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Tamén tutkielman aiheena ovat erilaiset kaoottiset hajotelmat Lévy prosessien
funktionaaleille. Néilld hajotelmilla pyritdén esittdméian kyseiset funktionaalit iteroitu-
jen integraalien summana tietyn, keskendin ortogonaalisten martingaalien joukon
suhteen.

Ensimmaisenéd kdymme 14pi hieman teoriaa, jonka pohjalle myohemmin tutkiel-
massa esiintyvat hajotelmat pohjautuvat. Esittelemme joukon mééaritelmia, jotka
ovat tarpeen téssé tutkielmassa esiintyvan teorian ymmartdmiseksi. Naihin méaritelmiin
lukeutuu muun muassa Lévy processit, martingaalit ja stokastiset integraalit. Liséksi
esittelemme myohemmissé todistuksissa tarvittavia epayhtaloitd, lemmoja ja lauseita.

Kun olemme késitelleet tarvittavat esitiedot, siirrymme kohti tutkielman keskeis-
intéd lausetta. Téata lausetta varten esittelemme niin kutsutut Teugelin martingaalit.
Néamé martingaalit ovat kiytannossa Lévy prosessin kompensoituja hyppyprosesseja.
Niistd Teugelin martingaaleista muodostamme keskenéén ortogonaalisen joukon, jota
kdytdmme kaoottisen hajotelman méarittelemiseen. Tamé& teoria ja kaoottinen ha-
jotelma pohjautuvat David Nualartin ja Win Schoutensin artikkeliin Chaotic and pre-
dictable representations for Lévy processes. Kaytdmme tatéd tutkielmamme keskeisim-
péand ldhteend, jossa esiintyvid lauseita ja todistuksia tutkimme yksityiskohtaisemmin.
Liséksi esittelemme ja kisittelemme muita kirjallisuudessa esiintyvid kaoottisia ha-
jotelmia.

Yksi néistd hajotelmista on Kyoshi [ton ortogonaalinen hajotelma, jonka hén esit-
teli artikkelissaan Spectral Type of the Shift Transformation of Differential Processes
With stationary increments. Tama lause hyodyntda Wiener integraaleja Lévy pros-
essin avulla méaritellyn kahdesti integroituvien satunnaismuuttujien avaruuden or-
togonaalisen hajotelman méérittelyssd. Tamén hajotelman todistuksen kdymme l&pi
ykityiskohtaisesti, jonka jédlkeen hyodynndmme sité toisen hajotelman todistamiseen.

Lopuksi esittelemme vield hieman yleisempéén tapaukseen soveltuvan hajotelman.
Paolo Di Tellan ja Haus-Juergen Engelbertin, artikkelissa The Chaotic Representa-
tion of Compensated-Covariation Stable Families of Martingales, esittelemé hajotelma
sopeutuu funktionaalejen esittdmiseen iteroitujen Wiener integraalien avulla suh-
teessa ortogonaaliseen ja kompensoidun kovarianssin suhteen vakaiden martingaalien
joukkoon.



Abstract

In the present thesis, we will study the chaotic representation properties for func-
tionals on Lévy processes. These chaotic representation properties are a way to rep-
resent square integrable random variables as a sum of iterated integrals with respect
to a certain set of orthogonal martingales.

We will first go over the basic settings and some preliminary theory we need in
order to understand Lévy processes, martingale theory, stochastic integrals and the
chaotic representation properties following later in the thesis. These preliminaries
include some inequalities, lemmas and theorems used in the proofs of this thesis as
well as the basic definitions.

The main result of this thesis characterizes a chaotic representation property using
a pairwise strongly orthogonal family of so-called Teugels martingales. These Teugels
martingales are, in fact, the compensated power jump processes of a Lévy process.
This theorem covering the chaotic representation property for Teugels martingales
was explored by David Nualart and Wim Schoutens in their article Chaotic and pre-
dictable representations for Lévy processes. We use this article as our main source for
this thesis and expand upon it by providing more details and exploring alternative
versions of chaotic representation properties found in the literature.

One of the chaotic representation properties we examine and prove in detail after
our main theorem is [t0’s orthogonal decomposition introduced in Spectral Type of the
Shift Transformation of Differential Processes With stationary increments by Kyoshi
[t6. This theorem uses multiple Wiener integrals to define an orthogonal decomposi-
tion of the space of square integrable random variables. After the proof, we use this
theorem to formulate another, different orthogonal decomposition.

Finally we conclude our thesis by going over a more general decomposition. This
chaotic representation property uses iterated integrals with respect to a family of
compensated-covariance stable martingales. This property has been covered by Paolo
Di Tella and Hans-Juergen Engelbert in The Chaotic Representation of Compensated-
Covariation Stable Families of Martingales.
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1. Introduction

In this thesis we are going to study different types of chaotic representation prop-
erties for functionals on Lévy processes. These representation properties are used in
stochastic analysis and stochastic process theory. As an example, the 1t6’s orthogonal
decomposition was used to investigate quantitative properties of stochastic processes
in continuous time and to prove covariance relations and inequalities for general Pois-
son process ([2], page 8607).

We will start by going over general Lévy processes satisfying some moment condi-
tions, their associated power jump processes and orthogonalized Teugels martingales.
This orthogonalization will then be used to generate a system of iterated integrals
in order to formulate the chaotic representation property introduced by Nualart and
Schoutens ([13]).

After this we will be going over other chaotic representation properties. We start
this by taking a look at the decomposition generated with the multiple It integrals
in [12]. Then we will use this decomposition to prove another decomposition, that
will be similar to the chaotic representation property of Nualart and Schoutens.

At the end we shall briefly consider one more decomposition. This will be the
chaotic representation property of compensated-covariation stable families of mar-
tingales treated by Di Tella and Engelbert ([5]), which is constructed using iterated
integrals with respect to a certain family of square integrable martingales. This is a
more general result and the family of orthogonal Teugels martingales is an example
of it.

2. Preliminaries

In this thesis we will assume that we are given a stochastic basis that satisfies the
usual assumptions([8], Definition 2.4.11, page 36).

DEFINITION 2.1. A stochastic basis (Q, F,P; (F;)ier), where I = [0, 00), satisfies
the usual conditions given that
(1) (Q,F,P) is complete,
(2) Ae Fiforalltel, where A € F with P(A) =0,

(3) the filtration (F})er is right-continuous, which means that
Fir = Ngsy Fs, forall t € 1.

DEFINITION 2.2 (Adapted process). A stochastic process X = {X;,t > 0} is
called adapted to the filtration (F;);>¢ (or (F;)i>0-adapted) if X; is Fi-measurable for
every t > 0.

Given a process X = (X;)i>0, Xy : © — R, in this thesis we use the augmenta-
tion of the natural filtration F; == FX UN, where F¥ = o(X, : s € [0,t]) is the
natural filtration, also denoted simply by F¥, and N' = {A € F : P(A) = 0}. With
the augmentation of the natural filtration, as well as with the natural filtration, the
stochastic process X is always (F;)i>o-adapted.
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We note that in this thesis we assume that the filtered probability space (2, F, F;, P)
satisfies the usual assumptions, which we will define next ([14], page 3).

DEFINITION 2.3. A filtered probability space (€2, F, F;,P) satisfies the usual as-
sumptions given that
(i) N C Fo, where N = {4 € F : P(A) = 0},
(ii) F; is right continuous, which means that F; = Ny~ F, for all 0 <t < oo.

Next we define what it means for a stochastic process to be cadlag ([14], page 4).
We need this for the definition of a Lévy process.

DEFINITION 2.4. A stochastic process X = {X; :t > 0} is called cadlag if all the
trajectories [0,00) 3 t — X;(w) € R are right continuous, with left limits. Similarly,
a stochastic process X is called caglad if the trajectories are left continuous with right
limits.

These acronyms cadlag and caglad come from the French language and stand for
continu a droite, limites a gauche and continu a gauche, limites a droite, respectively.

Now we can define the notion of a Lévy process.

DEFINITION 2.5 (Lévy process). A real-valued stochastic process X = {X; : ¢t >

0} is called a Lévy process if it satisfies the following properties:

(1) Xo=0.

(2) Independent increments: The random variables X, X, — Xy, Xi, — Xoy, oos Xo, —
Xy, , are independent for any 0 =ty < t; < ... < t, < 0.

(3) Stationary increments: X; — X, and X; , have the same distribution for any
0<s<{< oo

(4) All trajectories [0,00) 3t — Xi(w) € R are cadlag.

If we replace the condition (4) with stochastic continuity we obtain a Lévy process

in law ([15], page 3).

Next we want to define semi-martingales. Before we can do that we need to give
definitions for stopping times ([1], page 91), martingales ([1], page 84), stochastic
processes of bounded variation ([8], Theorem 3.2.3, page 68) and local martingales

([1], page 92).

DEFINITION 2.6 (Stopping times). A random variable 7 : Q — [0, o0] is called a
stopping time provided that {7 < ¢} € F; for all t > 0.

DEFINITION 2.7. Let 7 be a stopping time and define
Fr={AeF:An{r <t} € F forallt > 0}.

F, is a o-algebra and it is called the o-algebra generated by 7.

DEFINITION 2.8 (Martingale). An adapted process M = {M;,t > 0} is called a
martingale if it is integrable, i.e. F|M;| < oo for all ¢ > 0, and for all 0 < s <t < 00



we have that

E(M|Fs) = M a.s.

DEFINITION 2.9. A stochastic process X = {X;,t > 0} is said to be of bounded
variation if, Xq = 0 and for all w € 2 and all ¢ > 0,

VX (w)) = sup Z X, (w) — X, (w)] < o0.
tOv“-’r}tn with k=1

0=to<...<tn=t

DEFINITION 2.10 (Local martingale). A cadlag process M = {M,;,t > 0}, with
My = 0, is called a local martingale if there exists a sequence of stopping times such
that 1 < ... <7, — oo on 2 and each of the processes { M, ,t > 0} is a martingale.

Now we can define semi-martingales ([1], page 137).

DEFINITION 2.11 (Semi-martingale). An adapted cadlag process N = {N, : t > 0}
is called a semi-martingale provided that there is a local martingale M = {M;,t > 0}
and an adapted cadlag process of bounded variation C' = {C},t > 0}, such that one
has

N; = Ny + M, + Cy,t > 0, almost surely.

We note that every Lévy process is a semi-martingale ([1], Proposition 2.7.1, page
137).

The jump size at time ¢ will be part of many of our upcoming formulas so we shall
define that next:

DEFINITION 2.12 (Jump size at time ¢). The jump size of a Lévy process at time
t > 0 is defined by AX,; := X; — X;_, where X;_ = lim,_,;_ X, is the left limit if ¢ > 0
and Xq_ = 0.

In this thesis we also use stochastic integrals ([14], page 58). To define stochastic
integrals we need first to define simple predictable processes ([14], page 51).

DEFINITION 2.13. A process L = (L;);>o is called a simple process if there exists
an n € N and a finite sequence of stopping times 0 = 75 < ... < 7, < 00, and F,.-
measurable random variables v; : @ — R, i = 0, 1, ...,n, with sup, , [v;(w)| < oo, such
that

Li(w) = 270 X(rioa @) m(@) (D) vic1 (W),

The class of these processes is denoted by L.

DEFINITION 2.14. For L € L, with the representation

Li(w) = 270 X(rioa @) ma(w)) (D) vic1 (W),



and a cadlag process X the mapping
‘]tX(L) = Z:’L:l Ui—l(Xt/\Ti - Xt/\Tz‘ﬂ)

is called the stochastic integral of L with respect to X and is also denoted by
f(07 q L.dX,.

Now we want to extend this mapping to all left continuous adapted processes. In
order to do so we have to introduce the ucp topology. We define this in the space of
caglad adapted processes which is denoted by L.

DEFINITION 2.15. It is said that a sequence of processes (H"),>1 C L converges
to a process H € LL uniformly on compacts in probability (abbreviated ucp) if, for
each t > 0, supg<,«, |H" — Hy| converges to 0 in probability. This is also denoted by
H" — H in ucp.

We check that supy,, | HI — H;| is indeed measurable, so that the above definition
is well-posed. We know that there exists a countable and dense subset S of [0, ] with
0 € S, for example [0,¢] N Q. Since H, H™ € L for all n > 1, we know that these pro-
cesses have left continuous paths. Combining the facts that H and H™ have left contin-
uous paths and S is dense in [0, ¢], we get that supge,«, |HY — Hs| = sup,eg |HY — Hs|.
Since S is countable we have that sup, g |H" — H,| is measurable, which in turn
implies that supy<,«, |H! — Hs| is measurable.

In Protter ([14], page 57) it is stated that H" — H in ucp if (H" — H); — 0 in
probability for each ¢t > 0, where H; = supy.,; |H,|. We also know that the space L
is metrizable with the ucp topology. For example one suitable metric for X, Y € LL is
given by

o0

1
2—nE min(1, (X = Y)!)].

n=1

Now with the ucp topology we get that Ly is dense in I ([14], Theorem 10, page
57) and the integration operator is sequentially continuous in £y ([14], Theorem 11,
page 58), which allows us to extend the mapping to all left continuous adapted pro-
cesses. So in this thesis we can consider a stochastic integral as a map from L to
the space of cadlag and adapted processes that are vanishing in zero. Here by the
deterministic cdglad processes generate B([0,77]), which means that a deterministic
Borel-measurable process is predictable ([14], page 156).

Next we define the bracket processes ([14], page 66).

DEFINITION 2.16. Let M and N be semi-martingales. Then the quadratic varia-
tion, [M, M| = ([M, M];)>0, is defined by

(M, My = M2 =2 [,y M_dM,.



The bracket process (also known as quadratic covariation) of M and N, [M, N| =
([M, NJi)>o0, is defined by

We also note that for the bracket process it holds that:

M, N); i= MN; = [,y No-dM, — [ My_dN,,t >0, as.

In this thesis we take for [M, M] the version that is cadlag, [M, M], = MZ and
all paths are non-decreasing ([14], Theorem 22, page 66).

We can also separate [M, M| into its continuous part [M, M|¢ and its jump part
> o<s<i(AM)? ([14], page 70). So we have that

[M, M), = [M, M]§ + >« (AM,)?, t > 0 pathwise.

From this we get for the bracket process of M and N that, pathwise,

(M, N], =3 ([M + N, M + N}, ~ [M, M], - [N, N],)

_%([M + N, M+ N+ S (AM + N),)?

o [Mv M]? - Z (AMS)2 B [N’ N]g B Z (AN5)2)
=M+ N, M+ N]§ — [M, MJ; — [N, NI¢

+ Z (M+N),)? = Y (AM,)* = ) (AN,)?)
IV 4 (Y (AT 4 N - 3D (AMY - 3 (AN,

where [M,N]§ = 3([M + N,M + NJ; — [M, M]; — [N, N) denotes the continu-
ous part of [M, N],. We denote Qp = {w € Q: > o o, [(AM(w))* + (AN (w))?) +
(A(M + N)4(w))?] < oo}. For each w € Q there are only countably many s € [0, ]
with AM(w) # 0 or ANg(w) # 0 or A(M+N)s(w) # 0, which means that P(£2o) = 1.
From this we get that

(1) [M,N]tz[M,N]H%(Z (AM +N))* = Y (AM)? = ) | (ANL)?)

0<s<t 0<s<t 0<s<t

=[M, N]¢ Z AMAN, pathwise.

O<s<t



Next we will define [t0’s formula on Lévy processes that we shall use in this thesis.
The proof for this formula can be found in [14] (page 78, Theorem 32).

THEOREM 2.17 (It6’s formula). Let N be a semi-martingale and f: R — R be a
twice differentiable function, where the second derivative is continuous, also known
as a C*(R) function. Then f(N) = (f(N;))i>o is also a semi-martingale, and for all
to € [0,00) one has:

f(Nt) _f(Nto) = f/(NS)dNS—{_% f”(st>d[NaN]§
(to.t] (to,t]

+ ) {f(N,) = F(Neo) = F/(No)AN,}

to<s<t

for allt >ty a.s.

Now we define the Kunita-Watanabe Inequality ([14], Theorem 25, page 69).

THEOREM 2.18 (Kunita-Watanabe Inequality). If X and Y are semi-martingales
and H, K € 1L, then

S X YL < (5 H2d[X1) 205 K2dY])Y2 as
The following theorem ([14], Corollary 2, page 68) will also be used later.

THEOREM 2.19 (Integration by parts). Let X and Y be semi-martingales. Then
XY is also a semi-martingale and

XY, = XY, + f(o’ﬂ Xo-dYs + [ qYsmdXs + (X, Y], £ 20, as.

It is also known that the special case of Y; = t leads to X,Y; = f(o q X, dY, +
f(o q Y, dX,+ XoY, = f(o q X,_dY, + f(o q Y, dX,, t > 0, a.s. This follows from the
Kunita-Watanabe inequality, which gives us

[SIES
N[

X, Y]y = X, Y1, < X, X1, d[Y. Y],
X Yirl =l | Xy, </M[ J)(/M[ 1)

:(/(M dIX, X1.)} x 0= 0.

From the quadratic covariation we can define a random measure

d[X, X]i(w) = pu(dt,w),
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where t — [X, X];(w) is the distribution function of u(-,w). This random measure
and the fact that for H € L the map w — f(o q Hg(w)p(ds,w) is Fi-measurable are

used to formulate the following theorem ([14], Theorem 29, page 75).

THEOREM 2.20. If X and Y are semi-martingales and H, K € 1., then

= | H,K,d[X,Y],,t>0, as.
(0.4]

[ H.dX., / K.dY.
(01] (07}

Now we define square integrable martingales ([14], page 178) and introduce the
definitions for the angle bracket process ([11], Definition 6.24, page 185) and bracket
process ([11], Definition 6.27, page 186) for such martingales.

t

DEFINITION 2.21. M3 denotes the space of square integrable martingales M on a
stochastic basis (Q, F,P, (F;)i>0), which means that F(M?) < oo, for all ¢ > 0, with
MO = 0.

DEFINITION 2.22. Let M, N € M?. There exists a unique predictable increasing
process, denoted by (M, M) or (M), such that M?* — (M) € M,, where M, stands
for the martingales with My = 0. The process (M) is called the predictable quadratic
variation or the angle bracket process of M. We also set (M,N) = ;[(M + N) —
(M) —(N)] and call (M, N) the predictable quadratic covariation or the angle bracket
process of M and N.

Next we use Theorems 2.18, 2.19 and 2.20 to prove a form of Itd’s isometry.

THEOREM 2.23 (It6 isometry). Let X and Y be square integrable martingales with
Xo=Yy=0, ie. X,Y € M2 Assume H, K € L with

E | HXX,+E| KXdY], <.
(0,7 (0,7

Then
(1) E[f(O,T] H,dX, f(O,T] K dYs] = Ef(O,T] H K d[X,Y]s, for T > 0.
(2) If additionally,

E H2d(X),+ E K2d(Y), < oo,

(0,7 (0,7
then

/ Hdx, | K dy} E |  HKJAX,Y),, for T >0.
(0,7) (0,7) (0,77
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Proof. We only prove part (1). By Theorem 2.20 we get that E| fooo H,dX,|* < oo
and E| [[° K,dY;|> < co which gives us that [ H.dX, [~ K,dY; € £1. When we
combine this with the Theorem 2.18 we get E [ |H,K,|d|[X,Y]|s < oo and because
of this the terms in (1) are well-defined.

From [11] (Theorem 6.28, page 167) we get that X, Y € M2 implies that (X,Y; —
[X,Y]t)i>0 € Mp. This means that EX;Y; = F[X,Y];. By combining all of this with
Theorem 2.20 we get that

HdX, | K.Y / H.dX., KdY}
(0,1

(0,7 (0,7]

=E |  H,K,Jd[X,Y]..

(0.7]

O

The stochastic integral also has a property called associativity that we will need
later ([14], Theorem 19, page 62).

THEOREM 2.24. Let (Y;)i>0 be a process, where Yy = (H - X); : fOt] H Xy, is a

semi-martingale and assume that G € L. Then we have that G-Y =G - (H - X) =
(GH)- X

Now we define uniform integrability ([15], Definition 36.1, page 245).

DEFINITION 2.25. A family of random variables {X; : i € I} is called uniformly
integrable if sup;c; E|X;|1{x,|>a} = SuD;e; f{|X,|>a} | X;|dP — 0 when a — oc.

The following theorem ([14], Theorem 13, page 9) can be used to check if a mar-
tingale is uniformly integrable.

THEOREM 2.26. A cadlag martingale (Xi)i>o is uniformly integrable if and only
if Y o= limy 00 Xy exists a.s, E(|Y|) < oo and (Xi)o<i<oo S a martingale, where
Y = X.

Next we define a Il-system ([1], page 4) and a II-step-function.

DEFINITION 2.27 (II-system). A collection II of subsets of € is called a II—system
it ANB el for all A, B €1l.

DEFINITION 2.28 (II-step-function). Let IT C 2 be a non-empty system of sub-
sets. A function h : Q@ — R is called a IT-step-function, provided that h = > 7', axxa,
for some aq, am,...,a, € R and Ay, ..., A, € Il

Now we consider a Lévy process X = (X¢):>o and a II-system where

H={A={we: X, —X;, €By,... X, — X;,,_, €Bn}:
0<s <8 <...<58,,meN, By, ... B, € BR)}.
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With this we get that o(I) = o(X; : s > 0) and by definition (), € II. This is
used to apply the following theorem ([10], Theorem A.8, page 101) later on Il-step-
functions.

THEOREM 2.29. Let II be a system of subsets of a non-empty Q for which
i) AN B €1l when A, B €11,
i) Q e IL.
When p € [1,00) and F = o(Il), then for all f € L,(Q,F,P) there exists Il-step-
functions f, : Q@ — R such that lim,, ||f — f,||, = 0.

The following proposition ([7], Proposition 4.1.4, page 48) will also be used in this
thesis, but first we need to define step functions ([7], Proposition 4.1.1, page 48).

DEFINITION 2.30 (step function). A function f:Q — R is called a step function
given that

flw) = Z?:l aixa,; (W),

where n € N, aq,...,a,, € R and Aq,..., A, € F.

PROPOSITION 2.31. Let f : Q — R be a function in a measurable space (Q, F).
Then the following properties are equivalent:

(1) There exists a sequence (f,)°2, of step functions f, : @ — R, such that f(w) =
lim,, o fn(w) for all w € Q.
(2) f is (F,B(R))—measurable.

Now we introduce the Holder’s inequality ([7], Theorem 6.12.5, page 106) and
Lebesgue’s dominated convergence theorem ([1], Theorem 1.1.4, page 8).

THEOREM 2.32 (Holder’s inequality). Let (2, F,u) be a measurable space and
f,9:Q — R be measurable maps. For p,q € (1,00) with % + % =1 one has that

[ Vsl < ([ 1ranyi [ lalran)®

THEOREM 2.33 (Lebesgue’s dominated convergence theorem). Let (2, F, 1) be a
measurable space and g, f, f1, fa,... : Q@ — R be measurable with |f,| < g a.e. If
Jo lgldp < 00 and f =lim,_, fo a.e., then f is integrable and

/fd,u: lim [ f.du.
QO n—oo QO

We also use the following uniqueness theorem for Fourier transforms ([4], Propo-
sition 5.1.11, page 193) later in this thesis.

DEFINITION 2.34 (Fourier transform). Let f € L;(R% C), then
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N

Fuy = em) [ e p(ayio

denotes the Fourier transform of f for all u € RY.
THEOREM 2.35. If f € L1(R%,C) and f(u) =0 on R?, then f(x) =0 a.e.

Next we introduce Urysohn’s lemma for metric spaces ([16]).

LEMMA 2.36 (Urysohn’s lemma). Let (M,d) be a metric space and let Fy and
F\ be non-empty closed sets such that Fo N Fy = (0. Then there ewists a continuous
function f: M — [0,1] such that f(x) =i for x € F;.

3. Orthogonal decompositions of the Lévy-Ito space by Teugels martingales

Here we explore the orthogonal decomposition of the Lévy-Ito space using a
strongly orthogonal set of Teaugels martingales. This chaotic representation prop-
erty, or CRP, has been explored by Nualart and Schoutens ([13]). We will expand on
their results in this section.

3.1. Notation. Before we can take a look at the CRP we must go over some defi-
nitions and notation. Now let X = (X});>¢ be a Lévy process and F be the o-algebra
generated by it ([15], page 6), which we will define next.

DEFINITION 3.1. Let T be an arbitrary index-set and X = {X; : t € T'} be a
family of random variables on a probability space (€2, F,P). Then the sub-o-algebra
G=o0(X;:teT)is called the o-algebra generated by X if

(1) X, is G-measurable for every t € T,
(2) G is the smallest that satisfises (1).

Let N : B([0,00) x R) x 2 — {00,0,1,2,...} be the Poisson random measure
associated with X, where

N(E) = #{t € [0,00) : (t,AX,) € E}
for E € B([0,00) x R). For B € B(R), with BN (—¢,¢) = () for some € > 0, we set
v(B) =EN([0,1] x B).

By letting € — 0 we obtain the Lévy measure v on B(R) that satisfies v({0}) =0
and fj;o(l A 2*)v(dz) < oco. In this section we assume that the Lévy measure v
satisfies the following moment conditions for some € > 0 and A > 0:

f(—e,e)c Mely(dr) < oo.

This also means that
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iIZ’iV dr) < oo 1> 2
ffoo‘ ’ ( ) Y Y

which in turn implies that X; has moments of all orders ([15], Theorem 25.3, page
159). Now we can formulate the Lévy-Khintchine formula ([14], Theorem 43, page
32), which describes uniquely the distribution of a Lévy process.

THEOREM 3.2 (Lévy-Khintchine formula). Let X = (X;)i>0 be a Lévy process and
v be the associated Lévy measure. Then

E(eiuXt) _ e—tw(u)’

where 1 (u) = %QUQ —jau + f{|x\21}(1 — e")dy(x) + f{|x|<1}(1 — " + jux)dv(z)
is the characteristic function of X, a € R and 0 > 0. Moreover every Lévy process
is uniquely described by the triplet (o, 02, v).

Next we will define some important transformations of a Lévy process X that will
be needed for our analysis.

X = Vg (AXL), i > 2 and X[V = X,

These processes X = {Xt(i),t > 0}, i = 1,2,... are called the power jump pro-
cesses and they jump at the same points as the original process. We know, that
the sums used to define these power jump processes are well defied, since the cadlag
process t — X;(w) has only countably many jumps. Otherwise there would exist
an € > 0, such that X; would have uncountably many jumps of size larger than e,
which is a contradiction ([3], Lemma 1, page 122). Now we recall that F |Xt(z)| < 00.
From here we get the compensated power jump process of order i, also known as the
Teugels martingales ([13]):

YO = X0 — BIXO) = X0 — it i =1,2,3, .,

where m; = [, 2'v(dz). We prove that E[X] = mit = t [ x'v(dz), by taking a
B € B(R) with 0 ¢ B. From here we get that

v(B) =E#{AX, € B:s € (0,1]}

:%E#{AXS € B:se(0,)

:%E > 15(AX,).

s€(0,t]
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This implicates that

t/RlB(x)dl/(x) =F Z 13(AX,),

s€(0,¢]

and therefore

[ Ae)iv) = B 3 (X,

s€(0,¢]

for any Borel function v : R — R, such that [, |v(x)|dv(z) < co. Now one can
see that

(2) tm; = EX\" = B Y (AX,) =1t / 2ldv(z).
] R

se(0,t

Next we give the definition of strong orthogonality ([14], page 179).

DEFINITION 3.3 (Strongly orthogonal martingales). Two martingales N, M € M?2

are strongly orthogonal if and only if their product M N is a martingale. We denote
this by M 1L N.

It is also known that strong orthogonality implies that EM;N; = 0. This is be-
cause M N is a martingale, when M I N, which gives us EM;N; = EMyNy = 0. We
also have the following proposition ([11], Corollary 6.30, page 187).

PROPOSITION 3.4. For M, N € M3 the following assertions are equivalent:

(1) M L N and AMAN =0,
(2) [M,N]=0.

Later in this thesis we shall need a set of pairwise strongly orthogonal martingales
{H® i > 1} for which each H® is a linear combination of Y j = 1,2, ...,i with the
leading coefficient equal to 1. This means that

H(Z) = Y(l) —+ (lfm‘_ly(i_l) + ...+ ai,1Y(1)7Z. Z 1,

and the {H® i > 1} are pairwise strongly orthogonal.

Because of the Equation (1) and since Xt(i) has no continuous part for ¢ > 1 we

get that
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[X(k)u X(J)]t = ZO<s<t(AXS)k(AXS>j = ZO<s<t(AXs)k+j = Xt(k+j)7 fOI‘j > 1 and
k> 1. B B

Now we have that
[HD Y0, = Z ai,k[Y(k), YW, = ai,k;[X(k), X)),
k=1 k=1

The term a;10°t1;—1) comes from the Brownian motion part ai [XM, XV, =
a;1[X, Xy = a;1([X, X]§ + ZO<S§t(AXs)2) — ailet(Q) + a;10°t, which only appears
in the above sum expression for the bracket process if j = 1. From the expression
above we also get that

E[H(i)a Y(j)]t = t(Migj + Qig—1Migpjo1 + -+ aamay; + ai,lazl{j:u).

So E[H® Y W], = tE[H®,YU)];. Which means that [H® Y], =0, V ¢t > 0,
if and only if [H®,Y)]; = 0. This implies that when [H®, Y], = 0 we have that
H® | v

Now let S; be the space of all real polynomials on the positive real line. On this
space we apply a scalar product (.,.); given by

(P(x),Q(x)) = fj;o P(2)Q(z)z*v(dz) + 02 P(0)Q(0).

From this and equation 2 we get that

+00
(1 277y, :/ v d ety (de) 4 o200

o0

+oo
:/ .TiJrjI/(d.T) + U21{i:j:1}

o0

=My + 021{1‘:3‘:1}, 1,7 > 1.

Then we denote the space of all linear transformations of the compensated power
jump processes by Sy == {37 a;Y® :n € {1,2,..},a;, e R,Vi=1,...,n} and apply
on it the scalar product (.,.)s given by

(3) <y(z‘)7y(j)>2 = E([y(i)’y(j)]l) = My + 021{1':]':1}, i j> 1

Now we see that '~! «— Y@ is an isometry between S; and S,. This means that
an orthogonalization of {1, z', 22, ...} also gives us an orthogonalization of {Y () Y},
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From this we can establish for the rest of the thesis that {H®, i =1,2,...} is the
set of pairwise strongly orthogonal martingales that we were looking for, given by the
orthogonalization of {Y() Y@ 1.

3.2. Main result. We want to prove the following chaotic representation property:

THEOREM 3.5 (Chaotic representation property (CRP)). Let F' € L?(Q, F). Then
F' has a representation of the form

F =E|

F]
0 t1— tj—1— . . .
+y > /‘ /‘.“/‘ Fiivnip (b1, s t))dHP dHP A as.,
(0,00) J0O 0

G=1 iy >1

where the functions fq,,..i;) belong to LQ(Ri).

3.3. Preparation for the proof of Theorem 3.5. Before we can prove Theorem
3.5 we need several lemmas and propositions, which we shall present in this subsec-
tion. First we prove a representation of the power of an increment of a Lévy process,
(Xt — Xi))F k = 1,2,3,..., as a sum of stochastic integrals with respect to the
compensated power jump processes YU j =1, .., k.

LEMMA 3.6. The power of an increment of a Lévy process, (Xii4, — X4,)¥, has a
representation of the form

k t1—
(Xt+to - Xto)k :f(k) (t) + Z Z / / o
k) (to,t+to] Jto

tj—1— . E .
k 15 i i
Z‘ £ oty t)dYEdy P ay Y,
0

where the f((i’?... i) are deterministic functions in LA(RY).

Proof. Using It6’s formula and integration by parts we get for the function f(x) =
z¥ k > 2 and the Lévy process Y; = Xiytg — Xy, a8,



(Xt-i-to - Xto)k :(Xt-i-to - Xt())k - (X0+t0 - Xto)k = f(Y;f) -

= / k(Y. )* Y,
(0,4]

1 B k—2 c
+5 /Mk(k 1)(Ys )" d[Y, YT
)0 ) = (Ve = k(Ye)HAY)

=[]M&MM—XMHm&m—Xm
0,t

2
g —
+ =5 k(k - 1)(X(S+t0)* o Xto)k 2d8
2 Joy

+ Z S+t0 Xt() (X(S+t0)— - Xt0>k

0<s<t

- k<X (s+to)— — Xto)kilAXSHfo]

= / k(X — X,)Ftdx W
(to,t+to)

o’ k—2
+ Tk = 1) (X, — X ) 2t

(0,4]

+ Z [(X(stt0)- + AXoptg = Xio)* = (X(st0)- —

0<s<t

- k<X (s+to)— Xt0>k71AX8+to]

— / k(X — X)) tax
(to,to+t]

+ Zh =) (X X [

(0,¢]

f(Yo)

Sd(XStho - Xto)k72)

Sd(XS-l-to - Xto)k72>

+ > Z( ) (srto)- — Xto) T (A X140

0<s<t j=2

= / k(X — Xgp)FraX (Y
(to,to+t]

o’ k—2
+ Tk = 1) (X, — X ) 2t

(0,2]

+ ) Z( ) v — X)) (AX)

to<u<t+tg j=2

=2 (k) / (Xue — X, 7dX )
. j (to,t+t0]

J=1

Sd(Xerto - Xto)k72>

15
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+ "2 k(k — 1)((Xt+t0 — X ) /

Sd(Xerto - Xto)k72>
(0,t]

Next we rewrite the sum from (4) by using integration by parts again:

>

J=1

Lk . .
( ) / (Xoo — Xy )F7dx )
J (to,t+to)]

= Z ( ) / (Xoo = X)) AV +mys)
j=1 (to,t-f—to}

(6)

(Xt+t0

=Tkl = 1) ((Xeag = X) % = /

(0,¢]

k

J=1
k

Jj=1

Ed

j=1

_/ ud( Xyt _Xto)k7j>
(0,t]

=1

- / (5 — to)d(X, — X,,))
(tost+to]

.

k . .
> () [«

J (to,t+to]

k k=i 7v()
> (Xoo — Xy)Fody Y +

J (to,t+to]

k k=i 7v()
> (Xoo — X)) 7dY Y +

J (to,t+to]

)mj / (X, — X)) ds
(to,t+to]

) u+to Xto ) ko du

) m; (t Xittg — Xug)'™

k k—1
k , , k
= E ( ) / (Xs— - Xto)kijd}/s(]) + E ( )m] (t(Xt—l-to - Xto)ki
3/ J(to,t+to] =1 N

k
+ (k’) my, (t(Xt+to - Xto)kfk — / ud( Xty — Xto)kik>
(0,t]

7j=1
k—1

j=

- Xto)k

2

k L k—1
Z()/ (Xoo = X))y +3°
J (to,t+to]

J=1

¢

) mt(Xite, — Xto)k_J

( ) / (S — to)d(Xs — Xto)k_j + mkt
1 (to,t‘i‘to]

By combining (4) and (5) we get, a.s., that

Sd(X8+t0 - Xto)k_Q)

k—1

k
k : , k
+ ( ) / (Xoo = X3 YD + > ( ~)mjt(Xt+to — Xi,)"
‘= \I/ Jtotto] J

j=1
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k—1 k
— Z ( )mj/ S — tod(XS - Xto)k_j + mkt
j=1 ] (to,t-f—to}

Now we finish the proof by induction.

If k = 1, then we have that, a.s., Xicy — Xip = [0 1) @X = Ji e A3 +

mys) = f(t07t+t0] dYs(l) + myt, where myt is linear in ¢. This gives us that the lemma
holds for k = 1.

As the induction hypothesis we assume that for [ € {1,...,k — 1}, where k €
{2,3,...}, it holds a.s. that

l

Ko =X =10+ 32 [ -
(to,t+to]

J=1 (i1,...,15)€{1,...

tim1~ i i i
/ £ (ot e, tj)dYtS_ DAY dy ),
to

where the f((ill) iy are deterministic functions in L*(R%.). We also know that fO(t)

is a polynom in ¢, because of the term m;t, in case k = 1, that is linear in ¢.

Then we want to represent the Equation (6) as a sum of deterministic functions
and iterated integrals of the form shown in the lemma. We do this by applying
the induction hypothesis to the equation. For this there are 3 types of terms, with
j=1,....k, that we need to consider:

) (Xt+t0 Xto)k_ ' )
f(to,ttho XtO)k_]dY !
iii ft 4t0] sd( X X ).

After that the linearity of the integral mapping finishes the proof.

i) In the first case we have that, a.s.,

(Xito — Xip)*™
t+to
+z DN A
n=1 (i1,...,in)€{1,....k—J}"

th—1— R . .
/ FED (to,ty, oo t)dY L dY Py,

to
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ii) In the second case we get a.s. that

/ (Xs _ Xt0>k*jdys(j)
(to,t+to)

,,,,,

+z DR B R

1 (41,.sin)€{1,....k—j}"

tn—l_ . . . -
/ FED (ot o t)dY Y ay W dy )
to

_ / FED (5 — g, t0)dY V)
(to t+t0}

DD S Y e

tn—1— . . . . .
/ f(’“ﬂ)in) (to, tr, -y tn) Y, AP ay, D ay D)
t

iii) For the final case we apply Theorem 2.24, to get a.s. that

/ sd(X— Xy, )
(to,t+to]
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So we have shown that each term in the Equation (6) can be formulated as the
type of sum the representation of the Lemma 3.6 consists of. Now one can finally
apply the linearity of the integral mapping to this sum and thus the lemma is proven.

O

LEMMA 3.7. The power of an increment of a Lévy process, (X4, — X4y)¥, has a
representation of the form

(Xpary — X)) = +Z Z / o /

where the hgfl) .y are deterministic functions in L*(R%).
Proof. Since we have that

H(Z) = Y(l) + ai,i_lY(ifl) + ...+ CLZ‘71Y(1),Z. Z 1,

we get that
1 O 0 --- 0 Yy @) HO
azg; 1 0 o [Y® H®
asy aza 1 -+ 0| |YO® [ [HO®
aip @iz a3 e 1 y @) H®
Now since
1 0 0 0
21 1 0 0
A=1]a31 azz2 1 0
;1 Qj2 Qi3 1

is a lower triangular matrix where all the diagonal elements are 1, we get that
det(A) = 1 # 0. This means that the matrix A is invertible. Because of this the
lemma follows from the representation in Lemma 3.6 by switching from the Y® to
the H® by a linear transformation. U

We denote
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H(il ,,,,, Z]) :{F 6 LQ(Q) :

oo pti— tj—1— . . . .
F:/ / / f(tl,...,tj)dHt(;j)...dHt(f)dHffl),fELQ(Ri)},
0

0

where {H® i = 1,2,...} is the set of pairwise strongly orthogonal martingales
that we established in Section 3.

DEFINITION 3.8. Two multi-indexes (i1, ..., ) and (j1, ..., 5;) are different if k # [
or k = [ and for some 1 < n < k = [ we have that j, # i,. This is denoted by

(i1, s 1k) 7 (s oes 0)-

PROPOSITION 3.9. If (i1, ..., i) # (j1, ..., j1), then HOv-w) | HU13) j e K 1 L
when K € Hv-w) and L € HU1-3),

Proof. First we prove the case [ = k and after that we consider the case [ # k. For
this we use induction, starting with the case [ = k = 1. This means that j; # i;. We
also assume the following representations:

K= fooo f(h)dHt(lil) and L = fooog(tl)ngl).

Since we know that H®) I HU) and stochastic integrals with respect to strongly
orthogonal martingales are orthogonal ([14], Theorem 36 and Lemma 2, page 180),
we get that K 1 L and therefore the case [ = k = 1 holds.

For the induction hypothesis we assume that the proposition holds for 1 < k =
[ < n—1 and prove then the case k = [ = n. We assume the following representations:

00 t1— tn—1— . . X oo .
K:/ / / Fty, oo to)dHE dHP dHY :/ a, dH™,
0 0 0

0

'] t1— tn—1— X . . o .
L= / / / g(t1, oo tn)dHI™  dHIP dHIY = / B dHIY.
0 0 0 0

for this we have to consider two cases:
i) i1 # J1
In case i) we again apply the fact that H) 1 HUY and stochastic integrals

with respect to strongly orthogonal martingales are orthogonal ([14], Theorem 36
and Lemma 2, page 180). This means that K 1 L.

For ii) we must have (is,...,7,) # (Ja, ..., Jn) and therefore by the induction hy-
pothesis oy, L B;,. From this we get by applying Theorem 2.23 that
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T—00

E[KL] = Jim E| / ay dH,? / BuudH) |
(0,7 (0,7]

T—o00

— lim E[ / asﬁsd<H<i>,H<i>>s}
011

— lim Ela,8,)d(HD, HDY,

= / 0d(H, HDY, =0,
0

because ((HW, H®),) > is deterministic based on equation (3), which means that
K 1 L.

Now we are left with the case k # [, and because of symmetry we can assume that
k < I. Now we again consider two cases:

1) (i1, s ik) 7 (J1, 5 Jk)
11) (il, '*-7/L.k> = (jla ’jk)

In case i) we can just apply the first part of the proof and that stochastic integrals
with respect to strongly orthogonal martingales are orthogonal ([14], Theorem 36 and
Lemma 2, page 180) for representations

0o prti— te—1— . . ,
K:/ / / f(ty, o t)dHY dHP dHM,
0 0 0
oo prti— te—1— t—1— . . . .
L:/ / / / G(trs ooty oy ) dHIY dHIY . dHIP dHIV
0 0 0 0
) t1— th—1— ) ) .
:/ / / Bty ooy tp)dHIY . dHIPdHIY as.
0 0 0

which gives us that K L L.

For the case ii) we have the following representations:

o) t1— tp—1— ) (i2) (i1)
K :/ / / Fty, oo te)dHYY dHP dH,
0 0 0
o0 t1— tp—1— t_1— . . . .
L:/ / / / G(trs ooty oy ) dHIY dHIY . dHI) dHIV
0 0 0 0

oo pti— te—1— . . .
:/ / / Bty oo, tp)dH™ dHIPdH as.
0 0 0

Next we use induction to finish the proof. First lets assume that k=1. This gives
us that
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K:/ F(t)dH™,
0
oo pl1— ti—1— . . .
L:/ / / gty t))dH  dHID dHIY
0 0 0

:/ ﬁ(tl)dHt(fl) a.s.
0

Now since fotr fotl’ﬁ g(te, ..., tl)dH,ffl)...dHt(gQ) has mean 0 and f(¢;) is a determin-

istic function we get that

EKL] = lim E F(ty)dH ﬁ(tl)dHt(f”]

= lim B[ [ f()8(s)d(H, HW),|

= lim E[f(s)B(s)Jd(H™, H™),

:/ Od(H(il),H(“))S =0,
0

which proves the case k = 1. For the induction hypothesis we assume that when
ke {1,2,...,n — 1} we have that K | L and use this to prove the case k = n. Now
the induction hypothesis gives us that, when

00 t1— tn—1— ' ' | . |

0

00 t1— th—1— t_1— . . . .
L:/ / / / gt sl oy ))dHIY dHI . dHIP dHIY
0 0 0 0
o0 t1— th—1— ) ) ) [ee) )
_/ / / Blty, o tn)dH™  dH P dH _/ y(ty)dH™
0 0 0 0

we have that a(t;) L y(t1). From this we can once again get that

E[KL] = lim E[/(OT]a(tl)dHt(fl)/ 'Y(tl)dHt(fl)}

T—00 (O,T]

T—o00

= lim E als)v(s)d H(il)’H(il) .
[/(w (s)7(s)4d )]
= lim E[a(s)ry(s)]d<H(i1)7H(i1)>s

:/ 0d<H(“),H(“)>s =0
0

and this completes the proof. U
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For the next proposition we define a total family.

DEFINITION 3.10. Let A C L?(Q, F). A is called a total family if f = 0 a.s. for
any f € L*(Q,F), such that (f,g) = [ fgdP =0, for every g € A.

Now we use this definition to get a proposition, so that we are ready to prove the
main theorem.

ProprosITION 3.11. Let

7) = {thll (Xt2 — th)k2...(th — thil)kn .
n>00<t <ty <..<tp k.. ky,>1}

Then P is a total family in L?(Q, F).

Proof. We need to show that P is a total family in L?(Q, F). We do this by taking
a Z € L*(Q, F), such that Z 1 P, and showing that Z = 0 a.s.

Let € > 0. We recall that F is the o-algebra generated by the Lévy process X and
because of this we can apply Theorem 2.29. So there exists a set {0 < 51 < ... < S5}
and a square integrable random variable Z, € L*(Q, 0(X,,, X, , ..., X, )) such that

E(Z - Z)* <e.
This means that there exists a Borel function f such that
ZE = fE(X317 (XS2 - X31>7 e (Xsm - X5m71>>'

Since f(_e o eM*ly(dz) < oo applies for the Lévy measure v, the polynomials are
dense in L2(R,P o X; ') for each t > 0 ([6], Theorem 3.2.18, page 69). This means
that we can approximate Z, € L?(Q2, F,P) with polynomials in (X; — X,), so that
E[ZZ.] =0, since Z 1 P. From this and, by Holder’s inequality, we get that

\E[Z(Z — Z.)]| < \/E[ZYE[(Z — Z.)?], which finally gives us

E[Z¥ = E[Z*) - E|ZZ] = E[Z(Z — Z.)] < \/E[ZYE[(Z — Z.)¥ < \/eE[Z?].
Now it’s clear that e E[Z?] — 0, when € — 0, and thus Z = 0 a.s. O

3.4. Proof of Theorem 3.5. Now we are prepared to give a proof for the main
theorem of this thesis.

From Proposition 3.11 we get that P is a total family in L?(2,R). This means
that it is sufficient for us to show that the theorem applies to every element of P.
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Lemma 3.7 implies that any product (X, — X;)*(X, — X,,)!, where k,I > 1 and
0 <t <s<u<w, can be represented as a sum of products of the form AB where

e [ [ttt an

and

v ul— Um—1— . . .
:/u/u /u B, e ) AHI™  dHP AHY.

From this we get that

I Y S o Y T R

X b (b te)dH dHEP dHY dHY. dHSPdHY

Um—1— Um — t1— tn—1—
Y Y A R T
0 0 0 0 0 0

X 1(u U1)(u2>‘“1(u7um 1)(um)1(t s}(tl)l(t,tl)<t2)~-1(t,tn,1)(tn>

(1 k)
Xh])17 ’j )(U’U1’ >hE'Ll Zn)(t’t17“"tn)

x dH{ . dHP dHW dHI™ . dHYD dHED

Now we note that this is an integral of the form that is presented in the Theorem
3.4. This means that the product (X, — X;)¥(X, — X,)! can be represented as a
sum of integrals which corresponds to the form shown in the Theorem 3.4. We also
recall that every element of P is of the form X[ (X, — Xy, )*...(X;, — Xy, ,)*", where
n>00<1t <ty <..<ty ki,....,k, > 1, which means that they can also be
represented in the desired way and this completes the proof.

4. Tto’s chaos decomposition

Now we move on to other types of decompositions of a Lévy-Ito space and com-
pare them to the result of Nualart and Schoutens. We start with [to6’s decomposition
([12], Theorem 2, page 257) using multiple Wiener integrals. In this section we have
a change of setting from ¢ € [0, 00) to finite time ¢ € [0, 7.
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4.1. Notation and preliminaries. We start by going over the necessary notation
for this chapter and defining the multiple Wiener integrals, so that we can introduce
the decomposition from [12]. First we define the compensated Poisson random mea-
sure N = N — A ® v on the ring E € B([0,T] x R) with m(E) < oo. Next we
formulate the Lévy-Ito-decomposition ([1], Theorem 2.4.16, page 126).

THEOREM 4.1 (The Lévy-Itd decomposition). For a Lévy process X there exists a

constant B € R, a Brownian motion B and an independent Poisson random measure
N on Rt x (R —{0}) such that, for each t > 0 and some o > 0,

X(t) = pt+oB(t) +/ xN(t,dx) + /l o xN(t,dx).

lz|<1

The triplet (8,02 v), where o2 is the variance function of B and v is the Lévy
measure associated with X, is called the characteristics of X.

Next we use the Lévy measure v introduced in Section 3 and ¢ > 0, which is the
parameter of the Brownian motion part of X, to define two o-finite measures

du(z) = 0*ddy(z) + 2*dv(r) and dm(t, z) == d(\ @ p)(t, )

on B(R) and B([0, 7] x R) respectively. In this thesis we assume that o = 0 which
gives us du(x) = 2?dv(z).

We show that the measure p is o-finite. First we recall that a measure p on B(R)
is called o-finite given that there exist sets B, € B(R), such that U,enB, = R and
pu(By) < oo for all n € N. We set B,, = [—n, n], which means that

UnENBn = UnEN[_n7 n] =R

and for n € N we have that

/ du(x) = / vidv(x) = / (z* An?)dv(x)
[=n,n]\{0} [=n,n] [=n,n]

< /R(nsz An?)dv(z) = n? /R(a:2 A 1)dv(z) < oo.

This gives us p([—n,n]) < oo for every n € N.

For an £ € B([0,7] x R) with m(E) < oo we introduce
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M(E) = lim zdN(t,z),

N=00 JEn(0,T]x{% <|z|<N})

where the limit is taken in L,. We set

Ly = Ly(([0, T] x R)", B(([0,T] x R)"), m®").

Now let Fy, ..., E, € B(]0,T] x R) be pairwise disjoint with m(E;) < co and
fal(t1,21), oy (bny ) = 1g, (t1, 1) -+ - 1g, (tn, T0),

then we define the multiple integral by

L(fa) = M(By) - M(E,).

We also note that if

fal(tr, 1), o0, (tny #0)) = ful(r), Tr))s s (Er) s Trin)))

for all (t1,x1),...,(tn,x,) and ™ € S, where S, is the set of all permutations

of {1,...,n}, then the kernel f, is called symmetric. Also the symmetrisation of an
fn € L% is given by

fn((tl, ]31), ey (tn, In)) = % Zﬂesn fn((tﬂ(l), xﬂ(l)), ey (tw(n), Iw(n))).

Next we take a function

L
Gn = E Oél]-Eix~~~><E£17
=1

where each E!,...,E! € B([0,T] x R), with [ = 1,..., L, is pairwise disjoint and
a; € R for every [ = 1, ..., L. For such a function g,, we get that I,,(g,) is well defined
by linearity. For such g,, we also have the following properties: 1,(g,) = I1.(Gn),
where g, is the symmetrisation of g,, and E|I,,(g,)|* = n![|gall7;-

Now we shall define Diag(n, s).

DEFINITION 4.2. Diag(n, s), with n,s € N, is the set of all n-cuboids with edges
(BT, fT], where k € {1,2,..., s} and at least two edges are the same.

s

We denote with S” the set of B(([0,7] x R)")-measurable functions f, : ([0,7] x
R)" — R, such that f, takes only finitely many values, f,((t1,z1), ..., (tn, z,)) = 0 if
(t1,...,t,) € Diag(n,s) and f,((t1,21), ..., (tn, Tn)) = fu((S1,21), -y (Sp, @) if s; and
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t; belong to the same (%T, fT] for every i = 1,...,n. We can expand the definition
of I,, for such an S7' by the above properties for the symmetrisation and the multiple
integral. Our next goal is to prove the following lemma.

LEMMA 4.3. For Diag(n,s), with n,s € N, we have that

m®” (Diag(n, $) X R”) — 0,
when s — 00.

Proof. We prove this lemma by taking a large enough s, for € > 0, so that we have
the approximation ]%| < €. We also note that there are (72‘) possibilities to arrange
2 equal edges of the n-cuboid and the remaining n — 2 edges can be any (22T, 277,
with k € {1,2, ..., s}, which gives us the approximation

m(Diag(n.9) < ) < " (3 )s(5) (1) = 3 (5)rucey

With this approximation one can see that m®" (Diag(n, s) X R”> — 0, when

e — 0.
O

From this lemma one can see that the family Ug~(S? is dense in L%, which in turn
lets us extend the multiple integral into I,, : Ly — Lo(FY), where F¥ is the natural
filtration.

Next we introduce a proposition cowering some properties for the multiple integral
([2], page 8614).
PrRoOPOSITION 4.4. Let f, € Ly and f,, € L5'. Then one has that

(1) I.(fn) and I,(fn) are orthogonal for any kernels f, and f,,, provided that n #
m, .

(2) L(fn) = In(fa) as.,

3) [ (f)lloex) = Vol ful g

Before we move on we prove one lemma.
LEMMA 4.5. Let

S ={Y =f(N(Ey),...,N(E,)):n=1,2, ...,
E; are pairwise disjoint and f is bounded and continuous}.

Then S is dense in Lo(F™).
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Proof. Let

Fr=Fr UN =c(N(E) :m(E) < c0) UN,

where N is the family of empty sets.

We also introduce the II-system

P ={{N(E)) € Ay,..,N(E,) € A,} :n €N,
m(E;) < oo and A; € B(R) for every i =1,...,n}.

We know that the linear span of step functions

I
span{ Zailpi oy € R)T e Njp; € P}
i=1

is dense in Lo(Fr) ([10], Theorem A.9, page 101). We also note that every step
function is a linear combination of functions 1,, where p € P. This means that it
is enough to show that, for any ¢ > 0 and p = {N(F}) € Ay,....,N(E,) € A,} =
{(N(E1),...,N(E,)) € Ay x --- x A,} € P, there exists a f € C}, where C}, denotes
continuous and bounded functions, such that

E|l, — f(N(Ey), ..., N(E,))]* < €.

We denote

i = law(N(E,), ..., N(E,)) € M{(R"),

which means that p, is outer regular ([3], Theorem 1.1, page 7) with respect to
open sets, that is

tn(B) = inf{u,(C) : C O B, Cis open}.

Because of the outer regularity, there exists an open set G O A; x --- x A,,, with
|tn (G) — pn(Ar X -+ x Ap)| < ¢, and it is sufficient to have
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for some f € Cj to complete the proof. For G = R" this is clear so let us assume

G # R".

Let
1
= n: >_
F {xeR xEG,d(x,(?G)_m},

where d(z,0G) = inf{d(z,y) = | — y| : y € G} and JG denotes the boundary
of G, which means that y € 0G if and only if {x € R" : d(z,y) < ¢} NG # () and
{x e R" : d(z,y) < e} NG # () for every € > 0.

Next we want to apply Urysohn’s lemma on sets F;,, and G¢. This means that we
need to show that F,, and G¢ are closed and F,, N G® = (). We start by showing that
F,,, is closed.

If € G such that d(z,0G) < £, then there exists an € > 0 such that d(z, dG) +
e < L. This means that {y € R" : d(z,y) < €}NF,, = 0, which implies that z & OF,,.

On the other hand, if # € G such that d(z,0G) > -, then there exists an € > 0
such that d(z,0G) — e > L. From this we get that {y € R : d(z,y) < e} N FS, =0,
which implies again that x & OF,,.

Now one can see that if x € 0F,, then d(z,0G) = % This implies that 0F,,, C F,,,
which in turn indicates that F;,, is closed.

We also note that G° is closed since G is by definition open. For any x € F;, we
have that # € G, and that is why F,,, N G¢ = (). Now we can apply Urysohn’s lemma
to get a function f,, € Cy such that f,,(z) = 1 for every z € F,,, and f,,(y) = 0 for
every y € G°.

Now to finish the proof we have to show that UY_, F},, = G. By definition of F),
we have that U | F,,, C G. Since G is open we have that d(z,0G) > 0 for every
x € G. This also means that there is an M € N such that d(z,0G) > 1, which
means that z € Fj;. From this we get that G C Ugy_; F,,, and finally UY_ F), = G.

From here one can see that by dominated convergence

lim f,,(z) = 1g(z).
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This means that for every ¢ > 0 there is an m,. € N such that
ElLynE)....NE))ect — fme(N(E1), .., N(BEy)) ] < €,

which completes the proof.
O

4.2. Ito’s decomposition. Now we have the necessary definition for multiple inte-
grals, so we can move forward to It6 s decomposition. For a multiple Wiener integral
of nth degree denoted by I,, we get the following theorem ([12], Theorem 2, page 257):

THEOREM 4.6. For the space Lo(F™) and Ly = Ly(R™, m®") it holds that
Lo(F¥) = &pZolu(Ly).

Before we can prove this theorem we need some lemmas, which we present next.

LEMMA 4.7. Let

R={N(E\)"---N(E,)":ne{l,2,..},p; € {0,1,2,...},
E; €10,T] x R are pairwise disjoint with A ® v(E;) < oo}.

Then R is a total family in Ly(FX).

Proof. First we notice that every element of R has a finite norm and thus belongs to
Ly(FX). Lemma 4.5 gives us that

S={Y =f(N(Ey),...N(E,)) :n=1,2, ..,
E; are pairwise disjoint and f is bounded and continuous}

is dense in Lo(FX). This means that it is enough to show, that if F' € S, with
E(FY) =0 for every Y € R, then F' = 0 a.s. We will show this only for n = 1, which
means that F' = f(N(FE)). Let o1 denote the distribution of N(E) and assume, for
all p=20,1,2, ..., that

(7) E(FN(E)) = /Rf(x)xpdal(x) = 0.
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We first show that the integrals do exist. Because o7 is a Poisson distribution
with parameter A, we have that

, = L SN
/Re% ldoy () :Ze%ye ’\:Z e A < oo

k=0 ’ k=0
Combining this with Hoélder’s inequality we get that, for ¢t € R,

1

[ei@iante) < ([ isdn)’( [ in@) <o

which shows that the integrals exist.

By using Lebesgue’s dominated convergence theorem and equation (7), we get that

/Rf(x)e”xdm(x) = Z/Rf(x)%(it)kxkdal =0,

for all ¢ € R. This gives us that F' = f(N(E)) = 0 a.s. by the uniqueness theorem
for Fourier transforms.

O

Now we have another lemma to prove.

LEMMA 4.8. Let

P={N(Ey)---N(E,) :n=1,2,..,
E; € B([0,T] x R) are pairwise disjoint with (A ®@ v)(E;) < co}.

Then P is a total family in Lo(FX).

Proof. By Lemma 4.7 it is enough to show that, for any ¥ € R, we have that Y be-
longs to the closed linear span of P. For Y we assume the form Y = N(FE)P* --- N(E, )P,
withn € {1,2,...},p; € {1,2,...} and E; € B([0, T]xR) are pairwise disjoint with (A®
v)(E;) < co. We take a subdivision {F;}, i = 1,...,s of {E;}, i = 1,...,n, such that
(A®v)(F;) < €, where € > 0, and F = U |E; = U, F;. From here we get the
expression
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Y = N(E)P - N(E)" =) N(Fq)" - N(Fip)" as.,

with i(1) <i(2) < ... <i(r).

We know that N(F;) € {0,1,2,...}, which gives us

Y..

Y > N(Fi) -+ N(Fi)

Now, since there are (g) possibilities to arrange 2 equal elements over n positions
and the remaining n — 2 positions can hold any value out of {1,2, ..., s}, we get that

n\ © A n—2 n n—1

P(Y £Y,) < (2) ;(A @ v)(F) (;u ® u)(Fi)> < (2>6<A ®v)(E)".
This means that Y. — Y in probability as ¢ — 0. Consequently we can take
a sequence (€,)nen, such that €, — 0 as n — oo, so that Y., — Y for almost
every w. Since we also have that 0 < Y, <Y and Y € L?(F¥), we can see that

||Ye, — Y|, — 0 and therefore the lemma is proved.
U

We prove one more lemma before we move on to the proof of the It6’s decompo-
sition.

LEMMA 4.9. Let P C Hy C H, P total in H and Hy be a closed subspace of H.
Then Hy = H.

Proof. Let us assume that X € H\ Hy with ||X|| =1 and X L H,. This means that
X 1L P, because P C H,. This would mean that P is not total in H, so such an X
cannot exist and therefore H = H,. ]

4.3. Proof of Theorem 4.6. Now we are prepared to prove It0’s decomposition
by showing that Lo(F¥) = &% I,(L%). Since &1, (Ly) C Lo(F¥) are Hilbert
spaces, it is enough to show that @2 ,1I,(Ly) is closed and for any f € Lo(F™¥),
with f L g for every g € @52 I,,(LY), we have that f = 0 a.s. Because of Lemma
4.8 and Lemma 4.9, it suffices to show that &5° (1, (L%) is closed and P C &5° (L, (L3).

First we show that I,,(L%) is closed. We note that L} is closed and the subspace
of symmetric functions is also closed. Now since we have the isometry

1o (Fa)ll oy = Vlll ful g,
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we get that the subspace I,,(L%) of Ly(£2) is also closed.

Next we show that this leads to &5° 1,,(L}) being closed. Let H = (H,)>2, be a
sequence of separable Hilbert spaces. We equip this space with the norm

oo . - 1
1(Xn)oZolle = O [1Xall7,)?
n=0
and inner product

o0

(Xn)nZo: (Ya)olo)n = Z<Xn7 Yo)u,-
n=0
We also note that (X,,)%°, € H if and only if ||(X,,)5%, ||z < co. Let ((XF)22,)%, be
a Cauchy sequence in H. This means that for every € > 0 there exists a k. € N such
that [|(XF)o2, — (X1)%,||#r < € for every k,l > k.. Now to show that H is closed,
which infers that ©22,1,,(L%) is closed, we need to show that ((X¥)2 )% | has a limit
in H.

Now let € > 0 and k. € N such that ||[(X*)22, — (X}), ||z < € for every k,l > k..
This means that |LX%, — X, |1, < [I(XE)3 = (X0 olli < e, for every k.1 > ki,
and since H,, is a separable Hilbert space, we also know that X,, = lim;_ X,’jo
in H,,. From this and €2 > 300 [|XF — X!z, > S0 |IXE — X[, we get
that S0 |IXF — X ||g, — SN || XF — Xo||m, when | — co. Now we see that
for every N > 0 and k& > k. we have that S0 [|X* — X, ||z, < €, and with
N — oo we get that Y o2 [|XF — X, ||u, < € for every k > k.. We also have that
(XFye ;€ H and (X — X,,)%°, € H, which means that (X,,)%, € H. This gives us
that (X%, — (X,)%,, when k — oo, in H.

n=0>»

Now for the final part we define f/; as the space of functions, such that if f,, € L3,
then xy - -2, f, = f, € L. We also denote

| full g

:/ / |fu(tey o tn, @1y o )22 - - 22
(0,T]xR (0,T]xR
X dA@V)(ty,z1) - d(A Q) (tn, ,)

:/ / |fn(t1a"'7tn7‘r17”'7'x”)
(0,T)xR (0, T1xR
=[fallzys

2dA @ v)(ty, z1) - - dA @ V) (tn, Tn)

_ which means that @& I, (LY) = 69,20:01:”(133). We also have that jn(1E1><~~~><En) =
N(E)---N(E,) = (N(E)) — ¢1)- - (N(E,) — ¢,) with ¢; == EN(E;). This shows
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that fn(l Eix--xE,) 18 a linear combination of terms Y € P, where P is as in Lemma
4.8. The proof is completed by showing that P C @&9° 1,,(L}) with an induction over
n.

For n = 1 we see that I,(1g,) = N(E,) = N(F)) — ¢; which gives us that
N(Ey) € @, L,(L3). Next we assume that N (E})--- N(En_1) € @1, (L}) for n—
1, with n > 2, as an induction hypothesis. Also I,(1p,x..xg,) = N(E1)---N(E,) =
(N(Ey)—c1)- -+ (N(En)—cn) = N(Ey) --- N(E,)+C, where C'is a linear combination
of terms Y = N(E;,)---N(E;;) € P with j =1,...,n — 1 and 4, € {1,2,...,n}, with
i1, ..., 9; being pair-wise different. When we apply the induction hypothesis to this we
get that C' € @ ,I,(L}), and since I,,(1g,x..xi,) € ®>oI.(L}), we also get that
N(E,)---N(E,) € ®,I,(L}). This means that P C @2 ,I,(L%) which completes
the proof.

5. General orthogonal decomposition of the Lévy-Ito space in terms of an
orthonormal basis

In this section we examine another orthogonal decomposition for the Lévy-Ito
space. We will derive this decomposition, which will be more similar to the orthogo-
nal decomposition from Section 3, using It6’s decomposition from Theorem 4.6.

First we note that we have a change of setting in this section, where we are oper-
ating on a finite time interval ¢ € [0, 1] and otherwise use the notation from Section
4.1. In this section we also only consider functions of the form F = h(X;) € Lo(F¥)
while constructing the orthogonal decomposition. Now we prove the following lemma.

LEMMA 5.1. The space Ly(R, B(R), 1) is separable.

Proof. We recall that a space is called separable if it contains a dense, countable sub-
set. Every open set G C R can be represented as a countable union of open intervals
of the form (a,b), for a,b € Q. This means that the countable set

G ={GCR:G=U"(a;,b;), where a;,b; € Q for all i € {1,2,...,n}}

is a dense subset of the family of all open sets of R. This means that, for any open
B C R and € > 0, one has a set G € G for which u(B — G) < e. Now we get that

S={) ailg, :Gi€G,a; €Q neN}C LyR, p)
=1

is countable. Next we note that the measure p is outer regular.

Since any Borel function f : R — R, with [;|f|*du < oo, can be split into
negative- and non-negative parts we can assume for the following part of our proof
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that f > 0. From the Proposition 2.31 we get that there exists a series of step func-
tions (hy,)nen such that

0<h,— fonR.

Since f and h,, n € N, are measurable, we can modify each
h, = Zfinl Oéz(n)X A

where K, € N, a§”), - oz,(gn) € R and A§”), - Al ¢ B(R), into
fn = Zanl 0‘( )XA N\D{™ + Zanl 5z(n)XDI(">7

where D\ = {z € A" : h,(z) > f(z)} and 6" = inf__ o f(z). This means

that 0 < f,(x ) < f(x), for all x € R. Now by Dominated Convergence ([7], Theorem
6.5.2, page 89) we have that

limy, o0 fR |fn - f|2d,u = 07

which is well defined since

|fo = FI2 <201 ful? 4+ | f1?) < 4IfI? € Li(R, ).

Now we recall that f,, are step functions for all n € N, so they can be represented
in the form f, = Zl]inl Bilp,. Also since u is outer regular there exists for every e > 0
an open C} D B; such that

w(CE\ Br) < 237

We combine this with the fact that every open set can be approximated as a
countable union of open intervals to get a Gj € G for which G} C C} and

G\ GY) < 5

Now all of this gives us a ¢, = Zfi"l Yilas € S, where ; is chosen such that
81 — | < 5, so that

Ny, 9
/|fn gn*dp = /‘Zﬁlle Ml du</(2|ﬁ1131—%10;> du
R R =1
Nn 2
S/ (ZW[HlBl—lG; + |Les /Bl—%|) dj.
R =1
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Now with M,, = max;—1__n, |5 we get that

-----

2 - 2
/|fn_gn| dp S/ <Z|5z||131—107 + |Lag 51—71|) dp
R R =1
N, )
S/ (ZMnHBz_le + [ Bz—%|> dp
R =1
N, )
g/(wZMnuBl—lG;) dy
R =1

Vi

Nn N’n
:62—|—2€/<ZM”|1BZ—1GZE )dﬂ+/(zMn|1Bl_1G§
R =1 R =1

2
i) = € + 2eM,e + M2

<e? 4 2eM,e + be (N”N

This in turn implies that S is dense in Ly(R, p).
O

Next we recall that a Hilbert space is separable if and only if there exists a count-
able orthonormal basis. When we equip % = Lo(R, B(R), 1) with the inner product
(f,q)w = fR fgdu, for f g € F, we get a Hilbert space. This with the fact that
Ly(R, B(R), 1) is separable gives us that there exists a countable orthonormal basis

(Dj)je-

Let f, € Lo(R", p") and F' = g(X;) € La(€2), where (X¢)sepo,1) is the Lévy pro-
cess, which gives us ¢ € Lo(R,Px,) and E|g(X;)]> < oo. Because of [2] (page
8615) we can let f,((t1,21), ..., (tn,xn)) = fulz1,...,2,). We also assume that f,

is symmetric. This means that g(X1) = > 07 L,(fo (21, ...,xn)lf%’fu). We also note
that (D;, ® --- ® D, )(z1,...,x,) = Dj (z1)---Dj, (x,), where ji,....,5, € J and
(Dj, ® -+~ @D, )j,...ines is a countable orthonormal basis of Ly(R™, u™). We also set

Qjy e = fRn(anj1 -+ D; )dp™(x1, ..., z,). Now we can formulate the decomposi-

.....

tion we want to prove in this section.

-----

THEOREM 5.2. For F = h(X;) € Ly(F*) we have an orthogonal decomposition
of the form

oo

F:EF+Z Z aj, jn[n(Dh@...@Djn@l%’fH)

.....

=EF+Y > Ry g da(Dy @@ Dy, @17,

n=1j1<..<jn€Jn
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where Kk;, ., 15 the number of different orderings of ji, ja, ..., n-

.....

Proof. Using the orthonormal basis we get that

Now we want to show that

(fnl%"l]) o > g dn(D;, ®---®Dj, ® 1Y),

..... = fen(FuDy - Dy ) (21, o).

Since f, are symmetric, we get for a permutation 7 € S,, that

G5, g = / (s, o 00) Dy (1) -+ Dy, (2) )™ 1, . )
= / (fn(a:,rﬂ(l), o l'ﬂfl(n))Djl(l‘ﬂ—fl(l)) . Djn(xﬂfl(n)))d,u”(xl, ey Tp)
_ / (Fa@1s oo 20) Dy, (11)) - Dy (- 0) ) A" (15 s 20)

= /n(fn(mla ) xn)Dj,r(U(QH) U Djﬁ(n) (xn))du”(xl, ,l’n)

which means that aj, ;. is symmetric.

We consider the case n = 1 and J = N. By using the finite additivity of I; we get
that

L
Zozjfl(Dj(X)l(o,l]) Lg—hmZoszl D ®1(0 1])

- L
i) —00

_L2 - hm[l(ZOz]D X 1(0 1])

L—oo =1
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From the fact that Z 1 0;D; = > D; = fiin Ly(R x (0,1], p ® A), we

]EJ
get that
Z%h i @ L)) = Li(filoa)-
jeJ
Now we investigate the case n € N. Here we assume that j; < ... < j, and

ki1 < ... <k, are different, i.e. there exists [ € {1, ,n} such that j; # k;. Now by ap-
plying the polarization formula, which states that ab = ;[(a+b)*—(a—b)*] for a,b € R,

and the isometry from Section 4, which gives us || ,,( fn)|| To(Fx) = =/n!| an%g, we get
for symmetric functions f,§ € Ly(R™, i) that

B (30) = 1B (1) + Ta@)? = [1a(F) = Ta()F]

1[ 1o+ 300 — Bl — .07

:_n, / / Fo + Ga)2dp" (21, .oy )
_/.../(fn—gn)Qdu”(xl,...,xn)]
n' / /fn+9n — Gn)dp™ (e, . 2
:Z'/R.../R4fngndun(x1,...,xn)
:n!/R.../angndm(xl,...,xn).

By using this property, we get that

Bln(Diy @+ ® Dy, @153 ) 1n(Dy @+ @ D, @153

:Efn<(Dj1®"'®D') ®1(01]>I ((Dk1®...®Dkn) ®1(Ol]>

=n! / o [(Da@ @Dy Dy @@ DA w1, )

—n'—— Z Z/ /D] W Diiy Prory = Dy A" (1, ey Tny),

" neST geSn
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in which

/ /DM +Dj_ Dy Di oy dp (2,0 H/DM Dy, d.

Here we note that when j.;y # k@), we have that fR D; o Dkamdu = 0. Since
j1 < ... < j, and k; < ... < k, are different we get that at least one factor in
[T, Jg Dy Dr, o dp is equal to 0. This gives us that

Bl (Dy @@ Dy, @ 153 ) (D @+ @ Dy, @133 ) = 0.

From here we get that

(fnl%nl]) n( Z (Dj1 R ® Djn ® 1%71])

(]1 ..... ]n)ejn
<[ Dy Dy ) (@) )
Rn
:]n< Z (D; ®---®Dj;, ® Lo 1])O‘J1 ----- ]n>
(]1 7777 ]Tb)eJn
= Z 1,(Dj, ® - ®Dj, ® 1((%711])0@1 ~~~~~ Jn
(]1 7777 jn)e‘]n
- Z H;jl ~~~~~ jnajl ~~~~~ ]n‘[n(D]l @@ 'D]n ® 1(0 1])

where k;, ;. is the number of different orderings.

.....

This decomposition together with Theorem 4.6 gives us that for F' € Ly(FX) we
have an orthogonal decomposition of the form

n=1 j1<...<jn€Jn
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6. Connections to compensated-covariation stable families of martingales

Di Tella and Engelbert show in their article [5], that a version of the chaotic repre-
sentation property, formulated using iterated integrals, applies on certain families of
square integrable martingales. They introduce the notion of compensated-covariation
stability of these families and use it as a requirement for the families they define the
CRP on. Their main theorem ([5], Theorem 5.8, page 20) is a more general result than
the chaotic representation property for the Teugels martingales, explored by Nualart
and Schoutens. After the proof of the main theorem, they use it to prove another
theorem focused on Lévy processes ([5], Theorem 6.8, page 25). This application has
a close resemblance to other decompositions explored in this thesis.

6.1. Compensated-covariation stable families. In this section, just like in the ar-
ticle of Di Tella and Engelbert, we are going to assume a finite time interval [0, T'] for
the square integrable martingales. We start by defining the compensated-covariation
process of square integrable martingales starting at zero X(®, X ¢ {X(®) o € A}:

x(@h) .— [X(a),X(B)] _ (X(O‘) X(6)>_

Y

Now we can define the compensated-covariation stability of a family of square
integrable martingales ([5], Definition 4.1, page 12).

DEFINITION 6.1. A family of square integrable martingales X = {X(®) o € A}
is called compensated-covariation stable given that for all o, 5 € A the compensated-
covariation process X () belongs to X.

We also note that for a, ..., a,, € A, with m > 0, the process X (@1-@m) ig defined
recursively by

X(al,...,am) — [X(al""’am_l),X(am)] . <X(a1""’am_1),X(am)>.

Also, if X is a compensated-covariation stable family, then X(@u-om) ¢ X for
every aq, ..., a, € A.

We define the family K for X = {X®) o € A} by

K= {thgai),ai e At e[0,T],i=1,..m;m> 2}.

=1
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Now we define what it means for the CRP to hold for a compensated-covariation
stable family ([5], Definition 3.6, page 8).

DEFINITION 6.2. The chaotic representation property (CRP) holds for a compen-
sated-covariation stable family X = {X(® «a € A} on the Hilbert space L*(Q, F,P)
if the linear space of terminal variables of iterated integrals from the space of iterated
integrals generated by X is equal to L*(Q2, F,P).

Now we are prepared to formulate the main result of Di Tella and Engelbert ([5],
Theorem 5.8, page 20):

THEOREM 6.3. Let X = {X(® «a € A} be a compensated-covariation stable family

of square integrable martingales. If (X®, X)) is deterministic for every a, 3 € A
and the family K is a total family in L*(Q), FX,P), then the CRP holds for X.

6.2. Application on Lévy processes. We apply Theorem 6.3 on Lévy processes to
see the connection between this theorem and the other decompositions introduced in
this thesis.

From the characteristics of X, given by the Lévy-Ito decomposition, we derive a
measure

) = 0'25() + v,

where 9§y denotes the Dirac measure in the origin. Now we can introduce the
decomposition for Lévy processes derived from Theorem 6.3 ([5], Theorem 6.8, page
25) using martingales (X1, ..., X)) n > 1, introduced in [5] ((39), page 22).

THEOREM 6.4. Let X be a Lévy process with the characteristics (8,02 v) and

Z = {fu,n > 1} be a complete orthogonal system in L*(u). Then the associated fam-
ily X = X1 has the CRP on L*(Q2, FX,P) and the following decomposition holds:

QNP =REPPH B Sulfi -t

n=1 (j1,...,jn) EN"

where S, (fi,, ..., fj,) denotes the linear space of n-fold iterated integral for fi, ..., fn, €
T, with respect to (XU, ..., X)) n>1.
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