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ABSTRACT

Rautiainen, Ilkka
Prediction methods for assessing the development of individual health status
Jyväskylä: University of Jyväskylä, 2024, 84 p. (+included articles)

There is growing interest in the application of artificial intelligence (AI) and ma-
chine learning in health-related tasks. Improved data utilization in health ap-
plications offers, in theory, multiple benefits. AI’s evolution in health foresees it
assisting and, in limited instances, replacing human judgment as well as enabling
a shift from reactive treatments to proactive prevention. One of the potential tar-
gets concerns individual responses, making it possible to enhance personalized
treatments. Improved preventive strategies targeting health issues not only re-
duce individual health risks but can also cut down the cost to society associated
with medical care and productivity loss.

Health data’s complexity, stemming from its incompleteness, variable qual-
ity, and diversity, poses obstacles in applying new methods. These challenges
escalate during global data collection, hindered by diverse standards and prac-
tices.

This dissertation examines the potential of predictive modeling methods in
different health-related applications, utilizing Finnish data from multiple sources.
It includes three published articles and one manuscript, grouped into distinct use
cases.

The first use case revolves around predicting obesity and overweight using
childhood data. It consists of two articles, the Article I reviewing existing research
on the field and the Article II evaluating the predictive capabilities of Finnish
childhood growth data by applying various predictive modeling methods and
contexts, benchmarked against prior studies.

The second use case in Article III focuses on predicting the development of
20-meter shuttle run test results (20MSRT) in adolescents. It is a unique study
assessing the effectiveness of random forest in predicting 20MSRT development
using an extensive dataset with diverse variables, including an exploration of the
significance of individual variables, highlighting the need for a holistic view on
health.

The third use case in Article IV describes a novel methodology for individ-
ual health assessment by creating a robust personal health index that addresses
prevalent issues in structured health data, establishing a foundation to enhance
various aspects of the rehabilitation process and beyond. The index enables a
more holistic view of an individual’s health status.

Keywords: predictive modeling, machine learning, health



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Rautiainen, Ilkka
Ennustemenetelmät yksilöllisen terveydentilan kehityksen arvioimiseen
Jyväskylä: University of Jyväskylä, 2024, 84 s. (+artikkelit)

Tekoälyn ja koneoppimisen soveltaminen terveyteen liittyvissä tehtävissä on he-
rättänyt paljon kiinnostusta. Edistyneempi aineistojen hyödyntäminen terveys-
sovelluksissa tarjoaa teoriassa monia etuja. Menetelmien kehittyminen mahdol-
listaa ihmisarvioinnin avustamisen tai jopa sen korvaamisen. Potentiaalia on myös
siirtymisessä ongelmien reaktiivisesta hoidosta ennaltaehkäisyyn. Eräs mahdolli-
suus on keskittyä ns. yksilölliseen vasteeseen, mikä mahdollistaa mm. yksilöllis-
ten hoitojen tehostamisen. Sen lisäksi, että tehostetut ennaltaehkäisevät strategiat
vähentävät ihmisten terveysriskejä, ne voivat myös vähentää terveydenhuoltoon
ja tuottavuuden menetyksiin liittyviä yhteiskunnan kustannuksia.

Terveysaineistojen monimutkaisuus, joka juontuu niiden puutteellisuudes-
ta, vaihtelevasta laadusta ja monimuotoisuudesta, asettaa rajoitteita menetelmien
soveltamiselle. Nämä haasteet kärjistyvät kun aineistoja kerätään ympäri maail-
man, sillä eri maissa on käytössä kirjavia standardeja ja käytäntöjä.

Väitöskirja tarkastelee koneoppimismenetelmien potentiaalia erilaisissa ter-
veyteen liittyvissä sovelluksissa hyödyntämällä suomalaista dataa useista läh-
teistä. Se koostuu kolmesta julkaistusta artikkelista ja yhdestä käsikirjoituksesta,
jotka on jaoteltu erillisiin käyttötapauksiin.

Ensimmäinen käyttötapaus keskittyy liikalihavuuden ja ylipainon ennusta-
miseen lapsuudenaikaisen aineiston avulla. Siihen kuuluu kaksi artikkelia. Ar-
tikkeli I käy läpi alan tutkimusta ja Artikkeli II arvioi suomalaisen lapsuuden
kasvudatan ennustemahdollisuuksia soveltamalla erilaisia ennustemallinnuksen
menetelmiä ja asetelmia sekä vertailee tuloksia aiempiin tutkimuksiin.

Toinen käyttötapaus Artikkelissa III keskittyy kardiorespiratorisen kunnon
kehittymisen ennustamiseen nuorilla. Kyseessä on harvinaislaatuinen tutkimus,
joka arvioi satunnaismetsäluokittelijan tehokkuutta ennustamisessa käyttäen laa-
jaa aineistoa monipuolisilla muuttujilla. Myös yksittäisten muuttujien merkityk-
siä tutkitaan. Tulokset korostavat kokonaisvaltaisen terveysnäkemyksen tarvetta.

Kolmannessa käyttötapauksessa Artikkelissa IV luodaan uusi menetelmä
yksilöllisen terveyden arvioimiseksi luomalla henkilökohtainen terveysindeksi.
Yleiset rakenteisten terveysaineistojen ongelmat on otettu huomioon. Kuvattu
menetelmä luo pohjan eri osa-alueiden tehostamiseksi kuntoutusprosessissa ja
sen ulkopuolella. Indeksi mahdollistaa kokonaisvaltaisemman yleiskuvan saa-
misen ihmisen terveydentilasta.

Avainsanat: ennustusmenetelmät, koneoppiminen, terveys
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1 INTRODUCTION

This thesis delves into the application of predictive modeling methods to health
data, along with the introduction of a novel approach for evaluating health. Each
of the three case studies places an emphasis on individual health, providing in-
sights into personalized healthcare strategies.

1.1 Research background

The utilization of existing health data can be significantly optimized. Mooney
and Pejaver (2018) highlighted that the diverse array of big data in public health
can unveil insights into questions that were once beyond our reach. This influx
of data opens the door to exploring and validating questions that may not have
previously been contemplated (Dhar 2013). Moreover, such novel methodologies
pave the way for the generation of new hypotheses (Ludwig and Mullainathan
2023).

In the foreseeable future, artificial intelligence (AI) has the potential to as-
sist physicians in making better clinical decisions and, in some limited cases, even
replace human judgment (Jiang et al. 2017). These and other advancements in
technology have the potential to move health care more from the reactive treat-
ment of already observed health issues to a more proactive approach that aims to
prevent problems even before they emerge (Schiavone and Ferretti 2021; Wald-
man and Terzic 2019). One potential area would be to enhance personalized
treatment by using methods in machine learning (ML) and predictive modeling
(Alyass, Turcotte, and Meyre 2015; Iniesta, Stahl, and McGuffin 2016). In essence,
ML is recognized as a specialized branch within the broader field of AI (Alpaydın
2014). On the other hand, the concept of predictive modeling, which is discussed
later, is characterized by a more precise and narrowly tailored definition.

A significant share of social welfare and health-care expenditure is incurred
by two demographics—namely small children and the elderly (Hujanen et al.
2008). Elevating the success rate of interventions among these groups could not
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only expedite recovery and preempt future complications but also yield societal
benefits by curtailing overall costs.

For instance, Reini and Honkatukia (2016) discovered that enhancing early
detection of type 2 diabetes could contribute a two billion euro boost to Finland’s
gross domestic product by reducing sickness-related absences. Another example
of a field that might benefit from new preventive strategies is overweight and
obesity prevention. Obesity’s correlation with a spectrum of detrimental health
outcomes, including cardiovascular diseases, type 2 diabetes, and cancer, is well-
documented (Shrestha et al. 2016). Additionally, the economic implications are
considerable, with obese individuals incurring higher health-care costs and ex-
hibiting more absences from work and reduced productivity (Kleinman et al.
2014).

This thesis primarily addresses the challenge of prediction, with the insights
derived being applicable in both prevention and rehabilitation, and potentially
further. Foremost, it is crucial to establish methodologies for the early identifi-
cation of individuals at risk of impending health complications (Ruohonen et al.
2018). Such proactive detection not only facilitates timely interventions but also
yields considerable economic advantages, as evidenced by the work of Reini and
Honkatukia (2016).

Conversely, when a health condition is already present, the rehabilitation
process must be expedited and optimized for efficiency. Rehabilitation encom-
passes a variety of physical modalities and therapeutic exercises (Espregueira-
Mendes, Barbosa Pereira, and Monteiro 2011). Yet, as Filos et al. (2017) pointed
out, there has been a lack of focus on tailoring beneficial performance parameters
for exercises at a personalized level. They also concluded that predictive model-
ing can significantly enhance personalized exercise guidance, thereby streamlin-
ing rehabilitation.

Nonetheless, the direct application of the vast array of health-related data
is fraught with challenges, including issues of incompleteness, data quality, and
heterogeneity (Dinov 2016; Ghassemi et al. 2020; Viceconti, Hunter, and Hose
2015). Data heterogeneity, in particular, refers to data diversity, such as in data
types, file formats, encoding methods, and semantic discrepancies (L’Heureux
et al. 2017). These factors collectively impede the efficient harnessing of large
datasets for AI advancements (Krumholz 2014; L’Heureux et al. 2017).

These challenges are magnified further when considering the integration
of data collected on a global scale from disparate sources. The diversity in stan-
dards, practices, cultural norms, survey methodologies, and languages across na-
tions renders the global standardization of measurement and treatment protocols
a near-impossible endeavor.

Given the widespread availability of ML algorithms in programming li-
braries such as scikit-learn (Pedregosa et al. 2011), TensorFlow (Abadi et al. 2015),
Keras (Chollet et al. 2015), and Pytorch (Paszke et al. 2019), the primary focus of
and challenge in predictive modeling applications lie in the realm of data. The
preparation of data for each unique case remains a highly task-specific endeavor,
the full automation of which is inherently challenging (Brownlee 2020). As a
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result, progress in health data preparation techniques significantly contributes
to enhancing the efficacy of predictive modeling applications, offering valuable
steps toward more informed and accurate analyses in the field.

1.2 Principles of predictive modeling

The interrelated fields of ML, data mining, predictive analytics, and data science
are frequently mentioned in tandem. These disciplines often intersect, blurring
the lines that distinguish one from another. In this thesis, the focus is on predic-
tive modeling, an approach that encompasses the entire process from defining
objectives to designing studies and collecting data.

Breiman (2001b) and Shmueli (2010) discussed the distinctions between ex-
planatory and predictive types of statistical modeling. The term ”modeling” here
refers to the entire process, from setting goals to designing research protocols and
collecting data. Predictive modeling is further categorized based on the nature of
the response variable. Classification refers to predicting categorical responses,
while regression deals with continuous responses (Tan et al. 2013).

Consider x as a vector of input variables, also known as predictors. Na-
ture can be seen as associating these variables with outputs, or response vari-
ables, represented by y. This association can be viewed as a ”black box”, con-
taining unknown processes (Breiman 2001b; Callahan and Shah 2017). The goal
is to use x to predict y for each observation, a process called supervised learn-
ing (Hastie, Tibshirani, and Friedman 2009). In contrast, unsupervised learning
lacks known response variables for guidance (Hastie, Tibshirani, and Friedman
2009). Reinforcement learning is another category, where outputs are actions
aimed at achieving a goal efficiently, which is useful in applications such as robot
navigation and gaming (Alpaydın 2014).

Breiman (2001b) described how explanatory modeling aims to fill the black
box of the data generation process by constructing a model that best fits the given
data. Shmueli (2010) characterized explanatory modeling as the application of
statistical models to data for the purpose of testing causal hypotheses. In con-
trast, predictive modeling has been described as the application of a statistical
model or data mining algorithm to data with the aim of predicting new or fu-
ture observations (Shmueli 2010). This delineation between the two modeling
approaches is a crucial distinction in the field.

Breiman (2001b) and Shmueli (2010) contended that goodness-of-fit tests
and related techniques fall short in assessing the suitability of a model for pre-
dictive tasks. Breiman (2001b) further asserted that predictive modeling methods
are more capable in producing information about the structure of the relationship
between inputs and responses.

In this work, the predictive modeling approach is favored over explanatory
modeling because our primary goal is prediction, assessing how well current data
can be extrapolated to future events. Prediction inherently does not necessitate an
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understanding of the underlying processes; rather, it centers on pinpointing the
most effective strategies, such as determining the ideal treatment option (Bzdok,
Altman, and Krzywinski 2018). Consequently, there is no requirement for pre-
existing causal hypotheses regarding data variables’ interrelations. The data and
model serve as tools for uncovering potentially novel insights that warrant fur-
ther investigation. This approach of generating hypotheses through data-driven
predictive modeling holds the promise of uncovering new insights, since it is
predicated on fewer a priori assumptions about the subject matter (Oquendo et
al. 2012). Nonetheless, the expertise of domain specialists is essential for inter-
preting findings and identifying those meriting additional study. Clearly, pre-
dictive models developed in research must undergo thorough evaluation and
scrutiny by domain experts before they can be fully leveraged in practical ap-
plications (Khoury and Ioannidis 2014).

An additional advantage of predictive modeling is that it allows for a data-
driven approach to variable selection, meaning variables can be chosen for a
model using automated procedures. This also enables the consideration of a sig-
nificantly larger set of initial candidate variables. In contrast, explanatory model-
ing is inherently hypothesis-driven, and automated variable selection is generally
discouraged (Sainani 2014).

The predictive, data-driven approach to model building is not entirely free
from subjective decisions (Mooney and Pejaver 2018). Common pitfalls in predic-
tive modeling include issues with data preparation, validation problems such as
data leakage, applying the model to data not encountered during training, and
overfitting the model to the training data (Jauhiainen 2023; Kuhn and Johnson
2016).

Traditionally, health-care treatments have been prescribed based on their
average efficacy across certain populations, under the assumption that what works
for the majority will work for all (MacEachern and Forkert 2021; Tuena et al.
2020). However, individual responses to treatment can vary due to factors such
as genetics (Roden 2016). Precision medicine, also known as precision health,
challenges this one-size-fits-all approach by considering each person’s unique
characteristics (MacEachern and Forkert 2021; Tuena et al. 2020). An extension
of this concept is predictive precision medicine, which involves predicting an
individual’s disease trajectory and response to treatment using a combination of
biomarkers and personal data, including lifestyle and environmental factors (Tue-
na et al. 2020). Similarly, precision exercise medicine recognizes individual dif-
ferences in how people respond to various exercise doses (Ross et al. 2019).

1.3 Research questions

The following are main research questions of this thesis:

Q1: What is the potential of predictive modeling methods in the prediction of
obesity and overweight in children and adolescents?
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Q2: What is the potential of predictive modeling methods in predicting car-
diorespiratory fitness development in adolescents?

Q3: Considering the challenges in structured health data, how can the adoption
of the WHO’s International Classification of Functioning, Disability, and
Health (ICF) framework be utilized in the development of a comprehensive
personal health index, and what impact could this index have on health
assessments and the application of ML algorithms?

1.4 Thesis overview

This thesis centers on three distinct use cases. The initial use case delves into
the prediction of overweight and obesity, featuring a literature review (Article I)
and a case study focused on the body mass index (BMI) trajectories of Finnish
children (Article II). The second use case assesses the application of predictive
modeling to the progression of individual performance in the 20-meter shuttle
run test (20MSRT), a common field test for cardiorespiratory fitness (CRF), dur-
ing adolescence (Article III). The final use case is dedicated to devising a compre-
hensive personal health index within the context of rehabilitation (Article IV).

The structure of the thesis is as follows. Chapter 2 introduces key termi-
nology and techniques essential to predictive modeling. Chapter 3 elucidates the
specific prediction methods employed. Chapter 4 provides an overview of recent
implementations of predictive modeling in the health domain. Chapter 5 offers a
summary of the articles incorporated into the thesis. Finally, Chapter 6 contem-
plates the findings and discusses prospective implications of the research.



2 KEY TERMINOLOGY AND TECHNIQUES

This chapter discusses the key terminology and an array of techniques commonly
utilized in predictive modeling. Topics addressed include essential mathemati-
cal notations (Section 2.1), variable types (Section 2.2), performance metrics (Sec-
tion 2.3), data preparation procedures (Section 2.4), model selection and assess-
ment (Section 2.5), hyperparameter optimization (Section 2.6), and methods for
interpreting model predictions (Section 2.7).

2.1 Mathematical notations

A data matrix X, representing N observations and p variables, is formulated as:

X =


xT

1
xT

2
...

xT
N

 =


x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p

...
... . . . ...

xN,1 xN,2 · · · xN,p

 . (1)

Here, xi signifies a column vector and xT
i its transpose (a row of matrix X), while

each xi,j represents the scalar value for the ith observation’s jth variable. For exam-
ple, βTxi represents the dot product of vectors β and xi. Additionally, x:,j denotes
a vector with all values of the jth variable in a data sample X. Furthermore, vec-
tors are represented by bolded lowercase letters (e.g., x, λ, and β), while scalars
are denoted by regular lowercase letters (e.g., x and y).

Expanding on X, a dataset D = {xi, yi}N
i=1 includes the vectors illustrated in

Eq. 1, along with a corresponding outcome y for each observation. Furthermore,
the function exp(·) is equivalent to e(·), and the set of real numbers is denoted by
R.
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2.2 Variable types

Structured data is characterized by well-defined fields for each variable, which
include numeric and/or textual information (Kantardzic 2020). Although un-
structured data, such as video recordings and free-form medical reports, do exist
in the health data domain, they are not discussed here, since they do not feature
in the datasets used.

Variables in structured data fall into two primary categories—namely cate-
gorical and numeric. Categorical variables, also known as quantitative variables,
are subdivided into nominal and ordinal, as follows (Kantardzic 2020; Tan et al.
2013):

• Nominal variables are typically represented by words and lack a meaning-
ful order. Examples include diagnosed diseases or binary variables with
two possible outcomes (Kantardzic 2020; Tan et al. 2013).

• Ordinal variables, or ordered categorical variables, are akin to nominal
variables but possess a definable order. A common instance is a Likert scale
response ranging from 1 to 5 (Hastie, Tibshirani, and Friedman 2009; Kan-
tardzic 2020; Tan et al. 2013).

Numeric variables, also referred to as qualitative variables, are classified as either
interval scale or ratio scale, as follows:

• Interval scale variables have an arbitrary zero point, such as temperatures
in Celsius or calendar dates (Kantardzic 2020; Tan et al. 2013).

• Ratio scale variables feature an absolute zero point, with most numeric vari-
ables falling into this category, such as temperatures in Kelvin (Kantardzic
2020; Tan et al. 2013).

Additionally, variables are often described as discrete or continuous. Discrete
variables have a finite or countably infinite set of values and can be associated
with any of the four variable types mentioned (Kantardzic 2020; Tan et al. 2013).
An example is the number of laps in the 20MSRT, which is a discrete variable
on a ratio scale (Tomkinson et al. 2017). In contrast, continuous variables are
represented by real numbers (Kantardzic 2020; Tan et al. 2013).

2.3 Performance metrics

Evaluating the performance of various models is crucial for comparing and de-
termining their practical applicability. Positive cases are defined as instances be-
longing to the class of interest. For instance, in breast cancer diagnosis, a positive
case would be labeled ”malignant,” while a negative case would be ”benign.”
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True positives (TP) represent the count of positive cases accurately identified,
false positives (FP) denote positive cases incorrectly identified, true negatives
(TN) are negative cases accurately identified, and false negatives (FN) are neg-
ative cases incorrectly identified (Callahan and Shah 2017; Fawcett 2006). These
outcomes are typically organized into a confusion matrix (see Figure 1).
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6 116

FIGURE 1 The confusion matrix for binary classification, applied to breast cancer
data1using a k-nearest neighbors classifier (Pedregosa et al. 2011), illustrates
the outcomes of the classification process. Within this matrix, the 57 ma-
lignant cases that were accurately identified as malignant represent the true
positives, while the nine malignant cases that were mistakenly identified as
benign are the false positives. Conversely, the 116 benign cases that were
correctly classified as benign constitute the true negatives, and the six benign
cases that were erroneously classified as malignant are the false negatives.

From the outcomes of TP, FP, TN, and FN, several performance metrics can
be derived, with accuracy, sensitivity, and specificity being among the most
commonly utilized. They are defined as

accuracy =
TP + TN

TP + FP + TN + FN
, (2)

sensitivity =
TP

TP + FN
, (3)

specificity =
TN

TN + FP
. (4)

Accuracy (Eq. 2) represents the proportion of correctly classified observations.
However, this metric may present an overly optimistic view in cases of class im-
balance. For example, if only one percent of observations belong to the positive
class, classifying all observations as negative would result in 99% accuracy (Kan-
tardzic 2020). To obtain meaningful results for practical applications, additional
metrics are necessary to evaluate a model’s performance.

1 The breast cancer dataset (Wolberg et al. 1995) serves as a recurring example throughout
this thesis. Consisting of 569 samples, the dataset features 30 continuous variables derived
from digitized images of breast masses. Each sample is annotated with class information,
categorized as either malignant or benign.
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Sensitivity (Eq. 3) and specificity (Eq. 4) are particularly crucial in the med-
ical field. Sensitivity measures the likelihood of correctly predicting a positive
outcome when the true outcome is positive (Hastie, Tibshirani, and Friedman
2009), while specificity measures the likelihood of correctly predicting a negative
outcome when the true outcome is negative (Hastie, Tibshirani, and Friedman
2009). For instance, a model with 80% sensitivity and 60% specificity indicates
that it correctly predicts 80% of disease cases, but only 60% of non-disease cases
are accurately classified. Selecting the final model involves balancing these two
metrics, among others.

Three additional metrics often used are precision, negative predictive value
(NPV) and F-measure, defined as

precision =
TP

TP + FP
, (5)

NPV =
TN

TN + FN
, (6)

F-measure = 2 × precision × sensitivity
precision + sensitivity

. (7)

Precision (Eq. 5) assesses the ratio of true positive observations to all positive
predictions, while NPV (Eq. 6) measures the ratio of true negative observations
to all negative predictions. The F-measure (Eq. 7) computes the harmonic mean
of precision and sensitivity, effectively combining these two metrics (Zaki, Meira
Jr, and Meira 2014).

The balance between sensitivity and specificity is depicted in a receiver
operating characteristics (ROC) curve, which plots from point (0, 0) to point
(1, 1), as illustrated in Figure 2. Constructing an ROC curve requires a classi-
fier that provides continuous outputs, such as class prediction probabilities. The
curve is formed by sequentially calculating sensitivity and specificity for various
threshold values. The ROC curve’s efficacy is summarized by the area under
the ROC curve (AUC), R ∈ [0, 1], with a higher AUC signifying better perfor-
mance (Fawcett 2006). The AUC effectively merges sensitivity and specificity into
a single metric and, unlike accuracy, provides a more reliable measure of classi-
fier performance across both balanced and imbalanced datasets (Huang and Ling
2005).

While the AUC is a prevalent metric in research, critics (Chicco and Jur-
man 2023) have pointed out its tendency to yield overoptimistic results by not
accounting for precision and negative predictive value. They have suggested the
Matthews correlation coefficient (MCC) as an alternative for binary classifica-
tion. MCC only awards a high score within its range of R ∈ [−1, 1] if all four
confusion matrix metrics—sensitivity, specificity, precision, and NPV—are sub-
stantial (Chicco and Jurman 2023). It is defined as

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
. (8)
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FIGURE 2 A receiver operating characteristics curve for binary classification using
breast cancer data (Wolberg et al. 1995). At the point (0, 0), all observations
are classified as negative, resulting in a model sensitivity of 0%. Conversely,
the specificity is 100%, since no positive cases have been falsely identified as
negative. As the threshold is changed, the classifier begins to identify some
positive cases. Theoretically, the optimal operating point is (0, 1), indicat-
ing no misclassifications, but this is unachievable in practice. At this point,
the sensitivity and specificity reach their theoretical maximum values. The
optimal operating point is therefore as close as possible to point (0, 1). At
one such optimal point marked on the curve, the classifier achieves 93.9%
sensitivity and 94.2% specificity, with an area under the curve (AUC) of 0.98.
Random guesses would yield a straight line from (0, 0) to (1, 1), equating to
an AUC of 0.5. The example is adapted from documentation by Pedregosa
et al. (2011).

A data-driven approach can determine a risk threshold that minimizes in-
correct classifications, but this may not always be the most suitable threshold
in practice (Wynants et al. 2019). The selection of the final threshold should
weigh the benefits of correct classifications against the costs of incorrect ones,
especially in clinical settings (Wynants et al. 2019). One strategy involves mak-
ing use of domain-specific knowledge and individually determining the cost for
each classification type—TP, FP, TN, and FN—then minimizing the expected total
cost (Wynants et al. 2019).

The metrics above can also be extended for multi-class problems. One ap-
proach is to evaluate one class against all others. For example, in case of a three-
class problem, there would be three class-specific sensitivity metric values. The
first value is for sensitivity when class 1 is evaluated against classes 2 and 3, the
second is for sensitivity when class 2 is evaluated against classes 1 and 3, and
the third is for sensitivity when class 3 is evaluated against classes 1 and 2 (Zaki,
Meira Jr, and Meira 2014). An overall metric for the classifier can be calculated
by averaging these class-specific metrics (Zaki, Meira Jr, and Meira 2014). Alter-
natively, balanced metrics can be computed, with weightings derived from the
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frequency of each class in the dataset (Grandini, Bagli, and Visani 2020).
Statistical tests are valuable for assessing whether models produce system-

atically good metrics. The metrics derived from models may exhibit significant
random variation due to the division of data into training, testing, and valida-
tion sets as well as variations in the initial parameters of the models (Äyrämö,
Kärkkäinen, and Majava 2007). For example, a one-sample t-test can be employed
to determine whether the mean of multiple values, such as AUC values, signif-
icantly differs from a specified value, denoted as µ0. For instance, when testing
with multiple AUC values to determine whether the model is better than ran-
dom, µ0 would be set as 0.5. The null hypothesis, H0, posits that the mean from
the sample is equal to µ0, expressed as H0 : µ = µ0. In a right-tailed t-test, the
alternative hypothesis H1 is formulated such that the sample mean is greater than
the specified value, given by H1 : µ > µ0 (Milton and Arnold 1990). The t-ratio is
computed as

t =
µ − µ0

σ/
√

n
, (9)

where n represents the sample size. The next step is to determine whether to re-
ject the H0. The t-ratio follows a tn−1 distribution, where n − 1 is the degrees of
freedom. To make a decision, the calculated t-ratio is compared with critical val-
ues from the tn−1 distribution. If the calculated t-ratio falls into the critical region
(extreme tail of the distribution), the null hypothesis is rejected, suggesting that
the observed mean is significantly different from the specified value. The critical
values are determined based on the desired level of significance (denoted as α).
If the t-ratio is beyond the critical values, the null hypothesis is rejected (Milton
and Arnold 1990).

The two-sample t-test is useful for comparing two sets of samples, such
as metrics from two ML models, to determine which model is consistently bet-
ter. When multiple models need comparison, analysis of variance (ANOVA)
becomes a suitable choice. However, these tests assume normal distribution in
the data. When this assumption is inappropriate, nonparametric statistical tests,
which require no assumptions about the underlying distribution, can be applied.
Examples of nonparametric tests include the Wilcoxon signed-rank test, which
serves a purpose equivalent to the t-test, the Mann–Whitney U test for compar-
ing two population medians, and the Kruskal–Wallis test, practically a nonpara-
metric version of ANOVA (Milton and Arnold 1990; Moore, McCabe, and Craig
2009).

2.4 Preparing the data

In predictive modeling, data preparation, also known as preprocessing, is a cru-
cial step that typically continues alongside the prediction task. It is not a phase
that concludes prior to the commencement of predictions. However, certain data
cleaning activities, such as rectifying or discarding obviously incorrect values or
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variables with uniform values that offer no significant information, can be com-
pleted in advance. Common data preparation tasks include data transformation
and the handling of missing and/or imbalanced data.

Data transformation aims to standardize the scales across various variables,
rendering them directly comparable. Most predictive modeling methods require
data transformation prior to application. There are numerous approaches to data
transformation.

For nominal variables, one-hot encoding is a common transformation tech-
nique (Rodríguez et al. 2018). This process converts nominal values into binary
form. For instance, a nominal variable with three potential values—red, green,
and blue—is transformed by creating three binary variables. Each binary variable
corresponds to one color, answering the question, ”Is the color red/green/blue?”

A prevalent transformation for continuous data is z-score standardization,
where the transformed value of a variable, xi,j, is calculated as follows:

xi,j =
vi,j − µj

σj
, (10)

where vi,j represents the original value, µj is the mean of all values of the jth

variable, and σj is the standard deviation of the jth variable. In predictive mod-
eling, to prevent data leakage, it is crucial to avoid mixing training and testing
data during transformation. Transformations should be applied first to the train-
ing data, with the derived standardization parameters (µ, σ) used for subsequent
transformations (Kantardzic 2020). This precaution ensures that the testing data
remain independent and unbiased. For binary variables, Gelman and Hill (2006)
suggested using 2σ instead of σ as the denominator in Eq. 10.

Additional data preparation steps may include eliminating irrelevant vari-
ables and erroneous values, generating new variables, addressing missing data,
and data reduction (Kuhn and Johnson 2016).

Principal component analysis (PCA) is a popular data reduction technique
that projects the original variables onto a lower-dimensional space. It achieves
this by identifying orthogonal linear combinations of the original variables that
capture the majority of the variance. The resulting principal components (PCs)
represent the data in a condensed form, ordered by their ability to explain vari-
ance—that is, the first PC accounts for the most variance, followed by the second,
and so on (Kantardzic 2020; Zaki, Meira Jr, and Meira 2014). This property of PCA
is evident in the example provided in Section 3.2, Figure 7, where the variance
among observations is noticeably higher along the first PC.

Correlation metrics offer insights into relationships between variables in
data. They can aid in data preparation, allowing the identification of redundant
variables that carry similar information and can be removed. The Pearson corre-
lation coefficient, ρ ∈ [−1, 1], quantifies the relationship between two variables,
x:,1 and x:,2, in a data sample. It is defined as follows (Zaki, Meira Jr, and Meira
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2014):

ρ(x:,1, x:,2) =
∑N

i=1(xi,1 − µ1)(xi,2 − µ2)√
∑N

i=1(xi,1 − µ1)2 ∑N
i=1(xi,2 − µ2)2

. (11)

Here, µ1 and µ2 represent the mean values of the respective variables. The con-
tinuous correlation coefficient ρ denotes the strength and direction of a linear
relationship—that is, a high positive value signifies a positive correlation, a low
value indicates a negative correlation, and ρ = 0 represents independence be-
tween variables (Alpaydın 2014).

When conducting multiple statistical tests, such as correlation calculations,
employing the Bonferroni correction can help address the issue of chance find-
ings indicating significance. For instance, a conventional significance level α of
0.05 can be adjusted to a Bonferroni-corrected threshold αB by dividing α by the
number of tests (n) performed, as follows: αB = α/n. Subsequently, a significance
test is conducted by comparing the obtained p-value against the adjusted thresh-
old αB to determine the significance of the result (Alpaydın 2014; Zaki, Meira Jr,
and Meira 2014).

Missing data is a prevalent challenge in real-world datasets, including those
in the health sector. Fragmentation of health services often leads to incomplete
data due to the disparate collection and storage practices among various providers,
with different variables collected for distinct patient populations (Mirkes et al.
2016). This fragmentation complicates efforts to establish unified global stan-
dards.

A typical response to missing data is to exclude observations where it oc-
curs. However, this approach can introduce biases if the underlying missing data
mechanism is not carefully considered. The following three such mechanisms are
recognized (Van Buuren 2012):

• Missing completely at random (MCAR): The likelihood that missing data
is uniform across all observations, unrelated to the data itself.

• Missing at random (MAR): The probability that missing data is consistent
within specific groups, dependent on a known attribute.

• Missing not at random (MNAR): The probability that missing data varies
for unknown reasons.

Occasionally, the absence of data itself can contain information for the modeling
process (Kuhn and Johnson 2016). When neither deletion nor direct use of miss-
ing observations is viable, imputation is a strategy to estimate missing values.
The simplest imputation method is to replace missing values with the mean of
existing data, which skews the distribution and is generally discouraged (Van
Buuren 2012). More sophisticated techniques include regression (refer to Sec-
tion 3.1), k-nearest neighbors (kNN) (refer to Section 3.5), and random forest (RF)
(refer to Section 3.4) for missing data (Tang and Ishwaran 2017).

For longitudinal data, interpolation techniques can estimate values for miss-
ing time points, enabling comparisons between observations with data collected



28

at different times (Gnauck 2004). Simple interpolation methods include carry-
ing forward the last known observation or obtaining the value from the near-
est known neighbor (Gnauck 2004; Kuhn and Johnson 2016; Van Buuren 2012).
Linear interpolation involves drawing a straight line between two known obser-
vations, providing imputed values for the missing point or points in a straight-
forward manner (Gnauck 2004). More advanced methods introduce, for exam-
ple, polynomials to the interpolation functions and can also support multivariate
data (Gnauck 2004; Olver 2006).

An alternative to the aforementioned methods is multiple imputation, a
process involving three key steps (Ginkel et al. 2020). Initially, multiple complete
datasets are generated by imputing several values for each missing entry using
a statistical model. These datasets are then analyzed independently using stan-
dard procedures. Finally, the results from these analyses are combined into a
single statistical interpretation (Ginkel et al. 2020). Multiple imputation using
chained equations (MICE) is a common implementation of this approach (Slade
and Naylor 2020; Van Buuren 2012). MICE offers various options for the initial
statistical model, including RF (Slade and Naylor 2020). Despite its complexity,
multiple imputation provides advantages, such as incorporating the uncertainty
of imputed values into the method itself (Van Buuren 2012).

Imbalanced data is another common issue. In the case of binary data, this
imbalance occurs when the distribution of response variables is skewed, often
resulting in an overrepresentation of the majority class and a scarcity of observa-
tions for the minority class, which is typically of greater interest (Chawla et al.
2002). Such imbalances can compromise model performance, leading to metrics
that are not well-calibrated, such as high specificity paired with low sensitiv-
ity (Kuhn and Johnson 2016).

Adjusting the classification threshold is a straightforward method for ad-
dressing imbalanced data. The default threshold for binary classification is usu-
ally 0.5, meaning an observation is classified as malignant if its probability is
0.5 or higher. Lowering this threshold for the minority class can improve model
calibration. Optimal thresholds can be determined through ROC analysis (re-
fer to Section 2.3) (Kuhn and Johnson 2016) or by incorporating domain exper-
tise (Wynants et al. 2019).

For instance, as seen in Figure 1, a classifier’s most critical errors are FNs,
where malignant cases are incorrectly classified as benign. Some predictive mod-
eling techniques allow users to assign different costs to each type of classification
error, such as assigning a higher cost to FNs, which can be beneficial in imbal-
anced datasets (Kantardzic 2020).

Basic sampling methods, such as oversampling (duplicating observations
for the minority class) or undersampling (removing observations from the ma-
jority class), can also be used. However, oversampling can lead to overfitting
(refer to Section 2.5) (Kantardzic 2020), while undersampling may result in the
loss of valuable information (Kantardzic 2020).

The synthetic minority oversampling technique (SMOTE) (Chawla et al.
2002) addresses these issues by combining undersampling of the majority class
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with oversampling of the minority class, using the kNN algorithm (refer to Sec-
tion 3.5) to generate new synthetic observations. For datasets with mixed variable
types, SMOTE-NC (Chawla et al. 2002) and other variations (Rodríguez-Torres,
Carrasco-Ochoa, and Martínez-Trinidad 2021) have been developed to effectively
counteract class imbalance.

2.5 Model selection and assessment

In predictive modeling, accurately estimating a model’s predictive capability with
independent testing data is crucial (Bishop 2006; Hastie, Tibshirani, and Fried-
man 2009). Validation serves a dual purpose; it not only gauges a model’s per-
formance but also aids in selecting the most suitable model from a set of can-
didates (Kohavi 1995). Moreover, validation reveals the model’s generalization
ability—that is, its anticipated efficacy with novel data (Bishop 2006; Hastie, Tib-
shirani, and Friedman 2009). In contrast, explanatory modeling does not involve
validation with independent testing data, which may lead to an overestimation
of its predictive accuracy for new observations (Sainani 2014).

Model selection involves evaluating various candidate models to identify
the most effective one (Hastie, Tibshirani, and Friedman 2009). Additionally,
model assessment refers to estimating the performance of the optimal model on
unseen data (Hastie, Tibshirani, and Friedman 2009). In the context of health
applications, creating a universally generalizing model is often impractical due
to the multitude of patterns and local nuances influencing model development.
Nonetheless, such models can still hold clinical value. In such instances, models
may require retraining to adapt to local conditions (Futoma et al. 2020). Further-
more, a model demonstrating strong results may necessitate ongoing updates to
maintain its predictive power (Ghassemi et al. 2020). During model validation,
performance metrics represent a balance between competing objectives, such as
sensitivity and specificity.

Figure 3 depicts the relationship between model complexity and classifi-
cation performance, highlighting the critical juncture at which further training
does not improve generalization performance. When the MCC for the training
data reaches 1, the model becomes overfit to the training data without enhancing
its generalization capability. Instead, with visual inspection, there seems to be an
increase in variance and a subtle downward trend in generalization performance,
as reflected by the mean validation MCC.

Conversely, underfitting occurs in Figure 3 when the tree’s maximum depth
is set to 1 or 2. Another aspect of escalating model complexity is the initial high
bias and low variance of simple models. As complexity grows, bias decreases,
but variance increases (Hastie, Tibshirani, and Friedman 2009). To prevent over-
fitting, regularization techniques are employed. These methods impose penalties
on model complexity, resulting in simpler models with enhanced generalization
capabilities (Kuhn and Johnson 2016).
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FIGURE 3 As model complexity increases, a decline in the model’s generalization per-
formance is often observed (Hastie, Tibshirani, and Friedman 2009). In this
instance, a decision tree classifier (refer to Section 3.3) was employed to dis-
cern the two classes within the breast cancer data (Wolberg et al. 1995). This
example, adapted from the documentation by Pedregosa et al. (2011), show-
cases the relationship between model complexity and performance. The pri-
mary indicators, average validation Matthews correlation coefficient (MCC)
and average training MCC, represent the mean values from one hundred it-
erations of 10-fold cross-validation. These iterations are visually represented
as faint lines surrounding the average validation curve. The critical point
occurs when the tree’s maximum depth is set to three—here, the valida-
tion MCC peaks, indicating optimal generalization performance. Beyond
this depth, as complexity increases, the validation MCC no longer increases.
Conversely, the training MCC continues to ascend, ultimately reaching the
maximum value of one, signifying perfect training fit.

In a best case scenario, there are many data that can be utilized when train-
ing and validating the models. Then, a portion of data can be taken out as a final
testing set and kept aside until the very end of the modeling process (Hastie, Tib-
shirani, and Friedman 2009). However, this is often not possible, and the overall
data might have to be used in making use of the metrics gathered during cross-
validation.

2.5.1 Cross-validation and bootstrap

Cross-validation (CV) is a technique used to assess a model’s predictive perfor-
mance on unseen data. By conducting multiple validation iterations, CV provides
an average performance estimate that reflects the model’s ability to generalize. In
k-fold CV, depicted in Figure 4, the dataset is randomly partitioned into k equally
sized subsets, or folds, ensuring each observation is exclusive to a single fold (Ko-
havi 1995). During the k-fold CV process, each fold sequentially serves as the
testing set, while the remaining folds constitute the training set (Hastie, Tibshi-
rani, and Friedman 2009; Kohavi 1995). This cycle is repeated k times, allowing
each fold to be used for testing once.

To ensure unbiased performance estimates, the testing data must not influ-
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FIGURE 4 Data split in a 5-fold cross-validation.

ence the training phase. Within the training data of a fold, there can be various
ways of selecting the model whose performance is estimated with the fold’s test-
ing data.

For instance, in the RF method (refer to Section 3.4), not all observations
are used during training. The unused observations can act as validation data,
offering an unbiased estimate of the model’s generalization capability (Breiman
2001a). An inner or nested k-fold CV can also be implemented within each fold,
further dividing the training data into sub-training and validation sets. The bene-
fit of this rather complex arrangement ensures that the performance estimate, de-
rived from multiple runs, is not influenced by the testing data (Varma and Simon
2006). Hyperparameter optimization, discussed in Section 2.6, is often conducted
at this stage.

However, a recent empirical study by Wainer and Cawley (2021) suggested
that nested CV may be excessive for most practical applications. A simpler, non-
nested CV approach, where model selection is based on the testing data, may
suffice for selecting optimal hyperparameters and determining the best predictive
method.

Performance measures are recorded for each fold. The estimated CV perfor-
mance measure, E[θ], is the mean of all k fold estimates, as follows (Zaki, Meira Jr,
and Meira 2014):

E[θ] =
1
k

k

∑
i=1

θi, (12)

where θ is the selected performance metric (e.g., MCC).
The stability of the estimate across folds is also important; high variance in-

dicates unreliability, while low variance denotes a more trustworthy estimate (Ko-
havi 1995). The variance estimate, σ2

θ , is calculated as follows (Zaki, Meira Jr, and
Meira 2014):

σ2
θ =

1
k

k

∑
i=1

(θi − E[θ])2. (13)

Commonly, k is set to 5 or 10, balancing bias and variance effectively (Hastie,
Tibshirani, and Friedman 2009). Some studies have also highlighted the impor-
tance of repeating k-fold CV multiple times (Bouckaert 2003; J.-H. Kim 2009), and
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specifically in nested CV (Krstajic et al. 2014), to get more reliable estimates. Strat-
ification during CV ensures a consistent distribution of output variables across
folds, reducing estimate variance and bias, thereby enhancing reliability (Kohavi
1995).

Leave-one-out CV represents a special case of k-fold CV where k equals N of
the dataset. In it, each test set includes a single data observation, with the remain-
der forming the training set. Although leave-one-out CV generally exhibits low
bias, its high variance can render the estimates less reliable (Hastie, Tibshirani,
and Friedman 2009; Kohavi 1995). The choice of the CV method depends on the
nature of the problem. For instance, leave-one-out CV is commonly employed
when dealing with small datasets (Wong 2015).

The validation approaches described above are categorized as internal, in-
dicating that the test sets originate from a singular dataset. For a more robust
evaluation of model performance, external validation is recommended, utilizing
an entirely distinct dataset, such as a different cohort (Van Calster et al. 2019).

Beyond CV, the bootstrap method also serves to estimate performance. It
creates new datasets by sampling with replacements from the training data, al-
lowing for the possibility of multiple inclusions of a single observation within a
bootstrap sample (Hastie, Tibshirani, and Friedman 2009). While bootstrap does
not meet the independent validation criteria for predictive modeling, it finds use
in methodologies like RF (refer to Section 3.4), leveraging out-of-bag observations
to assess model performance.

2.6 Hyperparameter optimization

Hyperparameters, such as the maximum depth of a decision tree (refer to Sec-
tion 3.3), are crucial in shaping a model’s structure. These parameters must be
established by the user before initiating the training of an ML model (Bischl et al.
2023; Yang and Shami 2020). Prior to hyperparameter optimization, one must
select a target metric (e.g., one of the performance measures discussed in Sec-
tion 2.3) and the hyperparameters to be optimized.

Suppose we have a dataset D = {xi, yi}N
i=1, where xi is an input vector, yi is

the corresponding scalar output in the set of D, and N represents the total count
of observations. The challenge of optimizing the hyperparameter configuration
λ, which belongs to the comprehensive hyperparameter space Λ, particularly in a
classification context where an increase in the target metric signifies an improved
classifier, can be formulated as (Alpaydın 2014)

λ∗ = arg max
λ∈Λ

Eval(λ|D), (14)

where λ∗ denotes the optimal hyperparameter configuration and Eval(·) is a func-
tion that yields the desired classification metric for λ, given an independent val-
idation dataset D. Essentially, during optimization, we evaluate various poten-
tial hyperparameter configurations to determine which λ delivers the optimal
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result for our target metric (Alpaydın 2014). CV can be utilized to estimate gen-
eralization performance, where the ideal hyperparameter configuration maxi-
mizes, on average, the validation metric (Bergstra and Bengio 2012). Common hy-
perparameter optimization techniques include grid search, random search, and
Bayesian optimization. All these techniques can be utilized in conjunction with
CV.

Grid search involves predefining all relevant hyperparameters and their
precise values before commencing optimization. This method exhaustively ex-
plores the grid of hyperparameter configurations during the optimization pro-
cess. Grid search is straightforward to implement; however, as the number of
hyperparameter configurations grows, so too does the computational time (Bis-
chl et al. 2023; Lorenzo et al. 2017; Yang and Shami 2020).

Random search, a variant of grid search, does not examine every possible
hyperparameter combination but instead evaluates a predefined number of ran-
dom configurations (Bischl et al. 2023; Yang and Shami 2020). This approach is
more practical when the configuration search space is extensive.

Bayesian optimization (BO) represents a more sophisticated method for
navigating vast hyperparameter spaces. Unlike the aforementioned techniques,
BO uses the outcomes of the search to inform future configurations, concentrating
time and effort on areas of the search space more likely to yield improvements
for the chosen metric (Yang and Shami 2020). Typically framed as a minimiza-
tion problem, the cost of a configuration is determined by inverting the desired
metric. BO is particularly beneficial for optimizing resource-intensive black-box
functions, where each hyperparameter configuration evaluation incurs signifi-
cant expense (Shahriari et al. 2016).

BO encompasses two primary components. The first is the surrogate func-
tion, a probabilistic model that serves as a simplified representation, or approxi-
mation, of the complex true objective function. Within Bayesian terminology, this
surrogate function is referred to as the prior. The second component involves the
strategic exploration of the surrogate function through an acquisition function.
The acquisition function’s role is to determine the next hyperparameter configu-
ration to be investigated (Shahriari et al. 2016).

A common surrogate function utilized in BO is the Gaussian process (GP).
GP presumes a multivariate normal distribution, so it is mainly used for optimiz-
ing continuous variables (Rasmussen and Williams 2006). Initially, GP selects a
set of random functions as priors. Essentially, GP’s task is to find out which of
these random function realizations could have produced the observed values—
that is, the chosen target metrics (Gramacy 2020). With each exploration of a new
configuration, the prior is updated, evolving into the Bayesian posterior distribu-
tion, which encapsulates the optimizer’s updated understanding of the objective
function based on the data observed (Shahriari et al. 2016). An illustration of GP
within the context of BO is depicted in Figure 5.

GP is characterized by a mean vector, µ, and a covariance or kernel function,
k(λ, λ′). GP generates random outputs, Y, that adhere to a normal distribution,
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FIGURE 5 A simplified example of a Gaussian process in Bayesian optimization (BO),
adapted from Pedregosa et al. (2011). The x-axis symbolizes the array of po-
tential hyperparameter configurations, λ, for evaluating the true objective
function. Proximity on the x-axis indicates similarity between hyperparam-
eter configurations, while greater distances suggest dissimilarity. The y-axis
denotes the outcome of the objective function—that is, the chosen perfor-
mance metric. Assuming the metric is a Matthews correlation coefficient (re-
fer to Section 2.3), a higher metric value signifies a better classifier. So far, five
hyperparameter configurations have been assessed, marked as true observa-
tions for λ. The acquisition function in BO is tasked with selecting the next
λ for exploration. In this scenario, a promising area for exploration might be
around the x-axis values of 7–8, where the upper confidence interval exceeds
the highest observed output, indicating some potential for enhancement.

expressed as
Y ∼ GP(µ, k(λ, λ′)), (15)

where typically µ = 0, signifying that the data are centered. The kernel function
k accepts two inputs, each representing a hyperparameter configuration λ with
N hyperparameters. This function yields an N × N covariance matrix that de-
scribes the interrelations among each pair of hyperparameters (Gramacy 2020).
The kernel function ensures that similar hyperparameter configurations produce
closely related outputs. There exists a variety of kernel functions; for example,
MATLAB employs the ARD Matérn 5/2 kernel (MathWorks 2023), which is fa-
vored for practical optimization tasks due to its generation of functions that are
not unrealistically smooth (Snoek, Larochelle, and Adams 2012). Additionally, it
is presumed that the observations include Gaussian noise (MathWorks 2023).

Among the most popular acquisition functions is the expected improve-
ment (EI) (Feurer and Hutter 2019; Jones, Schonlau, and Welch 1998). The EI for
a hyperparameter configuration λ is expressed as

E[I(λ)] = E[max( f ∗ − Y, 0)], (16)

where f ∗ represents the optimal observed value of the objective function thus far.
An enhancement in the outcome (reducing cost) is anticipated when f ∗ − Y > 0;
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otherwise, no improvement is expected upon exploring the hyperparameter con-
figuration with the true objective function. Consequently, the true objective func-
tion is assessed only for those configurations projected to yield enhancements
for the chosen metric (Feurer and Hutter 2019; Jones, Schonlau, and Welch 1998;
Shahriari et al. 2016).

Furthermore, enhancements to the original EI acquisition function have been
proposed. The default configuration of MATLAB incorporates two such improve-
ments—namely, per second and plus (MathWorks 2023). The per-second modi-
fication considers the computational cost of evaluating a configuration, with the
aim of minimizing computational time. This is achieved by managing a sepa-
rate GP for the evaluation time while optimizing the performance metric (Snoek,
Larochelle, and Adams 2012). The plus modification, on the other hand, is de-
signed to prevent excessive exploitation of a particular search area. It actively
seeks a superior global solution to the minimization problem, avoiding entrap-
ment in the local search area (Bull 2011; MathWorks 2023).

2.7 Explaining the predictions

Enhancing the predictive capabilities of models is often insufficient, particularly
in the health sector, where ethical and legal considerations must be factored into
the clinical application of predictive models. Even when dealing with a black box
model, obtaining explanations and justifications for its predictions can be bene-
ficial and, sometimes, legally mandated (Payrovnaziri et al. 2020; Vellido 2020).
For instance, the General Data Protection Regulation (GDPR) requires data con-
trollers to provide information about the logic behind automated decision-making
processes and offer justifications for the resulting outcomes (Hamon et al. 2022).
Critics argue that reliance on black box models has led to significant societal is-
sues, impacting areas such as health, freedom, racial bias, and safety (Rudin 2019;
Rudin et al. 2022).

Certain predictive modeling methods offer greater interpretability, with ex-
planations often embedded within the models themselves. For example, logistic
regression (refer to Section 3.1) utilizes coefficient terms that are interpretable
with basic methodological knowledge. Decision trees (see Section 3.3) are even
more accessible, understandable by novices when classification rules are visually
presented. However, as model complexity increases, so too does the challenge of
interpreting predictions (Ahmad, Eckert, and Teredesai 2018; Vellido 2020). For
complex models, mechanisms for explaining predictions may exist, such as the
list of contributing predictors produced by RF (see Section 3.4).

An ML model is deemed interpretable if it provides explanations or ratio-
nales alongside predictions or recommendations (Ahmad, Eckert, and Teredesai
2018). Interpretability is highly domain-specific, with varying constraints across
different domains (Rudin et al. 2022). In interpretable ML, these constraints are
fundamental to the optimization problem. For instance, a decision tree with
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fewer leaves is simpler to interpret, so a penalty for increasing the number of
leaves can be incorporated during tree construction (Rudin et al. 2022).

An alternative approach is the post-hoc explanation of black box model pre-
dictions, known as explainable AI (Rudin et al. 2022). Methods such as local
interpretable model-agnostic explanations (Ribeiro, Singh, and Guestrin 2016)
and Shapley additive explanations (Lundberg and Lee 2017) can elucidate pre-
dictions from any model.

Recent studies have highlighted that simply offering explanations for pre-
dictions may not significantly enhance human users’ decision-making processes,
since individuals often underutilize available explainability tools (Miller 2019,
2023). Drawing on extensive research from disciplines such as psychology and
philosophy could aid in addressing trust issues related to AI. For instance, a pro-
posed framework known as evaluative AI suggests that decision support tools
should present evidence both supporting and opposing human decisions, rather
than merely attaching explanations to predictions (Miller 2023).

Additionally, contemporary research has delved into expressing a system’s
confidence in its predictions to users (Waa et al. 2020), harmonizing the somewhat
incoherent terminology within the field (Graziani et al. 2022), and identifying
both challenges and prospects specific to ML applications in the clinical medical
domain (Antoniadi et al. 2021). These efforts contribute to the ongoing discourse
on enhancing the interpretability and trustworthiness of AI systems in critical
sectors.



3 PREDICTION METHODS

This chapter presents the predictive modeling methods employed in this thesis.
Linear and logistic regression are explored in Section 3.1, followed by support
vector machines in Section 3.2. Decision trees and RFs are examined in Sec-
tions 3.3 and 3.4, respectively. The chapter concludes with a brief introduction
to two additional methods, in Section 3.5.

3.1 Linear and logistic regression

Linear regression models are favored for their simplicity and interpretability.
Such models’ influence on the output is discernible through their regression co-
efficients. Moreover, linear regression can be utilized to preprocess input values,
even when alternative methods are applied for the actual prediction task (Hastie,
Tibshirani, and Friedman 2009).

Consider an input vector, x = (x1, x2, . . . , xp), with p variables. The pre-
dicted scalar output ŷi is computed using a linear regression model, which is
formulated as follows (Hastie, Tibshirani, and Friedman 2009):

ŷi = β0 +
p

∑
j=1

xi,jβ j = βTxi. (17)

β = (β0, β1, β2, . . . , βp) are the regression coefficients established during the mod-
el’s training phase, β0 being the intercept term, and xi = (1, xi,1, xi,2, . . . , xi,p) is
the ith input vector augmented by value 1 in the first element for the intercept
term.

The least squares method is commonly employed to estimate these β coef-
ficients, aiming to minimize the sum of squared errors (SSE), as follows (Hastie,
Tibshirani, and Friedman 2009; Kuhn and Johnson 2016; Tan et al. 2013):

SSE(β) =
N

∑
i=1

(yi − ŷi)
2, (18)
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where yi represents the true response variable for a single observation xi (Hastie,
Tibshirani, and Friedman 2009). By minimizing the SSE, we achieve the most
accurate linear approximation of the training data.

Logistic regression (LR) is a widely-used classification method that esti-
mates the probability p of an observation belonging to a specific class. For binary
classification, the probability of class 0 is given by (Hastie, Tibshirani, and Fried-
man 2009)

p(yi = 0|xi) =
1

1 + e−(βTxi)
. (19)

To create models suitable for multi-variable datasets and prevent overfitting, reg-
ularization techniques are employed (Koh, S.-J. Kim, and Boyd 2007). L1 regu-
larization constrains coefficient sizes by adding a penalty equal to their absolute
values’ sum, adjustable via the λ parameter. L1-regularized LR, also known as
lasso, can be expressed as a maximization problem, as follows (Hastie, Tibshi-
rani, and Friedman 2009):

max
β0,β

{
N

∑
i=1

[
yi

(
β0 +

p

∑
j=1

xi,jβ j

)
− log

(
1 + exp(β0 +

p

∑
j=1

xi,jβ j)

)]
− λ

p

∑
j=1

∣∣β j
∣∣r} ,

(20)
where λ ∑

p
j=1

∣∣β j
∣∣r is the regularization term with r = 1. This approach often

reduces many coefficients to zero, acting as a variable selection method (Koh,
S.-J. Kim, and Boyd 2007). When the variables are strong but correlated with
each other, this penalty is described as ”somewhat indifferent” to the choice of
variables (Hastie, Tibshirani, and Friedman 2009).

Conversely, L2 regularization, known as ridge regression, is applied when
r = 2. Unlike L1, it does not reduce any of the coefficients to zero, retaining all
variables in the model (Koh, S.-J. Kim, and Boyd 2007). This penalty tends to
shrink coefficients of correlated variables towards each other (Hastie, Tibshirani,
and Friedman 2009).

3.2 Support vector machine

Support vector machine (SVM) is a widely-used method that, for a binary clas-
sification problem, aims to create a hyperplane that effectively separates the two
classes. SVM for classification is a support vector classifier (SVC). For datasets
with only two variables, the separating hyperplane can be visualized as a line
demarcating the classes, exemplified by the solid line between two groups of ob-
servations in Figure 6. Predictions for new data points are determined based on
their placement relative to this hyperplane.

While more complex to visualize, the fundamental concept of a separating
hyperplane extends to higher dimensions as well (Noble 2006). Formally, the
hyperplane f (x) is defined by the following equation (Hastie, Tibshirani, and
Friedman 2009):

f (x) = xTβ + β0 = 0, (21)
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FIGURE 6 An example of a linear support vector classifier (Pedregosa et al. 2011) where
the two classes are linearly separable. The separating hyperplane, drawn
in solid line, is also the maximum margin hyperplane. Support vectors are
indicated as circled observations.

where x represents an observation from the training data, β is a unit vector of
length 1 that holds the weights for the p variables in x, and β0 is a scalar bias
term.

The best separating hyperplane, known as the maximum margin hyper-
plane, not only separates the classes but also maximizes the distance between
them (Noble 2006). The support vectors lie on the two hyperplanes that flank
the maximum margin hyperplane. Given class labels yi ∈ {−1, 1}, the task of
identifying this hyperplane can be defined as a minimization problem, as fol-
lows (Hastie, Tibshirani, and Friedman 2009):

min
β,β0

∥β∥ subject to yi(xT
i β + β0) ≥ 1, i = 1, . . . , N. (22)

In scenarios where perfect class separation is unattainable, SVC allows for a
soft margin. This margin acts as a threshold, permitting a certain degree of mis-
classification during model construction. Incorporating this soft margin modifies
the minimization problem, as follows (Hastie, Tibshirani, and Friedman 2009):

min
β,β0

1
2
∥β∥2 + C

N

∑
i=1

ζi

subject to ζi ≥ 0, yi(xT
i β + β0) ≥ 1 − ζi ∀i.

(23)

This revised equation introduces a cost or regularization parameter C, which
quantifies the penalty for constraint violations, while ζi represent the distances
of training data points that breach these constraints (Kantardzic 2020). The soft
margin tolerates some training data misclassifications. Typically, a higher C value
compels the SVM to minimize training misclassifications, although at the expense
of the model’s generalization capabilities for new data (Hastie, Tibshirani, and
Friedman 2009; Kantardzic 2020).

When dealing with linearly non-separable classes, where a straightforward
line or hyperplane fails to separate the data, a kernel function can be utilized to
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map the data into a higher-dimensional space. This function makes SVM nonlin-
ear (Kantardzic 2020; Noble 2006). Introducing a kernel function and reformulat-
ing the optimization challenge as a Lagrangian dual problem involves minimiz-
ing the Lagrangian multipliers α, as follows (Hastie, Tibshirani, and Friedman
2009; Kantardzic 2020):

min
α

N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjk(xi, xj)

subject to


N
∑

i=1
yiαi = 0

0 ≤ αi ≤ C, i = 1, . . . , N,

(24)

where k(·) denotes the kernel function. For instance, a polynomial kernel of de-
gree d is expressed as k(x, x′) = (1 + ⟨x, x′⟩)d (Hastie, Tibshirani, and Friedman
2009). Figure 7 illustrates an SVC employing a polynomial kernel for nonlinearly
separable data.
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FIGURE 7 A third-degree polynomial kernel support vector classifier (SVC) (Pedregosa
et al. 2011) was used to classify the breast cancer data (Wolberg et al. 1995).
The data were standardized before principal component analysis was per-
formed (refer to Section 2.4). Only the first two principal components were
utilized in the SVC. The soft margin allows some observations to fall behind
the wrong sides of the separating hyperplane.

SVM can also be applied for multi-class problems, by forming the classifi-
cation problem as solving multiple two-class problems, or for predicting contin-
uous responses (Hastie, Tibshirani, and Friedman 2009).

3.3 Decision trees

Decision trees, renowned for their intuitive and visual nature, establish a set of
rules to classify data, grouping observations sharing the same class within each
leaf node (Kingsford and Salzberg 2008; Quinlan 1986). While decision trees ac-
commodate both classification and regression, our primary focus remains on clas-
sification. An illustrative minimal decision tree is depicted in Figure 8.
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FIGURE 8 An example of a minimal decision tree (maximum depth defined as 2) (Pe-
dregosa et al. 2011) classifying breast cancer data (Wolberg et al. 1995) obser-
vations using three variables in data (worst radius, worst concave points,
and mean texture). Root node, leaf nodes, and splitting criteria are marked
in the figure. Additionally, node 2.1 is an example of a child node of 1.1,
while 2.2 is a parent node of 3.3 and 3.4.

Hunt’s algorithm serves as a foundational framework for describing a gener-
ic decision tree for classification, forming the basis for many tree implementations
(Tan et al. 2013). Let Ds = {xi, yi}N

i=1 represent the training data in the tree node
s. The iterative process involves the following steps for every child node until
further changes are impossible:

1. If all observations in Ds belong to same class ys, node s becomes a leaf node
labeled as class ys;

2. Else, if Ds contains observations from multiple classes, a splitting criterion
is applied to divide the observations into smaller subsets, thereby creating
child nodes.

The essence of the splitting criterion in the second step is to measure the quality
of a split, offering several options. Common criteria include Gini impurity and
entropy. Gini impurity G for data D is given by (Tan et al. 2013)

G(D) = 1 −
K

∑
k=1

p2
k, (25)

where K represents the number of classes and pk denotes the probability of ob-
serving class k. Additionally, entropy H for data D is defined as (Tan et al. 2013)

H(D) = −
K

∑
k=1

pklog2pk. (26)
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Gini impurity or entropy serves as the basis for computing the information
gain ∆, a metric used to assess the quality of a split, as follows (Tan et al. 2013):

∆ = I(parent)−
k

∑
j=1

N(vj)

N
I(vj), (27)

where I(parent) represents the criterion (such as G or H) of the parent node, k
signifies the number of divisions based on the condition (e.g., k = 2 for a binary
tree), N(vj) denotes the observations in child node j, N is the total observations
in the parent node, and I(vj) is the criterion of child node j. Higher ∆ values
indicate a more favorable split.

In decision trees, overfitting is commonly addressed using two methods:
pre-pruning and post-pruning. Pre-pruning involves halting tree growth before
all training data observations are fitted, often by restricting the tree depth or the
number of leaf nodes or specifying the minimum observations required for split-
ting. On the other hand, post-pruning entails growing the entire tree and later
removing or combining nodes for overly specific cases (Tan et al. 2013).

Several decision tree algorithms exist, with ID3, CART, and C4.5 being wide-
ly used (Hastie, Tibshirani, and Friedman 2009). These individual decision trees
form a foundational framework for more sophisticated ensemble methods such
as an RF.

3.4 Random forest

RF is an ensemble learning method that constructs a collection of uncorrelated
decision trees (Breiman 2001a). Utilizing decision trees and bootstrap aggrega-
tion (bagging), RF aims to enhance predictions by building a forest of trees that
work independently. The forest operates as an ensemble, leveraging the collec-
tive wisdom of multiple trees, which helps balance any inaccuracies in individual
trees (Breiman 2001a; Hastie, Tibshirani, and Friedman 2009). An illustrative de-
piction of a small random forest consisting of three trees is presented in Figure 9.

The RF algorithm initializes by creating bootstrap samples with replace-
ment from the training data. For each leaf node in a tree, the following steps
are iteratively performed (Breiman 2001a):

1. Randomly select m variables from a pool of p potential input variables;

2. Determine the optimal splitting point among the selected m variables;

3. Split the node into two child nodes.

These steps continue until the minimum node size is reached (Hastie, Tibshirani,
and Friedman 2009).

The process described above, starting from creating the bootstrap sample,
iterates until the forest consists of the specified number of trees, denoted as T. The
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FIGURE 9 A minimal random forest example (with a maximum depth of two per tree
and a total of three trees) (Pedregosa et al. 2011) classifying breast cancer
data (Wolberg et al. 1995). Each of the three decision trees within the forest is
distinct, and seven out of nine variables are used uniquely across the forest.

algorithm’s output is the ensemble of trees, constituting the forest. This forest is
then utilized for predictions. In regression tasks, each tree predicts an observa-
tion’s output, and the forest’s output is the average of all predictions made by the
trees. In classification tasks, the most frequent class among the trees determines
the final prediction of the RF (Hastie, Tibshirani, and Friedman 2009). The com-
bination of creating bootstrap samples (bagging) and random variable selection
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consistently improves prediction accuracy (Breiman 2001a).
A key advantage of RF lies in requiring tuning for relatively few hyperpa-

rameters, and some recommended default values are provided by the author of
RF (Breiman 2001a; Hastie, Tibshirani, and Friedman 2009). For the number of
randomly chosen variables, m, the default values are m = ⌊√p⌋ for classification
and m = ⌊p/3⌋ for regression (Hastie, Tibshirani, and Friedman 2009).

One crucial setting in RF is the number of trees within the forest, T. Ex-
tensive studies (Probst and Boulesteix 2018) have discouraged considering the
number of trees as a tunable parameter. Generally, more trees lead to better per-
formance, although increased computational cost is the primary drawback. Over-
fitting is less concerning in RF (Breiman 2001a; Hastie, Tibshirani, and Friedman
2009). However, Probst and Boulesteix (2018) demonstrated that the most signif-
icant performance enhancement in classification is observed within the first 100
trees, with subsequent trees offering limited gains in performance.

Empirical evidence suggests that RF hyperparameters are less adjustable
compared to some other algorithms (Probst, Boulesteix, and Bischl 2019; Probst,
Wright, and Boulesteix 2019). Optimizing these hyperparameters showed only
a marginal 0.01 increase in the average AUC value when compared to default
configurations. However, this slight increase can be significant in specific cases.
They highlighted key RF hyperparameters, including sample size, whether to
sample with or without replacement, node size, and splitting criterion.

RF can also be utilized for variable importance estimation, helping model
interpretation, and aiding in variable selection (Díaz-Uriarte and Alvarez de An-
drés 2006; Genuer, Poggi, and Tuleau-Malot 2010). Assessing variable impor-
tance in RF is often facilitated through the out-of-bag (OOB) error estimation,
referring to observations not used in the bootstrap sample.

Let OOBt represent the bootstrap sample for tree t and OOBerrt denote the
tree’s error. OOBerrt is calculated by utilizing the tree to predict the classes or
values for the OOB observations. For classification, the error corresponds to the
misclassification rate, while in regression, it signifies the mean square error.

The permutation importance (PI) or mean decrease in accuracy for the
jth variable in the dataset is computed as (Breiman 2001a; Genuer, Poggi, and
Tuleau-Malot 2010; Louppe et al. 2013)

PIj =
1
T

T

∑
t
(ÕOBerrt, j̃ − OOBerrt), (28)

where ÕOBerrt, j̃ represents the tree’s error obtained when the values of the jth

variable are randomly permuted (Genuer, Poggi, and Tuleau-Malot 2010) and T is
the number of trees within the forest. In essence, this process involves randomly
shuffling the values of the jth variable among OOB observations, predicting with
a single tree, recording the error rate, and subtracting the original OOB error.
The average of these differences across all T trees in the forest yields the final
importance value for the jth variable in the dataset. An importance value around
zero indicates lack of predictive power.
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Although originating from RF, PI is not limited to this model; it can be ap-
plied across various methods. However, in the absence of OOB observations
in most algorithms, separate validation/test data become essential (Molnar et
al. 2022). An alternative approach for importance calculation involves impurity
measures, such as the Gini index (Louppe et al. 2013). Yet, this method might be
unreliable when dealing with varying measurement scales or number of variable
categories (Strobl, Boulesteix, Zeileis, et al. 2007). The OOB observations not only
contribute to estimating RF error rates but also fulfill the validation criterion in
predictive modeling, resembling the principles of k-fold cross-validation (Hastie,
Tibshirani, and Friedman 2009).

The interpretations derived from PI represent marginal importances, re-
flecting the impact of individual variables in predicting outcomes independently
(Debeer and Strobl 2020; Strobl, Boulesteix, Kneib, et al. 2008). Conditional per-
mutation importance (CPI) extends PI by providing partial importances, illus-
trating the effect of a variable concerning all other variables in the model (Debeer
and Strobl 2020; Strobl, Boulesteix, Kneib, et al. 2008). CPI condenses the informa-
tion from multiple correlated variables into a single variable importance measure,
resulting in one variable being assigned higher importance while the importance
values of other variables is diminished (Molnar et al. 2022). It is particularly use-
ful in scenarios in datasets with highly correlated variables.

RF’s versatility extends to handling mixed variable types, accommodating
multi-class problems, and adapting to situations with more variables than ob-
servations (Díaz-Uriarte and Alvarez de Andrés 2006). To address imbalanced
datasets, the weighted RF approach (C. Chen, Liaw, and Breiman 2004) proposes
assigning a heavier penalty for misclassifying minority classes.

3.5 Other methods

There are various other supervised predictive modeling methods worth mention-
ing. Here, two of them are described briefly.

kNN represents a straightforward approach where the model finds the k
observations in the training data that are closest to the observation to be pre-
dicted. The value of k is a user-defined hyperparameter. By assessing the known
responses in the training data, the probability of the new observation belonging
to a particular class can be directly calculated based on the class distribution in
the closest k neighbor observations. The efficacy of kNN also hinges on how the
distances between observations are computed, known as the distance metric. For
instance, the Minkowski distance d between two observations xi and xj is defined
as (Han, Kamber, and Pei 2012; Kuhn and Johnson 2016)

d(xi, xj) = q

√√√√ P

∑
p=1

∣∣xi,p − xj,p
∣∣q, (29)

where q ∈ R ≥ 1 and P represents the number of variables in the data. The
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FIGURE 10 An example of the breast cancer data (Wolberg et al. 1995) classification
using k-nearest neighbors (k = 10 with the Euclidean distance metric) (Pe-
dregosa et al. 2011). For clarity, only 30% of the original data were utilized
for training. Following a setup similar to Figure 7, the data underwent
standardization, and only the first two principal components were consid-
ered. The depicted decision boundary showcases the model’s classification
of new observations.

Minkowski distance encompasses the common Euclidean (defined as above when
q = 2) and Manhattan (q = 1) distances.

Neural networks have served as the foundation for numerous recent ap-
plications, such as the multimodal model GPT-4 (OpenAI 2023), capable of pro-
cessing both natural language via large language models (LLM) and images, and
tools designed for generating images based on text, such as DALL-E (Ramesh et
al. 2021).

A basic neural network consists of individual neurons, organized within a
single hidden layer or multiple hidden layers, to receive and process input. Each
neuron associates weights with its inputs, and these weights are adjusted during
the network’s training to generate the appropriate output (Rojas 1996).

Modern neural networks primarily focus on expanding the network’s depth,
known as deep learning. While this approach demands a substantial amount of
training data, it has demonstrated remarkable performance in specific domains,
including medical image classifications, translations, text-to-speech applications,
and computer vision (Abdou 2022; Aggarwal 2018). Among the prominent deep
learning techniques are convolutional neural networks, inspired by visual per-
ception, which aim to extract higher-order features from data using convolutional
structures (Abdou 2022; Rana and Bhushan 2023). Another approach is recur-
rent neural networks, particularly effective for sequential time series data, which
have also shown promise in predicting obesity status (Xue et al. 2018).



4 HEALTH DOMAIN APPLICATIONS

In this thesis, the term prediction is predominantly used to denote the predic-
tion of a future response, based on information procured prior to the time of the
response variable. However, it is important to note that this is not a universally
accepted definition of prediction in the realm of health-related ML research. ML
methodologies have been extensively utilized in tasks that ”predict”—or rather,
assess—the current situation. This involves evaluating the status of a certain
variable based on other variables collected simultaneously. In fact, the exam-
ples based on breast cancer data discussed in Chapter 2 and Chapter 3 solely
considered the current situation, without any future predictions. At times, the
extraction of information that describes the current status can also prove to be
beneficial.

Researchers frequently encounter several common pitfalls when utilizing
ML. A recent review of sports injury prediction research by Jauhiainen (2023)
highlighted issues in assessing the generalization performance of models. One
such issue that can lead to biased performance estimates is data leakage, which
occurs when information from the testing data inadvertently influences the train-
ing phase (Kaufman et al. 2012). Data leakage can emerge when various transfor-
mations, variable selection, and/or imputation are applied to the entire dataset
at once (Jauhiainen 2023; Kaufman et al. 2012).

Occasionally, neglecting to eliminate the ”forbidden” input variables can
render the models practically useless. An instance of very problematic data leak-
age was observed by Kaur, Kumar, and Gupta (2022), who utilized multiple ML
methods to determine current weight status. Their study reported impressive
results with their gradient boosting classifier, achieving an F-measure of 0.98.
The performance of other classifiers was also exceptional. However, these esti-
mates were overly optimistic, as the models had been trained with direct knowl-
edge of how the responses were generated. Specifically, the responses in the data
(seven weight classes) were derived directly from the BMI values, calculated as
BMI = weight/height2 (Palechor and Hoz Manotas 2019). Despite this, height
and weight, along with several other variables, were used as input variables dur-
ing model training. In this case, the prediction problem can be described as trivial
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and could be solved using only height and weight as inputs. The other variables
can be seen to have merely added noise to the data.

The health-related domain is vast, and numerous applications have been
proposed for a variety of problems. For instance, cancer prediction has caught
wide attention. Cancer analysis has been conducted by extracting variables from
multiple sources and using these as a structured data basis for the ML mod-
els (Sammut et al. 2022) or by leveraging hyperspectral or other imaging tech-
niques, potentially combined with deep learning (Lindholm et al. 2022; Paoli et
al. 2022; Prezja et al. 2023). Solutions have also been proposed for detecting dif-
ferent types of skin diseases through user-taken pictures using a regular smart-
phone camera (Oztel, Yolcu Oztel, and Sahin 2023) and for acute stroke imag-
ing (Sheth et al. 2023). The multi-modality of data—that is, the utilization of
different types of data, such as images combined with structured data containing
additional information—has also been considered, such as in the context of early
diagnosis of Alzheimer’s disease (Diogo, Ferreira, and Prata 2022) and cardiovas-
cular diseases (Amal et al. 2022). Moreover, the relevant data can vary depending
on the condition being studied. For instance, ML research related to Parkinson’s
disease often utilizes data on a person’s movement and/or voice recordings (Mei,
Desrosiers, and Frasnelli 2021).

ML methods have also been employed in predicting diabetes (Alghamdi
et al. 2017; De Silva, Jönsson, and Demmer 2019), pressure ulcers (Song et al.
2021; Walther et al. 2022), and asthma and chronic obstructive pulmonary dis-
ease (Finkelstein and Jeong 2017; Spathis and Vlamos 2019). Other application
areas have included tasks concerning fall risk prediction (Lindberg et al. 2020;
Lucero et al. 2019), predicting the outcome of hospitalization in elderly patients
(Saarela, Ryynänen, and Äyrämö 2019), sleep disorders (Ha et al. 2023), and men-
tal health, including depression and anxiety, utilizing natural language process-
ing (NLP) models (Le Glaz et al. 2021; Nemesure et al. 2021).

Diverse applications of ML have been proposed for rehabilitation planning
and exercise training. For instance, ML has been employed to assist older adults
experiencing knee pain (T. Chen and Or 2023); to predict the success of reha-
bilitation in various hip, knee, or foot injuries (Tschuggnall et al. 2021); and to
recommend individually tailored workout activities (Mahyari and Pirolli 2021).
Furthermore, sports injury prediction has emerged as another significant area of
application (Jauhiainen, Kauppi, Krosshaug, et al. 2022; Jauhiainen, Kauppi, Lep-
pänen, et al. 2021).

This thesis narrows its focus to three specific use cases. The applications
included pertain specifically to the areas of obesity and overweight prediction,
the development of CRF, and health monitoring. The following sections are ded-
icated to discussing these application areas in detail.
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4.1 Obesity and overweight

The prevalence of obesity saw a twofold increase between the years 1980 and
2015 in over 70 countries, and it continues to rise in most other nations (The GBD
2015 Obesity Collaborators 2017). Moreover, the rate of increase in childhood
obesity has surpassed that of adult obesity (The GBD 2015 Obesity Collaborators
2017). High BMI has been linked to an increased disease burden, particularly in
relation to cardiovascular disease–related deaths (The GBD 2015 Obesity Collab-
orators 2017). The standard adult BMI cutoff points for overweight and obesity
are 25 and 30 kg/m2, respectively (The GBD 2015 Obesity Collaborators 2017).
Age-specific cutoff points have been established, for instance, for Finnish chil-
dren and adolescents aged 0–20 years (Saari et al. 2011). However, this seemingly
simple metric might not be suitable in some contexts. For instance, while obesity
is classified as a disease, these population-based cutoff points do not account for
factors such as self-perceived ill-health (Evans and Colls 2009).

In recent years, there has been a significant surge in studies employing a
predictive modeling approach to address the issue of obesity and overweight.
This section examines some of the recent research not included in Article I.

Zare et al. (2021) utilized LR, decision tree, neural network, and RF mod-
els to predict obesity status at the 4th grade, typically around the ages of 9–10
years. The data (N = 244, 053) used for the prediction task included variables
collected in kindergarten at ages 5–6 years. One third of the data were reserved
as a held-out test set. The BMI z-score was used alongside race, ethnicity, school
meal status, language spoken at home, grade in school, school of attendance, and
census block group of residence. The neural network model achieved the high-
est AUC (0.785), closely followed by LR (0.784) and RF (0.781). The impact of
removing the BMI z-score from the input variables was explored, resulting in a
dramatic drop in performance, with the AUC of the RF model being only 0.512.
When all other variables except the BMI z-score were removed from the models,
this had only a minor effect on the performance, with an AUC of 0.782 recorded
for the LR model.

Pang et al. (2021) updated their previous study (Pang et al. 2019), included
in the review (Article I), to examine other methods in addition to XGBoost, an
implementation of gradient boosting. They applied decision tree, Gaussian and
Bernoulli naive Bayes methods and LR, neural network, and SVM to predict obe-
sity status at any stage between the ages of 2 and 7 years, based on data collected
under 2 years. In total, 102 demographic variables and 54 clinical variables, based
on expert clinical assessment, were used. Of the data (N = 27, 203), 20% were re-
served as a held-out test set. The other methods did not enhance the model, and
XGBoost was reported as the best model, achieving an AUC of 0.81. When sensi-
tivity was set to 80%, the model’s specificity was 63%. The authors concluded that
since environmental and genetic factors are known to be associated with obesity,
the prediction models might still be improved if further variables of these types
are added to the model.
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Mondal et al. (2023) utilized RF, LR, neural network, kNN, and k-means, an
unsupervised clustering method, to predict a child’s obesity status (normal, over-
weight, or obese) at the age of 5 years. They explored three distinct research sce-
narios, each representing different data sources. The first scenario involved data
collected from a single well-child visit. All combined 2039 visits of the 224 chil-
dren available in the data were treated as separate entries during model training.
Variables included BMI information, gestational age, birth height, birth weight,
and gender. RF emerged as the best-performing method in this scenario. How-
ever, as also observed in Article II, predicting a short transition (e.g., from 4 to 5
years), is simpler than predicting a transition from birth to 5 years. This observa-
tion was underscored in their study, as accuracy measures for RF were presented
separately for different age groups. Reported accuracy ranged between 77% and
100%, with an overall accuracy of 89%. All performance measures were based on
using 30% of the data as a separate test set. The second scenario employed data
from multiple well-child visits collected from birth up to 2 years. A time-series
of BMI values was constructed for each child, utilizing third-degree polynomial
interpolation. This method was quite similar to the one seen in Article II, where
linear interpolation was also used to fill out the values, making children with var-
ious numbers of visits made on different days directly comparable. The overall
accuracy for the best model, again RF, was 69%. The third scenario involved us-
ing data from multiple random visits under the age of 5 years. The setup in this
scenario was otherwise similar to the previous one. The overall accuracy for RF
was 89%. As all prediction tasks were implemented as three-class problems, the
results are not directly comparable to most other studies.

Regarding the use of deep learning in obesity prediction, a recent review (Fer-
reras et al. 2023) did not find any studies that had employed unstructured data
in predicting obesity or overweight. However, an updated version of an arti-
cle mentioned in Article I, Gupta et al. (2022), demonstrated promising results
when utilizing structured data with their deep learning long short-term memory
(LSTM) network. In a previous study, Xue et al. (2018) leveraged recurrent neural
networks for predicting obesity status, using structured activity data. Addition-
ally, many studies have focused on evaluating current obesity status without con-
sidering the future. For instance, Rashmi, Umapathy, and Krishnan (2021) used
structured data extracted through infrared thermal imaging to determine current
obesity status.

4.2 Cardiorespiratory fitness development

Low CRF is recognized as being linked with an increased risk of premature mor-
tality from all causes, particularly from cardiovascular disease (American Col-
lege of Sports Medicine 2018). The gold standard for measuring CRF is the direct
measurement of maximal oxygen uptake (VO2max), which requires specialized
equipment and trained personnel (American College of Sports Medicine 2018;
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Liu et al. 2023).
An alternative approach involves estimating VO2max using non-exercise

algorithms. For instance, Tamminen, Laurinen, and Röning (1999) selected 12
physical and statistical variables that correlated well with the measured oxygen
uptake. They utilized regression trees and neural networks in predicting the up-
take, and the NN model predictions in particular had high correlations to the
measured oxygen uptakes. Recently, Liu et al. (2023) utilized an ML methodol-
ogy with two distinct gradient-boosting models to predict the current VO2max
value, based on 23 variables in the first model and an additional 26 variables in
the second one. The response was defined as continuous, and this method sur-
passed previously suggested non-exercise methods in performance.

A closely related yet distinct study (Vesterinen et al. 2016) investigated the
effectiveness of a submaximal running test (SRT) in predicting running perfor-
mance and monitoring changes in endurance performance during training. Track-
ing adaptation to training is important for optimizing training load and facil-
itating effective recovery. The findings concluded that running speed during
the SRT could predict maximal endurance performance, and different stages of
the SRT could effectively monitor endurance-training adaptation in recreational
endurance runners. The study recognized individual variations in adapting to
training loads, highlighting the need for future research to explore the potential
productivity of individually tailored training programs.

When considering individual responses to training loads, an individual’s
genotype significantly influences the extent to which CRF can be improved via
training (Bouchard et al. 1999). Similar training loads may yield vastly different
outcomes among different individuals, highlighting the inadequacy of the one-
size-fits-all approach to training (Bouchard et al. 1999). Therefore, incorporating
information about the genotype could be valuable for refining predictive models
in this context.

In Article III, the 20MSRT, the most frequently used field test for estimating
CRF, was employed. The study aimed to explore the potential of ML in predict-
ing the future development of CRF during adolescence, an application area that
remains largely uncharted. In prior research, the primary focus was on investi-
gating treatment procedures and variability in exercise response among adults.

4.3 Health monitoring

Health monitoring refers to the tracking and analysis of an individual’s health-
related data. It can be a continuous process, such as the real-time tracking of a
patient’s vital signs in a hospital setting, or data can be collected as feasible—for
instance, through smart technology—and processed later (Malasinghe, Ramzan,
and Dahal 2019). This monitoring can be conducted traditionally with wired sen-
sors or more conveniently with wearable sensors. More sophisticated monitoring
solutions can transmit or receive data to remote locations, and even a standard
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mobile device, such as a phone, can serve as the processing station or the primary
working module (Baig and Gholamhosseini 2013).

A specific example application of monitoring is the automatic detection of
falls in elderly individuals. Methodologies for this issue have ranged from ana-
lyzing the signal from a wearable accelerometer sensor (Sannino, De Falco, and
De Pietro 2015) to a deep learning solution that automatically aims to detect falls
from a video feed (Lu et al. 2019).

Applications in health monitoring are predominantly reactive rather than
proactive—that is, they aim to detect an event that subsequently requires some
form of attention. However, this somewhat technical approach to monitoring
some direct measures of health may not fully encapsulate the comprehensive
concept of health. For instance, according to the World Health Organization
(WHO) definition, health is ”a state of complete physical, mental and social well-
being and not merely the absence of disease or infirmity” (Salomon et al. 2003).
Therefore, to portray a more complete picture of health, one should also consider
indirect measures of health, encompassing self-care, usual activities, interper-
sonal relations, social functioning, and participation (Salomon et al. 2003).

In Article IV, a new framework for more holistic health monitoring by com-
puting a personal health index was introduced. The methodology in this study
was quite distinct from the predictive modeling approaches seen in Article II
and Article III. The method was not based on training a model on existing data
but was built upon the WHO’s International Classification of Functioning, Dis-
ability and Health (ICF) framework (WHO 2001). A primary reason for not em-
ploying an ML-based methodology was that capturing reliable data for overall
health (i.e., ground truth), is practically unattainable. This deficiency makes the
utilization of supervised learning methods challenging in this task.

In the realm of predictive modeling and ML, constructing the index holds
profound relevance for effective data preparation, addressing the challenges in-
herent in health data utilization. The index offers dual advantages. First, it pro-
vides a concise overview of an individual’s health, serving various purposes, in-
cluding its incorporation as a response variable in predictive models. Second,
the adoption of the ICF framework facilitates structured information collection,
enhancing the utility of the data in subsequent predictive modeling tasks.

Over the past two decades, health indices in the literature have included
utilizing basic summation approaches to employing techniques such as PCA and
multiple correspondence analysis (MCA). Recent advancements have integrated
ML and other more sophisticated methodologies into their applications.

Kubik et al. (2002) and Frank et al. (2007) implemented direct summation
methods for personal health indices. Kubik et al. (2002) used a Likert-type scale
with six questions covering overall health, dietary patterns, and physical activ-
ity, scoring from 6 to 24. Frank et al. (2007) queried participants on smoking,
drinking, exercise, and diet to construct a similar index. Gallup (2017) employed
yes/no questions on general health perceptions, well-restedness, physical dis-
comfort, worry, and sadness, resulting in an index range of [0, 100] calculated
from the mean of valid responses.
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Meijer, Kapteyn, and Andreyeva (2011) aimed for an internationally compa-
rable index. They incorporated 25 variables, covering mobility limitations, daily
activities, and self-reported health, applying a LISCOMP model integrating factor
analysis and regression. Yi et al. (2011) developed cardiovascular, stress, obesity,
and management indices using weighted questionnaire and objective measure-
ments. Combining these indices created an overall health index.

Kohn (2012) used MCA to create an index capturing mental health, self-
assessment, health issues, disability, accidents, and smoking status. The index
range was [1, 9], with higher values indicating better health. It allowed flexibility
in domain inclusion during the MCA process.

Poterba, Venti, and Wise (2013) utilized PCA to calculate a health index.
Their study included 27 health-related queries that encompassed activities of
daily living, medical history (e.g., experiences with stroke, diabetes, or cancer),
self-reported health, BMI, and other pertinent information. Utilizing the first
principal component as their health index, they transformed raw health scores
into percentile scores across various ages.

M. K. Kim et al. (2016) introduced a method utilizing a toilet-based sys-
tem to capture diverse vital signs such as pulse, blood pressure, oxygen satura-
tion, BMI, and ECG readings. Their approach involved constructing five distinct
health indices, each focusing on different aspects—namely, heart health, blood
parameters, fitness level, muscle condition, and mental health. Although they
elaborated on the creation of individual indices, the method of calculating the
comprehensive total health index combining these facets was not explicitly de-
tailed.

L. Chen et al. (2016) developed MyPHI, a technique treating health index
creation as a predictive modeling problem using soft-label optimization. Employ-
ing geriatric medical examination data, this method developed health profiles
specifically related to various disease categories. By prioritizing recent health
records and employing robust handling of infrequent, incomplete, and sparse
data, MyPHI demonstrated superior performance compared to linear SVM and
LR models. Disease categories were identified using the WHO’s International
Classification of Diseases, covering lung, heart, cerebrovascular, diabetes, stom-
ach, colon, liver, pancreas, septicaemia, and hypertension.

Lai et al. (2020) introduced an advanced approach for health index con-
struction. Their method fused the Technique for Order Preference by Similarity
to Ideal Solution with an independent entropy weighting approach, addressing
issues related to missing data in health examination records via tensor decom-
position. Acknowledging the complexity of health variables collected during
examinations, the study chose nine key health indicators—namely, systolic and
diastolic blood pressure, BMI, total/HDL/LDL cholesterol levels, fasting blood
glucose, triglyceride levels, and thyrotropin. These indicators were given equal
weight in computing the health index, reflecting a holistic yet concise assessment
of individual health status across multiple dimensions.
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4.4 Ethical considerations

Several AI applications have been identified that inadvertently worsen biases
against specific populations, often related to gender, ethnicity, and culture. These
biases typically stem from skewed training data rather than from deliberate de-
sign by developers. Addressing these biases necessitates proactive measures
from developers, while the failure to rectify these known issues can intensify bi-
ases through feedback loops, further amplifying the use of biased data (I. Y. Chen
et al. 2021; Zou and Schiebinger 2018). While the primary focus of this research
may not directly engage with these ethical issues, it is important to recognize
their relevance in the broader context.

Efforts have been undertaken to establish guidelines in the health-care con-
text to mitigate these issues. For instance, I. Y. Chen et al. (2021) proposed an
”ethical pipeline” consisting of five steps to urge developers to consider relevant
ethical concerns at each stage of development. They also underscored both vis-
ible challenges (e.g., imbalanced and skewed data) and hidden challenges (e.g.,
group fairness metrics and problem selection bias) in ethical ML model develop-
ment.

Concrete issues have surfaced in practical settings, as evidenced in medi-
cal imaging applications. For example, a model diagnosing diabetic retinopathy
demonstrated superior performance in individuals with lighter skin tones com-
pared to those with darker skin tones (Ricci Lara, Echeveste, and Ferrante 2022).

Despite the challenges, the application of ML in the health domain presents
a significant opportunity to address existing ethical concerns. For instance, ML
can be harnessed to tackle issues encountered by underserved patients, enhance
the accessibility of care, institute uniform rules, and assist researchers in rectify-
ing biases prevalent in clinical care (I. Y. Chen et al. 2021).



5 SUMMARY OF THE INCLUDED ARTICLES

This thesis delves into the potential of predictive modeling across diverse applica-
tions using real-life health data. In this chapter, concise summaries are presented
for each of the four articles included.

5.1 Article I: Predicting overweight and obesity in later life from
childhood data: a review of predictive modeling approaches

Published in Computational Sciences and Artificial Intelligence in Industry: New Dig-
ital Technologies for Solving Future Societal and Economical Challenges, pp. 203–220,
2021.

Background: The global rise in overweight and obesity represents a pressing
health concern. The ability to predict the likelihood of future overweight or
obesity early in childhood could facilitate timely and effective interventions. Al-
though extensive research has been conducted using explanatory modeling meth-
ods, the potential of machine learning for predictive modeling has not been fully
explored. Predictive models are validated using unseen examples, providing a
more reliable estimate of their real-world performance and generalization capa-
bility.

Objective: This review aimed to synthesize existing research on childhood over-
weight or obesity through the lens of predictive modeling.

Methods: We conducted two primary literature search cycles in 2018 and 2020,
utilizing two databases and Google Scholar. Search terms were carefully selected,
and the outcomes of the searches were documented.

Results and conclusion: We identified 13 research articles and three review ar-
ticles relevant to this review. High-performing prediction models typically have
a limited prediction timeframe and/or rely on data from later childhood. LR
emerged as the most commonly employed technique in developing prediction
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models. The variables employed frequently included the child’s own anthro-
pometric measurements as well as the mother’s weight status and BMI. Con-
temporary research has also begun to incorporate broader sets of variables and
utilize advanced ML techniques. Recurrent neural networks, although scarcely
explored, show some promise for predicting overweight and obesity by leverag-
ing their time series prediction capabilities. However, adequate data collection is
crucial prior to training such complex models.

5.2 Article II: Predicting future overweight and obesity from child-
hood growth data: a case study

Published in Computational Sciences and Artificial Intelligence in Industry: New Dig-
ital Technologies for Solving Future Societal and Economical Challenges, pp. 189–201,
2021.

Background: The growing prevalence of obesity poses a significant global health
challenge, with profound individual and societal impacts due to associated mor-
bidities and mortalities. While factors such as diet and physical activity are recog-
nized contributors to overweight and obesity, predicting individual weight trajec-
tories from early childhood remains complex. The early detection of individuals
at risk for developing obesity could significantly enhance preventive measures
and interventions in primary health-care settings. Consequently, a robust predic-
tive model could serve as an invaluable tool for health-care professionals.

Objective: This study explored the utility of Finnish childhood growth data in
constructing ML models to predict future overweight and obesity. To achieve
our goal, we utilized the previous review (Article I), which provided appropriate
information for reproducing and cross-validating the models on Finnish data.

Methods and data: We analyzed body weight and height measurements from
14,197 individuals recorded by health-care specialists in Äänekoski, Finland, from
1986 to 2018. Nine distinct research scenarios were selected based on our litera-
ture review. BMI trajectories for each subject were imputed using linear inter-
polation at 30-day intervals, forming the basis for various predictive models em-
ploying LR, SVM, decision trees, kNN classifiers on principal components, and
neural networks.

Results and conclusion: The predictive accuracy of our models was on par with,
or superior to, those in existing literature. The most effective model, utilizing the
SVM approach on Finnish data, achieved an F-measure of 0.73. These findings
indicate that the Finnish data may harbor significant patterns conducive to model
development. However, incorporating a broader range of early childhood data
could potentially refine these predictive models further.



57

5.3 Article III: Precision exercise medicine: predicting unfavourable
status and development in the 20-m shuttle run test perfor-
mance in adolescence with machine learning

Published in BMJ Open Sport & Exercise Medicine, 7:e001053, 2021.

Background: Precision medicine tailors disease prevention and treatment to in-
dividual variability. An analogous concept, precision exercise medicine recog-
nizes the significance of physical activity and CRF in health enhancement. Cur-
rent research in this field primarily investigates treatment procedures and exer-
cise response variability among adults.

Objective: The aim of this study was to evaluate the predictive capabilities of
ML, specifically an RF classifier, in predicting adverse future outcomes in the
20MSRT, a prevalent field test for estimating CRF during adolescence.

Methods and data: We utilized data from a two-year observational study (2013–
2015, mean age 12.4 ± 1.3 years, N = 633 individuals, 50% female) encompass-
ing 48 baseline characteristics derived from questionnaires and objective mea-
surements. These included demographics; physical, psychological, social, and
lifestyle factors; anthropometrics; fitness characteristics; physical activity; body
composition; and academic scores. The data facilitated predictions for (Task 1)
unfavorable future 20MSRT status, identifying individuals in the lowest CRF ter-
tile after two years, and (Task 2) unfavorable 20MSRT development, pinpointing
those with the least progress (lowest tertile) among adolescents below the median
baseline 20MSRT.

Results and conclusion: The RF classifier demonstrated robust predictive per-
formance for future 20MSRT status (Task 1), with an area under the receiver op-
erating characteristic curve (AUC) of 0.83 and 0.76, sensitivity of 80% and 60%,
and specificity of 78% and 79% for females and males, respectively. Predictive
variables included fitness characteristics, physical activity, academic scores, adi-
posity, life enjoyment, parental support, social status in school, and perceived
fitness. The study’s RF classifier successfully identified individuals at risk for
unfavorable 20MSRT outcomes, suggesting intervention targets based on a com-
prehensive profile of 14–20 baseline characteristics. Prediction for future develop-
ment (Task 2) was less accurate, with statistical significance over random levels
observed only in females (AUC 0.68 and 0.40 for females and males, respectively).
The MATLAB scripts and functions used in this study were made available to ad-
vance research in precision exercise medicine.
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5.4 Article IV: Utilizing the International Classification of Func-
tioning, Disability and Health (ICF) in forming a personal health
index

Manuscript, available as a preprint.

Background: Personal health indices condense complex health data into a singu-
lar value, offering a quick overview of individual health status, serving experts
and aiding self-monitoring. This condensed representation holds significance in,
for example, rehabilitation for initial health assessment, intervention evaluation,
and optimal resource allocation. Challenges in global health data standardization
exist due to varying practices. While existing health indices mainly rely on pre-
defined variables, the nuanced nature of personal health necessitates exploring
diverse aspects.

Objective: We proposed leveraging various data collection methods to aggregate
information systematically, enhancing the comprehensiveness of health index cal-
culation. Addressing limitations in existing health index methodologies, we also
proposed dutilizing the World Health Organization’s ICF as the basis for a novel
personal health index.

Methods and data: To develop and validate this index, data spanning 2013–2019
were collected from a single clinic involving 505 individuals undergoing rehabili-
tation for various issues. The dataset included questionnaire responses and mea-
surements encompassing the Oswestry low back pain disability questionnaire,
EQ-5D-5L generic health questionnaire, mobility and pain level assessments, as
well as maximal isometric strength tests. Notably, our approach refrained from
prescribing specific sets of variables for inclusion.

Results and conclusion: The model underwent two distinct validations, assess-
ing its performance by calculating Pearson correlations between the health in-
dex and self-assessed responses for both overall health and maximum pain. The
health index outcomes proved to be sensible. In the second validation, Bonferroni
correction was applied to enhance the accuracy of the correlation calculations.

Our approach differed significantly from prior methodologies. First, it relied on
the ICF framework, accommodating diverse datasets and providing a compre-
hensive health overview, even with sparse data. Second, it operated indepen-
dently, deriving the core parameters directly from the ICF hierarchy without re-
lying on training data or predefined parameters. Instead, it computed individual-
ized health indices based on available ICF coded data, focusing on holistic health
rather than disease prediction.

Moreover, our model seamlessly handled infrequent health records and miss-
ing data, a rarity among existing methodologies. Emphasizing simplicity and
reliance on the ICF framework, our approach offered a holistic view of health
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across various domains within the ICF. We argue that this health index holds po-
tential for clinical applications, facilitating comparisons between countries and
establishing a universal health metric.



6 CONCLUSIONS

This thesis encompasses three distinct use cases, each exploring a specific re-
search question. Each case and its corresponding research question are elaborated
upon in their respective sections within this chapter. Finally, some limitations and
potential future work are discussed.

6.1 Potential in obesity and overweight prediction (Q1)

The first use case in the thesis diverged into two distinct articles—namely, a re-
view and a case study. To the best of my knowledge, the review (Article I), which
mapped existing research on obesity prediction using predictive modeling, was
the first and remains the only one to specifically explore this issue. Recently, new
reviews (An, J. Shen, and Xiao 2022; Ferreras et al. 2023) have emerged, but their
focus deviates from predicting future obesity or overweight status. Instead, they
investigate the application of ML methods to obesity and overweight, a consid-
erably broader area. Our review not only explores various methods and their
performance in obesity prediction but also aims to understand different research
scenarios and their prediction results for the corresponding case study.

The case study (Article II) employed an exclusive dataset provided by the
town of Äänekoski encompassing information from over 14,000 individuals. Its
primary contribution lies in deploying various predictive modeling techniques
to this distinctive Finnish dataset. Notably, it delves into multiple research sce-
narios, offering deeper insights into the predictability of obesity concerns despite
a limited set of variables. This approach sets it apart from prevailing obesity re-
search, often restricted to reporting just one or a few scenarios.

An additional distinctive aspect involves employing interpolation techniques
and fully leveraging time series data, enabling direct comparison of data points
gathered at different intervals across various individuals. This methodological
approach was later also observed in Mondal et al. (2023).

Our case study’s findings either matched or surpassed similar studies high-
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lighted in the review article. They also align well with previous research indicat-
ing that predicting short-term overweight status transitions, such as from ages 2
to 3 (achieving an F-measure of 0.70, sensitivity of 75%, and specificity of 89%),
is relatively feasible, although not without challenges. In contrast, predicting
longer-term transitions, such as from birth to adolescence (where the F-measure
for girls was only 0.41, with sensitivity at 56% and specificity at 60%), proved
more challenging.

6.2 Potential in cardiorespiratory fitness development prediction
(Q2)

The second use case (Article III) aimed to predict the future unfavorable devel-
opment in CRF among adolescents. The 20MSRT results were used as indicators
of CRF. A data-driven ML approach was employed to identify the best predictors
of future CRF. The study used an extensive dataset collected from a 2-year lon-
gitudinal observational study with 48 variables, including self-assessment ques-
tionnaires and noninvasive objective measurements from almost 1,000 children.
Novel insights emerged, showcasing the ML’s capacity to predict unfavorable fu-
ture CRF in both girls (AUC 0.83) and boys (AUC 0.76). The variable importance
estimates highlighted 14–20 baseline variables linked to future CRF, encompass-
ing factors such as low physical and perceived fitness, high adiposity markers,
low physical activity markers, low academic performance, low enjoyment of life,
low parental support, and low perceived social status at school.

Despite the challenging nature of predicting unfavorable CRF development
in the second task, the achieved AUC (0.68) for girls significantly surpassed the
random level. Ten variables emerged with predictive power, echoing a similar
set of variables identified in the preceding prediction task.

These results indicate multifaceted influences, where physical, psychologi-
cal, and social well-being contribute to 20MSRT results in adolescence. This infor-
mation supplements the existing body of research, which usually focuses on eval-
uating performance development driven by growth and maturation, resulting in
morphological changes. Our findings highlight the added value of assessing an
adolescent’s holistic well-being over solely relying on their 20MSRT score. This
insight advocates a more comprehensive evaluation of individual physical fitness
test outcomes, especially in large-scale fitness monitoring systems. Effectively al-
locating resources for interventions becomes feasible when employing accurate
methods tailored for specific individuals.

Furthermore, these findings underscore the potential of ML in identifying
candidates for interventions by recognizing data-driven characteristic profiles or
phenotypes. Additionally, employing CV techniques helps counter traditional
statistical limitations, providing greater insight into the models’ generalization
capabilities. Robust methodologies are important for adolescents, especially given
the scarcity of evidence on criterion references related to physical fitness. This
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need is pivotal to avoid over-diagnosis and ensure appropriate measures for the
correct individuals.

6.3 Developing an ICF-based personal health index and its influ-
ence on health assessments and ML (Q3)

The third use case (Article IV) focused on addressing the challenges posed by
real-world structured health data. The study was rooted in the practical issues
encountered by a global network of clinics that collect data in diverse ways. The
fundamental approach was to utilize the ICF classification system to circumvent
data preparation obstacles that often hinder the practical application of predic-
tive models. The goal was to create a robust personal health index calculation
that encapsulates the concept of health in its broadest sense, considering various
health aspects. This calculation takes into account several factors, including the
ability to manage sparse and infrequent data with missing values and the unifica-
tion of data from different cultures, regions, and countries. Data quality was also
a consideration, meaning that more reliable (i.e., recent or rigorously validated)
data carry more weight in the calculation.

The health index was validated using real-world data from individuals un-
dergoing rehabilitation. The results suggest that the proposed model produces
valid health index outcomes and is practically applicable. These outcomes can
be leveraged in various ways, such as identifying and enhancing factors related
to overall health rather than focusing on treating a single symptom, thereby en-
abling a more holistic view of an individual’s health. The proposed model addi-
tionally facilitates the creation of comprehensive individual health profiles through
a detailed examination of the subcategories within the ICF.

Existing research showcases a variety of methods for computing health in-
dices. However, our model distinguishes itself in the following key aspects:

• It does not depend on predefined variables. Instead, it adapts to any dataset
that is compatible with the ICF. However, it is crucial to select relevant ICF
codes based on an individual’s health aspects, recognizing that different
individuals require different ICF codes for a comprehensive health assess-
ment.

• Unlike models that use training data or predefined parameters, it derives its
core parameters from the hierarchical structure of the ICF. This allows for
the computation of an individual’s health index with available ICF-coded
data. Each person’s health index remains distinct and is not influenced by
the health indices of others.

• It concentrates on estimating current health status without predicting dis-
ease risks. In line with the WHO’s definition of health, it takes into ac-
count daily activities, mental health, and social interactions, aligning with
the ICF’s capacity to capture these aspects.
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• Uniquely, it can handle infrequent, longitudinal health records and miss-
ing data, unlike most approaches. Its simplicity and reliance on the ICF’s
hierarchy make it robust against common structured health data issues.

In the context of predictive modeling and ML, the health index offers the advan-
tage of creating a framework to merge datasets from various sources, enhancing
data preparation. Ensuring consistent variables across all individuals is vital for
robust ML models, and the failure to standardize leads to smaller subsets, un-
dermining predictive models. Moreover, the health index can act as a key opti-
mization target in ML, enabling the use of standardized datasets for predicting
individual health. This, for instance, can aid in personalized rehabilitation path-
way selection.

In conclusion, our approach provides adaptability to diverse datasets, inde-
pendence from external factors, a holistic view of health, and robustness against
data irregularities. This ensures the generation of outputs for any dataset that
meets the minimum ICF-compatible requirements.

6.4 Limitations and future work

Cohort studies with a large number of collected variables typically have a rela-
tively low participant count. For various reasons, a significant number of par-
ticipants may need to be excluded from the final analyses, resulting in a smaller
sample size. This reduction impacts the selection of potential predictive modeling
methods and validation possibilities. For example, it might be impractical to re-
serve a separate hold-out dataset for the final validation of the chosen model or to
use models that typically require large datasets. Moreover, leveraging the poten-
tial of ML methods with more complexity, including deep learning, requires large
amounts of data for training, often posing a challenge due to limited data avail-
ability. However, augmenting the models with additional variables while lever-
aging methods with more complexity, such as convolutional neural networks or
generative adversarial networks, might enhance their performance (Dogan et al.
2023; Islam and Shamsuddin 2021).

Leveraging previously collected datasets can inspire new ideas for refining
data collection. Identifying deficiencies in data collection and post-processing
can be a lengthy and slow process. The goal should be to collect data in such a
way that it is usable with minimal preparation steps. Ideally, new data should
be easily incorporated when refining the model or making predictions with the
existing model.

In the field of rehabilitation, an iterative ICF-based rehabilitation cycle, known
as Rehab-Cycle, has been formulated for rehabilitation management (Rauch, Cieza,
and Stucki 2008). This cycle encompasses the following four key phases: assess-
ment, assignment, intervention, and evaluation. Leveraging the personal health
index allows for the creation of a concise numerical measure for both the pre-
treatment assessment and the posttreatment evaluation within the Rehab-Cycle.
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Moreover, this index can aid in optimizing resource allocation and intervention
selection during the assignment and intervention phases. Consequently, it en-
ables a more comprehensive assessment of rehabilitation efficacy and facilitates
comparisons among diverse countries and rehabilitation methodologies. With
the potential support of ML methods, it could yield insights into best practices
for various rehabilitation cases. The future development of the index involves a
more rigorous validation in a clinical setting.

Although predictive modeling approaches have gained significant traction
in recent years, it is important to acknowledge the vast expanse of uncharted
territory that still exists in numerous health domain applications. The potential
for discovery and innovation in these areas is immense, and the implications for
health-related research can be transformative.

This dissertation has provided an in-depth examination of a select few ap-
plications, offering valuable insights and contributing to the growing body of
knowledge in this field. Each application holds unique challenges and possibili-
ties, urging further exploration for novel solutions and perspectives.

Although AI and ML tools have made significant progress, their usage re-
mains highly task-specific, demanding substantial manual effort. An artificial
general intelligence (AGI) solution capable of addressing all problems seems un-
likely in the near future and remains a theoretical concept (McLean et al. 2023),
despite ongoing efforts in that direction. For example, Y. Shen et al. (2023) pro-
posed using LLMs, such as ChatGPT, as controllers for managing existing AI
models. Challenges remain due to the diverse nature of problems, thereby re-
quiring tailored approaches, and because of ethical considerations. Real-world
complexities with data and interpretability issues also hinder the development of
a comprehensive AI solution. Continuous research and interdisciplinary collab-
orations with domain experts are essential for addressing these challenges and
advancing toward more usable AI and ML solutions.



YHTEENVETO (SUMMARY IN FINNISH)

Tämä neljän artikkelin väitöskirja tarkastelee olemassa olevien suomalaisten ter-
veysaineistojen potentiaalia yksilöllisen terveyden kehittymiseen liittyvissä ky-
symyksissä kirjallisuuskatsauksen (Artikkeli I), koneoppimismenetelmien sovel-
tamisen (Artikkeli II ja Artikkeli III) sekä kokonaan uuden laskentamenetelmän
luomisen (Artikkeli IV) keinoin.

Ensimmäinen käyttötapaus jakautui kahteen erilliseen artikkeliin; kirjalli-
suuskatsaukseen sekä tapaustutkimukseen. Kirjallisuuskatsauksessa Artikkelis-
sa I tarkasteltiin olemassa olevaa tutkimusta ylipainon ja liikalihavuuden ennus-
tamisessa lasten ja nuorten kohderyhmässä. Katsaukseen päätyneet tutkimukset
täyttivät ennustavan mallintamisen kriteerit. Tutkimus tarjosi kattavan kartoituk-
sen alan olemassa olevista tutkimuksista, keskittyen erityisesti tulevan tilan en-
nustamiseen, toisin kuin ennen tätä katsausta tehdyt sekä viimeaikaiset katsauk-
set, jotka sisältävät koneoppimisen laajempia sovelluksia ylipainoon ja liikaliha-
vuuteen liittyvissä kysymyksissä. Erilaiset tutkimusasetelmat kirjattiin ylös, jotta
niitä voitiin hyödyntää myöhemmin tapaustutkimuksessa suomalaisella aineis-
tolla.

Tapaustutkimus Artikkelissa II hyödynsi Äänekosken kaupungin ainutlaa-
tuista aineistoa, joka sisälsi kasvukäyrätietoja yli 14 000 henkilöltä, ja hyödynsi
useita eri ennustavan mallintamisen menetelmiä. Tutkimuksessa hyödynnettiin
myös useita tutkimusasetelmia, ja siinä saatiin hyvä yleiskuva ylipainon ja liika-
lihavuuden ennustettavuudesta suomalaisella aineistolla, vaikka käytössä olikin
rajattu määrä muuttujia. Merkittävä piirre oli interpolointitekniikan käyttö, joka
mahdollisti eri aikavälein kerättyjen tietopisteiden suoran vertailun yksilöiden
välillä. Vastaavaa menetelmää on hyödynnetty hiljattain samassa tarkoitukses-
sa (Mondal et al. 2023).

Tapaustutkimuksen ennustuskyvykkyys eri asetelmille oli linjassa katsauk-
sessa esiinnostettujen tutkimusten kanssa tai jopa ylitti ne. Tutkimus vahvisti
myös osaltaan ymmärrettävän ilmiön: lyhyen aikavälin siirtymät ylipainon en-
nustamisessa, kuten kaksivuotiaasta kolmevuotiaaksi, osoittautui suhteellisen me-
nestykselliseksi (F-mitta 0,70, sensitiivisyys 75 % ja spesifisyys 89 %). Pidem-
män aikavälin ennusteet, kuten siirtymä syntymästä nuoruuteen, olivat kuiten-
kin haastavampia, ja tässä esimerkkitapauksessa tytöillä tulokset olivat vaatimat-
tomat (F-mitta 0,41, sensitiivisyys 56 % ja spesifisyys 60 %).

Toisen käyttötapauksen tutkimus Artikkelissa III pyrki ennustamaan kar-
diorespiratorisen kunnon kehitystä nuorilla aineistolähtöisesti satunnaismetsä-
menetelmän avulla. Ennustustehtäviä oli kaksi: (Tehtävä 1) Heikko kunnon tila;
niiden henkilöiden tunnistaminen, jotka ovat alimmassa kuntotertiilissä kahden
vuoden seurantajakson lopussa, ja (Tehtävä 2) Heikko kunnon kehitys; heikoiten
seurantajakson aikana kehittyneiden (alin tertiili tuloksen kehityksessä) henkilöi-
den tunnistaminen siten, että mukana olivat vain lähtötilanteessa mediaanin ala-
puolella olevat henkilöt. Kunnon indikaattorina käytettiin 20 metrin viivajuok-
sutestin tuloksia. Tutkimus hyödynsi laajaa aineistoa kahden vuoden pituisesta
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pitkittäistutkimuksesta, johon osallistui lähes tuhat lasta ja jossa oli 48 muuttujaa.
Mallit nostivat esiin ennustusvoimaa sisältäviä kardiorespiratorisen kunnon tu-
levaisuuden ennustajia, sisältäen sekä itsearviointikyselyitä että noninvasiivisin
menetelmin tehtyjä mittauksia. Satunnaismetsä osoitti varsin hyvää ennustusky-
kyä ennustamalla heikkoa kunnon tilaa (Tehtävä 1) sekä tytöillä (AUC 0,83) et-
tä pojilla (AUC 0,76), korostaen 14–20 kardiorespiratoriseen kuntoon yhteydessä
olevaa muuttujaa, kuten matalaa fyysistä kuntoa, korkeaa rasvaprosenttia sekä
sosiaalisia ja koulunkäyntiin liittyviä tekijöitä.

Vaikka heikon kunnon kehityksen ennustaminen (Tehtävä 2) oli haastavaa,
tyttöjen AUC (0,68) ylitti kuitenkin merkitsevästi satunnaisen tason. Mallissa nou-
si esiin kymmenen ennustusvoimaa sisältävää muuttujaa, muistuttaen aikaisem-
massa ennustetehtävässä tunnistettuja muuttujia.

Tulokset viittaavat siihen, että nuorilla viivajuoksutuloksiin vaikuttavat niin
fyysinen, psyykkinen kuin sosiaalinenkin hyvinvointi. Tämä korostaa kokonais-
valtaisen terveyden arvioinnin merkitystä pelkän viivajuoksutuloksen pisteytyk-
sen sijaan. Tulokset siis puoltavat kattavampaa arviointia, erityisesti suuren mit-
takaavan kunnonseurantajärjestelmissä. Havainnot tukevat sitä, että koneoppi-
misella on potentiaalia kunnon kehityksen ennustamisessa ja interventioihin so-
pivien henkilöiden tunnistamisessa. Lisäksi ristiinvalidointitekniikoilla saadaan
parempi ymmärrys mallien yleistymiskyvyistä.

Kolmannen käyttötapauksen tutkimus Artikkelissa IV keskittyi ratkaise-
maan rakenteellisen terveysaineiston käsittelyn haasteita. Tutkimuksessa hyö-
dynnettiin ICF-luokitusjärjestelmää, ja tarkoituksena oli huomioida aineiston esi-
käsittelyn haasteet sekä luoda kattava henkilökohtaisen terveysindeksi. Indeksi
ottaa huomioon erilaiset terveysnäkökohdat, kykenee käsittelemään eri kulttuu-
reista peräisin olevaa hajanaista ja monimuotoista aineistoa, sekä antaa suurem-
man painoarvon tuoreelle ja laadukkaalle tiedolle. Validointi kuntoutuksessa ole-
vien henkilöiden aineistolla osoittaa, että malli tuottaa päteviä terveysindeksin
arvoja. Toisin kuin useimmat aiemmat menetelmät, malli sopeutuu erilaisiin ai-
neistoihin, kunhan ne ovat yhteensopivia ICF:n kanssa. Mallin ydinparametrit
johdetaan suoraan ICF:n hierarkkisesta rakenteesta, eikä se siten tarvitse erillistä
koulutusta. Menetelmä keskittyy nykytilanteen terveydentilaan arviointiin, eikä
se pyri eri tautien riskien ennustamiseen. Täten se noudattaa WHO:n terveys-
määritelmää, jossa kokonaisterveyden kannalta olennaista ovat etenkin päivit-
täisten toimintojen sujuminen, mielenterveys ja sosiaaliset vuorovaikutukset.

Terveysindeksiä voidaan hyödyntää esimerkiksi kuntoutuksen tehostami-
sessa, jolloin indeksin avulla on mahdollista luoda numeerisia arvoja arvioin-
teihin ennen hoitoa sekä hoidon jälkeen. Indeksiä voidaan hyödyntää tässä yh-
teydessä myös resurssien oikeassa kohdistamisessa sekä interventioiden valin-
nassa. Tämä mahdollistaa kuntoutuksen onnistumisen paremman arvioinnin, eri
maiden väliset vertailut sekä tulevaisuudessa mahdollisesti koneoppimismene-
telmien avulla parhaiden käytäntöjen tai hoitopolkujen ennustamisen erilaisiin
kuntoutustapauksiin.
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Lopuksi, kohorttitutkimuksissa, joissa on suuri määrä muuttujia, osallistu-
jien määrä on usein melko rajattu ja myös vähenee tutkimuksen edetessä, mi-
kä näkyy käytettävässä aineistossa. Suhteellisen vähäinen aineiston määrä ra-
joittaa kompleksisempien koneoppimismenetelmien, kuten syväoppimisen, hyö-
dyntämistä. Monipuolisempien muuttujien lisääminen malleihin voi parantaa
mallien suorituskykyä. Olemassa olevien tietoaineistojen hyödyntäminen, kuten
tässä tutkimuksessa tehtiin, voi myös kehittää aineistonkeruuta ja auttaa huo-
maamaan niissä olevia puutteita.

Terveydenhuollon sovelluksissa on edelleen mahdollisuuksia, joilla on epäi-
lemättä vielä paljon hyödyntämätöntä potentiaalia. Tämä väitöskirja perehtyi mo-
nipuolisesti muutamaan valikoituun sovellukseen ja täydentää alan tietämystä.
Vaikka tekoäly- ja koneoppimismenetelmät edistyvät koko ajan, vahvan tekoä-
lyn (AGI) saavuttaminen näyttää vielä etäiseltä. Jatkuvasti tehtävä tutkimus ja
tieteidenvälinen yhteistyö ovat avainasemassa käytettävien tekoäly- ja koneop-
pimisratkaisujen edistämisessä.
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ABSTRACT
Objectives To assess the ability to predict individual 
unfavourable future status and development in the 20m 
shuttle run test (20MSRT) during adolescence with 
machine learning (random forest (RF) classifier).
Methods Data from a 2- year observational study 
(2013 2015, 12.4±1.3 years, n=633, 50% girls), with 48 
baseline characteristics (questionnaires (demographics, 
physical, psychological, social and lifestyle factors), 
objective measurements (anthropometrics, fitness 
characteristics, physical activity, body composition 
and academic scores)) were used to predict: (Task 1) 
unfavourable future 20MSRT status (identification of 
individuals in the lowest 20MSRT tertile after 2 years), and 
(Task 2) unfavourable 20MSRT development (identification 
of individuals with 20MSRT development in the lowest 
tertile among adolescents with baseline 20MSRT below 
median level).
Results Prediction performance for future 20MSRT 
status (Task 1) was (area under the receiver operating 
characteristic curve, AUC) 83% and 76%, sensitivity 80% 
and 60%, and specificity 78% and 79% in girls and boys, 
respectively. Twenty variables showed predictive power in 
boys, 14 in girls, including fitness characteristics, physical 
activity, academic scores, adiposity, life enjoyment, 
parental support, social status in school and perceived 
fitness.
Prediction performance for future development (Task 2) 
was lower and differed statistically from random level only 
in girls (AUC 68% and 40% in girls and boys).
Conclusion RF classifier predicted future unfavourable 
status in 20MSRT and identified potential individuals for 
interventions based on a holistic profile (14 20 baseline 
characteristics). The MATLAB script and functions 
employing the RF classifier of this study are available for 
future precision exercise medicine research.

INTRODUCTION

Precision medicine is prevention and 
treatment strategies of diseases taking the 
individual variability into account.1 Recently, 
a similar concept called precision exercise 
medicine was brought forward where the role 
of physical activity (PA) and cardiorespiratory 

fitness (CRF) in health enhancement was 
acknowledged.2 However, currently, the focus 
in precision exercise medicine is mainly on 
exploring treatment procedures and exercise 
response variability in adults.2 3 Neverthe-
less, many chronic diseases have origins 
already in early childhood.4 Prevention strat-
egies warrant more focus on children and 
adolescents, especially as health risks have 
associations with CRF5 and reversibility with 
exercise interventions in this age group.6

The 20- m shuttle run test (20MSRT) is 
the most commonly used field test to esti-
mate CRF.7 Low 20MSRT score has adverse 
associations with many aspects of children’s 
and adolescents’ daily lives. Previous studies 
have reported 20MSRT associated with lower 
overall physical performance,8 poorer tissue 
health (including adiposity,8 brain9 and bone 
tissue10), lower cardiometabolic and psycho-
social health, and cognitive performance.8 

Key messages

What is already known
 The 20- m shuttle run test is commonly used in ado-
lescents to estimate unfavourable cardiorespiratory 
fitness

 Currently used methods for assigning interventions 
based on the 20- m shuttle run test have limitations 
in individual level accuracy

What are the new findings
 Machine learning algorithm was able to identify ad-
olescents with unfavourable future 20 m shuttle run 
test (20MSRT) status based on 14 baseline charac-
teristics in girls, and 20 in boys.

 This study provides an example with attached 
MATLAB script and functions how to use machine 
learning in precision exercise medicine.

 Adolescents’ overall physical, psychological and 
social status are recommended to be assessed be-
fore deciding on interventions based on the 20MSRT 
score.
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However, currently used methods to assign interventions 
based on the 20MSRT have limitations by their individual 
level accuracy.7 11 The ability to predict 20MSRT prospects 
during adolescence would enhance the identification of 
potential individuals for lifestyle interventions.

Machine learning (ML)- based pattern recognition 
approaches have emerged as promising alternatives 
to traditional statistical methods in precision exercise 
medicine.3 Random forest (RF) is a commonly used 
ML algorithm. Contrary to other high learning capacity 
methods, such as neural networks and support vector 
machines, major advantages of RF include that the 
extensive tuning of hyperparameters is not required 
and overfitting the model is usually of lesser concern. 
An additional benefit especially suited for our research 
goals is extracting the estimates of importance for each 
variable in the data.12 13 The main aim of this study was 
to evaluate the performance of RF on predicting future 
individual unfavourable 20MSRT status and develop-
ment during adolescence based on 48 baseline variables, 
including physical, psychological and social indicators. 
Two prediction tasks were implemented: (Task 1) predic-
tion of unfavourable future 20MSRT status (identification 
of individuals in the lowest 20MSRT tertile after 2 years), 
and (Task 2) prediction of unfavourable 20MSRT devel-
opment in adolescents with limitations in their 20MSRT 
performance (identification of individuals with 20MSRT 
development in the lowest tertile among adolescents with 
baseline 20MSRT below median level). Task 1 focuses on 
the normal population, while Task 2 focuses specifically 
on children and adolescents who are more likely to expe-
rience the adverse outcomes related to lower 20MSRT 
performance.

We hypothesised that the baseline data contain variables 
that can predict future 20MSRT status and develop-
ment. A secondary aim was to evaluate with a data- driven 
approach the best predictors of unfavourable 20MSRT 
prospects out of a wide range of baseline characteristics. 
We furthermore provide the predictive modelling algo-
rithms used in this study for future research.

METHODS

Study design and participants

Secondary data analyses were performed for data 
collected in a 2- year longitudinal observational study 
(2013 2015) related to the Finnish Schools on the Move 
programme.14 Data contained information from 971 
students (mean 12.5±1.3 years, min 9.2 years, max 15.3 
years, 52% girls). The sample of this study was further 
reduced to 633 (50% girls) (Task 1) and 300 subjects 
(50% girls) (Task 2), described in more detail in the 
Predictive modelling section. The data were collected at 
baseline during Spring and Fall semesters (1 May 2013 
and 8 November 2013) and at follow- up during the 
Spring semester (1 May 2015) in nine Finnish public 
schools. The baseline and follow- up measurements 
during the Spring semester were performed within the 
same calendar week in each school.

Forty- eight baseline variables (see the full list in online 
supplemental information document 1) were used in the 
prediction tasks (figure 1). Information regarding partic-
ipants’ demographics, physical, psychological and social 
factors was obtained from self- assessment questionnaires 
and non- invasive objective measurements.

Self-assessment questionnaires

Participants completed two web- based questionnaires 
at baseline. Due to the extensiveness of the question-
naires, the data were collected in two parts: a first round 

Figure 1 Prediction tasks were (A) unfavourable future 
20MSRT status (identification of individuals in the lowest 
20MSRT tertile after 2 years), and (B) unfavourable 20MSRT 
development in adolescents with limitations in their 20MSRT 
performance (identification of individuals with 20MSRT 
development in the lowest tertile among adolescents with 
baseline 20MSRT below median level). Both of these target 
tertile groups are highlighted in grey. The exact outcome 
variables to be predicted were (A) status of 20MSRT at 
follow- up (laps) and (B) absolute change between baseline 
and follow- up (in laps). The median level refers to the 50% 
performance level that was determined for each age cohort 
and both sexes separately to select the study sample in Task 
2. The 33%, 66% cut- offs represent the tertiles used in Tasks 
1 and 2. In both tasks, the outcome tertiles were determined 
for each age cohort and both sexes separately. 20MSRT, 20- 
m shuttle run test.
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during the Spring 2013 and a second during the Fall 
2013 semester (see division in online supplemental 
information document 1). In addition to basic demo-
graphic information (age and sex), the questionnaires 
assessed student’s perceptions of their physical, psycho-
logical, and social status and health- related behaviour, 
for example, subjective evaluation of PA,15 pubertal 
status on Tanner scale,16 societal status of the family,17 
perceived health,18 and cigarette, alcohol, and unhealthy 
food consumption.

Objective measurements

All objective measurements were performed during the 
Spring semester of 2013. Body height was measured with 
an accuracy of 0.1 cm (Charder HM 200P scale). Body 
composition and mass were measured in light clothing 
using a bioelectrical impedance analysis device (InBody 
720, Biospace Co.). Waist circumference was measured 
according to WHO guidelines.19

Physical fitness measurements were conducted in 
schools during the school day, with measurements 
included in the Finnish national Move!—monitoring 
system for physical functional capacity20: 20MSRT, push- 
up, curl- up, 5- leaps test, throwing–catching combination 
test and flexibility. Procedures for fitness measurements 
are described in detail in our previous baseline article.21 
The 20MSRT followed the Eurofit protocol and was 
recorded as laps run until voluntary exhaustion.

Device- based PA was evaluated using a hip- worn accel-
erometer (ActiGraph GT3X+, wGT3X+, Pensacola, 
Florida, USA) during a 7- day measurement period 
with raw 30 Hz acceleration, standard filtering and 15 s 
epoch conversion. Evenson criteria were used to define 
sedentary (<100 counts/min (cpm)), light (101–2295 
cpm), moderate- to- vigorous (2296–20 000 cpm) phys-
ical activity (MVPA).22 The valid amount of data was set 
for at least 500 min/day (between 07:00 and 23:00),23 
including at least 2 weekdays and 1 weekend day. 
Activity intensities were converted into weighted mean 
values per day (eg, MVPA=((average MVPA min/day of 
weekdays × 5+average MVPA min/day of weekend days ×
 2)/7)).

Academic scores (teacher- rated grade points) included 
grade point average (GPA) and grade point in physical 
education. Regional education services provided the 
data.

Predictive modelling

The predictive modelling algorithms are provided in a 
data file (online supplemental information document 
2) and available for future studies. All analyses were 
performed using MATLAB R2018a with the Statistics and 
Machine Learning Toolbox and conducted separately for 
both sexes.

The flow chart of predictive modelling is presented in 
figure 2. Please see the full details of the analyses in the 
online supplemental information document 3.

Initial data preprocessing
Target variable formatting
The target variables to be predicted were (1) status of 
20MSRT at follow- up and (2) absolute change in 20MSRT 
test result (laps) between the baseline and the follow- up 
(figure 1). The tertile groups were determined for both 
sexes and each age cohort separately. From a total of 
971 observations, the 20MSRT baseline level could be 
determined for 871 students. A total of 633 participants 
were included in the Task 1 analysis. Exclusion criteria 
included participants with no result from the 20MSRT 
follow- up test. Here the missing mechanism was assumed 
to be missing completely at random. Altogether 300 
adolescents were included in the Task 2 analyses. These 
participants had a recorded result for both 20MSRT tests, 
and their baseline 20MSRT result was below the age- 
specific and sex- specific median level. Here participants 
with no results from either of the two 20MSRT tests were 
excluded from the analysis.

Variables heavily dependent on age (see online 
supplemental information document 3 for a list) were 
age- adjusted using linear regression. The age- adjustment 
was first performed for the training data, and the residual 

Figure 2 The flow chart of predictive modelling.
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information was thereafter used to age adjust the corre-
sponding variables in the testing data.

Data division
The 10- fold cross- validation (CV) was used for model 
assessment where the data set (eg, in Task 2: n=150 
boys, n=150 girls) was divided into 10 subsamples (n=15 
participants per subsample) called folds. Nine folds were 
then used as the training data (90% of the whole data 
set, to fit the tree model and estimate the variable impor-
tance values) and one fold as the testing data (10% of 
the whole data set, to evaluate the prediction accuracy 
on an independent sample). The procedures of training 
and prediction were then performed for these folds in a 
rotating manner, where eventually, all the folds had been 
used for training and testing. These procedures provided 
in total a set of 10 data- driven prediction models. The 
average performance of these 10 prediction models is 
shown in the Results section.

Training and prediction
RF is an ML method that grows a forest of multiple 
de- correlated decision trees.13 This forest of trees is 
thereafter employed as a voting ensemble, where each 
tree votes for the group of a single student (ie, does the 
individual belong to the lowest, middle or highest tertile 
group). The final predicted group for the student has 
the most votes in the whole forest.12 13 For each of the 
10 folds, the trained model was employed to predict 
the testing portion of data. The area under the receiver 
operating characteristic curve (AUC), sensitivity and 
specificity metrics were recorded. A t- test in MATLAB was 
performed for AUC results to determine if the mean was 
significantly (p<0.05) above the random level of 0.5.

The prediction strength of each feature is estimated 
using the out- of- bag (OOB) samples of each tree, that 
is, training data samples that have not been used when 
forming the tree. The OOB samples are shown to the tree, 
and the F1- score measure (online supplemental informa-
tion document 3) of the predictions are recorded. Then 
the values of each feature are permuted one- by- one 
randomly, and after each permutation, the classifica-
tion error is calculated again. This procedure is applied 
to all the trees in the forest. The final estimate of indi-
vidual feature importance is the difference between the 
original classification error and the randomly permuted 
feature classification error, averaged for all the trees.12 
The final list of statistically significant (p<0.05) predic-
tors (online supplemental information document 5) was 
then formed, using MATLAB’s t- test function. T- test was 
again performed for each predictor to determine which 
feature importance estimates were significantly above the 
mean of zero, indicating that they had predictive power.

The direction of the associations
The directions for the significant variables (significance 
set at p<0.05, presented in figures 3 and 4) were esti-
mated using a separate receiver operating characteristic 

(ROC) analysis.24 The analysis was performed for the two 
prediction tasks, separately for girls and boys. Here, the 
whole data were employed without separation to training 
and testing data sets. Each variable in the data was then 
used one by one. The idea was to see how well a single 
variable can separate the data into two groups: the first 
group contained the lowest tertile and the second group 
contained the two upper tertiles. The separation threshold 
in the analysis is then changed step- by- step. At each step, 
two metrics needed for the ROC curve, sensitivity and 
specificity, are recorded. For each variable, we recorded 
the AUC value. The AUC value was then compared with 

Figure 3 Best predictors for Task 1 in girls (20MSRT 
performance in the lowest tertile at 2- year follow- up). 
Statistically significant predictors are marked with * (p<0.05). 
Descending arrow ( ): low values are associated with 
20MSRT in the lowest tertile. Ascending arrow ( ): high 
values are associated with 20MSRT in the lowest tertile. 
The solid line represents the 95% CI. Variable importance 
estimate indicates the significance of the predictor. 20MSRT, 
20- m shuttle run test.

Figure 4 Best predictors for Task 1 in boys (20MSRT 
performance in the lowest tertile at 2- year follow- up). 
Statistically significant predictors are marked with * (p<0.05). 
Descending arrow ( ): low values are associated with 
20MSRT in the lowest tertile. Ascending arrow ( ): high 
values are associated with 20MSRT in the lowest tertile. 
The solid line represents the 95% CI. Variable importance 
estimate indicates the significance of the predictor. 20MSRT, 
20- m shuttle run test.
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the random level (0.5). If the value was higher than the 
random level, we assumed that the variable information 
is applied correctly. The associated direction was that the 
higher the variable value, the higher the probability of 
the student belonging to the lowest tertile. Additionally, 
if the AUC value was lower than 0.5, a simple transfor-
mation of multiplying all the variable values with the 
number −1 was made, and the AUC was then calculated 
again. In this case, the associated direction was inverted: 
the lower the variable value, the higher the probability 
of belonging to the lowest tertile. The results of the ROC 
analysis are presented in online supplemental informa-
tion document 4.

Patient and public involvement

Patients or the public were not involved in designing, 
analysing or interpreting this study.

RESULTS

The characteristics of the study sample are described 
in table 1. Participants’ average performance in the 
20MSRT was 45.3 and 36.4 laps at baseline in boys and 
girls, representing the 60th and 70th centile in the inter-
national normative values for 20MSRT.

Prediction performance

The ability of the RF method to predict unfavourable 
future 20MSRT status (Task 1) is presented in table 2. 
The AUC values were higher in girls (0.83) than in boys 
(0.76), both statistically higher than the random level of 
0.5 (p<0.001). Sensitivity (individuals correctly predicted 
to belong to the lowest performance tertile) was higher 
in girls (0.80) than in boys (0.60). Specificity (individuals 
correctly predicted not to belong to the lowest perfor-
mance tertile) was 0.78 in girls and 0.79 in boys.

The ability of the RF method to predict unfavour-
able 20MSRT development in a group of adolescents 
with baseline 20MSRT below the median level (Task 2) 
is presented in table 2. The prediction performance of 
ML was lower in these analyses. The AUC values were 
higher in girls (0.68) than boys (0.40), but only girls’ 
predictions statistically differed from the random level 
(p=0.001). Sensitivity (individuals correctly predicted to 
belong to the lowest development group) was higher in 
girls (0.59) than in boys (0.13). Specificity (individuals 
correctly predicted not to belong to the lowest develop-
ment group) was 0.70 in girls and 0.79 in boys.

Best predictors of 20MSRT prospects

The statistically significant predictors for Tasks 1 and 
2 are represented in figures 3 and 4. The x- axis in the 
figures gives the estimate for variable importance, calcu-
lated using the increase or decrease in classification 
error when the predictor values are randomly permuted 
separately for each predictor. The higher the estimate, 
the higher is the significance of the predictor. Please see 
detailed information related to the direction and statis-
tical significance of the variables in online supplemental 
information document 4. The top predictor for Task 1 
was 20MSRT performance at baseline, both in boys and 
girls (p<0.001, figures 3 and 4), indicating that low initial 
20MSRT performance predicts low performance also 
after 2 years.

Girls had 13 additional predictors (figure 3): low 
performance in other physical fitness tests (5- leaps 
test (p<0.001), push- ups (p<0.001) and flexibility 
score (p=0.049)), high markers of adiposity (body fat 
percentage (p<0.001) and visceral fat (p<0.001)), low 

Table 1 Descriptives of the study sample at baseline

Boys (n=319) Girls (n=314)

Age (years) 12.5±1.3 12.3±1.3

Height (cm) 156.1±11.7 154.1±9.6

Weight (kg) 46.1±12.9 44.8±10.5

BMI (kg/m2) 18.6±3.3 18.7±3.1

20MSRT (laps) 45.3±19.0 36.4±15.2

20MSRT centile* 60th 70th

MVPA (min/day) 58.0±22.4 48.3±17.9

Pubertal status† 2.6±1.0 2.5±0.9

Units are means and SD unless other mentioned.
*International normative values by Tomkinson et al, 2016.
†Classification is based on self- assessment questionnaire and 
Tanner’s scale.
BMI, body mass index; 20MSRT, 20- m shuttle run test; MVPA, 
accelerometry- based moderate- to- vigorous physical activity.

Table 2 The overall prediction performance of the unfavourable future 20MSRT status and development

AUC 95 % CI P value Sensitivity 95 % CI Specificity 95 % CI

Task 1 Unfavourable future 20MSRT status (identification of individuals in the lowest 20MSRT tertile after 2 years)

Girls 0.83 0.76 to 0.90 <0.001 0.80 0.69 to 0.91 0.78 0.74 to 0.82

Boys 0.76 0.71 to 0.81 <0.001 0.60 0.52 to 0.68 0.79 0.74 to 0.84

Task 2 Unfavourable 20MSRT development (identification of individuals with 20MSRT development in the lowest tertile 
among adolescents with baseline 20MSRT below median level)

Girls 0.68 0.60 to 0.76 0.001 0.59 0.50 to 0.68 0.70 0.59 to 0.81

Boys 0.40 0.29 to 0.51 0.108 0.13 0.04 to 0.22 0.79 0.70 to 0.88

P value: statistical difference of the AUC value from the random level of 0.5; Sensitivity: individuals correctly predicted to belong to the 
explored group; Specificity: individuals correctly predicted not to belong to the explored group.
AUC, area under the receiver operating characteristic curve; ;20MSRT, 20- m shuttle run test.
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markers of PA (accelerometry- based counts (p<0.001), 
MVPA (p=0.003), participation to sport club practices 
(p=0.025) or competitions (p<0.001) and high percentage 
of accelerometry- based sedentary time (p=0.009)), low 
academic scores (GPA and grade point in physical educa-
tion (both p<0.001)) and low perceived social status in 
school (p=0.015), all predicting placement in the lowest 
20MSRT tertile after 2 years.

In addition to the baseline 20MSRT performance, 
boys had 19 additional predictors (figure 4): low perfor-
mance in other physical fitness tests (push- ups (p<0.001), 
5- leaps test (p<0.001), throwing–catching combination 
test (p<0.001) and curl- up (p=0.001)), high markers 
of adiposity (body fat percentage (p<0.001), visceral 
fat (p<0.001), waist circumference (p<0.001), weight 
(p<0.001) and BMI (p=0.005)), low academic scores 
(grade point in physical education (p<0.001), and GPA 
(p=0.015)), low markers of PA (participation to sport 
club practices (p<0.001) or competitions (p=0.001), self- 
reported PA status (two questions: p<0.001 and p=0.006) 
and accelerometry- based MVPA (p=0.020)), low parents’ 
willingness to help with schoolwork (p=0.045), low 
perceived fitness (p=0.007) and low life enjoyment 
(p=0.042), all predicting future placement in the lowest 
20MSRT performance tertile after 2 years.

As prediction performance for 20MSRT development 
was below 0.7 for both sexes, the best predictors are 
recommended to be interpreted with caution. These 
results are described in online supplemental information 
document 5.

DISCUSSION

Main findings

ML approach was able to predict, based on baseline 
characteristics, unfavourable future 20MSRT status with 
0.76–0.83 (AUC) accuracy. Prediction performance was 
better in girls than in boys (eg, sensitivity values 0.80 
in girls and 0.60 in boys). The prediction performance 
declined when predicting unfavourable 20MSRT devel-
opment in a group of adolescents with an initial 20MSRT 
below the median level. These findings indicate that ML 
was able to identify potential individuals for interven-
tions. Additionally, future fitness status might be easier to 
predict than development, at least in a group of adoles-
cents with more homogeneous 20MSRT performance 
capacity.

Best predictors of individual fitness development

Our findings showed that baseline 20MSRT performance 
was the best predictor of future performance in a large 
group of adolescents. However, this study highlighted 
13–19 variables (out of 48 variables) with predictive 
power. These variables included a low performance in 
other field- based physical fitness tests, low perceived 
fitness, high markers of adiposity, low markers of PA, 
low academic achievement in school, low grade in phys-
ical education, low life enjoyment, low parental support 
and low perceived social status at school. These findings 

indicate that multiple factors, that is, adolescents’ overall 
physical, psychological and social well- being, contribute 
to the trajectory of the 20MSRT during adolescence. This 
information adds to the previous body of research where 
performance development is typically examined through 
growth and maturation ignited morphological changes.25

Precision exercise medicine prospects

These promising findings also provide new prospects 
for precision exercise medicine in adolescents. Findings 
suggest that preventive measures linked to the 20MSRT 
score benefit from the ML- enabled holistic approach. In 
ML, patterns are explored from the data. This has benefits 
as data- driven characteristic profiles can be recognised if 
such exist in the data. Furthermore, the CV technique 
helps overcome a phenomenon where models or thresh-
olds created with traditional statistics tend to fit poorly 
with other data sets or future individual observations.26 
An ML approach is recommended to be considered in 
future precision exercise medicine studies aiming to 
identify potential individuals for interventions.

Our findings indicated that information from adoles-
cents’ overall physical, psychological and social status 
provides additional value over evaluating only an individ-
ual’s 20MSRT score. Potential use- cases are, for example, 
the national or regional fitness monitoring systems where 
a large number of children and adolescents are tested (up 
to >90% of age- cohort). Resources for interventions are 
typically limited and necessary to be directed for correct 
individuals. The next steps to use this method in practice 
would be to train the final model with selected feasible 
variables and to collect independent test data that the 
model could be evaluated against. To reduce the number 
of variables, for example, to indicate PA, it is possible to 
employ a stepwise variable elimination method to RF to 
select only the best variable.27

It is, however, important to use ML methods and compu-
tational power robustly. The availability of ML libraries 
and computational power lead easily to data fishing. 
This means that a fair application of CV techniques 
must assess the generalisation ability of the models, and 
the risk of chance findings should be eliminated using 
permutation testing or other relevant techniques. In the 
present framework, these aspects of ML application have 
been considered carefully.

Strengths and limitations

The strengths of this study were the novel application 
for RF and the approach to predict individual fitness 
development in apparently healthy adolescents, the 
extensiveness of the variables in the data sample, robust 
analyses and measurements performed by educated 
professionals. Limitations include the 2- year duration of 
the study—more prominent changes could have poten-
tially emerged with a longer follow- up period. The data 
sample was limited by its size (eg, n=50 in the lowest 
tertile in Task 2), possibly influencing prediction perfor-
mance. There is also room for improvement in handling 
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the importance of variables. For example, it is possible to 
employ a stepwise variable elimination method to RF to 
reduce the effect of multicollinearity in data. The study 
used a sample from an observational study. Despite the 
efforts, sampling bias might exist and affect the generalis-
ability of the findings to the adolescent population.

Conclusion

With the ML approach, we could predict unfavourable 
future 20MSRT status based on 14–20 baseline character-
istics and identify potential individuals for interventions. 
These promising findings support adopting a more 
holistic approach, taking physical and psychological and 
social factors into account in large- scale fitness moni-
toring systems. The ML algorithms used in this study are 
provided for future research.
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