challenging tasks while test engineers
get their problems solved faster so they can focus on the testing itself.

Teach the testing team in installation abilities.

Finally, it would be beneficial to create and maintain a global defect priority list,
meaning a list where all the defects between different versions and teams
would be listed and prioritized based on their importance and how fast the case
company wants them fixed. This list would then be communicated to the
subcontractor, which would make the case company more in control of what is
being fixed.

I would absolutely like a global list through which we would prioritize everything to
our partner. Then we wouldn’t have multiple priority lists and it would be clearly in
our control.

6.3 Issues in partnership structure

Some issues were identified to be the consequence of the partnership structure
or model. Over time, the partnership structure has deviated from its original
model, leading to alterations in the nature of the relationship and resulting in
ambiguity regarding the roles of the parties involved.

Unclear partnership model has caused confusion within the case company.
In theory, the case company and the subcontractor are considered as partners,
but there has been suspicion that the subcontractor sees the case company as
just one of their clients. Additionally, due to lack of testing inside the
subcontractor, the case company has evolved to be an unofficial test
organization for the subcontractor.

51

We talk about our relationship with the subcontractor as a partnership but I think the
subcontractor does not see it the same way. We probably are just one client with the
rest of them who is a bit more difficult than others. We create more tickets and ask
more questions.

The overall subcontracting model has skewed in practice. We have basically become
the subcontractor’s test organization over the years.

Conflict of interest also has raised concerns within the case company. As
explained in the case description, the subcontractor competes in the same
market with a similar product, which introduces a major conflict of interest to
the relationship.

The subcontractor is at the same time our competitor which brings it's own tensions.

We have different goals with the subcontractor. Our goal is to provide high quality
software to our customers but for the subcontractor we are just one of their clients,
that try to do the same thing that they do so we necessarily aren’t their number one
priority.

On top of this, the case company is highly dependant on the subcontractor’s
system which has caused a vendor lock. It has made negotiations challenging as
well as limited the ability to influence the subcontractor’s actions, as the
subcontractor has other customers that are happy with their products.

It is very hard for us to dictate any terms because we are so badly vendor-locked.

We have clients that use the system in larger scale but if subcontractor’s other
customers use it less and do not complain, then we can only do so much.

Disconnection between end clients and the subcontractor imposes inefficiencies to
the product development and makes agreeing on defect’s severities difficult as
the subcontractor does not understand how the end client uses the system.
Instead, the subcontractor has their own idea how the system is intended to be
used, but this information does not reach end clients as the case company wants
restrict the subcontractor’s access to the clients.

It is hard to agree on severity of defects as the subcontractor does not understand
how our clients use the system because the subcontractor does not have access to our
clients.

The challenge is probably also that we have those customer requirements that can be
very precise from one of our customers which we need to forcefully implement. [...]
[the subcontractor] owns the product, they know how it is intended to be used better
than we do, they know the big picture of it in a way. They could just tell the end
clients to use the system in this other way and you can do the same thing.

52

Some vparticipants felt like they are opponents instead of partners in the
relationship. Due to constant conflict, the relationship has become sour and
repairing it can be difficult.

I feel like there is a lot of conflict between us and the subcontractor. Almost like we
are on opposite sides instead of partners. It's a constant struggle and surely difficult
for both sides.

Over the years we have become sort of opponents to each other. It's quite difficult to
get back to good cooperation.

High cost of small changes, meaning improving aspects like usability and other
things that might not be considered as defects, are expensive and time
consuming to make. This is mainly due to agreements made between the case
company and the subcontractor. Therefore the agreements themselves impose
barriers to quality.

If according to subcontractor something isn’t a defect it means that we have to pay
extra. Then I as a test engineer have to think whether I want to make a change
request because this button is in slightly different place than on the other page and
then pay. It lowers quite a bit my threshold to pick on these little problems because I
know how much paper work and money it takes to get it fixed so it lowers quality in
that way also.

As mentioned by the participants, these kind of issues are hard to solve. Most of
the proposed solutions would require major investments on the behalf of the
case company, so they were mentioned as mainly theoretical, but potentially
highly effective. An example of theoretical solution was to buy the subcontractor.
Although a radical strategy, it would put the case company completely in
charge of resources and how things are done.

Let’s buy the subcontractor. It is difficult to solve this [quality issues] with money. [...]
As long as their management does not prioritize quality we won't get it.

Another theoretical solution would be to initiate own full development gradually to
over time move away from the vendor-lock.

If I was a wealthy stakeholder in this case, I would think about initiating our own full
development and try to little by little get rid of the subcontractors system.

One more practically applicable solution came up in terms of the minimizing
the issues of the current subcontracting structure. The case company needs to
convince the subcontractor about of their quantifiable benefits they would gain
from focusing on quality, and thus aligning common goals. Luckily this is slowly
happening and the results will hopefully amplify the subcontractors testing
efforts.

53

We need to better align our goals. The subcontractor needs to understand that the
better the quality is, the better it is for them. Luckily they are beginning to
understand this and are increasing their testing. We get better quality and they get
their money faster.

6.4 Cooperation issues

Large proportion of issues that the coding process revealed are related to the
ways in which the case company and the subcontractor cooperate with each
other. These issues are most prevalent in the interfaces between the parties and
thus cooperation issues were chosen as the last category.

Three most significant issues are related to the communication processes,
chains and tools. Firstly, slow communication process was identified to be one one
of the main hindering factors for efficient collaboration. The process was also
found as unbalanced. The current processes were build in the early days of the
subcontracting relationship, when the eventual issues hadn’t manifested
themselves yet. Therefore, the current processes does not serve the needs of the
current state of the project.

Slow flow of information from side to side.

Enforcing ticket response times is not equal. We are required to update the ticket
within two weeks or the ticket will be closed. The subcontractor is not enforced to
handle tickets in reasonable time.

The communication processes were build on top of the assumption that we would
only do light acceptance testing that results in small amount of defects.

Communication is done in the comments of the relevant ticket. Between each
comment there might be one to two day delay. The comments get bounced from side
to side and during this there isn’t any progress made on the actual issue.

Relating to this, especially long communication chain from tester to developer was
seen as a definitive inhibitor for solving problems quickly and having enough
information to perform testing. Both the process and tools were criticized.

Long communication chain from tester to developer.
No fast or direct channel to ask questions about new features during analysis phase.

No direct way to ask anything from the developer and it can take months to get an
answer through the middlemen.

The problem is that we are using a tool which doesn’t allow the test engineer to ask
questions directly from the developer. The gap is very large between the test engineer
and developer.

54

Third identified theme in regards of communication topics was the problem of
multiple project/ticket management systems. They are used depending on whether
the system is under SLA or not. They each have their own reporting workflows
creating additional complexity. Multiple systems also means duplication of data
which makes information vulnerable for mistakes as information needs to be
updated to multiple places manually. Multiple management systems makes
tracking and managing priorities difficult as well.

There was an attempt to fix the high number of defects by introducing multiple ticket
management systems, but this didn’t fix the problem and only resulted in more
complexity and increased workload on personnel.

Multiple ticketing systems which are chosen based on SLA creates complexity.

There is no common project management system between the client and
subcontractor.

Only way to report some defects is to tag a certain person in the defect’'s comments
and ask them to duplicate it forward. This is bad if this person for some reason
misses the comment.

A lot of manual input and bureaucracy is required when there are multiple project
management systems and projects within those systems.

We have three places where we can report defects but we don’t have a general
control in how we prioritize what are the most important defects to fix.

Multiple Jira’s introduce barriers to information flow because there is duplicated data
in two places which causes the information to not be up to date in both places.

The efforts have already started to reduce the amount of project/ticket management
systems. New common Jira between the case company and the subcontractor is
coming, but it doesn’t necessarily solve all the issues and thus further efforts
can be made by renegotiating with all stakeholders to solve this issue
completely.

We are getting a new common Jira which we hope will help a lot.

The use of different ticket management systems could be solved by better negotiation
and agreement.

Agree with [shareholders] to give our test engineer’s access to their system.
Common Jira despite of the nature of the partner.

One of the most time-consuming and labor-intensive aspect for the test
engineers is handling retest requests after a defect has been reported.
Subcontractors frequently ask for additional logs, videos, or testing on different

55

software versions, which complicates the process. Testers find that setting up
complex test cases for retesting is particularly time-consuming. A significant
issue arises when the subcontractor inspects the content of logs and videos late
in the process, often leading to extra work for testers if the provided
information is insufficient. There are also instances where retest requests seem
unfounded, especially when no relevant changes have occurred that could
affect the reported defect. This entire retesting process disrupts the workflow of
test engineers.

We get a lot of retest requests.

The most time consuming and labor intensive part during test execution are requests
for retesting after a defect has been reported. The subcontractor can ask for
additional logs, videos or to test in another software version.

Retesting takes time because test cases usually require complex test setups.

The actual content of logs and videos are inspected by the subcontractor late in the
process which creates additional work for testers if it proves to be insufficient.

We get unfounded requests for retesting certain defects even if nothing has changed
that could affect the problem.

Retesting breaks the workflow of the test engineer.

Test engineers are disconnected from the development process. Testers typically only
encounter a feature after it has been implemented and installed in an
environment which indicates a clear disconnection from the development
process. This is against the principles of quality assurance, which ideally
involve testing as an integral part of the development from the beginning.

Currently testers see the feature once it is implemented and installed to some
environment and therefore testing is clearly disconnected from the development
process event hough it should be included from the beginning when talking about
quality assurance.

Keeping testing and development separate is not a starting point where we could
succeed.

Test engineers are not only disconnected from the development process, but
also lack wvisibility into the subcontractor's development processes and progress. A key
concern is that the "In progress" status of a defect does not necessarily indicate
that it is being actively fixed; it only reflects that the defect has been logged into
the subcontractor's internal system. This ambiguity prevents the effective
utilization of test engineers' experience-based knowledge to efficiently focus
testing efforts, as there is no clear understanding of what has changed at the
code level due to the nature of blackbox deliveries. Furthermore, defect tickets

56

can sometimes remain in the "In progress" state for extended periods, ranging
from months to even years.

In progress state does not mean the defect is under fixing, it just means that it has
been duplicated to subcontractor’s internal system.

Defect tickets can sometimes spent months or years in “In progress” state.

We cannot utilize our test engineer’s experience based knowledge to focus testing
more effectively because we do not know what has changed on a code level due to
blackbox deliveries.

The issue of non-Agile operating frameworks was another commonly reported,
very fundamental issue. The subcontractor adheres to a waterfall model with
major deliveries, leading to the testing of large updates at once. This traditional
approach includes big bang releases that include numerous updates, such as
bug fixes and new features.

The subcontractor uses a waterfall model. They use major releases which include
large amount of updates like bug fixes and new features.

Even though the case company tries their best to be Agile, the subcontractor’s
waterfall model restricts themselves to operate similarly. However, there are
also internal non-Agile components in the way that the case company operates
which haven’t proven helpful.

We get the new features in big bangs which naturally dictates that we cannot test the
new feature once it’s ready. This restricts our ability to be Agile and confines us to
this kind of waterfall model.

Our way of working with milestones and increments to reach certain increment
targets does not benefit the development and deliveries. It's just an operating model.

The non-Agile way of working manifests itself in practice in many ways. For
example, if there are major quality issues with new features, they cannot be
taken out from the release. Instead, the case company has to make a decision
whether to block the entire release and delaying deliveries, or to mention in the
release notes to the customers to not use the feature.

In this partnership we are not in control if there is a feature that is unusable and not
tit for delivery. We cannot get it out of the release so our options are either to block
the release or mention in release notes for the end client to not use this feature.

As both parties work in more or less non-Agile ways, common planning and
scheduling can prove to be troublesome. If something goes wrong, both parties
plans inevitably clash, causing delays and other issues. One common issue is
that if a defect is found in a certain version, the subcontractor might not have
that version installed anymore to their environments as they have moved on

57

with their development, they then need to rollback to the older version to
reproduce the issues.

We do not plan and schedule testing together with the subcontractor. We also use
outdated milestone release train model which isn’t very good, because sometimes we
skip releases and test in large chunks couple times a year. And because both parties
have their own plans and schedules, they are likely to clash at some point.

As we lack common planning and direction, the defects we find do not always match
the subcontractor’s development process so it takes time for them to think about how
they can reproduce defects or issues.

Because we do acceptance testing in different phases and the defects are reported to
the subcontractor in batches, it is up to chance if they fit in the subcontractor’s
development process and if they can react to them or not.

We need to be more strict about delivery schedules when asking new features. When
we ask something we know it will come in some big bang next year but it's not
enough because we have promised our client something else. Then we ask
subcontractor to bring it in some earlier version which messes up their schedule and
that’s why they are so busy and cannot deliver new releases in time.

Lack of trust was also reported between the case company’s and subcontractor’s
representatives. From test engineer’s perspective, this can manifest itself for
example in the comments of defects.

The subcontractor representatives do not always trust the test engineers and ask for
additional proof even though the defect is obvious.

There are cultural differences that reduce consensus on certain topics. Major
difference between the case company and the subcontractor is that the case
company operates more in the mission critical domain and therefore has
adopted stricter mindset and approach to testing and acceptance. This has
caused conflicts with the subcontractor as they do not understand the needs of
mission critical environments as well.

The subcontractor does not understand testing needs for our mission critical systems
and their other clients might not be as demanding.

Our culture is more strict in terms acceptance [due to mission critical environment]
than the subcontractor’s which leads to conflict.

In addition to cultural differences, language barrier occasionally presents some
challenges for collaboration in quality assurance activities.

There is a language barrier. It is sometimes difficult to understand what the
subcontractor means or it could be understood in many ways.

Communication is difficult due to different languages and countries.

58

No face-to-face meetings with the subcontractor was also mentioned as a problem.
This makes it hard to form personal connections and to foster deep
collaboration. There has been some meetings and visits but they haven't
included test engineers.

We rarely meet the subcontractor in person.

The current defect lifecycle involves a lot of bureaucracy. As the time spent on
moving tickets around, adding additional logs, retesting and having meetings
about it all costs money. According to one manager, the sums could get quite
high if they were calculated.

If we would calculate the costs of the defect’s lifecycle, including all the bureaucracy,
the numbers would very high. It's very expensive and inefficient to work like that.

One of the most commonly mentioned improvement would be a direct
communication channel from test engineer to developer. It could take form as a
questions and answers channel between test engineers and developers. One
participant highlighted that whatever the method would be, the test engineers
need to be able to access it from their development laptops and not just from
their email laptops. This further streamlines the process as the test engineers
could send screenshots, logs etc. to the developer conveniently and not circle all
attachments through the email laptop.

Better communication tools so that we don’t rely on email and tickets.

Some channel where test engineer’s questions about the features would be answered
in a timely manner.

Maybe some questions & answers channel between the testers and the developers.

We need to avoid a scenario where once we get the communication tools, our test
engineer’s are able to access them from their development devices and not just from
their email laptops.

One effective, but mainly theoretical solution is that both parties move to Agile
frameworks. It's another question whether this is a realistic and executable
solution.

Move to some Agile framework. We could react faster, pass the acceptance faster and
everything would be more under control.

What the parties can do is focus on common planning and goals.

What I've read about Agile, all parties should focus together on improving the
processes and not as separate entities and to keep the common goal in mind which is
getting the software quality as high as possible as fast as possible.

59

We should be more involved in the early stages of testing alongside the
subcontractor. We should get their test results and together perform test analysis and
planning.

Planning should be done together.

In order to improve partnership culture, a lot of effort is required. All stakeholders
should start striving to a culture where they are once again on the same side.
This is not easy, but one way that the coding process revealed was to start
organizing visits at each other premises. Only concern is that the subcontractor
is scattered internally as well to different locations.

We need to start building a culture where we are on the same sides.
It would be good to meet them in person but they are located in different countries.
It really helps when you actually meet the persons.

Knowledge sharing would improve various aspects. For example, sharing best
practices between parties has already proven helpful in feature documentation.

We imposed on the subcontractor our feature documentation templates. We used to
request new features basically with one-liners and the results were not necessarily
what we wanted. The template forces to describe the feature’s needs clearly in a
certain format. On the latest release the subcontractor even used it themselves to
describe their own features.

Various process improvements could be made. One particularly helpful addition
would be visibility to the subcontractor’s development. As mentioned earlier,
tickets can spend a long time in “in progress” which doesn’t actually indicate
much about the defect’s actual status within the subcontractor’s side.

It could be a solution to get visibility to subcontractor’s development processes and
what they have done on a code level.

Another process improvement that was mentioned is to streamline the defect
reporting process to get the tickets faster into progress or alternatively to get the
subcontractor explain quickly why it isn’t a defect.

Quick and straightforward process to get the ticket under progress or to get the
subcontractor representatives to explain why it isn’t a defect.

60

7 DISCUSSION

As further highlighted by this case study, software subcontracting is not a risk
free operation (Dey et al., 2009). Some of these risks have been realized in the
case company and caused issues on quality assurance. Fortunately, there are
solutions proposed by scientific literature, as well as the case study participants.

Day et al. (2009) discuss about project type’s meaning to subcontracting
project. They mention that mission critical projects require higher resources and
effort to reach the quality and stability requirements set by mission critical
environment. During the interviews, it was highlighted that the subcontractor
does not understand the testing needs of mission critical systems because it
seems that they have been used to operating in less stricter environments with
their other clients. This has led to some conflicts with the case company, and it
might have played a part in insufficient resource allocation because the
subcontractor couldn’t anticipate the greatly vaster testing and quality needs of
the case company which is more involved in the mission critical domain.

During literature review, Williamson’s (1991) transaction cost theory was
explained to measure whether it's beneficial to outsource some activity. The
theory states that outsourcing should result in lower production costs and
higher management costs for the client, which in this case is the case company.
This thesis cannot comment on the production costs, but the management costs
can be seen to be compliant with the theory. Like one of the participants
mentioned, if the cost of all the bureaucracy would be calculated for just defect
management alone, the numbers would be very high. The transaction (or
management) costs also include searching, creating, negotiating, monitoring
and enforcing the service contract between the case company and subcontractor
(Dhar & Balakrishnan, 2006). The key question then is, have the transaction
costs of using a subcontractor surpassed the potential savings made on
production costs?

Shah et al. (2014) report similar findings that this thesis made, but from
the point of view of the subcontractor. They and Kobitzsch et al. (2001) found
that working from different locations and with different operating models

61

causes difficulties in effective communication, which consequently can lead to
poor collaboration. Ineffective communication can manifest in many ways. Both
the thesis and Shah et al. (2014) found that long communication chains,
especially from tester to developer, leads to delayed decision making and
slowly resolved issues. The thesis reported that some technical questions might
take days or even months to get answered as they must be routed through
multiple middlemen and communication tools.

In order to minimize future issues, current professionals should be
retained in-house as long as possible. Study by Narayanan et al. (2011) found
that stability of the team is tied to project success and effectiveness. Retention of
employees was also wished in the interviews for it's effects on competence
generation. Narayanan et al. (2011) found this to be true in their study, because
a stable team allows for cumulation and retention of project specific knowledge
and skills. Shawosh & Berente (2019) also recommend maintaining key talent
with deep knowledge about the system in the building, as it in-part reduces
dependency to the subcontractor and alleviates the symptoms of vendor-lock.
The loss of key competence should not only be avoided, but increasing
everybody’s skills and knowledge about the system should be another goal.
Both Shah et al. (2014) and participants reported lack of visibility to the
subcontractor’s development processes to be a problem. One participant
mentioned that as there is no visibility to what the subcontractor has done or
changed on the code level, it limits the in-depth knowledge accumulation,
which in turn limits the test engineer’s ability to use experience based
knowledge to focus testing efforts. If visibility to subcontractor’s development
activities is combined with direct communication channel between test
engineers and developers to quickly attain specific information, the gained
knowledge and competence could be used to solve problems quicker and to
better focus testing efforts more efficiently, especially during major releases
which take a long time to test.

Systematic effort to requirements engineering has been scientifically
proven many times to reduce the amount of rework needed to software
products (Laplante & Kassab, 2022). Laplante & Kassab (2022) also mention that
prior research suggests that it is not done well in the industry. The same thing
seems to apply in the case company. The participants mentioned that the
requirements are not accurate enough and the requirements are not scrutinized
by test engineer’s or other technical individuals to poke holes in them and
reveal discrepancies or other insufficiencies. During all interviews, participants
recommended that test engineers should become involved in creating and
reviewing new customer requirements to prevent predictable issues and
improve overall software and documentation quality. This would potentially
improve things for the subcontractor in many ways. Test engineers input could
help the developer identify and understand potential corner cases so they can
be found and handled before the software even reaches the test engineers.
Additionally, if the communication channel is established between test
engineers and developers, test engineers could then help the developers already
during development, if they have questions about the requirements. The article

62

by Shah et al. (2014) reports that test engineers helping developers has sped up
defect resolution times as well, because test engineers understood the
requirements better as they had more time to familiarize with them. For this
reason, test engineers being part of requirements engineering would greatly
benefit the subcontractor in building quality software and therefore the case
company.

Strong and fair relationships between the client and the subcontractor is
the backbone of effective and efficient outsourcing (Assmann & Punter, 2004).
The interviews conducted in this thesis unfortunately reveal that the current
status of the relationship is not as good as it could be and that the cooperation
hasn’t been strong enough, thus supporting the statement made by Assmann &
Punter (2004). Employees on both sides should be encouraged to form strong
personal relationships between each other according Kobitzsch et al. (2001) and
Khan et al. (2019), but currently it seems that they are actively limited by the
established communication processes and tools. The participants therefore
wished open communication channels to allow free collaboration. The
participants were also very open for visiting the subcontractor or vice versa.
These are recommended practices by both Kobitzsch et al. (2001) and Khan et al.
(2019). If these are not possible to organize Khan et al. (2019) also recommend
organizing knowledge and information sharing events between the teams in
order to better understand each other, although active and continuous
communication would be the best solution. This is further supported by Shah et
al. (2014), where subcontractor’s engineers reported that they spend extra effort
establishing good communication relationships with their clients which helped
in reducing information gaps and communication breakdowns. Additionally,
they got their needed additional information quickly. However, even if site
visits are organized and open communication channels established, the results
might not be immediate because it can take years to rebuild trust and rigid
collaboration (Kobitzsch, 2001).

63

8 CONCLUSIONS

This thesis goal was to understand what the intricate dynamics of software
subcontracting can cause for quality assurance. Prior research on software
subcontracting suggested that there are many risks involved in such
arrangements and consequently some of them have been realized in the case
company. This thesis shed further light into this topic by investigating the
practical difficulties and various solutions proposed by scientific literature and
the study’s participants.

The thesis set out to answer two research questions: what challenges and
issues subcontracting relationship can cause for quality assurance and how can
these challenges and issues be solved or alleviated. In chapter 6, The thesis
proposed two corresponding tables that included the identified issues and
challenges (table 3) and the proposed solutions (table 4) with in depth
descriptions later in the chapter to answer these research questions. In total, 28
issues and 20 solutions were identified.

The case study was conducted using qualitative research methods.
Semi-structured focus group interviews were used to collect the case company's
employees’ experiences about the issues that they had faced when working
with the subcontractor in quality assurance related activities. After analyzing
the transcripts, plethora of issues and solutions emerged. These findings were
divided into four distinctive categories depending whether they were related to
exclusively to the subcontractor, the case company, the subcontracting structure
or whether they are caused by the cooperation interfaces.

Many of the discovered issues can be tracked down to the quality of
work done by the subcontractor. Many participants highlighted the evident
insufficient testing done internally by the subcontractor. The result of this has
been that the case company has had to perform the bulk of the testing which
has resulted in large amounts of defects found late in the development process.
Quality assurance research suggests that the later a defect is found, the harder
and more expensive it becomes to fix. This is evident in the case company as

64

these quality issues has cascaded down causing various issues along the way to
many processes and deliveries.

However, not all the issues can be attributed to the subcontractor as
highlighted many times by the participants. The case company has many areas
for improvement especially in terms of producing more comprehensive feature
requirements. Test engineers and other technical individual possess valuable
knowledge and expertise which should be used to prevent predictable issues
already during the design phase of the feature.

Moreover, both research and this study highlights the importance of
collaboration and communication. With a combination of strategic
communication, skill retention and development, and the nurturing of strong
client-subcontractor relationships can lead to more successful and efficient
software subcontracting arrangements.

This thesis contributed to the software development outsourcing
literature by addressing the often overlooked aspect of client perspectives in
quality assurance activities for software developed by subcontractors. This
study fills the gap in research by providing an in-depth analysis of the
challenges and solutions encountered in QA when subcontractors do not meet
quality expectations, which is a scenario not thoroughly addressed in existing
literature. The goal of both the literature review and empirical portion of this
thesis was to provide description of core concepts, issues and solutions so that
this information could be as practically applicable as possible. Based on this
thesis, the case company among other organizations in similar situation can
create strategies to recognize, solve or prevent many of the issues found in the
study.

8.1 Limitations

A significant limitation of this thesis is that it did not take into account the
perspectives of the subcontractors. This exclusion means that the findings
represent a one-sided view by exclusively including the experiences and
opinions of the case company under study. The absence of the subcontractor's
viewpoints could have lead to an incomplete understanding of the dynamics
and challenges in the relationship.

The study is based on experiences and data from only one company. This
focus raises questions about the generalizability of the findings. Some of the
experiences and challenges identified may be unique to the case company and
might not necessarily apply to other organizations. On the other hand, certain
issues present in other organizations might not have been observed or
addressed in this study due to its limited scope.

The research was conducted within a relatively short timeframe, which
applied constraints on the scope and depth of the study. Due to these time
limitations as well as the intended tightly framed nature of a master’s thesis, the

65

research had to be more focused and selective. Therefore, some relevant but
non-central topics were left out from the literature review and empirical
investigation. This constraint means that while the study covers key areas, it
may not provide a comprehensive overview of all relevant aspects related to
software subcontracting or quality assurance.

8.2 Future research

Based on the limitations of the thesis, there are several pathways for future
research. First, future research should include the viewpoints of both
subcontractors and clients. This approach would provide a more balanced and
comprehensive understanding of the dynamics between companies and their
subcontractors. Research that captures both sides of the relationship can offer
deeper and more objective insights into the challenges and opportunities in
such collaborative ventures.

Second, conducting research on the topic with broader company
sampling could reveal fully generalizable insight. Research project involving
multiple companies across different industries or sectors could reveal a wider
range of experiences and challenges while also highlighting common themes as
well as issues specific for certain industries. Moreover, a framework for issues
and solutions could be constructed. This framework could then be applied to a
case company and by monitoring their improvement, the frameworks
effectiveness could be evaluated. Such study would be particularly useful in
understanding the long-term impacts of proposed practices and strategies.

66
REFERENCES

A Survey on Load Testing of Large-Scale Software Systems | IEEE Journals &
Magazine | IEEE Xplore. (n.d.). Retrieved October 20, 2023, from
https:/ /ieeexplore.ieee.org/abstract/document/7123673

Abd Rahman, A., & Hasim, N. (2015). Defect Management Life Cycle Process
for Software Quality Improvement. 2015 3rd International Conference on
Artificial Intelligence, Modelling and Simulation (AIMS), 241-244.
https:/ /doi.org/10.1109/ AIMS.2015.47

Arcos-Medina, G., & Mauricio, D. (2019). Aspects of software quality applied to
the process of agile software development: A systematic literature review.
International Journal of System Assurance Engineering and Management, 10(5),
867-897. https:/ /doi.org/10.1007 /s13198-019-00840-7

Assmann, D., & Punter, T. (2004). Towards partnership in software
subcontracting. Computers in Industry, 54(2), 137-150.
https:/ /doi.org/10.1016/j.compind.2003.09.005

Atkins, R. (2005). Software contracts and the acceptance testing procedure.
Computer Law & Security Review, 21(1), 51-55.
https:/ /doi.org/10.1016/j.clsr.2004.11.010

Axelsson, J., & Skoglund, M. (2016). Quality assurance in software ecosystems:
A systematic literature mapping and research agenda. Journal of Systems
and Software, 114, 69-81. https:/ /doi.org/10.1016/].jss.2015.12.020

Bai, A., Mork, H., & Stray, V. (2017). A Cost-Benefit Analysis of Accessibility
Testing in Agile Software Development —Results from a Multiple Case
Study.

Baresi, L., & Pezze, M. (2006). An Introduction to Software Testing. Electronic
Notes in Theoretical Computer Science, 148(1), 89-111.
https:/ /doi.org/10.1016/j.entcs.2005.12.014

Camacho, C. R, Marczak, S., & Cruzes, D. S. (2016). Agile Team Members
Perceptions on Non-functional Testing: Influencing Factors from an
Empirical Study. 2016 11th International Conference on Availability, Reliability
and Security (ARES), 582-589. https:/ /doi.org/10.1109/ ARES.2016.98

Carey, M. A., & Asbury, J. (2016). Focus group research. Routledge.

Corral, L., Sillitti, A., & Succi, G. (2015). Software assurance practices for mobile
applications. Computing, 97(10), 1001-1022.
https:/ /doi.org/10.1007 /s00607-014-0395-8

Critical Success Factors of Component-Based Software Outsourcing
Development From Vendors” Perspective: A Systematic Literature Review
| IEEE Journals & Magazine | IEEE Xplore. (n.d.). Retrieved October 3,
2023, from https:/ /ieeexplore.ieee.org/abstract/document/ 9663301

67

Dey, D., Fan, M., & Zhang, C. (2009). Design and Analysis of Contracts for
Software Outsourcing. Information Systems Research.
https:/ /doi.org/10.1287 /isre.1080.0223

Dhar, S., & Balakrishnan, B. (2006). Risks, Benefits, and Challenges in Global IT
Outsourcing: Perspectives and Practices. Journal of Global Information
Management (JGIM), 14(3), 59-89.
https:/ /doi.org/10.4018/jgim.2006070104

Fonseca, J., & Vieira, M. (2008). Mapping software faults with web security
vulnerabilities. 2008 IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC (DSN), 257-266.
https:/ /doi.org/10.1109/DSN.2008.4630094

Galin, D. (2009). Software quality assurance: From theory to implementation
(Nachdr.). Pearson.

Galin, D. (2018). Software Quality: Concepts and Practice. John Wiley & Sons.

Garousi, V., & Mantyld, M. V. (2016). When and what to automate in software
testing? A multi-vocal literature review. Information and Software
Technology, 76, 92-117. https:/ /doi.org/10.1016/j.infsof.2016.04.015

George, B., & Williams, L. (2004). A structured experiment of test-driven
development. Information and Software Technology, 46(5), 337-342.
https:/ /doi.org/10.1016/j.infsof.2003.09.011

Ghanbari, H., Vartiainen, T., & Siponen, M. (2019). Omission of Quality
Software Development Practices: A Systematic Literature Review. ACM
Computing Surveys, 51(2), 1-27. https:/ /doi.org/10.1145/3177746

Gopal, A., & Koka, B. R. (2010). The Role of Contracts on Quality and Returns to
Quality in Offshore Software Development Outsourcing. Decision Sciences,
41(3), 491-516. https:/ /doi.org/10.1111/j.1540-5915.2010.00278.x

Han, Y., Lee, D., Choi, B., Hinchey, M., & In, H. P. (2016). Value-Driven V-Model:
From Requirements Analysis to Acceptance Testing. IEICE Transactions on
Information and Systems, E99.D(7), 1776-1785.
https:/ /doi.org/10.1587 / transinf.2015EDP7451

Hirsjdrvi, S., Remes, P., Sajavaara, P, & Sinivuori, E. (2009). Tutki ja kirjoita (15.
uud. p.). Tammi

Hirschheim, M. C. L. and R. (1993, October 15). The Information Systems
Outsourcing Bandwagon. MIT Sloan Management Review.

https:/ /sloanreview.mit.edu/article/the-information-systems-outsourcin
g-bandwagon/

Hooda, I., & Chhillar, R. S. (2015). Software Test Process, Testing Types and
Techniques. International Journal of Computer Applications, 111(13), 10-14.

Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Maté, A., Paja, E., Salnitri, M.,
Piras, L., Mylopoulos, J., & Giorgini, P. (2019). Goal-oriented requirements

68

engineering: An extended systematic mapping study. Requirements
Engineering, 24(2), 133-160. https:/ /doi.org/10.1007 /s00766-017-0280-z

Kassab, P. A. L., Mohamad. (2022). Requirements Engineering for Software and
Systems (4th ed.). Auerbach Publications.
https:/ /doi.org/10.1201 /9781003129509

Khan, H. (2013). Establishing a Defect Management Process Model for Software
Quality Improvement. International Journal of Future Computer and
Communication, 585-589. https:/ /doi.org/10.7763 /1JFCC.2013.V2.232

Khan, R. A, Idris, M. Y., Khan, S. U, Ilyas, M., Ali, S., Ud Din, A., Murtaza, G.,
Khan, A. W, & Jan, S. U. (2019). An Evaluation Framework for
Communication and Coordination Processes in Offshore Software

Development Outsourcing Relationship: Using Fuzzy Methods. IEEE
Access, 7, 112879-112906. https:/ /doi.org/10.1109/ ACCESS.2019.2924404

Kobelsky, K. W., & Robinson, M. A. (2010). The impact of outsourcing on
information technology spending. International Journal of Accounting
Information Systems, 11(2), 105-119.
https:/ /doi.org/10.1016/j.accinf.2009.12.002

Kobitzsch, W., Rombach, D., & Feldmann, R. L. (2001). Outsourcing in India
[software development]. IEEE Software, 18(2), 78-86.
https:/ /doi.org/10.1109/52.914751

Kuutila, M., Méntyld, M., Farooq, U., & Claes, M. (2020). Time pressure in
software engineering: A systematic review. Information and Software
Technology, 121, 106257. https:/ /doi.org/10.1016/j.infsof.2020.106257

Leung, H. K. N., & White, L. (1990). A study of integration testing and software
regression at the integration level. Proceedings. Conference on Software
Maintenance 1990, 290-301. https:/ /doi.org/10.1109/1CSM.1990.131377

Li, S., & Alon, L. (2020). China’s intellectual property rights provocation: A
political economy view. Journal of International Business Policy, 3(1), 60-72.
https:/ /doi.org/10.1057 / s42214-019-00032-x

Majchrzak, T. A. (2010). Best Practices for the Organizational Implementation of
Software Testing. 2010 43rd Hawaii International Conference on System
Sciences, 1-10. https:/ /doi.org/10.1109/HICSS.2010.83

Miguel, J. P.,, Mauricio, D., & Rodriguez, G. (2014). A Review of Software
Quality Models for the Evaluation of Software Products. International
Journal of Software Engineering & Applications, 5(6), 31-53.
https:/ /doi.org/10.5121/ijsea.2014.5603

Minetaki, K., & Motohashi, K. (2009). Subcontracting Structure and Productivity
in the Japanese Software Industry. The Review of Socionetwork Strategies,
3(2), 51-65. https:/ /doi.org/10.1007 / s12626-009-0008-8

Narayanan, S., Balasubramanian, S., & Swaminathan, J. M. (2011). Managing
Outsourced Software Projects: An Analysis of Project Performance and

69

Customer Satisfaction. Production and Operations Management, 20(4),
508-521. https:/ /doi.org/10.1111/j.1937-5956.2010.01162.x

Niazi, M., Mahmood, S., Alshayeb, M., Riaz, M. R., Faisal, K., Cerpa, N., Khan,
S. U., & Richardson, I. (2016). Challenges of project management in global
software development: A client-vendor analysis. Information and Software
Technology, 80, 1-19. https:/ /doi.org/10.1016/j.infsof.2016.08.002

Nistala, P, Nori, K. V., & Reddy, R. (2019). Software Quality Models: A
Systematic Mapping Study. 2019 IEEE/ACM International Conference on
Software and System Processes (ICSSP), 125-134.
https:/ /doi.org/10.1109/ICSSP.2019.00025

Otaduy, I., & Diaz, O. (2017). User acceptance testing for Agile-developed
web-based applications: Empowering customers through wikis and mind
maps. Journal of Systems and Software, 133, 212-229.
https:/ /doi.org/10.1016/j.jss.2017.01.002

Pan, G. (2008). Partial abandonment as an exit strategy for troubled IT projects:
Lessons from a small-and -medium enterprise. Journal of Enterprise
Information Management, 21(6), 559-570.
https:/ /doi.org/10.1108/17410390810911177

Penttinen, M., & Mikkonen, T. (2012). Subcontracting for Scrum Team:s:
Experiences and Guidelines from a Large Development Organization.
2012 IEEE Seventh International Conference on Global Software Engineering,
195-199. https:/ /doi.org/10.1109/ICGSE.2012.16

Rafi, D. M., Moses, K. R. K., Petersen, K., & Méntyld, M. V. (2012). Benefits and
limitations of automated software testing: Systematic literature review and

practitioner survey. 2012 7th International Workshop on Automation of
Software Test (AST), 36-42. https:/ /doi.org/10.1109/IWAST.2012.6228988

Rahman, H. U,, Raza, M., Afsar, P, & Khan, H. U. (2021). Empirical
Investigation of Influencing Factors Regarding Offshore Outsourcing
Decision of Application Maintenance. I[EEE Access, 9, 58589-58608.
https:/ /doi.org/10.1109/ ACCESS.2021.3073315

Schreier, M. (2012). Qualitative content analysis in practice. Sage Publications.

Search —ISTQB Glossary. (n.d.). Retrieved November 11, 2023, from
https:/ / glossary.istgb.org/en_US/search

Seppénen, V. (2002). Evolution of competence in software subcontracting
projects. International Journal of Project Management, 20(2), 155-164.
https:/ /doi.org/10.1016 /50263-7863(00)00043-0

Shah, H., Harrold, M. J., & Sinha, S. (2014). Global software testing under
deadline pressure: Vendor-side experiences. Information and Software
Technology, 56(1), 6-19. https:/ /doi.org/10.1016/j.infsof.2013.04.005

Shah, T., & Patel, S. (2014). A Review of Requirement Engineering Issues and
Challenges in Various Software Development Methods. International

70

Journal of Computer Applications, 99, 36-45.
https:/ /doi.org/10.5120/17451-8370

Shawosh, M., & Berente, N. (2019). Software Development Outsourcing, Asset
Specificity, and Vendor Lock-in. AMCIS 2019 Proceedings.
https:/ /aisel.aisnet.org/amcis2019/ strategic_uses_it/strategic_uses_it/17

Silva, A., Aratjo, T., Nunes, J., Perkusich, M., Dilorenzo, E., Almeida, H., &
Perkusich, A. (2017). A systematic review on the use of Definition of Done
on agile software development projects. Proceedings of the 21st International

Conference on Evaluation and Assessment in Software Engineering, 364-373.
https:/ /doi.org/10.1145/3084226.3084262

Smith, M. A., Mitra, S., & Narasimhan, S. (1996). Offshore outsourcing of
software development and maintenance: A framework for issues.
Information & Management, 31(3), 165-175.
https:/ /doi.org/10.1016/5S0378-7206(96)01077-4

Takanen, A., Demott, J. D., Miller, C., & Kettunen, A. (2018). Fuzzing for
Software Security Testing and Quality Assurance, Second Edition. Artech
House.

Transaction Costs Theory — An overview | ScienceDirect Topics. (n.d.).
Retrieved December 6, 2023, from
https:/ /www.sciencedirect.com/ topics/social-sciences/ transaction-costs-
theory

Turk, D., France, R., & Rumpe, B. (2014). Limitations of Agile Software
Processes (arXiv:1409.6600). arXiv.
https:/ /doi.org/10.48550/ arXiv.1409.6600

Vogelsang, A., & Borg, M. (2019). Requirements Engineering for Machine
Learning: Perspectives from Data Scientists. 2019 IEEE 27th International
Requirements Engineering Conferenice Workshops (REW), 245-251.
https:/ /doi.org/10.1109/REW.2019.00050

Wang, Y., & Shi, H. (2009). Software Outsourcing Subcontracting and Its
Impacts: An Exploratory Investigation. 2009 33rd Annual IEEE International

Computer Software and Applications Conference, 1, 263-270.
https:/ /doi.org/10.1109/ COMPSAC.2009.42

Zhu, H., Hall, P. A. V,, & May, J. H. R. (1997). Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4), 366-427.
https:/ /doi.org/10.1145/267580.267590

71
APPENDIX 1 INTERVIEW STRUCTURE

Introduction

e Study’s purpose
e Reminder of recording, data privacy and data processing
e Overview of upcoming interview questions

Test analysis phase

e Test analysis phase includes reviewing requirements and designing test
cases. Describe the current process in which test analysis phase is
conducted. Evaluate the maturity of the process on a 1-5 scale.

e What kind of problems caused by subcontracting relationship have you
encountered during this phase?

e What solutions would you propose to solve the mentioned problems?

Test planning and preparation phase

e Test planning and preparation phase includes test scheduling, resource
allocation and setup and maintenance of test environments. Describe the
current process in which test planning and preparation is conducted.
Evaluate the maturity of the process on a 1-5 scale.

e What kind of problems caused by subcontracting relationship have you
encountered during this phase?

e What solutions would you propose to solve the mentioned problems?

Test execution phase

e Test execution phase includes running the functional and non-functional
test cases as well as defect reporting and management. Describe the
current process in which test execution phase is conducted. Evaluate the
maturity of the process on a 1-5 scale.

e What kind of problems caused by subcontracting relationship have you
encountered during this phase?

e What solutions would you propose to solve the mentioned problems?

Test closure

e Test closure includes reviewing test reports and artifacts by test manager
and making a decision whether the software is approved. Describe the

72

current process in which test closure is conducted. Evaluate the maturity
of the process on a 1-5 scale.

e What kind of problems caused by subcontracting relationship have you
encountered during this phase?

e What solutions would you propose to solve the mentioned problems?

General cooperation

e What problems have you encountered in communication, mutual
understanding of information and trust between the client and the
subcontractor?

e What problems have you encountered in the general cooperation model?
This means consolidating client’s and subcontractor’s goals and software
development processes together.

