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ABSTRACT:	N-Trifluoroacetylated	(N-TFA)	sulfoximines	react	with	1-trifluoromethyl	styrenes	in	a	one-pot	domino	reaction	
to	give	fluorinated	5,6-dihydro-1,2-thiazine	1-oxides	in	good	to	high	yields.	The	process	involves	three	sequential	reaction	
steps	which	can	be	characterized	as:	First,	nucleophilic	allylic	substitution	(SN2'),	second,	hydrolysis,	and	third,	intramolecular	
nucleophilic	vinylic	substitution	(SNV).	The	products	can	further	be	modified	by	defluorination.	The	molecular	structure	of	a	
resulting	product	was	confirmed	by	X-ray	crystallographic	analysis.	

Sulfoximines	play	an	important	role	in	medicinal	and	crop	
protection	chemistry.1	With	the	goal	to	expand	their	struc-
tural	diversity,	we	started	a	program	on	incorporating	sul-
foximidoyl	 groups	 into	 heterocyclic	 scaffolds	 resulting	 in	
the	introduction	of	a	range	of	new	protocols	for	the	prepa-
ration	of	heterocycles	such	as	benzothiazines,2	benzo[c]iso-
thiazole	2-oxides,3	and	several	other	related	compounds.4	
Recently,	the	construction	of	fluorine-containing	heterocy-
cles	by	double	defluorinations	of	1-trifluoroalkenes	has	be-
come	a	popular	research	topic.5-8	To	achieve	such	transfor-
mations,	 base-mediated,5	 transition	metal-catalyzed,6	 and	
photocatalytic	 reactions7	 as	well	 as	 combinations	 thereof	
have	been	developed.8	Very	prominent	roles	play	base-me-
diated	heterocycle	 formations,	which	 typically	 involve	 se-
quential	SN2ʹ-	and	SNV-type	reactions.		
In	previous	work,	we	observed	site-selective	 couplings	of	
sulfoximines	with	1-trifluoromethyl	styrenes	to	yield	either	
N-	or	C-gem-difluoroalkenylated	products	depending	on	the	
N-substituent	 of	 the	 starting	 material.9	 With	 simple	 NH-
derivatives,	N-difluoroalkenylations	 occurred,	whereas	N-
protected	compounds	gave	(double)	C-functionalized	prod-
ucts	(Scheme	1,	top).	While	screening	more	substrate	com-
binations,	we	observed	an	unusual	behavior	of	sulfoximines	
with	 N-trifluoroacetyl	 (N-TFA)	 substituents.	 Those	 com-
pounds	led	to	significant	amounts	of	unexpected	heterocy-
cles	(Scheme	1,	bottom),	which	resulted	from	a	three-step	
reaction	 sequence	 involving	 an	 initial	 nucleophilic	 allylic	
substitution	(SN2')	at	the	carbon	site,	followed	by	a	hydro-
lytic	cleavage	of	the	N-trifluoroacetyl	group,	and	a	termina-
tion	by	an	intramolecular	nucleophilic	vinylic	substitution	
(SNV)	via	the	sulfoximine	nitrogen.10	The	optimization	of	the	
process	 and	 the	 preparative	 opportunities	 are	 described	
here.	
For	the	initial	investigation	of	the	process,	N-TFA	S-isopro-
pyl	S-phenyl	sulfoximine	(1a)	was	selected	a	sulfur	compo-
nent.	Reacting	it	with	1-trifluoromethyl	styrene	(2a)	under	
the	previously	optimized	conditions9	with	NaOH	as	base	in	
DMSO	 gave	 5,6-dihydro-1,2-thiazine	 1-oxide	 7aa	 in	 38%	
yield	(as	determined	by	1H	NMR	spectroscopy	with	mesity-
lene	as	internal	standard;	Table	1,	entry	1).	In	addition,			

Scheme	1.	Defluorination	of	Trifluoromethyl	Styrenes	
with	Sulfoximines	

	
 

N-gem-difluoroalkenylated	product	4	was	formed	suggest-
ing	that	a	hydrolytic	cleavage	of	the	TFA	group	had	occurred,	
and	 that	 in	 a	 subsequent	 step	 the	 free	NH	 (or	 its	 anionic	
form)	had	reacted	with	2a	following	an	SN2ʹ	pathway.	This	
N-TFA	 cleavage	was	 confirmed	 by	 reacting	1a	 in	 the	 ab-
sence	of	2a,	which	gave	NH-sulfoximine	3	in	99%	yield	(Ta-
ble	1,	entry	2).	Using	2	equiv	of	NaH	instead	of	NaOH	the	
reaction	of	1a	and	2a	 led	to	a	completely	different	result.	
Now,	 a	 high	 crude	 yield	 (92%)	 was	 obtained,	 and	 three	
products	(5aa,	6	and	7aa)	were	identified	in	yields	of	10%,	
62%,	and	20%	yield,	respectively	(Table	1,	entry	3).	Increas-
ing	the	amount	of	NaH	from	2	equiv	to	3	equiv	shifted	the	
reaction	outcome	to	an	exclusive	 formation	of	7aa,	which	
was	now	detected	in	a	yield	of	93%.	Isolating	the	product	by	
column	 chromatography	gave	7aa	 in	92%	yield	 (Table	1,	
entry	4).	Exchanging	DMSO	by	DMF	as	solvent	gave	7aa	pre-
dominantly	as	well,	but	the	yield	was	only	73%	(Table	1,			
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Table	1.	Optimization	of	the	Reaction	Conditionsa	

	
entry	 R	 base	 solvent	 3	(%)b	 4	(%)b	 5	(%)b	 6	(%)b	 7aa	(%)b	
1	 TFA	(1a)	 NaOH	 DMSO	 0	 33	 0	 0	 38	
2c	 TFA	(1a)	 NaH	 DMSO	 99	 0	 0	 0	 0	
3	 TFA	(1a)	 NaH	 DMSO	 0	 0	 10	(5aa)	 62	 20	
4d	 TFA	(1a)	 NaH	 DMSO	 0	 0	 0	 0	 93	(92)	
5	 TFA	(1a)	 NaH	 DMF	 0	 0	 4	 4	 73	
6	 TFA	(1a)	 NaH	 THF	 95	 0	 0	 0	 2	
7	 Acetyl	(1b)	 NaH	 DMSO	 0	 0	 38	(5ba)	 0	 0	
8	 Pivaloyl	(1c)	 NaH	 DMSO	 0	 0	 35	(5ca)	 0	 0	
9	 Tosyl	(1d)	 NaH	 DMSO	 0	 0	 65	(5da)	 0	 0	
10	
11	

Boc	(1e)	
H	(3)	

NaH	
NaH	

DMSO	
DMSO	

0	
0	

0	
57	

41	(5ea)	
0	

0	
0	

0	
0	

aReaction	conditions:	Use	of	0.2	mmol	of	1,	0.2	mmol	of	2a,	and	0.4	mmol	of	base.	bYields	as	determined	by	1H	NMR	analysis	
of	the	crude	mixture	using	mesitylene	as	internal	standard.	The	yield	of	7aa	isolated	by	column	chromatography	was	shown	
in	parentheses	(entry	3).	cWithout	2a.	dUse	of	0.6	mmol	of	NaH.	
 

entry	5).	In	THF,	95%	of	hydrolysis	product	3	was	detected		
Table	1,	 entry	6).	As	assumed	 from	our	previous	 results,9	
sulfoximines	with	N-groups	other	 than	TFA	behaved	very	
differently,	and	with	the	combination	of	2	equiv	of	NaH	in	
DMSO	 only	 the	 corresponding	 C-gem-difluoroalkenylated	
products	5	were	detected	 (Table	1,	 entries	7-10).	 In	 each	
case,	the	N–X	fragment	remained	intact,	and	the	yields	var-
ied	between	38%	for	5ba	with	an	N-acetyl	group	and	65%	
for	N-tosylat	5da.	 In	none	of	 these	reactions,	was	 the	 for-
mation	of	7aa	observed.	For	NH-sulfoximine	3,	the	reaction	
afforded	 N-difluoroalkenylated	 product	 4	 in	 57%	 yield.	
Thus	 under	 these	 conditions,	4	was	 not	 deprotonated	 af-
fording	a	regioisomer	of	7aa	(Table	1,	entry	11).	Thus,	the	
optimized	reaction	conditions	for	the	preparation	of	5,6-di-
hydro-1,2-thiazine	1-oxide	7aa	involved	stirring	of	equimo-
lar	amounts	of	1a	and	2a	with	3	equiv	of	NaH	in	DMSO	at	
room	temperature	for	12	h.	
Under	 the	 optimized	 conditions,	 the	 substrate	 scope	was	
evaluated.	First,	a	series	of	N-TFA	sulfoximines	were	reacted	
with	1-trifluoromethyl	styrene	(2a).	The	results	are	shown	
in	Scheme	2.	S-Aryl-S-isopropyl	 sulfoximines	with	various	
substituents	on	the	S-aryl	reacted	smoothly	leading	to	prod-
ucts	7fa-ka	in	yields	between	62%	and	94%.	Neither	elec-
tronic	 nor	 steric	 effects	 induced	 by	 the	 substituents	 ap-
peared	to	significantly	impact	the	reaction	outcome.	Apply-
ing	S-isopropyl-S-2-thienyl	sulfoximine	(1l)	in	the	reaction	
with	2a	gave	7la	in	56%	yield.	From	S-cyclopentyl-S-phenyl	
derivative	1m,	 5,6-dihydro-1,2-thiazine	 1-oxide	7ma	was	
obtained	 in	 44%	 yield.	 Until	 this	 stage,	 only	 S-aryl	 sul-
foximines	 with	 branched	 S-alkyl	 groups	 (i.	 e.	 S-isopropyl	
and	S-cyclopentyl)	groups	had	been	tested.	Using	analogous	
substrates	with	linear	S-alkyl	substituents	altered	the		

Scheme	2.	Substrate	Scope:	N–TFA	Sulfoximinesa	

	
aReaction	conditions:	1	(0.2	mmol),	2a	(0.2	mmol),	NaH	(0.6	
mmol).	The	yields	refer	to	the	amounts	of	products	isolated	
by	 column	 chromatography.	 	 bIn	 parentheses,	 the	 yield	 of	
7aa	for	a	reaction	on	a	1	mmol	scale.	cUse	of	0.4	mmol	of	2a	
and	0.8	mmol	of	NaH.	dUse	of	0.6	mmol	of	2a	and	1.0	mmol	
of	NaH.	
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reaction	outcome.	Thus,	in	reactions	with	S-ethyl	and	S-me-
thyl	derivatives	1n	and	1o	(in	combination	with	an	excess	
of	both	2a	and	NaH)	double	and	even	triple	alkenylations	
occurred	and	subsequent	cyclizations	 led	to	products	7na	
and	7oa	in	55%	and	63%	yield,	respectively.	Interestingly,	
the	formation	of	7na	was	highly	stereoselective	providing	
the	product	with	>	20:1	dr.	Performing	the	reaction	between	
1a	and	2a	on	a	1	mmol	scale,	gave	7aa	in	76%	yield.	
Next,	 the	 behavior	 of	 other	 1-aryl-substituted	 1-trifluoro-
methylalkenes	 2	 was	 studied.	 S-Isopropyl-S-phenyl	 sul-
foximine	(1a)	was	chosen	as	the	reaction	partner,	and	the	
results	are	summarized	in	Scheme	3.	Various	substituents	
including	alkyl,	halo	and	heteroatomic	groups	were	 toler-
ated	on	the	1-aryl	substituent	of	2.	The	yields	of	the	corre-
sponding	 products	7ab-ao	 ranged	 from	 57%	 (for	 3-MeS-
containing	7aj)	to	91%	(for	3-Me2N-substituted	7ak).	Posi-
tional	 variations	 (para/meta/ortho)	 had	 no	 apparent	 im-
pact	as	illustrated	by	the	reactions	of	1-tolyl-substituted	1-
trifluoromethylalkenes	 leading	 to	 7ab	 (para-Me),	 7ah	
(meta-Me),	and	7am	(ortho-Me)	in	yields	of	79%,	76%,	and	
81%,	 respectively.	 Also	 1-hetaryl-substituted	 1-trifluoro-
methylalkenes	2p	and	2q	reacted	well	with	1a	affording	the	
corresponding	 3-pyridyl-	 and	 3-benzothienyl-containing	
products	7ap	and	7aq	in	78%	and	96%	yield,	respectively.	
 

Scheme	3.	Substrate	Scope:	1-Trifluoromethylalkenesa	

	
aReaction	conditions:	1a	(0.2	mmol),	2	(0.2	mmol),	NaH	(0.6	
mmol).	The	yields	refer	to	the	amounts	of	products	isolated	
by	column	chromatography.	
 

An	interesting	structural	modification	was	observed	when	
product	7ag	was	kept	in	(wet)	chloroform	for	48	h	(Scheme	
4).	Under	those	conditions,	hydrolysis	occurred	leading	to	
5,6-dihydro-1l6,2-thiazin-3(4H)-one	 1-oxide	 8	 (in	 87%	
yield	with	a	dr	of	18:1	after	isolation	by	filtration).	X-ray	dif-
fraction	analysis	revealed	the	solid-state	structure	of	8	and	
confirmed	 its	 assumed	 three-dimensional	 arrangement	
with	a	clear	heterocyclic	"flatland"	deviation.11	

Scheme	4.	Hydrolysis	of	7ag	and	the	X-ray	Crystal	Struc-
ture	of	8	

	

	
 

In	 summary,	 by	 reacting	 N-TFA-substituted	 sulfoximines	
with	 1-aryl-substituted	 1-trifluoromethylalkenes	 we	 ob-
tained	mono-fluorinated	5,6-dihydro-1,2-thiazine	1-oxides	
in	good	to	high	yields.	The	product	 formations	proceed	in	
one	pot	by	a	reaction	sequence	involving	two	substitutions	
and	an	intermediate	hydrolysis	(SN2',	hydrolysis,	SNV).	The	
substrate	range	is	broad	and	the	substitution	tolerance	high.	
Product	 hydrolysis	 led	 to	 new	 defluorinated	 heterocycle,	
which	was	characterized	by	X-ray	crystallographic	analysis.	
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