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ARTICLE OPEN

Constant inner potential DFT for modelling electrochemical
systems under constant potential and bias
Marko M. Melander 1✉, Tongwei Wu 1,2,3, Timo Weckman1 and Karoliina Honkala 1

Electrochemical systems play a decisive role in, e.g. clean energy conversion but understanding their complex chemistry remains an
outstanding challenge. Constant potential and grand canonical ensemble (GCE) simulations are indispensable for unraveling the
properties of electrochemical processes as a function of the electrode potential. Currently, GCE calculations performed at the
density functional theory (DFT) level require fixing the Fermi level within the simulation cell. Here, we illustrate that this method is
inadequate when modeling outer sphere reactions and a biased two-electrode cell. For these systems, the Fermi level obtained
from DFT calculations does not accurately present the experimentally controlled electrode potential or describe the
thermodynamic independent variable in GCE-DFT. To address this limitation, we developed and implemented a constant inner
potential (CIP) method offering a more robust and general approach to conducting GCE-DFT simulations of electrochemical
systems under constant potential or bias conditions. The primary advantage of CIP is that it uses the local electrode inner potential
as the thermodynamic parameter for the electrode potential, as opposed to the global Fermi level. Through numerical and
analytical studies, we demonstrate that the CIP and Fermi level GCE-DFT approaches are equivalent for metallic electrodes and
inner-sphere reactions. However, CIP proves to be more versatile, as it can be applied to outer-sphere and two-electrode systems,
addressing the limitations of the constant Fermi-level approach in these scenarios. Altogether, the CIP approach stands out as a
general and efficient GCE-DFT method simulating electrochemical interfaces from first principles.

npj Computational Materials            (2024) 10:5 ; https://doi.org/10.1038/s41524-023-01184-4

INTRODUCTION
Electrochemical systems and reactions are ubiquitous in modern
energy conversion applications, electrosynthesis, and sensors, to
name but a few1,2. Their key property is the ability to control
reaction thermodynamics and kinetics through the application of
an electrode potential. In experiments, the potential of a working
electrode is controlled from the backside of an electrode through
connections to an external voltage source as shown in Fig. 1. This
provides a direct way to manipulate the electrode potential, i.e.
the electrochemical potential of electrons within the bulk of the
electrode material2,3. External connections and a working
electrode (M) are physically distinct solid phases, which can be
viewed as a bath and a system in statistical mechanics,
respectively. In this context, constant electrode potential experi-
ments correspond to controlling the electrochemical potential,
~μbathe , of an electron reservoir and the system potential, ~μMe ,
responds to the change in ~μbathe . At thermodynamic equilibrium,
electrochemical potentials of the connections and the working
electrode are equal and electrochemical balance, ~μbathe ¼ ~μMe , is
satisfied3,4. In general, the electrochemical potential of electrons in
a given phase i can be written as

~μie ¼ μie þ zFϕi; (1)

where the electron chemical potential μie ¼ μ0;ie þ kBT ln½aie� is an
intrinsic material property and depends on the standard state
chemical potential μ0;ie and activity aie, which is, for example,
particularly important for semiconductor electrodes. ϕi is the inner
potential, i.e. the electrostatic potential of phase i, z is the electron
charge, and F is the Faraday constant. Below, we express all
energies and electrostatic potentials in eV and Eq. (1) reads

~μie ¼ μie � ϕi . Given that μie is constant for a given phase and
material, the inner potential of a given phase determines the
applied electrode potential of either a bath or a working electrode,
M4. The electrochemical potential of electrons within the
electrode M is also directly proportional to the Fermi level of
the given phase as ~μMe ¼ EF3.
While experiments are routinely performed under constant

potential conditions and referenced against well-defined refer-
ence electrodes, realizing constant potential atomistic simulations
has been very challenging and several schemes for controlling the
applied potential have been developed5–7. The current methods
to simulate the applied electrode potential can be roughly divided
into three categories: electronic structure methods within the
grand-canonical ensemble density functional theory (GCE-DFT)8,9,
classical force field methods10, and finite-field methods, which can
be used either with DFT or classical potentials11–14.
GCE-DFT simulations typically consider a single electrode and

work on the single-electrode potential scale to fix ~μMe providing an
exact framework for treating systems at constant electrochemical
potential15. In particular, the grand canonical free energy as well
as other (thermodynamic) expectation values from GCE-DFT are
formally exact and unique for given external (electrode) potential
with an explicit dependence on ~μMe

15–17. As discussed in detail in
the section “The inner potential as the basic variable in GCE-DFT”,
~μMe is proportional to the electrode work function or Fermi level3

readily available from any periodic DFT implementation. Given this
generality and ability to work with just a single electrode, the
Fermi level-based GCE-DFT has become widely adopted for
modeling electrochemical thermodynamics15,18–32 and
kinetics7,28,31,33–35 at fixed ~μMe . Essentially, all GCE-DFT approaches
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can be seen as finite-size corrections needed to fix the electrode
potential in small simulation cells. When employing a sufficiently
large simulation cell, the canonical and GCE-DFT simulations are
equally applicable to electrochemical simulations.
Classical force field and finite field methods adopt a different

approach to constant potential simulations and describe the
applied electrode potential in terms of the inner potential (ϕ)
difference between two electrodes without any electronic
structure information10–14,36–41. This attractive feature, however,
comes with a cost, as two electrode interfaces need to be
simulated to build an electrode potential difference in a cell and to
keep the simulation cell neutral. As one is typically interested in
the properties of just a single electrode, i.e. the working electrode,
the second electrode acts as a passive counter electrode. While
the treatment of a passive electrode is justifiable for low-cost
analytic force field potentials, this does not hold for electronic
structure methods or even machine learning potentials as their
computational cost is two or three orders-of-magnitude larger
than that of analytic classical potentials42. Therefore, future studies
of electrochemical interfaces with machine learning potentials
need new approaches to enable constant potential calculations of
single electrodes without explicit electronic structure information.
So far, both GCE-DFT and classical force field methods have

overlooked the question which of the electrochemical potentials,
either ~μbathe or ~μMe , serve the relevant constant quantity in GCE-DFT
simulations. While this has not been considered in the context of
computational electrochemistry, recent work by Islas-Vargas
et al.43 addressed this issue in detail for semiconductor–water
interfaces. They emphasized that the relevant thermodynamically
independent parameter for defining the electrode potential is the
bath chemical potential (~μbathe ) rather than the system chemical
potential (~μMe ). Hence, in GCE-DFT simulations, one should fix the
electron reservoir (~μbathe ), which is controlled experimentally, rather
than the electrochemical potential of the simulation cell (~μMe ). This
distinction is not always clear in current GCE-DFT approaches and
our results in the next sections demonstrate the limitations of
present constant Fermi level simulations.
In this work, we present a more general GCE-DFT method, in

which ~μbathe rather than EDFTF is explicitly controlled. To achieve this,
we introduce the constant inner potential (CIP) DFT method,
illustrating that it offers a versatile and theoretically rigorous
approach for conducting constant potential ab initio simulations
for metallic systems. Importantly, the CIP method provides direct

control over ~μbathe and enables GCE-DFT simulations for systems in
which the constant Fermi level methods fail to correctly mimic the
experimentally applied potential. CIP-DFT emerges as a universal
approach for simulating a wide variety of electrochemical systems
and expands the scope of the GCE-DFT simulations from a single
metallic electrode and inner-sphere reactions to outer-sphere
reactions and biased two-electrode cells.

RESULTS
The inner potential as the basic variable in GCE-DFT
CIP-DFT uses the electrode’s inner potential as the basic variable
to control the applied potential in GCE-DFT simulations. Preceding
GCE-DFT implementations have controlled EFDFT to monitor the
electrode potential on the single or absolute electrode scale6 but
this is not the only available option. There are at least four
different single potential definitions3 each with different scales
and reference systems, but all of them can be presented formally
using the reduced absolute potential3,44

UMðabsÞ ¼ ΔM
S ϕ� μMe þ K; (2)

where μMe is an intrinsic material property and independent of the
electrode potential. ΔM

S ϕ ¼ ϕM � ϕS stands for the inner potential
difference, i.e. the electrostatic potential difference between the
bulk of electrode (M) and solution (S) as shown in Fig. 2. K is a
constant and depends on the chosen scale, which in DFT
simulations is typically chosen6 as the electrostatic potential in
vacuum or the inner potential of the implicit solvent, in which case
UM
vacðabsÞ ¼ �~μMe ¼ �EDFTF

3,45.
The CIP method uses a different reference electrode scale, a free

electron in solution3,44 in which case K ¼ ~μR;Me
44 for the reference

electrode (R) is made of the same material as M. In its original
form44, this choice of K allows writing the absolute potential using
properties of just a single electrode. Herein, it enables writing
Eq. (2) as UM

solðabsÞ ¼ ΔM
S ϕ� μMe þ ~μEe ¼ ΔM

S ϕ� ϕM;R, which, in
turn, allows direct control of ΔM

S ϕ without explicitly introducing
the Fermi level after choosing ϕM,R. In practice, we pick ϕM,R to
correspond to the potential zero charge of the electrode M: as
shown in Supplementary Eq. (1) this choice enables controlling
the applied potential by controlling the inner potential ϕM. While
this reference scale is not experimentally viable3,44, it can be used
in simulations44 as demonstrated very recently by the application
of density-potential functional theory to electrochemical inter-
faces46,47. Supplementary Methods 2 further shows that the inner
potential scale is natural for (GCE-)DFT simulations and leads to
CIP-DFT.
In experiments performed under thermodynamic equilibrium

between the connections and working electrode, it is guaranteed
that the electrochemical potentials of the system and bath are

Fig. 1 Depiction of a two-electrode cell with the relevant
electrochemical potentials. The dotted rectangle shows the system
explicitly treated in (GCE-)DFT simulations.

Fig. 2 A schematic illustration of the CIP. The inner potential
within the electrode (ϕM) can be controlled and fixed to a specified
value. The solution inner potential ϕS is always fixed at zero.
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equal to the Fermi level (~μMe ¼ ~μbathM ¼ EF) because both M and
bath phases are explicitly present (see Fig. 1). Because the two
chemical potentials and Fermi level must be equal under
equilibrium, Eq. (2) ensures that the experimentally specified
electrode potential corresponds to inner potential changes within
either the bulk phase M or bath3,4,44. This in turn means that
changes in the bath inner potential (Δϕbath) uniquely define the
response of the system inner potential (ΔϕM) in equilibrium
because both potentials are inherent bulk properties48; it follows
that the applied electrode potential directly modifies ϕM.
The discussion above holds for both metallic and semiconduct-

ing electrodes3,4,48, and even the presence of the Schottky
barrier49 between the metallic contact and the semiconductor
electrode does not change the picture: ~μMe ¼ ~μbathe ¼ EF condition
must remain at equilibrium. However, in semiconductors, it is
essential to consider the finite number of charge carriers or
dopants, their spatial dopant concentrations, and their effect on
the electrostatics50,51. Nevertheless, the applied electrode poten-
tial, ΔU, can be expressed in terms of local electrostatic potentials
and material-dependent constants for both metallic and semi-
conducting materials4,50,51. This applied potential is directly
proportional to the bulk electrostatic potential difference,
specifically the inner potentials at different charge states4,50–52:

ΔU ¼ �ΔEF ¼ Δϕbulk: (3)

This equation shows that the applied potential of any electrode
is equal to the changes in the bulk electrostatic potential as long
as the material, and hence μMe , remains unchanged. Combined
with Eq. (2), this equation shows that the applied potential of any
electrode can be simulated by fixing the inner potential.
The discussion above highlights the central role of electrode

inner potentials in determining the applied electrode potential in
electrochemical systems. This is a direct consequence of the
general theory of single electrode potentials in Eq. (2), which
shows that ϕM is linearly related to the single electrode potential,
regardless of the chosen reference scale. From a computational
perspective, it is important to note that unlike EDFTF , the inner
potential is a local quantity defined within the bulk electrode and
allows controlling the electrode potential between two bulk
phases (either solid, liquid, or gas). As shown by the various
examples in the following sections “Inner-sphere interaction, CIP
molecular dynamics, Outer-sphere reactions, and Biased two-
electrode setups within DFT”, fixing the inner potential enables
modeling the applied electrode potential within the electrode in
accordance with the general definition given in Eq. (2). Hence,
performing simulations at constant ϕM ensures that the experi-
mentally applied potential, i.e. ~μbathe , is accurately represented
while avoiding the need to account for the electronic quantities
(~μMe ¼ EDFTF ) inherent to the used simulation cell43.

To control the electrode inner potential in GCE-DFT simulations,
we introduce the constant inner potential (CIP) approach
illustrated in Fig. 2. The CIP method has been implemented in
the GPAW53,54 software by modifying the solvent jellium model
(SJM)28. The original SJM model controls the work function, while
CIP-DFT expands upon SJM by fixing the inner potential ϕM

relative to the solution’s inner potential ϕS. Using Dirichlet
boundary conditions, the solution’s inner potential is set to zero
(ϕS= 0) far from the electrode. As displayed in Fig. 2, controlling
ϕM while keeping ϕS= 0 yields a well-defined electrode potential
and a constant reference point. There is no need to introduce EDFTF
to define the absolute potential as the inner potential difference
uniquely defines the electrode potential and ϕM can be converted
to any experimental scale. A more detailed description of the CIP-
DFT method is available in Supplementary Methods 1 and 2. In the
following sections, we demonstrate the performance of CIP-DFT
for simulating a variety of electrochemical systems ranging from
inner-sphere reactions on metallic electrodes to outer-sphere
reactions and the establishment of a biased two-electrode setup.
Furthermore, we illustrate the method’s compatibility with both
explicit and implicit solvent models.

Thermodynamics of GCE-DFT and CIP-DFT
Although employing ϕM is both physically and computationally
well-motivated, using it as a thermodynamic variable is a new
proposition. Up until now, all GCE-DFT calculations have utilized
~μMe as the thermodynamic variable in constant electrode potential
simulations. In order to demonstrate that ϕM can serve as a
thermodynamically independent variable in GCE-DFT simulations,
we have carried out an extensive thermodynamic analysis detailed
in Supplementary Methods 3. This analysis shows that, for metallic
electrodes, using either ~μMe or ϕM leads to identical results as
illustrated in Supplementary Methods 3.2 and numerically
demonstrated in the section “Inner-sphere interactions”.

Inner-sphere interactions
We first apply the CIP approach to study the pristine and oxygen-
covered Au(111) surfaces at different potentials and surface
charges. Oxygen adsorption presents a typical electrochemical
inner-sphere reaction, where a metal electrode strongly interacts
with an adsorbate. Figure 3 displays the electrostatic potentials
and Fermi levels for bare and oxygen-covered gold surfaces at
different surface charges/electrode potentials. Comparing the
differences in Fermi level and inner potential for Au shows that
both methods when applied at the same surface charge densities,
give identical differences in electrode potential. This is further
corroborated by the detailed analysis provided in Supplementary
Methods 3.2.

Fig. 3 Analysis of the inner sphere reaction. a xy-averaged electrostatic potentials and Fermi levels for the pure (b) and oxygen-covered (c)
Au(111) surfaces at three different surface charges, the orange curve corresponds to the potential of zero charge (PZC) simulation while the
green (black) curves have surface charges σ= 0.05e (−0.05e). The gray region depicts the area in which the electrode’s inner potential is
computed. The insets show the electrostatic potentials within the electrode and Fermi level. c The DOS plot for the σ= 0.05e with the red
dashed line indicating the Fermi level.
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The density of states (DOS) analysis in Fig. 3c shows that the
electronic states of oxygen-covered Au(111) at and near the Fermi
level have significant contributions from gold–oxygen interac-
tions. This means that EDFTF is not independent of the presence of
adsorbed oxygen and that the electrode potential might not be
uniquely determined by the gold bulk. However, the electrostatic
potentials in Fig. 3 show that the inner potential maxima and the
Fermi level coincide perfectly for both pristine and adsorbate-
covered Au surfaces. This indicates that the standard chemical
potential (μ0;Aue ) and the inner potential (ϕAu) are exclusively
determined by the bulk of a gold electrode. Therefore, the
electrochemical potential of electrons (~μAue ¼ μ0;Aue � ϕAu) and
electrode potential are determined by Au bulk. Hence, for this
example, the system and bath electrochemical potentials coincide,
and the Fermi level and CIP approaches yield results that are
numerically consistent.

CIP molecular dynamics
Our second example illustrates the simulation of an explicitly
solvated Au(111) interface, presented in Fig. 4, using both
constant inner potential (CIP-DFT) and constant charge (canonical
DFT) molecular dynamics (MD). Overall, the results given in Fig. 4
demonstrate that CIP-DFT-MD calculations can be readily per-
formed to study the dynamics of explicitly solvated electroche-
mical interfaces and that even moderately large systems can be
treated to address interfacial properties under constant (inner)
potential conditions. By comparing the number of MD steps in
constant potential and constant charge simulations against wall-
time, it was observed that the constant potential simulations
were ~20–25% more time-consuming. This suggests that constant
potential calculations are not as prohibitively expensive as they
are sometimes presumed to be55. Figure 4 shows Fermi level and
inner potential variations as a function of time for the solvated
Au(111) interface in fixed charge calculations. The variations are
very similar and time-dependent Fermi level and inner potential
fluctuations are practically indistinguishable. This indicates that
the Fermi level of a solvated Au(111) is almost fully determined by
the electrode even though some hybridization between the
surface and water takes place. In practice, these observations
indicate that both the Fermi level and inner potential approaches
are equally applicable for describing the electrode potential of this
system. While this is an expected result, it differs from the recent
computational results56, which show that the Fermi level and
inner potential difference, ΔM

S ϕ surprisingly exhibit different
fluctuations in fixed charge simulations. As discussed in detail in

Supplementary Methods 3, Supplementary Discussion 1, and
throughout the present work, EDFTF and ΔM

S ϕ should yield the same
(thermodynamic) expectation values, fluctuations, and electrode
potentials for systems where the Fermi level is dominated by a
metallic electrode.
Figure 4 also demonstrates that constant potential CIP-DFT-MD

simulations of an explicitly solvated interface exhibit substantial
charge fluctuations. Even though most simulations focus on
thermodynamic expectation values, it needs to be stressed that
variations and fluctuations are fundamental properties of statis-
tical thermodynamic systems and must be captured to ensure
thermodynamic consistency. While the grand canonical and
canonical simulations can give the same thermodynamic expecta-
tion values, the other quantities may deviate in the two
ensembles57. For instance, time-dependent fluctuations around
an equilibrium value, which determine important electrochemical
quantities such as capacitance, electric conductivity, and reaction
rates, are expected to be different in different ensembles58. While
fluctuations and averages can be captured through MD simula-
tions, the calculations need to be done by enforcing the relevant
thermodynamics constraints, such as constant temperature and
electrode potential, used experimentally. Further evidence for the
importance of using the correct ensemble is provided by the
sensitivity of electrochemical kinetics to the electrode potential
and surface charge34,59, the role of fluctuations in adsorption
energies60, or the energy gap fluctuations determining the
reaction rate of Marcus-like (proton-coupled) electron transfer
theories34,61. Hence, MD simulations of electrochemical systems
should be performed in the GCE framework to achieve a fully
consistent treatment of electrochemical interfaces and reactions.

Outer-sphere reactions
Previous GCE-DFT studies in electrochemistry have almost exclu-
sively focused on inner-sphere reactions62–64, while the important
class of outer-sphere reactions, where the interactions between the
electrode and the redox species are weak, has gained less attention
and is therefore only partially understood65. Most theoretical models
of outer-sphere electron transfer assume that outer-sphere couples
do not hybridize with the electrode so that the total system can be
considered as a weakly interacting combination of electrode and
solvent-phase subsystems66. As the electrode and redox couple
belong to distinct phases, it should be possible to individually
control their properties and to modulate the electrode potential
independent of the solution phase as schematically shown in Fig. 5.
As long as the electrode Fermi level is above the Ru[NH3]

3þ
6

Fig. 4 Illustration and results for the molecular dynamics simulations. a The system setup used for the molecular dynamics simulations of
the Au(111)–water interface. b Fermi level and inner potential fluctuations as a function of the simulation time for a solvated Au(111) surface
at a surface charge of −0.2e per 88 Å2. Both values are referenced against the respective quantities of the 500th frame. c CIP-DFT molecular
dynamic simulations for the solvated Au(111) surface. The inner potential is fixed to −14.0 eV with ±0.1 eV fluctuations. The potential
corresponds to +0.6 V vs. Au(111) PZC.
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reduction potential (≤−4.6 V), the electrode determines EDFTF .
However, when the Fermi level falls below the reduction potential,
EDFTF nominally resides on the solution-phase Ru[NH3]

3þ
6 and the

Fermi level cannot be controlled independently from the solution
phase. This is not a problem in either adiabatic electron transfer
theories66 or GCE-DFT simulations because the orbital filling
depends explicitly on the electrode potential and should remain
independent of other factors. However, simulations and theory of
non-adiabatic electron transfer are grounded in diabatic states62,
which maintain their charge state irrespective of the electrode
potential. When using diabatic states and GCE-DFT to simulate

electron transfer as a function of the electrode potential, it is crucial
to independently control both the reactant charge state and the
electrode potential. This cannot be achieved with constant Fermi
level-based GCE-DFT calculations. The limitation arises from the
global nature of the Fermi level, which depends on the hybridization
between different parts of the total system. In addition, the Fermi
level depends on the presence of the outer-sphere couple, see the
results and discussion below. On the other hand, the inner potential
is a local quantity measured inside the bulk of the electrode, and it
enables control over both the electrode potential and reactant
charge state simultaneously and independently, as shown next.
We consider a classical outer-sphere redox couple using a diabatic

description: a Ru[NH3]
3þ
6 complex on the Au(111) surface as

depicted in Fig. 6. The Ru[NH3]
3þ
6 charge remains fixed at +3,

irrespective of the surface charge or EDFTF due to application of
constrained DFT to control the Ru[NH3]

3þ
6 charge state (see the

section “Methods” for computational details). To understand the
variations in the electrode potential, Fermi level, and inner potential
during DFT simulations of outer-sphere reactions, we modified the
total charge of the simulation cell. This allowed us to investigate the
potential range within ±1.0 V around the reduction potential of
Ru[NH3]

3þ
6 . The molecular orbitals presented in Fig. 6a–d show that

the redox couple and the electrode are strongly hybridized; this
prevents separating the total system into two subsystems in GCE-
DFT simulations. This is also seen in the DOS plot in Fig. 6e, which
demonstrates that all electronic states near the Fermi level contain
significant contributions from the Ru[NH3]

3þ
6 complex despite the

correct +3 charge on the redox couple. The electronic states
residing on the redox couple are visible in the DOS plot
around−0.2 eV at all charge states (or electrode potentials) except
when the simulation cell carries a very high negative charge (line
−3.58 in Fig. 6e). This means that EDFTF is solely determined by the
electrode, but only on highly negatively charged gold surfaces.

Fig. 5 A schematic illustration of the electrochemical potential of
the Au(111) electrode and the adiabatic free energy level (redox
potential) of the Ru[NH3]

3þ=2þ
6 redox couple on the absolute

electrode potential scale3. At −4.44 V, the Fermi level of the
simulation cell is determined by the electrode whereas at the
Au(111) PZC at−4.96 V the Fermi-level is defined by the Ru[NH3]

3þ=2þ
6

couple. The real redox i.e. HOMO/LUMO levels of Ru[NH3]
3þ=2þ
6 are

shown in Fig. 6.

Fig. 6 Ru[NH3]3þ6 on the Au(111) surface. a–d (HOMO−1)–(HOMO+2) orbitals when EF=−4.46 eV. e Right: Density (DOS) and projected DOS
(PDOS) as a function of the potential. Left: Zoom of the DOS around the Fermi level. The solid lines correspond to the DOS and the dashed
lines to the PDOS of Ru[NH3]

3þ
6 . f Electrostatic potentials (solid lines), inner potentials (dashed line), and Fermi levels (dash-dotted lines) at

different surface charges and corresponding absolute potentials.
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Table 1 shows that differences in the electrode potential inferred
from ϕM or EDFTF are small but systematically different. In particular,
EDFTF depends more sensitively on the charge state than ϕAu. This
observation is attributed to the large number of electronic states
residing on the redox couple at the Fermi level and means that the
system Fermi level is determined by the hybridized orbitals
spreading across both the electrode and solvent phase Ru[NH3]

3þ
6 .

The reason for the electrode potential differences obtained from
ϕAu and EDFTF approaches can be understood based on the results
displayed in Fig. 6. The data shows that the electrostatic potential
maxima within Au and the Fermi level do not coincide, but there is
a non-constant difference between the inner potential maxima and
EDFTF at the same surface charge. This non-constant shift
demonstrates that EDFTF is not solely determined by μ0Au and ϕAu,
but has sizable charge-dependent contributions from Ru[NH3]

3þ
6 .

Instead, ϕAu is determined by the bulk of the electrode across all
charge states. This is due to the charge localization on the electrode
surface and the effective screening of electrostatic interactions
between Ru[NH3]

3þ
6 and Au(111) by the electrode surface even

when hybridization takes place.
In the Ru[NH3]

3þ
6 -Au system, the electrode potential differences

obtained from inner potential and Fermi levels are small, within
0.1 V, and correspond to ~5% differences in the applied electrode
potential. For quantitatively accurate calculations this is already a
notable difference as a 5% error in the over-potential leads to a
factor of 7 and 3 error in the computed reaction thermodynamics
and rate computed from the Butler–Volmer equation with
symmetry factor 0.5, respectively. While rather small differences
are observed for the Ru[NH3]

3þ
6 -Au system, more pronounced

differences are expected for systems where the surface PZC and the
redox potential of the outer-sphere couple differ significantly, for
electrodes with a low DOS around the redox potential such as
graphene, for densely charged anionic outer-sphere species such as
O�
2 , and for simulations using a small slab to present the electrode.

The impact of the last two instances has been demonstrated in our
recent canonical DFT simulations67 of an outer-sphere electron
transfer (OS-ET) step for a CO2 reduction reaction, CO2+ e−→ CO�

2 .
Our results showed that upon electron donation from the electrode
to CO2, the Fermi level of the simulation cell increases by ~0.1 eV:
the electrode potential as computed from the Fermi level becomes
more reducing by 0.1 V after donating an electron. This unphysical
increase in the electrode potential can be explained by noting that
the Fermi level of the simulation cell is primarily defined by
solution-phase CO�

2 , rather than the gold electrode. Overall, these
numerical results provide strong support for the general proposal
that the constant inner potential and Fermi level method exhibit
divergent behavior in OS-ET simulations where CIP-DFT achieves a
more reliable control over the applied electrode potential.

The preceding results and discussion illustrate that when outer-
sphere species are present, the electrochemical potentials of the
system and bath are no longer equal. This is due to the fact that
the system’s electrode potential (~μMe ¼ EDFTF ) is influenced by
contributions from the redox couple. As an outer-sphere redox
couple is not directly linked to the electron bath through external
connections, such species should not contribute to the electrode
potential. Any changes in the electrode potential should
exclusively arise from inner potential differences, in accordance
with the general definition provided in Eq. (2). Therefore, the CIP
approach is consistent with the general electrode potential
definition, whereas electrode potentials derived from EDFTF do
not represent the electrode material itself but instead the entire
simulation system. Given that ϕM remains unaffected by the
solution phase redox species and that ΔϕM= Δϕbath holds under
equilibrium48, it is anticipated that the CIP method correctly
replicates the influence of experimentally controlled ~μbathe .

Biased two-electrode setups within DFT
Our last examples pertain to the construction of a biased two-
electrode electrochemical cell and a molecular junction. These
configurations are frequently encountered in electrochemical
experiments, in classical force field simulations of electrochemical
interfaces, and in quantum transport studies2,68. However, modeling
voltage bias in such configurations using DFT-based electronic
structure methods presents challenges because EDFTF does not reflect
the potential of a single electrode but rather that of the entire
simulation cell. In fact, ground-state DFT is formally an equilibrium
theory, which does not inherently support multiple Fermi levels
within the same simulation cell69. Introducing bias between
electrodes requires the utilization of more advanced techniques
such as non-equilibrium Green’s function methods70,71. Recent
studies have, however, shown that a Fermi level difference between
two electrodes can be induced using localized molecular orbitals
either within the tight-binding DFT approximation72 or the multi-
space DFT (MS-DFT) approach73–75 without relying on Green’s
function methods (see Supplementary Discussion section 2 for more
discussion on MS-DFT). The practical applicability of these methods
is limited by the need for localized orbitals, as solid-state DFT codes
typically use either plane-wave or a real-space grid basis set to
enable electron delocalizing throughout the entire simulation cell.
We apply CIP and constrained DFT (cDFT) to overcome these

restrictions and model biased interfaces with real-space methods
without localized basis functions or Wannier-localized orbitals. For
additional computational details, please refer to the section
“Methods” and Supplementary Discussion 2. Figure 7a displays a
two-electrode cell comprising two Au(111) electrodes, separated
by a vacuum gap. The electrode potential difference or bias
between the gold surfaces was established by applying cDFT to
introduce a localized external potential of 1 eV within the ’right’
electrode. Most importantly, Fig. 7a highlights that a local external
cDFT potential can induce a Δϕ=−(ϕright−ϕleft)= 1.03 V bias
between the two electrodes. This demonstrates that an electrode
potential difference in a two-electrode cell can be realized
through the use of CIP-cDFT. Figure 7a additionally illustrates
that the left electrode sets the constant EDFTF within the simulation
cell. Given that we have applied Dirichlet boundary conditions on
the right-hand cell boundary, we are able to derive the absolute
electrode potential for both electrodes from the inner potentials
and subsequently convert them back to an experimental scale
(see Supplementary Methods 2).
The use of CIP-cDFT is further demonstrated by constructing a

biased two-electrode cell for a 1,4-dithiol-phenylene molecule
sandwiched between two gold electrodes as depicted in Fig. 7b. In
this case, we employed cDFT to introduce a +0.5 eV (−0.5 eV)
external potential on the left (right) electrode. This setup results in a
non-equilibrium electron density distribution between the

Table 1. Comparison of electrode potential differences computed
from Fermi levels (ΔEDFTF ) and inner potentials (ϕAu) for Ru[NH3]

3þ
6 on

the Au(111) surface.

ΔEDFTF ΔϕAu ΔEDFTF � ΔϕAu

0.88 0.82 0.06

0.45 0.43 0.02

0.00 0.00 0.00

−0.32 −0.31 −0.01

−0.70 −0.68 −0.02

−1.13 −1.09 −0.04

−1.52 −1.47 −0.05

The reference zero potential is set to EF=−4.44 eV and the corresponding
ϕAu. All values are in eV.
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electrodes and a bias across the molecular junction. By comparing
the equilibrium and non-equilibrium electrostatic potentials
(Fig. 7b) obtained from DFT and cDFT calculations, respectively,
we observe that the application of cDFT leads to a 1 V bias
(ΔϕDFT-cDFT) across the 1,4-dithiol-phenylene junction. This finding
agrees well with the more elaborate MS-DFT method (see Fig. 2 of
ref. 73). The detailed analysis of CIP-DFT and MS-DFT in the
Supplementary Discussion 2, we conclude that CIP-cDFT accurately
describes the bias across an electrochemical cellwith similar accuracy to
themore involved Green’s function or MS-DFTmethods. The CIP-cDFT
approach therefore provides a solution to the long-standing issue71 of
simulating a finite bias in a two-electrode cell with DFT.

DISCUSSION
Through diverse examples, we have shown that controlling ϕM

rather than EDFTF makes the CIP-DFT approach widely applicable to
computational studies of electrochemical systems under constant
electrode potential conditions. This holds true even in situations
where the constant EDFTF method fails to reproduce the applied
electrode potential. The broad applicability of CIP-DFT stems from
the precise definition of (single) electrode potentials given in
Eq. (2). CIP-DFT directly controls the experimentally relevant
electron bath electrochemical potential (~μbathe ) by fixing the
electrode inner potential, ϕM. Because ϕM serves as the thermo-
dynamically relevant independent parameter in GCE-DFT (see
Supplementary Methods 3), controlling in ϕM is equivalent to
controlling the bath electrochemical potential48 and hence the
experimentally applied electrode potential. These features distin-
guish CIP-DFT from all other GCE-DFT methods, where the Fermi
level (EDFTF ) of the simulation cell is fixed. Not only is CIP-DFT more
versatile than fixed EF DFT methods, but its computational cost is
comparable or even lower than that of the competing approaches.
For pristine metal electrodes and inner-sphere reactions on

metallic electrodes, the CIP approach yields comparable results to
the widely adopted constant Fermi level description. However, a
divergence arises between these two approaches when dealing
with outer-sphere reactions and two-electrode setups. In outer-
sphere reactions, EDFTF ceases to be exclusively associated with the
electrode and thus the Fermi level is no longer uniquely
determined by the electrode. Conversely, ϕM is locally defined
within the electrode, unaffected by the outer-sphere couple. As
ϕM does not depend on the solvent phase, it meets the

thermodynamic requirements of a reduced absolute electrode
potential (Eq. (2)). On the other hand, EDFTF does not fulfill these
conditions as it depends on the presence of the redox couple, and
therefore the electrode potential derived from EDFTF does not
reflect the electrode alone. In other words, in simulations of outer-
sphere reactions, EDFTF is the Fermi level of the entire simulation
cell, not the relevant electron bath electrochemical potential.
Consequently, we consider the CIP-DFT method to be more
suitable than the EDFTF -based GCE-DFT for constant potential ab
initio calculations of outer-sphere reactions.
We have also shown that combing CIP with constrained DFT

enables setting up an electrode potential difference (bias) between
two electrodes in a simulation cell—this is simply impossible with
EDFTF -based GCE-DFT approaches. A particularly appealing feature of
CIP-cDFT is the construction of bias potential without using local
orbitals or Green’s function approaches, making the method
compatible with plane-wave or real-space codes. The prospect of
describing a bias between two electrodes without using Green’s
function methods creates new possibilities in simulating the applied
electrode potential in two-electrode electrochemical cells with
DFT71,76 or addressing non-equilibrium charge transfer dynamics
through single-molecule junctions (see Supplementary Discussion
2)73. In addition, we envision that CIP-cDFT can be used to, e.g.
prevent unphysical and instantaneous electron transfer events77 in
molecular dynamics simulations and to include the impact of explicit
bias in STM simulations78. As the cDFT method is already available in
several solid-state DFT codes, only minimal implementation work is
needed to make CIP-cDFT widely applicable.
A possible difficulty of the CIP-DFT method is the definition of

the electrode bulk region used for measuring or controlling the
inner potential. While this is easy for simple metallic electrodes,
defining the bulk region uniquely can be challenging for
intercalation electrodes used in battery applications, porous
materials found in supercapacitors, and commonly used carbon
electrodes, for example. In addition, the inner potential region
needs to be chosen carefully also for other complex electrodes
encountered in, e.g. battery materials, such as metal/solid
electrolyte interphase/electrolyte interfaces79 or electroplated
dendrites80. A similar issue pertains to semiconductor electrodes.
Our initial studies on a TiO2 semiconductor electrode in
Supplementary Methods 3.3 show that very thick slab models
need to be used for semiconductor electrodes because the bulk
region can only begin after the surface charge has been

Fig. 7 Results for the two-electrode setup within CIP-DFT. a The xy-averaged electrostatic potential (solid red lines), inner potentials (dashed
black line) of the two gold electrodes, and the cell Fermi level (dot-dash red line). b The electrostatic potential difference (Δϕ=−(ϕDFT−ϕcDFT)
black line) for a 1,4-dithiol-phenylene molecular junction under constant bias.
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completely screened by the space charge layer. The thickness of
the space charge layer depends on the charge (dopant)
concentration and can extend up to micrometers. For instance,
the space charge thickness for a typical doping concentration of
1017 dopants per cm3 is 100 μm81. Hence, ensuring a fully
screened space charge region will make any constant potential
DFT calculations of semiconductors extremely costly if all nuclei
and electrons are explicitly treated. A possible solution is to
combine CIP-DFT with a continuum model for the bulk
semiconductor to achieve screening efficiently as Campbell and
Dabo82 have demonstrated. Hence, the merging of CIP-DFT with a
continuum82 or e.g. a QM/MM83 model for the semiconductor bulk
presents a highly attractive future approach for simulating
semiconductor electrodes.
We consider that the use of inner potentials rather than Fermi

levels to describe electrode potentials is conceptually appealing
because this can bridge the concepts and approaches used in DFT
and classical force field-based simulations of electrochemical
interfaces as discussed in the section “Introduction”. Because both
CIP-DFT and classical simulations model the applied potential
using only the electrode and solvent inner potentials, CIP presents
a unified scheme for constant potential simulations. Furthermore,
ϕM rigorously contains all information needed to control the
applied electrode potential and there is in principle no need to
have access to the electronic structure or Fermi level; ϕM can be
extracted from charge distributions obtained with either classical
or quantum mechanical simulations. We consider that these
features make CIP a very promising approach to include the
electrode potential description in modern machine learning
potentials which can take long-range interactions and atomic
charges into account84–88. In the future, incorporating CIP in
machine learning potentials may enable going beyond current
QM/MM DFT/reactive force field methods89 and facilitate compu-
tational electrochemistry without explicit simulation of electrons.
Overall, we expect that our CIP-DFT methods will be broadly

applied and applicable to a wide variety of interesting electro-
chemical systems ranging from inner-sphere to outer-sphere
reactions and from single electrodes to biased two-electrode cells.

METHODS
Common simulation methods
All the simulations were carried out with the GPAW code53,54,90. The
wave functions were presented on a real-space grid with 0.18 Å grid
spacing unless otherwise specified. The PBE functional91 was used in
all the calculations. All calculations are spin-polarized. The con-
tinuum solvent was modeled using the SCMVD dielectric continuum
model92 with a van der Waals radius of 2.0 Å for gold to accurately
reproduce the differential capacitance15. Constant potential calcula-
tions, both in the standard Fermi level and the new constant inner
potential modes, were carried out using a modified SJM imple-
mentation28. All the employed structure models were periodic in the
xy-directions and non-periodic in the z-direction. Dirichlet boundary
conditions were applied to achieve ϕ= 0 at the z-boundary for the
considered charge states as detailed in Supplementary Methods 1.
These boundary conditions uniquely define a reference electrode
within the simulation cell15.

Inner sphere model
To model an inner sphere reaction, oxygen adsorption on an
Au(111) hollow site was considered. The pure and oxygen-covered
gold surfaces were modeled using a seven-layer thick 1 × 1 surface
cell with a 10 × 10 × 1 k-point sampling.

Constant potential molecular dynamics
Constant charge and fixed potential molecular dynamics were
demonstrated for an explicitly solvated Au(111) surface. The
simulated system consists of a 3 × 4 × 4 Au(111) surface slab and
32 deuterated water. The simulations were started from a
previously obtained pre-equilibrated structure15. Using the SCMVD
model 8 Å of implicit water was added on top of the explicit water,
and only the Γ-point was considered. The standard dzp-LCAO
basis set93 was employed to present single-electron orbitals and
density. The system was sampled at 330 K using canonical
Langevin dynamics as implemented in ASE90. A time step of 1 fs
and a friction coefficient of 5 ps−1 were used following the
recommendations from our previous publication94. The electrode
potential was referenced against the inner potential of the
uncharged interface i.e. the potential of zero charge (PZC) through
computing the inner potential within the two central layers of
gold as shown in Fig. 4 (see also Supplementary Methods 2). The
system was kept neutral by placing an SJM counter charge in the
implicit solvent part (see Fig. 4).

Outer sphere simulations
As a model system for outer sphere reactions, we considered a
prototypical outer-sphere redox couple, Ru[NH3]

3þ
6 . The entire

simulation system, shown in Fig. 6, consists of a Ru[NH3]
3þ
6 near a

five-layer thick slab of a Au(111) surface with a 5 × 5 surface cell. A
2 × 2 × 1 k-point mesh was used. The correct oxidation state (3+) on
Ru[NH3]3þ6 was enforced by using the recent grand canonical
ensemble constrained DFT (GCE-cDFT) method at all fixed electrode
potentials34,95,96. GCE-cDFT applies a spatially localized external
potential to obtain an a priori chosen distribution of charges in the
simulation cell, see Supplementary Discussion 2 for more discussion.
The electrode potential was computed from the inner potential
within the central three inner gold layers. These inner potentials
were then converted to an experimental SHE scale using Au(111)’s
PZC at 0.52 V vs. SHE as detailed in Supplementary Methods 2.

Semiconductor simulations
As a model system for semiconductor electrodes, we used 4–8
layer anatase (101) TiO3 slabs. To ensure a robust description of
the electronic structure, the PBE+ U functional with a self-
consistently computed97 U= 4.5 eV affecting Ti d-orbitals was
utilized. A 5 × 5 × 1 k-point mesh was used. Note, that this simple
semiconductor model is chosen to demonstrate the application of
CIP on semiconductor electrodes. For more realistic calculations of
semiconductor electrodes also defects, structural deformations,
etc., should be considered.

Two-electrode simulations
The biased two-electrode configurations consist of two gold slabs
separated by vacuum (Fig. 7a) or by a 1,4-dithiol-phenylene
molecular junction (Fig. 7b). The configuration in Fig. 7a has two
4 × 4 × 1 Au(111) slabs separated by 15 Å vacuum. An electrode
potential difference between the electrodes was induced with cDFT
to introduce a localized external potential affecting only the right-
hand side electrode in Fig. 7a. The molecular junction in Fig. 7b
consists of two 3 × 3 × 4 Au(111) surfaces connected by a 1,4-
dithiol-phenylene molecule. Both Au slabs were enclosed by 16 Å of
vacuum and only the Γ point was used. +0.5 eV (−0.5 eV) external
cDFT potential was applied on the left (right) side to create a 1 V
electrode potential bias across the cell. The dielectric solvent was
not used in the two-electrode CIP-cDFT calculation due to extreme
convergence problems caused by the finite-difference (FD) Poisson
solver used by GPAW’s dielectric continuum model. The FD Poisson
solver is known to be unstable for highly elongated cells and it
could reach convergence for the two-electrode setup with a long
and narrow cell. Hence, the two-electrode cell calculations could

M.M. Melander et al.

8

npj Computational Materials (2024)     5 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



not be performed in the presence of the dielectric solvent. We
therefore simulated the system in a vacuum using the newly
implemented FastPoissonSolver, which is now the default Poisson
solver in GPAW and which was observed to be stable and to
provide converged results. However, FastPoissonSolver is not yet
compatible with GPAW’s dielectric solvent model or the counter-
charges used in SJM. For these reasons, we omitted the dielectric
solvent from these two electrode simulations and kept the
simulation cell charge neutral. These omissions do not, however,
affect the conclusion that bias across a two-electrode simulation
cell can be simulated with CIP-cDFT.

DATA AVAILABILITY
The methodology has been implemented in the open-source GPAW code54. The
scripts and data can be found at https://gitlab.jyu.fi/mamimela/cip.
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