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ABSTRACT 

Nurmi, Mikko 
Temporal constraints and creativity in bass lines of eminent jazz musicians 
Jyväskylä: University of Jyväskylä, 2023, 287 p. 
(JYU Dissertations 
ISSN 2489-9003; 679) 
ISBN 978-951-39-9695-6 

The first main aim of this exploratory research is to investigate how temporal constraints 
(as operationalized by tempo and harmonic rhythm) are related to creativity in pattern 
use (as operationalized by the variability of melodic patterns) in bass lines of eminent 
jazz bassists. As the second main aim, the research investigates whether learning a large 
storage of melodic patterns is a necessary requirement for creativity in the generation of 
bass lines. The research material consists of 42 transcribed bass lines by Paul Chambers 
and Ron Carter, which corresponds to 9,335 bars of notation. In this study, the original 
bass lines were reduced to sequences of quarter notes. 

Kendall’s tau partial correlation analysis was performed to determine the relation-
ship between tempo/harmonic rhythm and the variability of melodic patterns, when 
controlling for the length of analyzed bass line reductions. The research was not able to 
find statistically significant correlations between tempo/harmonic rhythm and the var-
iability of melodic patterns. In Paul Chambers’s bass line reductions (n = 30), the results 
indicated a statistically non-significant and weak negative correlation between tempo 
and the variability of melodic patterns (mean absolute tau-b = .18) and a statistically non-
significant and negligible correlation between harmonic rhythm and the variability of 
melodic patterns (mean absolute tau-b = .08). In Ron Carter’s bass line reductions (n = 
12), the results indicated a statistically non-significant and weak correlation between 
tempo and the variability of melodic patterns (mean absolute tau-b = .15) and a statisti-
cally non-significant and weak correlation between harmonic rhythm and the variability 
of melodic patterns (mean absolute tau-b = .14). Although the results are inconclusive, 
they provide preliminary evidence that tempo and harmonic rhythm may have a small 
or negligible effect on the variability of melodic patterns in bass lines of eminent jazz 
bassists. Except for the relationship between tempo and the variability of melodic pat-
terns in Paul Chambers’s bass line reductions, the results did not allow to make conclu-
sions on effect directions. 

In Paul Chambers’s bass line reductions, 15.8% to 16.9% of all recurring melodic 
pattern classes occurred at least twice in two or more bass line reductions and covered 
41.2% to 83.2% of all melodic patterns depending on pattern length. In Ron Carter’s bass 
line reductions, 11.2% to 19.4% of all recurring melodic pattern classes occurred at least 
twice in two or more bass line reductions and covered 13.4% to 63.1% of all melodic 
patterns depending on pattern length. The results indicate that even if recurring melodic 
pattern classes covered a large proportion of all melodic patterns at least when the length 
of analyzed melodic patterns was only two notes, a large proportion of recurring me-
lodic pattern classes did not occur at least twice in two or more bass line reductions. This 
finding suggests that pre-learned melodic patterns may have a surprisingly small role in 
the generation of jazz bass lines at least for Paul Chambers and Ron Carter. 

Keywords: temporal constraints, creativity, jazz, improvisation, expertise 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Nurmi, Mikko 
Ajalliset rajoitteet ja luovuus huipputason jazzmuusikoiden bassolinjoissa 
Jyväskylä: Jyväskylän yliopisto, 2023, 287 s. 
(JYU Dissertations 
ISSN 2489-9003; 679) 
ISBN 978-951-39-9695-6 

Tämän eksploratiivisen tutkimuksen ensimmäisenä päätavoitteena on selvittää, miten 
päätöksentekoon ja toiminnan suunnitteluun käytettävissä oleva aika (esitettävän mu-
siikin tempon ja harmonisen rytmin mukaan mitattuna) on yhteydessä luovuuteen huip-
putason jazzbasistien bassolinjoissa, kun luovuutta mitataan sävelkuvioiden vaihtele-
vuutena. Tutkimuksen toisena päätavoitteena on selvittää, onko laajan tietovaraston op-
piminen välttämätön edellytys luovuudelle bassolinjojen rakentamisen yhteydessä. Ai-
neisto koostuu 42:sta Paul Chambersin ja Ron Carterin bassolinjan nuotinnoksesta, joissa 
kaikki neljäsosanuoteista poikkeavat sävelkestot on joko poistettu tai muutettu neljäs-
osanuoteiksi. Aineiston koko vastaa 9 335 tahtia nuotinnoksia. 

Tutkimuksessa käytettiin Kendallin osittaisjärjestyskorrelaatiota selvittämään, mi-
ten esitettävän musiikin tempo ja harmoninen rytmi ovat yhteydessä sävelkuvioiden 
vaihtelevuuteen, kun bassolinjareduktioiden pituuden vaikutus tuloksiin on poistettu. 
Tutkimuksessa ei löydetty tilastollisesti merkitseviä yhteyksiä tempon/harmonisen ryt-
min ja sävelkuvioiden vaihtelevuuden välillä. Paul Chambersin bassolinjareduktioissa 
(n = 30) havaittiin tilastollisesti ei-merkitsevä ja heikko negatiivinen korrelaatio tempon 
ja sävelkuvioiden vaihtelevuuden välillä (keskimääräinen absoluuttinen tau-b = .18) ja 
tilastollisesti ei-merkitsevä ja käytännössä olematon korrelaatio harmonisen rytmin ja 
sävelkuvioiden vaihtelevuuden välillä (keskimääräinen absoluuttinen tau-b = .08). Ron 
Carterin bassolinjareduktioissa (n = 12) havaittiin tilastollisesti ei-merkitsevä ja heikko 
korrelaatio tempon ja sävelkuvioiden vaihtelevuuden välillä (keskimääräinen absoluut-
tinen tau-b = .15) sekä harmonisen rytmin ja sävelkuvioiden vaihtelevuuden välillä (kes-
kimääräinen absoluuttinen tau-b = .14). Tulokset antavat alustavaa näyttöä siitä, että 
tempolla ja harmonisella rytmillä saattaa olla vähäinen tai käytännössä olematon vaiku-
tus sävelkuvioiden vaihtelevuuteen huipputason jazzmuusikoiden bassolinjoissa. Tu-
lokset eivät mahdollistaneet efektin suuntaa koskevia päätelmiä lukuun ottamatta Paul 
Chambersin bassolinjareduktioita tempon ja sävelkuvioiden vaihtelevuuden välisen yh-
teyden osalta. 

Vähintään kahdessa eri bassolinjareduktiossa ja vähintään kahdesti toistuvien sä-
velkuvioluokkien osuus kaikista toistuvista sävelkuvioluokista oli 15,8–16,9 prosenttia 
Paul Chambersin bassolinjareduktioissa (kattaen 41,2–83,2 prosenttia kaikista sävelku-
vioista) ja 11,2–19,4 prosenttia Ron Carterin bassolinjareduktioissa (kattaen 13,4–63,1 
prosenttia kaikista sävelkuvioista) sävelkuvioiden pituudesta riippuen. Tulokset viittaa-
vat siihen, että vaikka toistuvat sävelkuvioluokat kattoivat suuren osan kaikista sävel-
kuvioista ainakin kun tarkasteltujen sävelkuvioiden pituus oli vain kaksi nuottia, suuri 
osa toistuvista sävelkuvioluokista ei esiintynyt toistuvasti vähintään kahdessa eri basso-
linjareduktiossa. Sävelkuvioita koskevan tietovaraston koolla saattaa näin ollen olla yl-
lättävän vähäinen merkitys ainakin Paul Chambersin ja Ron Carterin luovuudelle. 

Avainsanat: ajalliset rajoitteet, luovuus, jazz, improvisointi, eksperttiys
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Over the last 20 years or so, researchers’ interest in creativity research has grown 
significantly especially in the fields of psychology, social sciences, arts and hu-
manities, business and management, and education. As an example, a total of 
3,250 papers related to creativity research were published in the year 2020 alone 
(Mejia et al., 2021). The amount of research is not surprising given the many ben-
efits of creativity research. In addition to increasing our understanding of out-
standing achievements, everyday innovations, and benefits of creativity in edu-
cation and work, the research field has much to offer to help us understand our 
thinking, behavior, and our existence as human beings. 

Creativity is ubiquitous in human life and underlies virtually all aspects of 
human existence (Boden, 2004). It is a universal ability to create original works of 
art, find novel solutions to problems, find new ways of doing everyday activities, 
make inventions, and create any other kinds of novel (or original, unique, unpre-
dictable, etc.) products or ideas. In the present study, creativity is defined as 
novel (i.e., unpredictable, different) and appropriate products or ideas and the 
ability to create such products or ideas (where the novelty of a product or an idea 
only requires that it is new to the creator instead of the society). In this study, the 
function of the second component of the definition (appropriateness), however, 
is merely to remind that all actions are constrained and completely random ac-
tions are not the most creative ones. 

The present research investigates creativity in bass lines of eminent jazz 
bassists. The research has two main goals. The first main goal is to investigate 
how temporal constraints in decision-making and action planning are related to 
creativity among expert jazz musicians. When tempo and/or harmonic rhythm 
are slow, improvising musicians have more time to make decisions and to plan 
their actions in a present musical context compared to a fast tempo and a fast 
harmonic rhythm. The question is how temporal constraints affect expert jazz 
musicians’ playing and how expert jazz musicians can circumvent challenges re-
lated to time pressures. The second main goal is to determine the significance of 
learning a large storage of melodic patterns in expert jazz improvisation. Several 
studies have noted that jazz musicians often reuse the same melodic patterns in 

1 INTRODUCTION 
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their improvisations to some extent (e.g., Owens, 1974; Berliner, 1994; Weisberg 
et al., 2004; Norgaard, 2014; Norgaard & Römer, 2022). Even if jazz improvisers 
probably always make use of pre-learned melodic patterns at least to some extent, 
it is the claim that learning a large storage of melodic patterns is a necessary re-
quirement for fluent jazz improvisation (e.g., Owens, 1995) which is questioned 
here. Implications on chunking theory, action planning, and other areas of inter-
est are discussed. Finally, some basic mechanisms underlying musical creativity 
in jazz improvisation are reviewed and their relation to the present results are 
discussed with the aim of providing implications for further theory building and 
modeling on expert jazz improvisation. 

The thesis is divided into eight main chapters. In Chapter 2, the main topics 
of the research (improvisation, creativity, expertise, and transfer of learning) are 
discussed in general. In addition, previous research on the role of executive func-
tions in musical creativity, dual-processing theories, perceptual and motor 
chunking, anticipation of actions, and action planning is reviewed. In Chapter 3, 
memory for melodies and the significance of formulaic and schematic knowledge 
in jazz improvisation are discussed. In this chapter, I will also review important 
theories of jazz improvisation as well as implications from expert systems re-
search, neuroscience of musical improvisation, and the 4E cognition and dynamic 
systems research. Finally, problems related to experts' insights into their creative 
process are discussed. In Chapter 4, various sources of idea generation are pre-
sented including a discussion on the role of sensory feedback in idea generation. 
In addition, the role of constraints on memory and the role of temporal con-
straints in imagery and generation of music are discussed. The chapter also in-
cludes a discussion on the role of context familiarity in jazz improvisation and 
the duration of integrated units in perception and action. In Chapter 5, the re-
search questions and methods are presented. Chapter 6 presents the results of the 
study. In Chapter 7, conclusions from the study are discussed. Finally, limitations 
of the study and recommendations for further research are presented in Chapters 
8 and 9. 
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2.1 What is improvisation? 

In the Oxford Dictionary of Music, improvisation is defined as follows: “a perfor-
mance according to the inventive whim of the moment, i.e. without a written or 
printed score, and not from memory” (Kennedy et al., 2013, para. 1). In the Grove 
Music Online, improvisation is defined as: 

The creation of a musical work, or the final form of a musical work, as it is being per-
formed. It may involve the work’s immediate composition by its performers, or the 
elaboration or adjustment of an existing framework, or anything in between. To some 
extent every performance involves elements of improvisation, although its degree var-
ies according to period and place, and to some extent every improvisation rests on a 
series of conventions or implicit rules. (Nettl et al., 2014, para. 1.)1 

These two definitions address three claims which have been repeated in various 
publications: (1) improvisation is spontaneous invention generated in real time 
without a possibility for revision, (2) improvisation can only exist in absence of 
written scores, and (3) improvisation is not absolutely different from composition. 
I will next discuss the pros and cons of these claims. 

The first claim, even if intuitively convincing, is not exactly true. Expert-level 
musicians frequently “post-edit” their own or other musicians’ ideas by playing 
whatever fits the context. By doing so, even the most surprising events are not seen 
as mistakes but merely events that need a response. (Torrance & Schumann, 2019, 
p. 254.) Also, it is not exactly true that all decisions in improvised music are done
in “real time.” Improvising musicians always rely on musical knowledge that they
have gathered throughout their lives. Without such musical knowledge, they
could not know how to improvise within the limits of a particular musical style,

1  Rules refer to “organizing principles which are independent of the specific material 
used in a given instance” (Perruchet & Pacton, 2006, p. 233). 
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for example. It is thus an exaggeration to claim that improvising musicians invent 
all their musical ideas from scratch during the performance. 

The second claim, according to which improvisation can only exist in ab-
sence of notation, is problematic because it implies that composition and improv-
isation are two completely different things and fails to recognize improvisatory 
aspects in performance of composed music (see Gould & Keaton, 2000; Nettl, 
1974). Compositions do not usually specify all aspects of how they should be per-
formed and therefore two performances of the same composition can differ sub-
stantially (Whittall, 2011). There is also a spectrum of jazz styles regarding how 
improvisatory they are. On the other extreme, improvisation can merely refer to 
ornamentation of the melody, whereas any constraints can be abandoned at the 
other extreme (Torrance & Schumann, 2019)2. However, there are usually at least 
some constraints in jazz performance (e.g., fixed form, fixed chord progression, 
or fixed order of soloists).  

According to the third claim, the distinction between composition and im-
provisation is not clear-cut. According to Nettl (1974), there is no essential differ-
ence between composition and improvisation. Instead, they can be merely seen 
as two ends of a continuum, where composers who work quickly and more or 
less spontaneously can be located on one end and composers who continually 
rework their music to achieve a result with which they were satisfied on the other 
(Nettl, 1974). However, Nettl’s criticism of the distinction between composing 
and improvising is not entirely convincing. Johnson-Laird (1988, p. 210) argued 
that composition and improvisation must be based on at least partly different 
processes, since all skilled composers are not also skilled improvisers and vice 
versa. Although it may be difficult to identify whether a piece of music is com-
posed or improvised based on listening experience (Lehmann & Kopiez, 2010; 
Engel & Keller, 2011),3 any skilled composer may also be a great improviser only 
if he or she has acquired domain-specific skills for both activities. 

Several researchers have underlined that improvisation refers to a multi-
tude of practices. According to Nettl (2013), improvisation means too many dif-
ferent things to use a single concept. In his view, it is not clear whether everything 
from Schubert’s improvisational style of composing, children’s songs, virtuosic 
cadenzas, folk singers’ variations of traditional songs to musicians playing Per-
sian radif have enough common properties to justify the use of a single concept. 
Similarly, Alperson (2016, p. 428) argued that there is a large number of impro-
visatory practices even within jazz and that this multitude of practices makes it 
unlikely to find a single all-embracing model for improvisation. 

 
2  Also note that even if improvised solos have great importance in jazz, free flowing so-

los of indeterminate length are not always prioritized in jazz performances. For in-
stance, many of the great big band performances led by jazz musicians such as Duke 
Ellington or Count Basie allowed only short solos to be performed by selected musi-
cians (Torrance & Schumann, 2019). 

3  In one study, music students were not able to distinguish between composed and im-
provised versions of music from the classical and romantic era (Lehmann & Kopiez, 
2010). In another study, the accuracy of judging whether heard melodies were either 
improvised or imitated was 55% on average among a group of jazz musicians (Engel 
& Keller, 2011). 
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Several researchers have also noted that improvisation is a part of all or at 
least most of our actions. For example, Alperson (2016) claimed that “there is of 
course an element of improvisation in every intentional action or set of actions in 
the sense that every action is, in at least a minimal sense, a unique event that 
requires a degree of human agency” (p. 424). In addition, Iyer (2016) argued that 
“most behaviors include improvised and non-improvised components. […] In 
light of these observations, it becomes more and more problematic to identify 
moments of ‘pure’ improvisation, or to disambiguate them from the execution of 
pre-ordained programs” (Iyer, 2016, p. 75).4 

To avoid the above-mentioned problems, improvisation is defined here as 
a mode of performing any task which gives rise to a product that is, at least to 
some extent, unpredictable and not predetermined. 

2.2 General perspectives on creativity 

Creativity is a universal ability to create inventions and original artistic works, find 
novel solutions to problems, find new ways of doing everyday activities, and cre-
ate any other kinds of novel (or original, unique, unpredictable, etc.) products or 
ideas. Creativity is “one of the defining features of humanity” (Wiggins et al., 2018, 
p. 287) and underlies virtually all aspects of human existence (Boden, 2004, p. 1). 
In addition to being a part of everyone’s daily life, creativity in science, medicine, 
technology, and several other areas have changed the world as we know it5. The 
volume of creativity research has grown significantly over the last 20 years or so, 
most notably in the fields of psychology, social sciences, arts and humanities, busi-
ness and management, and education according to a search in the Scopus and the 
Web of Sciences databases. The research field is livelier than ever before with about 
3,000 papers published annually at the moment (Mejia et al., 2021). 

Despite this positive trend, the field has long suffered from widespread 
myths and negative assumptions (Plucker et al., 2004), some of which may still 
influence public understanding of creativity and the reputation of creativity re-
search. For example, it is still widely believed that creativity somehow vanishes 
after childhood (Benedek et al., 2021) or that creativity usually follows from sud-
den or divine inspiration (Benedek et al., 2021; Kim, 2019). One of the most stub-
born myths related to creativity is that creativity is a rare trait (Plucker et al., 2004). 
This misunderstanding is probably caused by the historical association of mysti-
cal qualities and creativity,6 and the traditional emphasis on the creativity of 

 
4  The ubiquity of improvisation in life has led some authors (e.g., Torrance & Schu-

mann, 2019) to suggest that improvisation should be given a more important role in 
cognitive science. Musical improvisation, especially jazz improvisation, is often 
thought to be an ideal paradigm for the scientific study of spontaneous creativity 
(Weisberg et al., 2004; McPherson & Limb, 2013; Faber & McIntosh, 2019). 

5  Note that creativity is not always a positive thing. One can also be creative for im-
moral, malevolent, and criminal purposes (Cropley, 2011). 

6  An association between mysticism and creativity dates back to possibly the earliest 
views of creativity, where creative products were seen as a result of an unexplained 
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highly eminent experts (Plucker et al., 2004, p. 84). Particularly harmful, Plucker 
and his colleagues observed that: 

Creativity is too often associated with negative assumptions and characteristics held 
by researchers, practitioners, and laypeople. As a result, people who study problem 
solving, abductive reasoning, cognitive flexibility, or functional fixedness would never 
dare utter the ’C word,’ yet they are essentially investigating aspects of creativity. 
(Plucker et al., 2004, p. 85.) 

Several researchers (e.g., Parkhurst, 1999; Plucker et al., 2004) have also criticized 
the existence of various definitions of creativity and that researchers have not 
always provided any explicit definition of the concept at all in their publications 
(Plucker et al., 2004)7. For instance, in a sample of 90 scientific articles published 
between 1996 and 2002 with the word ’creativity’ in their title, 38% of these arti-
cles included an explicit definition of creativity while 21% included no definition 
at all (Plucker et al., 2004). Puryear and Lamb (2020) recently attempted to repli-
cate the results of Plucker et al. (2004) by using a large sample of publications 
(600 articles) ranging from 2004 to 2016. According to their results, the proportion 
of articles with an explicit definition of creativity was higher (53%) compared to 
Plucker et al.’s sample (38%). The proportion of articles from 2013 to 2016 in 
which the concept of ‘creativity’ was not defined at all was 9% (compared to 21% 
in the sample of Plucker and his colleagues). 

Although the exact definition of creativity is still an open question (Stern-
berg & Kaufman, 2018), the basic components of the standard definition of crea-
tivity are mentioned in most definitions of creativity (Said-Metwaly et al., 2017, 
p. 243)8. For example, most authors who participated in the Handbook of Creativity 
(published in 1999) endorsed “the idea that creativity involves the creation of an 
original and useful product” (Mayer, 1999, p. 449). Similarly, Mumford (2003) 
wrote: “over the course of the last decade […] we seem to have reached a general 
agreement that creativity involves the production of novel, useful products” (p. 
110). More recently, Brandt (2021, p. 1) argued: “in a field with many hotly de-
bated questions, creativity as some version of novel-and-appropriate has become 
widely accepted […] and underlies almost every experiment.” According to 
Puryear and Lamb (2020), novelty was explicitly mentioned in 90% of the articles 
published between 2004 and 2016. After novelty, the most usual component in 
explicit definitions of creativity was usefulness or appropriateness (mentioned in 
73% of the articles). Even Parkhurst (1999, p. 3), after claiming that there is no 

 
divine intervention where a person was suddenly filled with otherworldly inspiration 
(Sternberg & Lubart, 1999). 

7  Of course, this problem is not solely related to creativity research. As an example, the 
concept of musicality is often used in even academic contexts as such a broad con-
struct that its meaning is obscured – making it necessary to narrow the scope and 
meaning of the concept (Nurmi, 2019). 

8  According to the standard definition of creativity, creative products are both original 
(or novel, unique, etc.) and effective (or useful, valuable, appropriate, etc.) (Runco & 
Jaeger, 2012, p. 92). There are also other versions of this definition. For example, 
Plucker and Beghetto (2004) argued that the "two key elements in the definition of cre-
ativity are novelty (i.e., original, unique, new, fresh, different) and usefulness (i.e., 
specified, valuable, meaningful, relevant, appropriate, worthwhile)" (p. 157). 
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general agreement on what creativity means, noted: “the one area of agreement 
among writers on this topic is that creativity is demonstrated by some sort of 
novel outcome.” In addition, Parkhurst noted that novelty has been considered a 
primary component of creativity ever since the beginning of modern creativity 
research (Parkhurst, 1999, pp. 15-16)9. 

The notion of creativity has also been criticized for its “imprecision and sub-
jectivity” (Wiggins et al., 2018, p. 287). However, it should be noted that both al-
leged drawbacks can mean different things, and therefore it is unclear what is ac-
tually criticized. Regarding the subjectivity of creativity judgments, no product is 
inherently creative or non-creative (if one accepts the view that all creativity judg-
ments are necessarily social or communal). For example, Gardner (1994, p. 145) 
argued that “no person, act, or product is creative or noncreative in itself. Judg-
ments of creativity are inherently communal, relying heavily on individuals expert 
within a domain.” Second, this claim can refer to a view that both external evalua-
tion of creativity and creativity tests are subjective measures of creativity, since 
external judgments are based on subjective criteria and most tests use expert 
judges to validate their method of measurement (Katz & Giacommelli, 1982). The 
claim that creativity is an imprecise or vague concept can also mean different 
things. First, it can mean that definitions of creativity cannot distinguish between 
creativity and non-creativity or between creativity and closely related concepts 
such as intelligence. Second, this claim can refer to the lack of details in definitions 
of creativity. For example, Kampylis and Valtanen (2010) argued that it is often not 
clear whether an external evaluation of creativity is required, whether it is enough 
that a product is novel and appropriate to an individual (in contrast to the society), 
and to what extent a product should be novel and appropriate to be considered as 
a creative product (Kampylis & Valtanen, 2010, p. 203).10 Even if more clarity in 
criticism regarding the definition of creativity is certainly needed, it is important 
to take seriously “the view that creativity is a highly complex and multidimen-
sional phenomena” (Dietrich, 2019a, p. 38). Given this view, it is no wonder that 
an all-encompassing definition of creativity is hard to come by. 

Although the standard definition of creativity is widely accepted, there are 
several reasons why disputes on the definition of creativity continue to occur. For 
example, Diedrich et al. (2015) found that novelty and usefulness are not equally 
important criteria for creativity: usefulness plays a role in creativity assessment 
only if ideas or products are highly novel.11 Also, it is still an open question 

 
9  The beginning of modern creativity research is often associated with Guilford’s (1950) 

presidential address to the American Psychological Association (e.g., Piirto, 1992, p. 
12; Cropley, 2011; Rhodes, 1961). Even though this was an important event in the his-
tory of creativity research, the development of creativity research had started earlier 
and because of Guilford’s presidential address “[it] simply moved into a phase in 
which applications and evaluation are receiving more attention” (Barron, 1988, p. 76). 

10  To avoid ambiguity in creativity research, Plucker et al. (2004, p. 92) suggested that re-
searchers should explicitly define the concept of creativity in their publications, “avoid 
using scores of creativity measures as the sole definition of creativity,” explain how 
their definition of creativity is similar or different from other definitions, and “address 
the question of creativity for whom and in what context.” 

11  Runco et al. (2005) only found a weak correlation between the originality and appro-
priateness scores in divergent thinking tests. In another study, Runco and Charles 
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whether creativity requires other components in addition to novelty, and if so, 
what those components might be (Sternberg & Kaufman, 2018). Some have also 
questioned whether creativity can be defined at all. According to Silvia (2018, p. 
292), “a consistent definition of creativity” can only be achieved if we allow its 
constituent criteria (novelty, usefulness, appropriateness, etc.) to mean many dif-
ferent things. As another problem related to the standard definition of creativity, 
conceptions of creativity are culture-dependent (Shao et al., 2019). The Western 
conception of creativity is product-oriented and emphasizes originality, but these 
qualities are less important in Eastern cultures (Lubart, 1999). For example, crea-
tive individuals are expected to defy the crowd in the United States. In contrast, 
appropriateness is valued over novelty in China. Chinese people also tend to 
place more emphasis on practice and learning, whereas people in the United 
States are more likely to concentrate on providing inspiration at early age. (Niu 
& Kaufman, 2013.)12 

The standard definition may also underestimate the prevalence of creativity. 
There are various degrees of creativity where the smallest variability of actions 
presents the lowest level of creativity and the most groundbreaking works of sci-
ence, innovation, arts, music, and other forms of culture presents the highest level 
of creativity. Whereas the latter kind of creativity is rare, all actions are creative 
(at the lowest level) since it is impossible to reproduce any action with perfect 
accuracy. Such an accuracy can only be achieved with the use of machines. In 
other words, actions are never absolutely non-creative if even the smallest 
amount of variability is a sufficient condition to consider something as a creative 
action. For example, it is impossible to replicate movements without any varia-
tion, even though variability in motor actions is known to decrease with practice 
(Dhawale et al., 2017). Human actions are also inherently subject to variability in 
the sense that random fluctuations are indicated at all levels of the nervous sys-
tem, from neural activity to motor control and motor execution (for reviews, see 
Faisal et al., 2008; Renart & Machens, 2014). 

Researchers have been reluctant to consider actions that are only slightly 
different from others as instances of creativity. For example, Kaufmann (2003) 
argued that creativity is not “applicable to any small difference relative to the 
existing state of affairs” (p. 242)13. However, setting a threshold level for what 

 
(1993) found an inverse relationship between originality and appropriateness, which 
indicates that creative responses are not necessarily both original and appropriate. 

12  One can distinguish between a weak and a strong form of the culture-bound creativity 
thesis, the latter of which states that there are no standard components of creativity 
that are shared between all cultures. According to a weak form of the thesis, people 
from diverse cultures have different conceptions of creativity and they appreciate dif-
ferent aspects of creativity (Shao et al., 2019). In this sense, there could be both culture-
independent core components of creativity (e.g., novelty), culture-bound components 
of creativity that are used to evaluate creative products (e.g., value, usefulness, rela-
tion to tradition, etc.), and cognitive processes that are used more often in some cul-
tures compared to others. 

13  Kaufmann (2003) also suggested that creativity should only refer to novel and uncon-
ventional actions. However, most expert-level jazz improvisers, for example, would 
fail to be recognized as creative persons if unconventionality was a necessary criterion 
for creativity. Only those jazz improvisers who produced unconventional products in 
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actions are sufficiently novel may lead to considerable problems. In addition, 
there are at least three other reasons why it is helpful to identify several degrees 
of creativity from the basic variability of actions to the most respected achieve-
ments of all times. First, increasing knowledge on processes involved in variabil-
ity of actions may also increase our knowledge on processes that underlie higher-
level creativity (e.g., creativity of eminent jazz improvisers). Second, variability 
is often a valued aspect of actions. For instance, variability in loudness and tempo 
have been linked to spontaneity (Chaffin et al., 2007; Keller et al., 2011), which is 
a highly valued aspect of music in several musical traditions. Finally, identifica-
tion of various degrees of creativity could help us to increase our understanding 
of the function of creativity in general. 

It is also important to note that the standard definition of creativity is fo-
cused on products and does not specify any underlying processes that lead to the 
emergence of novel and useful products (see Glăveanu, 2018; Glăveanu & 
Beghetto, 2020). There are several types of creativity (which may not share the 
same underlying processes) and different sociocultural conceptions of creativity 
(with different assumptions on advantages and disadvantages of creative behav-
ior). For example, Dietrich (2019b) underlined that creativity cannot be reduced 
to any single process or mechanism and proposed a classification of three sub-
types of creativity: deliberate mode, spontaneous mode, and flow mode. 
Glăveanu (2018) also distinguished between three types of creativity: spontane-
ous creation of original artworks, invention in science and technology, and crea-
tivity in craftmanship and everyday living – each of which has its own history 
and relation to society. In accordance with Dietrich (2019b), Glăveanu (2018) ar-
gued that “creativity is not a unitary construct or phenomenon […] it is a scien-
tific label applied to a variety of human actions or activities that leads to out-
comes appreciated as more or less to novel, original, valuable or meaningful” (p. 
25). 

In his highly influential article, Rhodes (1961) identified four perspectives 
in definitions of creativity: creativity as a product, creativity as a process, charac-
teristics of creative individuals (e.g., their personality, values, intelligence, and so 
on), and the environment or context in which creativity takes place (which may 
encourage or inhibit creative idea generation or influence creative process in 
some way)14. The two first mentioned perspectives are essential to the current 
study15. From the products perspective, creativity refers to any kind of tangible 
or intangible outcome or idea which is novel and appropriate either to its creator 

 
relation to their time, such as Ornette Coleman in the 1950s and 1960s, would be rec-
ognized as creative persons. 

14  The diversity of work labelled as creativity research and the need to address new 
questions that have been previously ignored have recently led to the rise of new 
frameworks for creativity research. For example, Glăveanu (2013) proposed a five A’s 
framework with the aim of drawing more attention to relationships between different 
components of creativity and to place creative actors in a larger sociocultural context. 
In addition, Lubart (2017) proposed a classification of creativity research based on 
seven main themes: Creators, Creating, Collaborations, Contexts, Creations, Con-
sumption, and Curricula. 

15  Characteristics of creative individuals and environmental perspectives are beyond the 
scope of the present study and will not be discussed further. 
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or to the society. From the process perspective, creativity is any kind of an activity 
or mechanism which produces a tangible or intangible outcome or idea that is 
novel and appropriate either to its creator or the society. However, it is not al-
ways possible to distinguish between creativity as a process and creativity as a 
product since a new way of doing something does not always lead to a creative 
outcome besides the act itself. For example, washing the dishes in a new way is 
a creative action but the outcome of this action is inseparable from the process. 
In other words, the process of washing the dishes in a new way is a creative action 
because it produces a novel and appropriate solution to washing the dishes. 

2.2.1 Creative products perspective 

As noted in the previous chapter, the standard definition of creativity states that 
creative products are both original (or novel, unique, etc.) and effective (or useful, 
valuable, appropriate, etc.) (Runco & Jaeger, 2012, p. 92). A number of details are 
not specified with this definition (e.g., the question of whether creativity requires 
that no one else has ever come up with similar products or not). To clarify this 
problem, I will discuss some useful distinctions that have been proposed in pre-
vious studies. 

According to Boden (2004), psychological creativity refers to the emergence 
of novel and valuable ideas from that person’s point of view who created them. 
In this type of creativity, it makes no difference if someone else has produced 
similar ideas before. In contrast, historical creativity refers to novel and valuable 
ideas that no one else has produced before. (Boden, 2004, p. 2.) Researchers have 
disagreed whether creativity refers to products which are novel to its creator (cf. 
psychological creativity) or products which are novel to society (cf. historical cre-
ativity) (see Parkhurst, 1999; Cropley, 2011). It is important to note that the an-
swer to this problem has important implications on the prevalence of creativity. 
If creative products must be novel to society, much of everyday creativity would 
be disregarded since many ideas which first seem to be novel may later turn out 
to be invented a long time ago. 

One can also distinguish between personal creativity and external creativity. 
Csikszentmihalyi (2013, p. 25) defined personal creativity as a form of creativity, 
where a person develops novel ideas without anyone else knowing about that. 
Here, creativity is evaluated based on a subjective evaluation of one’s own work. 
In contrast, the evaluation of creativity may also occur externally by relevant oth-
ers. As a special case of external evaluation, consensual creativity requires that 
the creativity of products is judged by relevant others (e.g., stakeholders, critics, 
or experts), and that these judges agree on the creativity of that product. In the 
words of Amabile, who created the consensual definition and assessment of cre-
ativity, “a product or response is creative to the extent that appropriate observers 
independently agree it is creative. Appropriate observers are those familiar with 
the domain in which the product was created or the response articulated.” (Am-
abile, 1982, p. 1001.) In other words, something is creative only if experts of the 
field say so. 



 
 

25 

Before moving on, it is important to discuss the distinction between the big 
C and the little c creativity. According to Gardner (1993), the big C creativity re-
fers to “the kind of breakthrough which occurs only very occasionally,” whereas 
the little c creativity refers to “the sort [of creativity] which all of us evince in our 
daily lives” (p. 29). However, it may sometimes be difficult to distinguish be-
tween these two forms of creativity, because this distinction gives too few options 
to categorize various degrees of creativity (Kaufman & Beghetto, 2009). For ex-
ample, “the accomplished jazz musician who makes a living playing jazz (but 
clearly is no John Coltrane) might be put into same category as the high school 
jazz student who plays (passable) jazz in school concerts and the occasional birth-
day party, wedding, or family gathering” (Kaufman & Beghetto, 2009, p. 2). 

It is noteworthy that the standard definition of creativity emphasizes the 
role of value in creativity judgments. According to Merker (2006, p. 25), value is 
a necessary criterion of creativity because increasing creativity should lead to bet-
ter cultural products. According to another line of justification, Runco and Jaeger 
(2012) argued that originality (i.e., without being effective) does not suffice to be 
a sole criterion of creativity since “originality can be found in the word salad of 
a psychotic and can be produced by monkeys on word processors” (p. 92). These 
authors also argued that completely random processes may generate original 
products, but they are unlikely to be useful or valuable (Runco & Jaeger, 2012, p. 
92). In another study, Runco et al. (2005) argued that original responses in diver-
gent thinking tests can be sometimes highly inappropriate and therefore not cre-
ative. As an example, “the individual who says ‘brick’ when asked to ‘name all 
the round things you can think of’ has found an original idea, but just as clearly, 
it is an inappropriate one” (Runco et al., 2005, p. 138). 

However, the use of value as a criterion of creativity may cause severe prob-
lems in arts and music (Weisberg, 2015; Brandt, 2021; Schubert, 2021)16. Brandt 
(2021) presented several reasons of why creativity as a process that yields novel 
products should be distinguished from judgments of value. In his view, expert 
judgments “can be biased or prejudiced, excluding creative efforts on the basis of 
gender, race, religion, social class, sexual preference, and more” (Brandt, 2021, p. 
4). Evaluations on the creativity of art works can also vary according to “the view-
ers’ beliefs about the identity of the painter or the amount of time they believed 
was expended on completing the work” (Cropley, 2011, p. 360). In addition, judg-
ments on the value of artistic works may change from time to time (Weisberg, 
2015; Brandt, 2021), which can lead to absurd statements like ’Vincent van Gogh 
only became creative after he died’ (Weisberg, 2015)17. Moreover, the originality 

 
16  According to Schubert (2021), it is also problematic to apply the criterion of usefulness 

in the context of artistic creativity. In his view, “answering the question ’how is a song 
or a symphony useful’ could raise a wide range of rather subjective responses, making 
empirical investigation problematic, and suggests that such a criterion misses the 
point” (Schubert, 2021, p. 7). 

17  Statements like this are common in studies which emphasize the social nature of crea-
tivity. As an example, Csikszentmihalyi (2013) claimed that “Mendel was not creative 
during his years of relative obscurity because of his experimental findings were not 
that important until a group of British geneticists, at the end of the nineteenth century, 
recognized their implications for evolution” (p. 30). 
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(or novelty) of an artistic work and judgments of its value may be contradictory. 
Highly original products are not always valuable, and products can be valued 
because they represent existing tradition rather than depart from it (Williamon 
et al., 2006, p. 171). Finally, judgments of value are subjective and unreliable 
(Weisberg, 2015; Brandt, 2021) and evaluators may find it difficult to explain their 
judgments (Jordanous, 2011)18. Consistent with this view, Juslin et al. (2023) re-
cently found that there was little agreement in aesthetic judgments between dif-
ferent listeners. According to this study, most listeners also had little insight on 
their judgment strategies. 

There are several ways of how even expert judges may fail to provide fair 
judgments of value. For example, Flôres and Ginsburgh (1996) found that rank-
ings in an international music competition depended on which day the candidate 
performed. Those candidates who performed early in the competition were less 
likely to achieve a high ranking compared to those who performed on the fifth 
day of the competition. In another study, Duerksen (1972) asked students to lis-
ten to pairs of identical music performances that were said to be performed either 
by a professional musician or a student. Performances that were reported to be 
performed by professionals were considered superior compared to student per-
formances even if the performances were identical. The difficulty of providing 
fair judgments of value is also evident in that important works in the fields of 
literature and arts have often initially received negative reviews (Sternberg, 2006, 
p. 7). Most dramatic examples come from those whose work has been acknowl-
edged only posthumously (Simonton, 2018b, p. 333). 

Even if relevant cultural norms cannot be overlooked when creativity is as-
sessed or measured,19 there are also problems with applying appropriateness as 
a criterion of creativity in music and arts. Creative works of art are occasionally 
in opposition to prevailing cultural values and definitions of art (for example, 
Cage’s 4’33” or Duchamp’s Fountain were in opposition to prevailing cultural 
values) (see Brandt, 2021, p. 6). Because of such opposition to prevailing values, 
these works of art would be considered inappropriate which leads to the same 
problems as discussed earlier with value judgments. Also, note that appropriate-
ness can be considered from different points of view (the same also applies to 
usefulness). For example, even if some may consider particular innovations ap-
propriate or useful based on their economic success or usefulness to users, others 
may regard the same innovations in negative terms due to poor working condi-
tions for those who made them (Silvia, 2018, p. 293). 

 
18  Weisberg (2015, p. 119) proposed that creativity should be defined as intentional or 

nonaccidental production of novel outcomes (where value is disregarded). However, 
given the role of chance in some of the most important findings in the history of sci-
ence (e.g., the discovery of penicillin) and its function as a source of creative ideas 
(e.g., Simonton, 2003; Cropley, 2011), this definition only leads to new problems. In 
fact, it would be less complicated to argue that creative products are not always valua-
ble or useful, or that value judgments are not always important features of creative 
products, rather than to define creativity as an intentional generation of novel prod-
ucts. 

19  For example, there are boundaries to what kind of a performance is considered ac-
ceptable in Western classical music tradition (Williamon et al., 2006, p. 172). 



 
 

27 

In addition, it is often unclear how appropriateness can be applied in stud-
ies of musical creativity. For example, it is difficult to judge whether note choices 
are appropriate or not besides obvious mistakes and accurate execution of notes 
(e.g., played in tune). In addition, regarding expert-level jazz musicians, the ap-
propriateness of their note choices cannot be judged with the same rules as with 
less capable musicians. For example, Miles Davis’s second classic quintet (with 
Miles Davis, Wayne Shorter, Herbie Hancock, Ron Carter and Tony Williams) 
was known for their extraordinary ability to adapt to surprising note choices pro-
duced by any of the musicians. Based on basic music theory, such note choices 
might be considered inappropriate regarding the predefined chord progression, 
yet such “inappropriate” note choices work fine when the band can adapt to sur-
prises. Based on these problems and those discussed earlier regarding value and 
usefulness, the standard definition of creativity is problematic in the context of 
musical and artistic creativity where it is often difficult to assess the appropriate-
ness, value, and usefulness of products. Nevertheless, at least appropriateness is 
an important component in definitions of musical and artistic creativity (or crea-
tivity in general). If appropriateness was not considered as a relevant criterion of 
creativity, completely random actions and ideas would be considered examples 
of the highest creativity. 

In addition to the standard definition of creativity, alternative definitions 
have also been proposed. As noted above, Brandt (2021) proposed that usefulness 
and value should be removed from definitions of creativity, and creative prod-
ucts should be separated from their reception. Boden (2004) and Simonton (2018a) 
both proposed a three-criterion definition according to which creative products 
are original, useful, and surprising (or novel, valuable, and surprising). Simon-
ton’s proposal is particularly interesting. He argued that creativity can be meas-
ured by using the following formula: c = (1 - p)u(1 - v), where ‘p’ is the probability 
of an idea, ‘u’ is its usefulness, ‘v’ is the prior knowledge of its usefulness, and ‘c’ 
is creativity. This proposal allows to distinguish between maximal creativity and 
seven types of maximal uncreativity. (Simonton, 2018a.) 

In the present study, creativity is defined as novel (i.e., unpredictable, dif-
ferent) and appropriate products or ideas and the ability to create such products 
or ideas (where the novelty of a product or an idea only requires that it is new to 
the creator instead of the society). Moreover, the relevant criteria of creativity are 
considered to differ between types of creativity. With musical and artistic crea-
tivity, it is helpful to consider novelty and appropriateness as sufficient criteria 
for creativity to circumvent problems that arise from subjectivity of aesthetic 
judgments. 

2.2.2 Creative processes perspective 

From the process perspective, creativity refers to any cognitive mechanism that 
leads to the emergence of novel (or original) and appropriate (or valuable or 
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useful) products20. Creativity relies on several cognitive processes. These include 
long-term memory, working memory, selective attention, stream segregation, 
generation of ideas, evaluation of ideas, expectation, prediction, and cognitive 
flexibility (Loui & Guetta, 2019, p. 275). Obviously, many of these processes are 
not exclusive to creativity. Previous studies have also proposed that cognitive 
processes such as remote association (Mednick, 1962), cognitive flexibility and 
cognitive persistence (Nijstad et al., 2010), variable attention (Vartanian, 2009), 
and mind wandering (Palhares et al., 2022) may explain creativity to some extent. 
In addition, Orth et al. (2017) argued that creative motor actions emerge from 
exploration of movements in a space defined by individual, task, and environ-
mental constraints. According to these authors, adaptation to changing con-
straints requires continuous exploration which leads to enhanced variability of 
movements. These movements may or may not turn out to be functional in terms 
of the task at hand. 

In his classic paper, Campbell (1960) claimed that all “real gains [in 
knowledge] must have been the products of explorations going beyond the limits 
of foresight or prescience, and in this sense blind” (p. 381). In other words, Camp-
bell argued that not knowing of which ideas are useful (until they are tested) 
underlies all advances in knowledge.21 More recently, Simonton (2003) proposed 
that scientific creativity is a result of constrained stochastic processes where sci-
entists try to find original and useful solutions to their research problems by mak-
ing quasi-random combinations of existing knowledge22. In such a process, the 
probability of success is small, and a considerable amount of time is required to 
find a successful solution (Simonton, 2003, p. 478). In a similar way, cognitive 
load theorists like Sweller (2010) have argued that random search processes and 
subsequent tests on whether the solution is effective are required whenever one 
is faced with novel problems.23 In addition, Hommel et al. (2016, p. 96) proposed 
that whenever an action has never been executed before, it is impossible to know 
its effects and so the generation of novel actions always has a random origin. 

 
20  Some researchers have distinguished between processes and mechanisms. According 

to Mumford (2003, p. 112), “any given process may be executed using a variety of 
mechanisms or mental operations. Thus conceptual combination may occur through 
analogical feature mapping, use of metaphors, or construction of a visual image, 
whereas information search may involve the elimination of irrelevancies, identifica-
tion of anomalies, or search for structuring principals.” 

21  Interestingly, Huovinen (2021) found that students in musicology and music educa-
tion (nearly 40% of the students also had a conservatory degree) saw blind variation 
and selective retention as one of the least appealing theories of creativity. In addition, 
he found that general theories of creativity were considered most problematic when 
their application to musical improvisation was discussed. 

22  Note that variability in action may also not always be as random as it seems. For ex-
ample, variability may be sometimes illusory and caused by incomplete knowledge of 
underlying variables (Renart & Machens, 2014). Moreover, even though humans can 
make arbitrary choices naturally, their ability to make truly randomized choices is 
poor (which implies that one choice influences the others to some extent) (Johnson-
Laird, 1988, p. 207). 

23  According to Sweller (2010), “random generation followed by tests of effectiveness 
provide the initial source for the generation of all information held in long-term 
memory” (pp. 31-32). 
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Randomized idea generation is also a common feature in expert system algo-
rithms (see Chapter 3.3.1: Implications from expert systems research). 

Cropley (2011, pp. 360-361) distinguished between four situations in which 
chance can lead to the emergence of novel outcomes. In the first case, the creator 
has no role in the emergence of a creative outcome except for being at the right 
place at the right time. Second, creativity may emerge because of serendipity. 
Serendipity refers to situations where the creator is unintentionally faced with 
something novel and important (e.g., the discovery of penicillin is a famous ex-
ample of serendipity). Third, an advantageous chance may also occur because of 
diligence. After a series of trial and error, diligent people may eventually find 
something worthwhile. Fourth, characteristics like attention to details, acquired 
knowledge, and expertise may increase the possibility of self-induced luck. 

Another influential idea in creativity research is that novel ideas are always 
built on pre-existing knowledge. As an example, Thagard (2012) argued that all 
major discoveries in science and technology can be traced to combinations of dif-
ferent mental representations. Similarly, Canonne and Aucouturier (2016) ar-
gued that “improvised music is invented as it is being performed, but it is never 
really creatio ex nihilo. Every form of improvisation is built on pre-existing mu-
sical atoms” (p. 544). Likewise, Daikoku and his colleagues recently claimed that 
“there is no doubt that creativity is intricately linked to acquired knowledge; 
however, the underlying mechanisms remain unclear” (Daikoku et al., 2021, p. 
2).24 As an extreme form of argument, Weisberg (1999, pp. 248-249) even claimed 
that the relationship between creativity and knowledge is so strong that creative 
accomplishments can be explained as a consequence of acquired knowledge. In 
his view, “the reason that one person produced some innovation, while another 
person did not, may be due to nothing more than the fact that the former knew 
something the latter did not” (Weisberg, 1999, pp. 248-249). 

According to Mednick’s (1962) associative theory of creativity, creative pro-
cess is characterized by “the forming of associative elements into new combina-
tions which either meet specified requirements or are in some way useful” (p. 
221), where creativity is assessed by the distance of elements in a hierarchy of 
associations (the creativity of a solution is greater with associations of remote in-
stead of closely related elements). The organization of associations also affects 
what solutions are most likely to occur and the “speed of attainment of a creative 
solution” (p. 222). Mednick also argued that the number of associations related 
to a specific problem influences the probability of achieving a creative solution. 
In other words, the greater the number of associations, the greater the probability 
of finding a creative solution. However, in case of ill-defined problems (where 
there are no pre-defined solutions to problems), the selection of creative combi-
nations is typically achieved by “producing random combinations of elements” 

 
24  This idea is also evident in Johnson-Laird’s NONCE definition of creativity, according 

to which: (1) Creativity is associated with products that are novel at least to their crea-
tor; (2) Optionally, creative products may also be novel to the society; (3) Creativity is 
nondeterministic; (4) Creativity is based on pre-existing constraints; (5) Creativity can 
never occur ex nihilo (out of nothing) as even the most creative products are created 
from pre-existing materials. (Johnson-Laird, 2002, pp. 419-420.) 
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(p. 225). In addition, any combination of elements requires that all elements must 
already exist. To use Mednick’s example, “an architect who does not know of the 
existence of a new material can hardly be expected to use it creatively” (p. 222). 

Based on associative theories, Schubert (2011) proposed that musical crea-
tivity emerges from the spontaneous formation of new links between pre-existing 
nodes, which also produces pleasure or other positive emotions and simultane-
ous inhibition of pain or other negative emotions. According to this theory, in-
formation is stored in units (called nodes), which may differ in their size from 
single objects (e.g., a single note) to much larger units (e.g., an entire musical 
work). Importantly, it is not the activation of existing links between nodes that 
produces creative products but the formation of new links and associated posi-
tive feelings and inhibition of negative feelings. As such, this theory is compatible 
with the notion that creativity is based on combinations of pre-existing 
knowledge with an additional focus on emotion. Another important aspect of 
Schubert’s theory is that musical creativity is considered as a subset of problem 
solving. Problems in composition and improvisation are typically ill-defined, 
which means that there are no pre-defined solutions to such problems and, as a 
result, no obvious target nodes from which the solution can be retrieved. In line 
with this view, Paavilainen (2020, p. 274) argued that the role of the default mode 
network may be emphasized in jazz improvisation, where there are no pre-de-
fined goals that should be satisfied25. 

The fundamental role of pre-existing knowledge in creativity is partly sup-
ported by recent studies. For instance, Weisberg et al. (2004) found that the aver-
age proportion of notes captured by recurring 4-interval melodic patterns was 
90% in six solos by Charlie Parker. As a result, these authors concluded that pre-
learned melodic patterns “played a major role” in Charlie Parker’s improvisa-
tions (Weisberg et al., 2004, Capture of notes by formulas section, para. 1). In their 
review, Schacter et al. (2007) argued that the imagination of what events might 
occur in the future shares common brain structures with memory recall. More 
recently, Benedek et al. (2014b, 2018) found that the recall of original ideas from 
memory and the generation of novel ideas showed similar brain activation pat-
terns expect for the left supramarginal gyrus (which showed increased activation 
during the generation of novel ideas). Other research has suggested that pre-ex-
isting knowledge may have a different role in science and the arts. Building on 
pre-existing knowledge is obviously a crucial component in scientific and tech-
nological breakthroughs. In contrast, pre-existing knowledge may have a smaller 
role in artistic creativity in comparison to scientific and technological creativity 
(Cropley, 2011, p. 361). 

Boden (2004, pp. 3-6) proposed that there are three fundamental forms of 
creativity based on their underlying processes: making unfamiliar combinations 
of existing ideas, exploring existing conceptual spaces, and inventing new con-
ceptual spaces. Meyer (1989) distinguished between stylistic rules and strategies, 

 
25  Default mode network refers to interconnected brain regions associated with sponta-

neous internally oriented processes such as mind wandering and task-independent 
thought (Andrews-Hanna, 2012). 
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which resembles Boden’s distinction between exploring pre-existing conceptual 
spaces and inventing new conceptual spaces. According to Meyer, there are three 
levels of constraints involved in the musical style of any performer or composer: 
laws (i.e., physical, physiological, and psychological constraints that apply in all 
cultures and all times), rules (i.e., stylistic constraints that apply in a particular 
culture), and strategies (i.e., constraints that influence how rules are realized) 
(Meyer, 1989, pp. 13-23). As an example of inventing new rules, Meyer cited 
Schoenberg’s work with the twelve-tone method (Meyer, 1989, p. 31) and argued 
that changes in rules have rarely occurred in the history of Western music and 
such changes have only occurred in-between long-term epochs such as the Mid-
dle Ages, the Renaissance, the Age of Tonality, and the Age of Modernity (Meyer, 
1989, p. 20). 

2.2.3 The role of executive functions in musical creativity 

Executive functions consist of basic cognitive abilities that are needed in mental 
imagery, focusing on a task, resisting temptations, and so on. There are three core 
executive functions: inhibition (control of attention, thoughts, or emotions to 
evade predisposed patterns of behavior), working memory (maintenance and 
manipulation of information), and cognitive flexibility (e.g., approaching a prob-
lem from a different point of view). (Diamond, 2013.) 

In one study, Beaty et al. (2013) investigated the relationship between basic 
cognitive abilities (divergent thinking, working memory, and fluid intelligence) 
and expert ratings of ten undergraduate jazz students’ improvisations. Their re-
sults showed negative correlations between improvisers’ cognitive abilities and 
expert ratings of their improvisations except for divergent thinking (which is re-
lated to cognitive flexibility). As noted by these authors, negative correlations 
between scores from working memory/fluid intelligence tests and expert ratings 
were probably influenced by characteristics of the data (e.g., restricted variance). 
Other studies have found that even if expert musicians without improvisation 
training show higher scores on divergent thinking tests compared to non-musi-
cians and musicians without formal training in music (Palmiero et al., 2020), jazz 
musicians show higher divergent thinking task scores compared to musicians 
specialized in other musical styles (Benedek et al., 2014a), and musicians with 
training in improvisation perform better on divergent thinking tasks compared 
to musicians without such training (Kleinmintz et al., 2014).26 

Working memory (the ability to temporarily maintain and manipulate in-
formation) plays a fundamental role in a number of tasks. For example, playing 

 
26  Although divergent thinking tests are widely used in creativity research, Dietrich 

(2019a, 2019b) argued that there are several problems in their use. First, there is a lack 
of evidence that the alternative uses test (which is widely used in divergent thinking 
studies) is a valid measure of creativity (Dietrich, 2019a, p. 36). Divergent thinking is 
also “incapable of identifying the processes that turn normal thinking into creative 
thinking” since both divergent thinking and its opposite (convergent thinking) can 
produce creative results (Dietrich, 2019b, p. 2). In addition, divergent thinking in-
volves several different mental processes but there is no knowledge of what those un-
derlying processes could be (Dietrich, 2019a, p. 37; Dietrich, 2019b, p. 2). 
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a string, wind, or brass instrument requires constant monitoring of auditory feed-
back to adjust intonation and attack if necessary (Nichols et al., 2018). This con-
stant comparison between action goals and auditory feedback requires short-
term maintenance of relevant information in working memory. In addition, pia-
nists with higher working memory capacity perform better on sight reading tasks 
compared to other pianists (Meinz & Hambrick, 2010). According to another 
study, improvisations produced by semiprofessional cellists with high working 
memory capacity were more creative compared to cellists with low working 
memory capacity (De Dreu et al., 2012). High working memory capacity can also 
support learning to identify absolute pitch categories (Van Hedger et al., 2015). 
Working memory is also related to inhibition of irrelevant or negative thoughts 
and being able to concentrate despite of external distractors (Redick et al., 2007), 
inhibition of stereotyped actions (Bengtsson et al., 2007), and coordination of 
“tasks and subtasks in complex actions” (Hommel et al., 2016, p. 171). In addition, 
working memory facilitates creativity, because it allows to maintain attention to 
the current task and enables persistent cognitive effort on a specific problem (De 
Dreu et al., 2012). On the other hand, there is also some evidence that high work-
ing memory capacity may be a disadvantage sometimes (Van Stockum & DeCaro, 
2013). 

A correct balance between excitatory neuronal activities and inhibition (i.e., 
suppression of neuronal activity) plays an important role in successful motor 
control of complex movements. For instance, correct timing in music perfor-
mance requires knowing exactly when to play a particular musical sequence and 
when to wait. (Gerloff & Hummel, 2012, p. 239.) Inhibition of stereotypical ac-
tions (Norgaard et al., 2019) as well as risk-taking, an ability to surprise, and 
avoidance of redundancy (Wopereis et al., 2013) are also associated with musical 
creativity and jazz improvisation. In accordance with these studies, Beaty et al. 
(2014) found stronger connectivity between the inferior frontal gyrus (IFG) (as-
sociated with inhibition and cognitive control) and the default mode network 
(associated with spontaneous cognitive processes like mind wandering) among 
participants with higher scores in divergent thinking tasks. In another study, 
Ivancovsky et al. (2018) investigated cross-cultural differences in creativity be-
tween participants from a more traditional culture (South Korean) and a less tra-
ditional culture (Israeli). The generation of original ideas was associated with the 
posterior cingulate cortex (a portion of the default mode network) in both groups. 
However, the Israeli participants showed lower activation in the left IFG com-
pared to the South Korean participants. Increased activation in the left IFG was 
associated with lower scores in divergent thinking test, which suggests that in-
creased inhibitory control may have a negative effect on divergent thinking27. 

 
27  The relationship between reduced inhibition and creativity is also supported by other 

studies (Carson et al., 2003; Kleinmintz et al., 2014; Nijstad et al., 2010). 
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2.2.4 Dual-processing theories in creativity research 

According to dual-processing theories, information is processed by two types of 
processing: Type 1 (or System 1) (rapid, automatic, and unconscious processing) 
and Type 2 (or System 2) (slow, deliberate, and conscious processing) (Evans, 
2008, p. 256). According to Evans (2008, p. 270), “type 2 processes are those that 
require access to a single, capacity-limited central working memory resource, 
while type 1 processes do not require such access.” As a result, Type 2 processing 
occupies working memory and can be disrupted by cognitive load. Type 1 pro-
cessing does not occupy working memory and is not affected by the limits of 
working memory. (Evans, 2008, p. 270.) 

Both types of processing are essential in expert-level creativity in tasks like 
jazz improvisation (Rosen et al., 2020). However, experts in jazz improvisation 
tend to rely more on Type 1 processing compared to Type 2 processing (Limb & 
Braun, 2008; Liu et al., 2012; Adhikari et al., 2016; Lopata et al., 2017; Rosen et al., 
2016, 2017, 2020), which allows them “to inhibit or relax executive-control pro-
cesses and improvise creatively based on unconscious, associative processes” 
(Rosen et al., 2020, p. 2). In contrast, relying on Type 2 processing is beneficial for 
novice improvisers (Rosen et al., 2016, 2017, 2020). In addition to expertise, task 
complexity and time pressure may also influence which one of these two types 
of processing is more relied on in performance. Experts tend to rely on Type 1 
processing if the task is less complex and the time pressure is high, but they rely 
on both types of processing when the task is more complex and there is “enough 
time to think” (Gobet, 2016, p. 101). Torrance and Schumann (2019, p. 258) pro-
posed that human actions (including jazz improvisation) are characterized by “a 
tension between” the two types of processing: improvisation requires fast, un-
conscious, and intuitive processing, but also monitoring and controlling pro-
cesses based on slower, conscious, and deliberate thinking. In their view, “much 
of the skill of the improviser consists of knowing how to mediate between these 
two speeds of output” (Torrance & Schumann, 2019, p. 258). 

As an application of dual-processing theories to creativity research, the dual 
pathway to creativity model states that there are two different pathways to create 
creative products: cognitive flexibility and cognitive persistence (Nijstad et al., 
2010). Creativity can occur both as a combination of these two pathways, or in 
absence of the other pathway (Nijstad et al., 2010, pp. 36, 63). Cognitive flexibility 
refers to the ability to switch between different approaches and perspectives, 
whereas cognitive persistence refers to “sustained and focused task-directed cog-
nitive effort” (Nijstad et al., 2010, p. 42). The relationship between cognitive flex-
ibility and creativity has been approved in several studies. For instance, 
Kleinmintz et al. (2014) found that musicians who were trained in improvisation 
performed better on divergent thinking tasks compared to non-musicians and 
musicians without improvisation training, probably because of the less strict 
evaluation of ideas among musicians with improvisational training. In another 
study, Carson et al. (2003) found that creative achievements were more common 
among people who showed low inhibition scores. 
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Creativity may also occur as a product of systematic, focused, and persis-
tent cognitive effort on a specific problem. This pathway, called the cognitive 
persistence pathway, often leads to unsurprising and obvious results at first, but 
may lead to creative results when unsurprising but unsuccessful ideas are exam-
ined and rejected thus giving more space for the examination of more unconven-
tional ideas (De Dreu et al., 2012, p. 658). The cognitive persistence pathway is, 
however, likely to lead to successful results only if there is enough time to con-
centrate on a specific problem (Nijstad et al., 2010, p. 56). 

In accordance with the dual pathway to creativity model, recent research 
has found evidence for partly different neural correlates associated with artistic 
versus scientific creativity (Shi et al., 2017) and musical creativity versus literary 
and artistic creativity (Chen et al., 2020). However, Hommel and Wiers (2017) 
argued that attempts to make a clear-cut division between the two types of pro-
cessing have failed, because there is no evidence for completely automatic actions 
that are not intentional, or goal directed. Moreover, Hommel and Wiers argued 
that the common way of solving this problem by allowing some degree of conti-
nuity between the two types of processing is not satisfactory, because there are 
no generally agreed criteria to locate specific behaviors on this continuum. As a 
result, Hommel and Wiers argued that dual-processing theories should be aban-
doned and replaced with a unitary approach to action control. In their view, the 
dichotomy between automaticity and intentionality could still be useful for its 
descriptive value, but underlying processes of both types of processing can be 
best described with a single model. (Hommel & Wiers, 2017.) 

According to Hommel and Wiers (2017), all actions are goal-directed and 
represented by their expected effects. Action goals are determined based on both 
endogenous (e.g., preferred responses) and exogenous criteria (e.g., instructions 
provided by other people). Depending on whether these criteria are specific (e.g., 
pay attention to the object close to your left hand) or not (e.g., do something), the 
number of actions that fulfill these criteria varies. Uncertainty in action selection 
(where several actions fulfill the selection criteria) can be reduced either by spec-
ifying further selection criteria or by a process of random selection. Action con-
trol is also influenced by a meta control mechanism which is responsible for spec-
ifying which features of action (e.g., speed or accuracy) are emphasized in action 
control. (Hommel & Wiers, 2017.) 

2.3 Underlying mechanisms in expertise 

2.3.1 Expertise as advanced knowledge and skills 

According to Gobet (2016), an expert refers to “somebody who obtains results 
that are vastly superior to those obtained by the majority of the population” (p. 
5). Despite the simplicity of this definition, it is important to recognize that ex-
pertise can be difficult to measure. Reliable criteria to measure expertise exist 
only in a few domains (the Elo rating for chess players is a rare exception) (Gobet, 
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2016, pp. 3-4). In terms of music, problems also arise from that in countries such 
as the United States there are no uniform criteria to measure musical expertise 
(e.g., in the form of national exams) (Halpern & Bartlett, 2010, p. 247). As such, it 
is not surprising that few studies have used competency tests. Instead, duration 
of musical experience, years of formal training, and performing experience have 
been frequently used to measure expertise. (Halpern & Bartlett, 2010, p. 247.) This 
convention is problematic, however, since the expertise of self-taught musicians 
may be underestimated when formal training is used as a measure of expertise. 
In a similar way, prodigies and young musicians in general are underrated if 
years of musical experience is used as a single measure of expertise. 

Parallel to the distinction between little-c and big-C creativity, it is helpful 
to distinguish between different levels of expertise. As an example, Starkes et al. 
(2004) distinguished between routine expertise and transcendent expertise. Ac-
cording to these authors, there are individuals in any field of expertise whose 
performances transcend everything what has been done before. As a result, these 
experts should be distinguished from other experts in the field. (Starkes et al., 
2004, p. 269.) 

To say that the performance of these individuals is at the same level as other national 
or international athletes in their respective sports is to deny the genius that character-
izes their performances. Unfortunately, most of the skill and expertise research to date 
has been performed on those individuals who certainly exhibit levels of routine exper-
tise, but only in rare cases broach transcendent levels of expertise. The scarcity of such 
individuals and the difficulty of accessing them as experimental participants means 
that we will probably never truly understand what makes these experts so remarkable. 
(Starkes et al., 2004, p. 269.) 

The notions of automatic and controlled processing (Schneider & Shiffrin, 1977) 
and the fundamental role of automation in expert performance (Fitts & Posner, 
1967) have been highly influential theoretical foundations to expertise research. 
Automatic processing refers to uncontrolled activation of long-term memory as 
a response to input. Automatic processing does not require attention or stress the 
processing capacity. Controlled processing, on the other hand, refers to attention-
demanding activation of long-term memory, which is controlled by a person and 
limited by constraints of the processing capacity. (Schneider & Shiffrin, 1977.) 

The relative importance of controlled and automatic processing in terms of 
both creativity and expertise is still under debate. As an extreme view, Dreyfus 
and Dreyfus (1986) proposed that skill acquisition develops through five stages, 
from the use of context-free rules into intuitive coping with situational factors. 
At the first stages, performance is rigid and guided by rules which are followed 
in any context. When skills gradually get better and more experience is gathered 
from different situations, slow and deliberate decision-making is replaced by 
rapid and intuitive actions. Instead of rules, skilled performers use their experi-
ence to recognize similarities between current situations and those experienced 
in the past, and they use this knowledge to perform actions which they know to 
work. If all goes as usual, experts do what has worked before instead of making 
decisions or solving problems. (Dreyfus & Dreyfus, 1986.) Dreyfus and Dreyfus’s 
claims are appealing in that they seem to explain the effortlessness of actions 
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among experts and how experts can function efficiently even in case of severe 
time limits. 

However, several authors have argued that Dreyfus and Dreyfus pushed 
too far in their emphasis on intuitive, non-deliberate, and non-reflective aspects 
of expertise. For instance, in a study based on interviews with a world-renowned 
string quartet, Høffding (2014) claimed that the Dreyfusian notion of skilled cop-
ing is too general and includes several types of intentionality and awareness that 
span from highly reflective modes of intentionality (e.g., thinking about page-
turning) to rare trance-like states with little self-awareness even of one’s own ac-
tions (e.g., being highly absorbed to just playing music and being able to remem-
ber close to nothing about the actual experience afterwards). Recent neuroscien-
tific research on improvisation has also proposed that both the default mode net-
work and the executive control network play an essential role in musical creativ-
ity and musical expertise (see Chapter 2.2.3: The role of executive functions in 
musical creativity and Chapter 3.3.2: Neuroscience of musical improvisation). 
Similarly, Christensen et al. (2019) proposed that both automatic processing and 
cognitive control are involved in most skilled actions. In their view, while auto-
mation undoubtedly plays a significant role in skilled actions and improves their 
efficiency, most skilled actions are not fully automated, and they also require 
cognitive flexibility (the ability to adjust to changing situations) which depends 
on cognitive control. 

2.3.2 Perceptual and motor chunking 

In a seminal work on the psychology of expertise and cognitive psychology in 
general, Chase and Simon (1973) showed that expert chess players’ superior re-
call of chess positions can be explained by a higher number and larger size of 
chunks among experts compared to less skilled players28. Chunking refers to a 
process of constructing perceptual and motor units “built from several smaller 
elements” (Gobet et al., 2016, p. 1) that “can be retrieved by a single act” (Gobet 
& Simon, 1998, p. 226). According to another definition, chunking refers to “a 
process through which one reorganizes or groups presented information to com-
press information” (Gilchrist, 2015, p. 1). For example, when one aims to memo-
rize a non-random series of numbers (e.g., 1234234534564567), one does not need 
to memorize each number separately. Instead, it would be easier to memorize 
these numbers as separate units (chunks) (e.g., 1234, 2345, 3456, and 4567). Expe-
riences that cannot be easily chunked into meaningful units of information may 
be difficult to memorize (Snyder, 2000, p. 54). 

Chunking is widely used to explain expert-level performance on diverse 
areas such as chess, motor learning, music perception, and language acquisition. 
For example, playing chess at a master’s level requires a large knowledge base of 

 
28  Previously, Miller (1956) had shown that the organization of information into chunks 

allows to circumvent the limits of short-term memory. Both Miller’s and Chase and 
Simon’s work have had a considerable influence on subsequent research. Based on a 
search in the Scopus database, Miller (1956) has been cited in about 12,000 papers by 
now, whereas Chase & Simon (1973) has more than 2,000 citations up to now. 
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familiar patterns which suggest what moves are the best ones in a particular sit-
uation (Simon & Chase, 1973, p. 403). According to Simon and Chase (1973), chess 
masters need to learn roughly 50,000 patterns of chess pieces in order to perform 
at this level. In addition, Simon and Gilmartin (1973) estimated that achieving the 
level of a chess master or grandmaster requires learning from about 10,000 to less 
than 100,000 patterns of chess pieces. More recent studies on skill development 
suggest large variation in the time needed to obtain expert-level skills in chess 
(e.g., Gobet & Campitelli, 2007), which undermines the credibility of the above-
mentioned estimates. If a considerable amount of time is necessarily required to 
learn thousands of chess positions to recognize and select the best moves, how is 
it possible that some exceptionally talented players can reach the highest level of 
skills in a relatively short time? 

More recent studies have also shown that chess masters may use much 
larger chunks compared to the original findings of Chase and Simon (1973), ac-
cording to which the average size of the first chunk was 3.8 pieces in middle game 
positions among chess masters (with a physical chess board)29. Gobet and Simon 
(1998) found that “the mean of the median largest chunks” was 16.8 pieces among 
chess masters in a recall task (in this study, a computer display was used instead 
of a physical chess board). In another study, Gobet and Clarkson (2004) found 
that the median maximum size of chunks among chess masters was 14.8 pieces 
in a recall task when computer display was used.30 Moreover, chess masters are 
able to perform better compared to less experienced players even at very short 
presentation times. According to Gobet and Simon (2000), chess masters were 
able to recall about the same amount of correct game positions in one second as 
what experts did in 10 seconds and Class A players in 30 seconds. 

Chunking also plays an important role in sequence production. For exam-
ple, Park and Shea (2005) found that sequences with ten elements were organized 
to a smaller number of subsequences and executed faster compared to 16-element 
sequences. According to the classic motor chunking framework, the acquisition 
of motor chunks (i.e., action sequences that can be recalled as a single unit) leads 
to a smaller number of time-consuming transitions between distinct actions, 
which contributes to faster execution of action sequences and allows to release 
cognitive resources to higher-level processes (Thompson et al., 2019). Similarly, 
using terminology from the motor program literature (see Chapter 3.1.4: Schema 
theory of motor skills), the acquisition of longer motor programs leads to a situ-
ation, where “the response-programming stage is involved less often and atten-
tional space […] is freed up to perform other higher-order activities, such as the 
monitoring of movement form or style in gymnastics or dance, the development 
of strategic plans in tennis, or paying attention to safety hazards in operating 
earth-moving equipment” (Schmidt & Wrisberg, 2004, p. 133). Figure 1 illustrates 

29  As noted by Gobet and Simon (1998, p. 226), only a single chess master participated in 
Chase and Simon’s original study (the overall number of subjects was three) and this 
chess master was not particularly active in chess at the time of the study. 

30  Using a physical chess board, the maximum size of chunks is influenced by the num-
ber of chess pieces it is possible to grasp in a single hand (Gobet & Simon, 1998; Gobet 
& Clarkson, 2004). 
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how chunking leads to a smaller amount of distinct action units. Whereas all ac-
tions are distinct and preceded by a time-consuming planning stage at the early 
stages of skill development, the number of transitions between actions decreases 
and the size of chunks increases with skill level. 

 

FIGURE 1  Accumulation of chunks in relation to skill level (reprinted from Thompson 
et al., 2019; licensed under a Creative Commons Attribution 4.0 International 
License, https://creativecommons.org/licenses/by/4.0/) 

In addition to motor chunks, perceptual chunks also play an important role in 
different skills. For example, perception of familiar groupings in lead sheets con-
tributes to faster learning of new musical works. Figure 2 shows two simple ex-
amples of chunks in music. With elementary knowledge of music theory, one can 
immediately recognize that the notes in the first example form a C major scale 
and that the notes in the second example form a C major ninth chord. In addition, 
these familiar patterns of notes can be recalled from memory as a single chunk. 
Such knowledge is important, for instance, when music is reproduced from no-
tation where an extensive knowledge of common regularities in music is an im-
portant advantage for a sight-reader. Similarly, readers benefit from perceiving 
texts as groups of familiar words and sentences. Because of this knowledge, texts 
do not have to be read sign by sign. 
 

FIGURE 2  Simple perceptual chunks in music 

Interestingly, Thompson et al. (2019) recently found that the classic motor chunk-
ing framework fails to explain increased diversity of actions among experts and 
lack of time savings acquired through chunking. These authors analyzed a large 
number of game files in StarCraft 2, which is a game that allows to automatically 
collect all actions played during the game, to investigate whether the number of 
chunks and the proportion of chunked actions increase with expertise, and 
whether chunked sequences are executed faster than non-chunked sequences. 

https://creativecommons.org/licenses/by/4.0/
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According to their results, chunks were detected in most game files and the num-
ber of chunks increased with skill level (as predicted by classic motor chunking 
framework). However, the proportion of chunked actions remained stable across 
skill levels. Action sequences were also more varied among expert players. The 
authors did not find evidence for faster execution of chunked sequences com-
pared to non-chunks. Instead, better players played faster regardless of their use 
of chunking mechanism. 

Note that the number of distinct action types was only seven in this study 
(see Thompson et al., 2019, pp. 6-7). As a result, it is possible that these results 
cannot be generalized to more complex tasks such as musical improvisation 
where there are many more options available in any situation. Nevertheless, as 
noted by Thompson and his colleagues, much of the previous motor chunking 
research has been done in laboratory conditions and most of the studies in natu-
ralistic context have focused on typing (Thompson et al., 2019, p. 2). Thus, it is 
important to investigate to what extent chunking mechanisms can explain behav-
ior in different areas of expertise (Thompson et al., 2019, p. 2). 

In naturalistic settings, it is often difficult to identify the beginning and the 
end of a chunk (Thompson et al., 2017, p. 469). According to Chase and Simon 
(1973), chunk boundaries can be identified by a perception task (where chess 
players were asked to reconstruct chess positions from a chess board to an empty 
chess board which they could not see simultaneously with the other board) or a 
memory task (where chess players were asked to view a chess position for five 
seconds and then recall it by placing pieces on a board). In the perception task, 
chunk boundaries were detected by attentional shifts (pieces reconstructed on a 
chess board after one glance correspond to one chunk). In the memory task, 
pieces reconstructed on a board in less than two seconds “between successive 
pieces” correspond to one chunk (Chase & Simon, 1973, p. 64). Yet another way 
to identify chunk boundaries is simply to detect recurring sequences of actions. 
In this case, the beginning and the end of chunks are identified by the beginning 
and the end of recurring sequences. Problems in detecting chunk boundaries 
based on this method are discussed in Chapter 5.3.1: Methodological problems 
related to segmentation. 

Chunking is related to statistical learning, the latter of which has received 
considerable attention since the seminal work of Saffran et al. (1996)31. According 
to this influential work, statistical learning (automatic extraction of regularities 
from the environment) plays an important role in language acquisition (Saffran 
et al., 1996; Saffran, 2003). Statistical learning also plays a role in musical creativ-
ity (e.g., Norgaard, 2014; Daikoku, 2018; Daikoku et al., 2021). The brain codes 
both macroscale probabilities (i.e., global probabilities) and microscale probabil-
ities (i.e., local probabilities) of the occurrence of various kinds of stimuli (Hasson, 
2017; Daikoku, 2018). Macroscale probability refers to “summary statistics,” in 

 
31  However, the relationship between these two processes is not clear. It has been pro-

posed that statistical learning and chunking may be either two independent processes 
or they are “two successive steps in the learning process,” in which chunks are “in-
ferred from prior statistical computations.” Another possibility is that statistical learn-
ing is merely a by-product of chunk formation. (Perruchet & Pacton, 2006, p. 235.) 
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which the level of uncertainty is computed “into a single value” (Hasson, 2017, 
p. 2). Microscale probability, on the other hand, refers to transitional probability 
between single units or entities (e.g., the probability of B given that A has oc-
curred) (Hasson, 2017). The information content of familiar patterns (microscale 
statistics) is positively correlated with the overall conditional entropy (mac-
roscale statistics) in 1st to 5th order Markov models. This suggests that when im-
provisers are more creative at pattern level, the overall conditional entropy (sum-
mary statistics) increases also. Another interaction between these two levels of 
probabilities is that dependence on previous events and microscale statistics are 
negatively correlated in 3rd to 5th order Markov models. (Daikoku, 2018.) Thus, 
when improvisers “strongly depend on previous sequential information to im-
provise music, they tend to use familiar phrases because familiar phrases with 
higher [transitional probabilities] […] tend to have strong dependence on previ-
ous sequential information” (Daikoku, 2018, p. 9). 

2.3.3 Anticipation and planning in skilled performance 

Experts differ from non-experts in their adaptation to task-specific constraints, 
advanced memory, and their superior anticipation of future events (Ericsson & 
Lehmann, 1996). The last-mentioned skill, anticipation of future events, is critical 
for expert performance in various domains. For example, expert squash players 
outperform novice players in their ability to predict the ball direction and force, 
which allows them to have more time to respond and to act without a hurry. In 
sports, experts’ superior anticipation can be explained by their advanced skills to 
extract essential kinematic information from an opponent’s movements and their 
superior knowledge of situational probabilities. (Abernethy et al., 2001.) Situa-
tional probabilities (e.g., knowledge of an opponent’s typical actions) are im-
portant in a variety of contexts, but they are likely to be especially important in 
situations where a player is required to initiate a response in absence of time to 
perceive an opponent’s movement as a whole, as is the case with penalty kicks 
for goalkeepers in football (Dicks et al., 2011) (for reviews on anticipation in 
sports, see Abernethy et al., 2018; Cañal-Bruland & Mann, 2015). 

Anticipation of opponents’ movements, based on perception of preparatory 
movements and contextual information on typical behavior of opponents, allows 
athletes to produce appropriate responses to actions even under severe temporal 
constraints (Abernethy et al., 2018)32. Similarly, advanced anticipation of future 
events can facilitate sight-reading by increasing the eye-hand span (i.e., the dis-
tance between the fixated note and the currently played note). The eye-hand span 

 
32  According to Clarke (1988), anticipation and planning of future events are critical for 

improvising musicians, because they “must construct a representation for at least a 
short sequence of events in advance, and cannot operate at speed or with any fluency 
on an event-to-event level” (p. 7). Similarly, Brown et al. (2015, p. 61) argued that the 
“manner of planning [in segments rather than one note at a time] may allow experts’ 
working memory to keep pace with the high speeds of real time music performance.” 
Therefore, whenever the possibility to prepare future events in advance is blocked 
(e.g., as when one is unaware of upcoming chord changes), performance may become 
less fluent. 
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in sight-reading tasks can be measured in several ways: temporal distance (the 
time index), the number of notes (the note index), or the number of beats (the 
beat index) between the fixated note on a musical score and the currently played 
note (Furneaux & Land, 1999; Lim et al., 2019). Professional musicians apply 
larger eye-hand spans in terms of the note index compared to amateur musicians, 
but such skill-related differences do not seem to exist in terms of the time index 
(Furneaux & Land, 1999). Regarding the complexity of stimuli, Lim et al. (2019) 
found that the eye-hand span (both in beats and seconds) was smaller with com-
plex stimuli. In contrast, Huovinen et al. (2018) found that sight-reading of more 
complex local musical events was associated with earlier fixation and longer sac-
cades compared to less complex musical stimuli. Previous studies have provided 
mixed results regarding the relationship between the eye-hand span and perfor-
mance tempo. According to Furneaux and Land (1999), the time index was re-
duced at a fast tempo and increased at a slow tempo. However, Lim et al. (2019) 
did not find statistically significant differences in the eye-hand span (neither in 
beats nor seconds) due to performance tempo among professional pianists. 

Anticipation of future events is closely related to the notion of action plan-
ning and related concepts such as motor planning, movement planning, motor 
programming, and decision-making. To explain the notion of action planning, it 
is helpful to discuss the notions of intentional action and action goal for a start. 
Intentional action refers to a goal-directed movement, whereas action goal refers 
to “the desired product of an action, to the final state that should be attained 
through the action” (Hommel et al., 2016, p. 47). Voluntary control of actions is 
established by the development of sensory-motor associations, in which expected 
perceptual consequences are linked with movements involved in achieving the 
desired perceptual consequence (Hommel, 2009; Maes et al., 2014)33. Action goals 
can be rather vague, and they can be attained through various movements. For 
instance, consider a simple reaching movement in which the task is to reach an 
object in a specific location. This action goal can be attained using either the left 
or the right hand, or either the left or the right foot. In addition, the way the action 
goal is attained depends on body posture prior to the movement onset. Therefore, 
even if sensory-motor associations have been developed for a given action, not 
all aspects of actions are necessarily held in long-term memory.34 Detailed and 
variable properties of actions (e.g., the precise speed of an action) are not usually 
stored in long-term memory and they are also difficult to learn (Hommel, 2009, 
p. 516). 

According to Pfordresher et al. (2007), (action) planning is defined as “the 
preparation of to-be-produced events prior to their production” (p. 64). Note that 
this definition does not distinguish between selection and preparation of actions. 

 
33  Similarly, unplanned actions can be defined as unintentional, arbitrary movements 

without knowledge of their perceptual consequences. 
34  On the other hand, action plans do not necessarily lead to intended behavioral conse-

quences. One can plan to go to the beach the next day, but if it rains all day one might 
decide to do something else. Similarly, because of some mistake or action slip, one 
may fail to achieve a desired action goal in which case one’s behavior does not match 
with the intended action plan. 
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For the present purposes, action planning is considered to include both the selec-
tion of an action goal (i.e., decision-making) and any process used to specify how 
to achieve the desired action goal. As a result, action planning is defined here as 
the selection and preparation of actions prior to movement initiation at any time-
scale. In other words, action planning refers to the selection of action goals and 
any process related to preparing actions prior to movement initiation (regardless 
of whether planning occurs within months or milliseconds in advance). 

As noted in the previous paragraph, action planning can occur at different 
timescales. For instance, one can plan a holiday trip months or years in advance. 
However, motor planning usually refers to short timescales only35. According to 
Wong et al. (2015), motor planning commonly refers to “any process related to 
the preparation of a movement that occurs during the reaction time prior to 
movement onset” (p. 385). In another study, Orban de Xivry et al. (2017) defined 
motor planning broadly as “the process of selecting a goal and the appropriate 
motor commands to achieve this goal” (p. 117). As a replacement for this broad 
definition, Wong et al. (2015) proposed that the definition of motor planning 
should include only such processes that follow the identification of a motor goal 
and are related to specifying how the desired motor goal should be attained36. 

Action planning is an important precondition for fluent execution of rapid 
action sequences because it reduces the overall duration of performing an action 
(Hommel et al., 2016, p. 161). On the other hand, action planning has cognitive 
costs particularly on working memory capacity. According to Hommel and his 
colleagues, “the more extensive the plan, the higher these costs are which, given 
the severe limitations of working memory, can have serious consequences for 
other cognitive processes that need to be carried out while maintaining the plan” 
(Hommel et al., 2016, p. 162). However, if fast action sequences were produced 
one element at a time, “the production of each element and the perception of its 
results would cost time (of about the order of magnitude of an average reaction 
time) so that the next action element can be performed no earlier than about one 
reaction time after the previous one” (Hommel et al., 2016, p. 149). 

There are two extreme views of how action sequences are retrieved from 
memory in skilled action. At one extreme, each element is thought to trigger the 
next one in an associative chaining process37. The sheer speed of consecutive 

 
35  Most decision-making occurs subconsciously within very short timescales. For in-

stance, attention is directed to a new visual target two or three times every second 
when one is awake and requires making a choice between visual targets. (Carpenter, 
1999.) 

36  Wong et al. (2015, p. 386) defined motor planning as “the set of processes that describe 
how a motor goal will be achieved.” In their view, motor planning “involves specifica-
tion of the movement trajectory for the desired action, a description of how the end-
effector will produce such an action, and finally a description of the full set of the joint 
trajectories or muscle activations required to execute the movement” (Wong et al., 
2015, p. 395). 

37  In his classic paper, Lashley (1951) argued against the reflex chain theory of behavior 
(according to which each element in a sequence is triggered by the previous element). 
In his view, the reflex chain theory was a consequence of the generally acknowledged 
(but incorrect) conception of the nervous system, according to which the direction of 
nerve conduction is always from sense organs to muscles and where all actions are 
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movements at a fast tempo (up to 20-30 notes per second in skilled pianists), how-
ever, makes it impossible to plan upcoming movements at the level of single 
events. At the other extreme, all action sequences (regardless of their length and 
complexity) are expected to be memorized and retrieved as a whole. (Palmer & 
van de Sande, 1995, p. 947.) In between these two extremes, action sequences are 
assumed to be retrieved incrementally. Incremental planning refers to temporally 
distributed retrieval of sequences where only a portion of sequence elements are 
accessible at any given time (Palmer & Pfordresher, 2003). In skilled performance, 
the retrieval process occurs within shifting temporal windows, where the active 
region of mental representation is constantly moving and mental representations 
of long and complex music are “only partially activated” at any time (Clarke, 
1988, p. 4)38. Such a planning strategy uses cognitive resources economically since 
“it minimizes the amount of information that must be maintained in working 
memory until it can be executed” (Beaty et al., 2022, pp. 912-913). 

According to the range model of planning (Palmer & Pfordresher, 2003; 
Pfordresher et al., 2007), music performances are planned incrementally where 
only a portion of sequence elements are accessible at any point of time. The range 
of planning (which refers to the span of simultaneously accessible elements at 
any given time as indicated by the distance between the present position in a 
musical score and the location of unintended events in that score) is constrained 
by production rate and age-related differences in working memory. When pro-
duction rate decreases, errors become less frequent, and they indicate a larger 
range of planning. A larger range of planning is also related to increasing age. 

The range of planning may also increase with skill level (Drake & Palmer, 
2000). For instance, Palmer and Drake (1997) found that intermediate child pia-
nists showed larger range of planning, increased anticipatory behavior, and 
faster identification and correction of errors compared to beginning child pianists, 
which suggests that planning and monitoring abilities improve with skill level. 
Interestingly, increased range of planning (as measured by the number of events) 
did not correspond with a larger time span of planning (in milliseconds) since 
the time span of planning was similar between intermediate and beginning child 
pianists. 

There is also some evidence that experts may play more easily accessible 
and less difficult sequences first to allow more time to plan more difficult se-
quences. Beaty et al. (2022) recently investigated whether expert jazz musicians 
play less difficult melodic sequences at the beginning of phrases. Difficulty was 
measured in terms of interval variety, pitch variety, the number of changes in 
melodic direction, the length of interval patterns without changing the melodic 
direction, and the relative frequency of interval patterns. Difficulty was also 

 
consequences of sensory stimuli (Lashley, 1951, p. 114). More recent research has pro-
vided further evidence on Lashley’s arguments (see Rosenbaum et al., 2007). 

38  According to Clarke (1988), only low-level connections may be active in the middle of 
a phrase since higher-level structural information may be of little use for the per-
former in such situations. However, higher-level structural information (e.g., 
knowledge about the overall structure of a musical piece or the relationship between 
subsequent phrases) may be important in phrase boundaries. (Clarke, 1988, p. 4.) 
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measured in terms of interval size and maximum interval size, but these 
measures were excluded due to outliers. In accordance with their hypotheses, 
sequences at early phrase positions were less difficult, which indicates that “the 
substantial physical, temporal, and psychological constraints of spontaneous cre-
ativity can be mitigated by first producing less complex and easily accessible me-
lodic sequences” (Beaty et al., 2022, p. 918). 

According to Drake and Palmer (2000), there seems to be a strong relation-
ship between advanced planning skills and “progressive mastering of temporal 
constraints,” which suggests that planning and mastering of temporal constraints 
“are reflections of the same underlying cognitive processes” (p. 27). As noted by 
these authors, musical performance is characterized by strong temporal con-
straints because of which additional processing time cannot be acquired simply 
by stopping the performance. In addition, skilled performance requires that the 
execution of current events must occur at the same time as upcoming events are 
planned. In contrast to skilled performers, a novice performer is likely to obtain 
additional processing time by making a stop from performing and continue to 
perform only after planning of upcoming events has been completed. (Drake & 
Palmer, 2000, pp. 27-29.) 

2.3.4 Transfer of learning 

Performance of complex and long musical works makes huge demands on 
memory. Professional musicians may need to memorize thousands of pitch 
events in a specific order (Finney & Palmer, 2003) and to produce individual 
events as quickly as 20-30 notes per second (Palmer & van de Sande, 1995). It is 
also necessary that musicians are capable of transferring acquired knowledge to 
new situations. This is an essential part of musicianship since without flexibility 
of movements, additional practice would be required to perform any alternative 
interpretation of a familiar musical work. (C. Palmer, 2012, p. 50.) 

Transfer of learning refers to “our use of past learning when learning some-
thing new and the application of that learning to both similar and new situations” 
(Haskell, 2001, p. xiii). According to another and often-cited definition, “transfer 
of learning occurs when learning in one context or with one set of materials im-
pacts on performance in another context or with other related materials” (Perkins 
& Salomon, 1992, p. 3). In the early 20th century conception of transfer of learning, 
the dominant view among psychologists and educators was the so-called doc-
trine of formal discipline. According to this doctrine, studying subjects like Latin 
and geometry is useful because of their influence on general faculties of the mind 
(e.g., attention, reasoning, and observation), which can be improved much the 
same way as one can improve muscles. It was thought that the content of exer-
cises was not important. Instead, psychologists and educators stressed the level 
of effort, which also explains why Latin and geometry were thought to be so im-
portant. (Singley & Anderson, 1989, pp. 2-3.) 

As a response to the doctrine of general faculties, Thorndike proposed a 
theory of identical elements, according to which: 
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One mental function or activity improves others in so far as and because they are in 
part identical with it, because it contains elements common to them. Addition im-
proves multiplication because multiplication is largely addition; knowledge of Latin 
gives increased ability to learn French because many of the facts learned in the one 
case are needed in the other. (Thorndike, 1906/1916, p. 243.) 

In other words, Thorndike proposed that skills acquired by training an activity 
can be transferred to other activities only to the extent that they share common 
elements. In accordance with Thorndike, recent evidence suggests that expertise 
in one skill may have little benefits in unrelated skills (e.g., Sala & Gobet, 2017). 
On the other hand, Thorndike’s theory of identical elements ignores that transfer 
can occur in the absence of a shared surface structure when the two skills or tasks 
have similarities on a more abstract level. For instance, we could measure the 
similarity of two melodies based on the number of shared notes. Such an analysis 
would give no attention to underlying similarities on a more abstract level and 
could not notice such obvious similarities as that the two melodies may share an 
identical interval structure even though they do not have any shared notes. (Sin-
gley & Anderson, 1989, p. 9.) Thorndike’s emphasis on common stimulus-re-
sponse connections also precludes the significance of any kind of adaptation and 
transformation of knowledge, which is often required in transfer situations (Sin-
gley & Anderson, 1989, p. 5). 

Transfer of learning is among primary aims of music education and educa-
tion in general (Forrester, 2018). There has been considerable interest in transfer 
of learning in music research since the 1990’s. Many of these studies have dis-
cussed questions such as whether listening to music and playing a musical in-
strument have cognitive and academic benefits. However, much less research has 
been conducted on issues regarding near transfer. It is also noteworthy that the 
ability to compose and improvise music has received little scientific interest com-
pared to the study of music perception and memory in music (Thompson, 2015, 
p. 290), even though psychological research on composition and improvisation 
has increased in recent years. Although more research on composition and im-
provisation is needed, it should be noted that research on music perception pro-
vides useful information not only concerning perceptual processes in both musi-
cians and non-musicians, but it also increases knowledge about processes asso-
ciated with composing and improvising. Auditory processing is no less im-
portant to composers and improvising musicians than it is to non-musicians. 

Only a small fraction of studies related to transfer of learning investigate 
transfer to new contexts in music performance, composition, and improvisation. 
The few studies have typically used an experimental setting in which participants 
first learn a task and then their easiness or difficulty in performing a novel task 
is measured. Whenever a novel task is performed with ease, positive transfer of 
learning is indicated. (C. Palmer, 2012, p. 42.) For example, Palmer and Meyer 
(2000) asked participants (adult and child pianists) to practice a melody and then 
asked them to perform another melody. The second melody was the same as the 
first one or differed from the first one either by its motor sequence (hand and 
finger movements), pitch sequence, or both. Transfer of learning was most suc-
cessful for adult pianists when pitch sequences remained the same regardless of 
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whether motor sequences were also retained. In contrast, novice child pianists 
only showed transfer of learning when pitch sequences and motor sequences 
were both similar to the first melody. With more experienced child pianists, 
transfer of learning was indicated when either pitch sequences or motor se-
quences were similar to the first melody. According to the authors, these findings 
suggest that action plans become increasingly abstract and independent from re-
quired movements with increasing skill level. 
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3.1 Memory for music and motor actions 

3.1.1 Memory for melodies 

Even non-musicians have little difficulty in recognizing familiar melodies based 
on interval structure (Jäncke, 2019, p. 240), which suggests that melodies are 
memorized in terms of abstract relations between pitch categories (Levitin, 1999, 
p. 215). Changes in key, tempo, timbre, loudness, or location of sound source do
not change the identity of a melody and disrupt melody recognition except when
those changes are so extreme that the melody becomes unrecognizable (e.g.,
when tempo is extremely slow or extremely fast) (Levitin, 1999, p. 214). In addi-
tion to memory for interval structure, which is the primarily used melodic en-
coding strategy among both adults and infants (Plantinga & Trainor, 2005), a sur-
prisingly good memory for absolute pitch is also widespread (Halpern, 1989;
Levitin, 1994; Frieler et al., 2013; Schellenberg & Trehub, 2003). For example,
adults with little or no musical training can identify whether instrumental theme
songs from familiar television programs were played in the original key (Schel-
lenberg & Trehub, 2003). Many of them can also sing familiar songs from memory
in the original key (or close to it) (Levitin, 1994; Frieler et al., 2013).39

In addition to interval structure and absolute pitch, melodic contour also 
plays an important role in recognition of melodies as indicated by that the recog-
nition of both well-known melodies (Idson & Massaro, 1978) and recently learned 
melodies (Massaro et al., 1980) is severely disrupted when melodic contour and 

39  Naturally, non-musicians may have difficulties in labelling pitch categories when labels 
such as “E-flat” have no meaning to them (Levitin, 1999, p. 220). Therefore, the require-
ment for being able to label pitch categories correctly may distort estimated prevalence of 
absolute pitch in general population. 

3 CREATIVE COGNITION IN  
EXPERT JAZZ IMPROVISATION 
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tone height are both violated while tone chroma (octave-independent name of a 
tone, e.g., C) is preserved. However, recognition of melodies is not influenced by 
violations in tone height when melodic contour and tone chroma are preserved 
(Idson & Massaro, 1978; Massaro et al., 1980). Compared to interval structure, 
melodic contour may play a more important role in discrimination tasks (where 
subjects are asked to respond whether two melodies are same or different) after 
short delays (1-5 seconds) but not longer delays (Dowling & Bartlett, 1981; 
DeWitt & Crowder, 1986). 

Recognition memory for melodies is surprisingly good and resistant to in-
tervening melodies and temporal decay. Discrimination of original melodies 
from similar melodies improves over time due to continued encoding and feature 
binding process when listeners continue to listen to the same music (Dowling et 
al., 2002; Tillmann et al., 2013; Dowling et al., 2016). However, Herff et al. (2018) 
found that the recognition accuracy of novel melodies did not decrease with in-
creasing number of intervening melodies (which differed from the original mel-
ody) or because of increasing time in-between target melodies. Similarly, Schel-
lenberg and Habashi (2015) showed that the ability to recognize previously un-
familiar melodies did not decrease during a one-week intervening period be-
tween initial exposure and test situation. 

Familiar songs can be distinguished from unfamiliar songs very rapidly in 
about 100-300 milliseconds from the onset of the sample (Jagiello et al., 2019). 
Nevertheless, recognition of familiar songs becomes difficult if the inter-onset in-
terval between subsequent tones is either too small or too large (Warren et al., 
1991; Andrews et al., 1998). Dowling et al. (2008) made similar findings in a study, 
where participants listened to pairs of familiar and unfamiliar melodies and re-
sponded whether the two melodies were the same or not. In each case, the second 
melody was either the same as the first melody (exact repetition) or slightly al-
tered (two notes changed). Melodic contour was always preserved. Recognition 
accuracy with familiar melodies was best with moderate tempos. However, sim-
ilar effect was not observed with unfamiliar melodies which indicates that “it is 
not the effect of tempo per se that leads to worse performance for fast and slow 
stimuli; rather, it is whether the tempo of a well-known song deviates from its 
usual, familiar tempo” (Dowling et al., 2008, p. 500). Dowling et al. (2008) also 
found that musicians outperformed non-musicians in their recognition scores 
with both familiar and unfamiliar melodies regardless of tempo. However, mu-
sicians’ superiority in recognition tasks is not always apparent. For example, mu-
sicians can recognize familiar songs faster than non-musicians (with fewer notes), 
but the difference is small (Dalla Bella et al., 2003). 

An important feature of memory is that its accuracy depends on whether 
events of interest can be categorized. Categorical perception refers to a “mode of 
perception wherein things are perceived as belonging to categories with bound-
aries” (Snyder, 2000, p. 256). Categorical perception increases efficiency in mental 
processing by ruling out unimportant differences between perceived objects 
(Snyder, 2000, p. 256). In contrast to primary parameters of sound (e.g., pitch, 
harmony, rhythm), secondary parameters of sound (e.g., loudness, tempo, timbre) 
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are difficult to divide into “clearly recognizable categories” (Snyder, 2000, p. 196). 
As a result, most people find it difficult to identify the similarity between two 
levels of loudness, for example, separated in time (Snyder, 2000, pp. 196-198). 

3.1.2 Cognitive schemata in music 

Schemata (i.e., schemas) represent knowledge of the world based on regularities 
that one has perceived in his/her environment in the past (Snyder, 2000, p. 95). 
They represent the world as it usually is (Snyder, 2000, p. 99) and serve as iden-
tification systems that activate appropriate knowledge for each situation (Ru-
melhart, 1980). Schemata have a significant role in memory as they constrain the 
amount of information to be memorized and avoid the need to remember a vast 
number of details for every object of perception (Snyder, 2000, p. 95). As another 
important function, schemata control one’s expectations of the world and thus 
allow to direct attentional resources to unusual and atypical information (Man-
dler, 1984, p. 105). 

There are various concepts related to the notion of schema. For instance, 
scripts are “appropriate sequences of events in a particular context,” which are 
“made up of slots and requirements about what can fill those slots” (Schank & 
Abelson, 1977, p. 41). Similarly, templates consist of a core (which refers to stable 
properties of the template and conditions for its use) and slots (information 
which may vary from one situation to another) (Gobet, 2016, p. 54; see also Gobet 
& Simon, 1996). Frames represent stereotyped situations, and, like scripts and 
templates, they consist of fixed parts and variable slots (Minsky, 1988, p. 156). 
Finally, a musical gist refers to “a memory representation for schematically con-
sistent tones—a general abstraction that lacks full detail of the original stimulus” 
(Agres, 2018, p. 174). 

Schema research in jazz scholarship started in the 1970’s when researchers 
started to search for recurring formulas and formulaic systems in jazz solos. Yet, 
jazz researchers have shown little interest in schema analysis and related meth-
ods like Schenkerian analysis in recent years. Nevertheless, some interesting 
studies have appeared. For example, Love (2012) analyzed recurring melodic 
schemata and phrase structures in Charlie Parker’s blues improvisations (39 so-
los with a total of 156 choruses from 1944 to 1953) and found four recurring me-
lodic schemata and five recurring phrasing schemata (recurring templates for 
phrase structure). Melodic schemata were defined as “recurring stepwise paths, 
spanning around one to eight measures, which a melody seems to follow” (Love, 
2012, para. 4.1). 

Love (2012, para. 4.16) did not claim that those melodic schemata revealed 
in his study necessarily represented Parker’s own thinking. To deal with this 
problem (the psychological existence of proposed schemata), Gjerdingen (1988) 
offered a set of guidelines for schema validation in music research. According to 
these guidelines, schemata can be validated either by psychological testing, find-
ing evidence for shared features in a number of musical scores, or analyzing var-
iations of a musical phrase (Gjerdingen, 1988, p. 34). For example, Gjerdingen 
argued that “the existence of slight variations in repetitions or restatements of a 
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musical phrase can lead to insights concerning what is central or peripheral to its 
underlying schema” (Gjerdingen, 1988, p. 34). However, schema validation can 
be highly difficult because of the limits of variation problem: it is difficult to say 
much a piece of music can change and still be an instantiation of the same schema 
(Gjerdingen, 1988, pp. 68-70). Another problem is that hierarchical structures 
may have limited psychological significance to listeners. As a result, listeners 
may have difficulties in perceiving similarity between original music and reduc-
tions of that music. According to Serafine et al. (1989), listeners’ ability to match 
foreground and middleground reductions with the original music was only 
slightly above the chance level (64% for foreground reductions and 59% for mid-
dleground reductions). In another study, Dibben (1994) found that listeners were 
able to successfully match hierarchical structures with the original piece of music 
with tonal music but not with atonal music. In addition, Cook (1987) found that 
tonal closure (return to the original key) had little effect on listeners’ aesthetic 
ratings except with very short musical works, which indicates that large-scale 
hierarchical structures in music may have little perceptual validity for listeners. 
These problems also concern formula analysis (the topic of the next chapter). 

3.1.3 Formulas and formulaic systems 

The concept of ‘formula’ dates to the theory of formulaic composition in oral po-
etry originally formulated by Milman Parry. According to this theory, oral poets 
use their knowledge of well-learned word combinations (i.e., formulas) to recre-
ate songs in performance (Parry, 1930). More recently, Wray (2002) defined for-
mulaic sequence as “a sequence, continuous or discontinuous, of words or other 
elements, which is, or appears to be, prefabricated: that is, stored and retrieved 
whole from memory at the time of use, rather than being subject to generation or 
analysis by the language grammar” (p. 9). Much of the everyday use of language 
is formulaic, as evidenced by frequently used word combinations (Siyanova-
Chanturia & Martinez, 2015).40 

The first applications of formula theory to music analysis were Leo Treit-
ler’s article Homer and Gregory: The transmission of epic poetry and plainchant (Treit-
ler, 1974), Thomas Owens’s (1974) dissertation on Charlie Parker’s music, and 
Lawrence Gushee’s (1991) analysis of four recordings of Shoe Shine Boy by Lester 
Young (originally presented as a conference paper in 1977). In his article, Treitler 
(1974) discussed transmission of plainchant before the use of musical notation 
and argued that singers used their knowledge of formulaic systems and standard 
formulas to reconstruct the music at each performance. Treitler used the notion 
of formulaic system to “refer to the system of constraints of a melody or a phrase,” 
while he used the notion of formula to refer to standard patterns (Treitler, 1974, 
p. 352). Note that the notion of ’formulaic system’ resembles the notion 
of ’schema.’ Whereas the notion of schema is often used to refer to abstract 

 
40  The relationship between the theory of formulaic composition in oral poetry and its appli-

cations in music research deserves a profound analysis. However, a detailed discussion 
about this subject matter is beyond the scope of the present study. 
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knowledge structures typically in the form of a core and variable information, 
the notion of ‘formulaic system’ refers to constraints that allow to perceive simi-
larities between different musical works, for example. 

In his extensive study of about 250 Charlie Parker solos, Owens (1974) 
found ninety-seven recurring melodic patterns (or motives, as he called them), 
which formed sixty-four melodic pattern categories. Approximately one quarter 
(17/64) of these melodic pattern categories accounted for the most recurring me-
lodic patterns. According to Owens, Charlie Parker used recurring melodic pat-
terns (which may vary in terms of size, frequency of use, and application in dif-
ferent harmonic contexts) as building blocks of his improvisations. Shorter recur-
ring melodic patterns were often used in a large variety of harmonic contexts. 
Longer recurring melodic patterns, however, often had specific harmonic impli-
cations and they were used less often. 

Owens did not mention formula theory (nor did he use the term formula), 
but his use of the term ‘motive’ corresponds to the concept ‘formula’ as presented 
in the works of early advocates of formula theory (Finkelman, 1997, p. 160). In 
addition to an analysis of repeated melodic patterns, Owens also moved towards 
schema analysis by proposing ways of how pre-learned melodic patterns can 
take different forms in improvisations. According to Owens, melodic patterns 
can be “varied by means of metric displacement, augmentation and diminution, 
addition and substraction of notes, and altered phrasing and articulation. In ad-
dition, they are juxtaposed in many different ways and are often connected by 
newly invented melodic material” (Owens, 1974, p. ix). In addition, Owens ap-
plied Schenkerian analysis to uncover larger and more abstract aspects in Charlie 
Parker’s solos. 

Gushee’s (1991) paper, originally presented as a conference paper in 1977, 
was the first explicit application of formula theory in the context of jazz studies. 
Gushee’s definition of formulaic system and formula resembles Treitler’s use of 
these terms. According to Gushee (1991, p. 239), formulas are “more or less literal 
motive or phrase repetitions,” whereas a formulaic system refers to “a more gen-
eralized structural outline embracing many specific formulas.” However, 
Gushee’s use of these terms is not consistent throughout the paper. He identified 
seven types of “formulas,” many of which were actually rather abstract musical 
ideas that may appear in various forms (as evident in their titles: degree progres-
sion which is characterized by a descending chromatic stepwise motion, Gmaj7 
arpeggio with emphatic F#, flattening the sixth, etc.) and therefore (except for the 
category of ‘blues cliches’) they should be labelled as formulaic systems.41 

In line with Owens (1974), several more recent studies have emphasized 
that repeated melodic patterns play an important role in jazz improvisation (Ber-
liner, 1994; Weisberg et al., 2004; Norgaard, 2014; Norgaard et al., 2016; Love, 
2017; Norgaard & Römer, 2022). According to Owens (1995), learning a large 

41  According to Brownell (1994), formula theory was misunderstood by many music re-
searchers except Treitler (1974). For further discussion on this matter, see Chapter 
4.1.3: Motor-generated ideas. 
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knowledge base of melodic patterns is also a necessary condition to improvise 
fluently at fast tempos42. 

Parker, like all important improvisers, developed a personal repertory of melodic for-
mulas that he used in the course of improvising. He found many ways to reshape, 
combine, and phrase these formulas, so that no two choruses were just alike. But his 
“spontaneous” performances were actually precomposed in part. This preparation 
was absolutely necessary, for no one can create fluent, coherent melodies in real time 
without having a well-rehearsed bag of melodic tricks ready. (Owens, 1995, p. 30.) 

Previous research also indicates that even if some expert-level jazz musicians use 
pre-learned melodic patterns in their improvisations to a substantial extent, there 
seems to be considerable variation in the rate of repetition of pre-learned melodic 
patterns among expert jazz musicians. For instance, Weisberg et al. (2004) found 
3,395 recurring melodic patterns with different length in six solos by Charlie Par-
ker, 797 recurring melodic patterns in four solos by Lester Young, and 308 recur-
ring melodic patterns in a single solo by Jaco Pastorius. Moreover, they found 
that the average proportion of notes captured by recurring 4-interval melodic 
patterns was 90% (in Charlie Parker’s solos), 74% (in Lester Young’s solos), and 
51% (in Jaco Pastorius’s solo). In another study, Norgaard (2014) found that 82.6% 
of notes started a recurring 4-interval melodic pattern in a corpus of forty-eight 
solos by Charlie Parker, and 99.3% of notes were part of some recurring melodic 
pattern with at least three intervals. More recently, Norgaard and Römer (2022) 
found that 88.4% of all notes in the Weimar Jazz Database (which consists of 456 
solos by seventy-eight jazz musicians) started a recurring 4-interval melodic pat-
tern. However, when they analyzed the solos of eight musicians with ten or more 
solos in the Weimar Jazz Database, the relative frequency of notes that started a 
recurring 4-interval melodic pattern ranged from 42% to 63% (Norgaard & 
Römer, 2022, p. 19)43. 

In comparison, Owens (1974) found 97 recurring patterns in about 250 solos. 
Although Owens’s work was based on a huge number of solos, the rate of re-
peated melodic patterns was much lower compared to Weisberg et al. (2004) and 
Norgaard (2014). More recently, Frieler (2019) found that the so-called X atoms 
(i.e., short pre-learned melodic patterns that did not belong to any other catego-
ries of basic melodic elements in jazz improvisation) comprised 18.5% of all me-
lodic atoms in a sample of 456 jazz solos by seventy-eight jazz musicians. As a 
subgroup of X atoms, links (X atoms with the length of one interval only) com-
prised an additional 20.6% of all melodic atoms, which means that X atoms and 
links accounted for about 40% of all melodic atoms. In addition, Frieler found 

42  This claim indicates that a very large repertoire of pre-learned melodic patterns ex-
plains the creativity and behavioral flexibility (the ability to adjust to changing situa-
tions) of expert jazz musicians. According to this view, “behavioral flexibility might be 
achieved by having a very large repertoire of responses that are themselves individu-
ally inflexible” (Christensen et al., 2019, p. 697).  

43  The relative frequency of notes that started a recurring 4-interval melodic pattern was 
62.0% (in Michael Brecker’s solos), 41.6% (in Steve Coleman’s solos), 63.4% (in John 
Coltrane’s solos), 60.3% (in Miles Davis’s solos), 51.2% (in David Liebman’s solos), 
55.8% (in Charlie Parker’s solos), 48.8% (in Sonny Rollins’s solos), and 46.4% (in 
Wayne Shorter’s solos) (Norgaard & Römer, 2022, p. 19). 
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that melodic atoms followed each other in an almost random way. According to 
him, these findings indicate a high level of variability in the sample. 

Stehr (2016) investigated the number of repeated melodic patterns in six so-
los by Charlie Parker, four solos by Lee Konitz, and three solos by Warne Marsh. 
He found forty-four melodic patterns (with five or more notes) that were played 
in all six solos of Charlie Parker. In comparison, the number of melodic patterns 
that were played in all four solos by Lee Konitz was nine, and the number of 
melodic patterns that were played in all three solos by Warne Marsh was only 
one. The number of melodic patterns that were played in two solos by Warne 
Marsh was forty-eight. The number of melodic patterns that were played in three 
solos by Lee Konitz was sixty-five and the number of melodic patterns that oc-
curred in five solos by Charlie Parker was 204. Stehr's findings indicate that pat-
tern use is not a necessary part of playing bebop or learning to play it and that 
“licks, and specifically the licks of Parker, are not an essential aspect [of] the be-
bop language” (Stehr, 2016, p. 104). Stehr also argued that even if Konitz and 
Marsh's playing was less formulaic compared to Parker, “the use of licks is in 
part what allows Parker to sound more spontaneous [compared to Konitz and 
Marsh]. [...] By deemphasizing the extemporaneous creation of melodic content, 
Parker is able to focus on other issues, such as tone, style, articulation and coher-
ence which aids in boosting the excitement and perceived spontaneity in his play-
ing.” (Stehr, 2016, p. 103.) 

There are several possible reasons for the diversity of these results. First, 
there are large differences in the sample sizes of these studies. Owens (1974) used 
a sample of about 250 solos by a single musician. Although Owens did not report 
the total number of bars (or notes) in each solo or the overall number of bars (or 
notes) in the sample, a search through his research material shows that the short-
est solos included only twelve bars. Weisberg and his colleagues used six solos 
by Charlie Parker (median length: about 400 notes; maximum length: 1,270 notes), 
four solos by Lester Young (range of length: 137 to about 900 notes), and one solo 
by Jaco Pastorius (length: 642 notes) (Weisberg et al., 2004, Musical materials sec-
tion). Similarly, Stehr’s (2016) sample consisted of six solos by Charlie Parker, 
four solos by Lee Konitz, and three solos by Warne Marsh. Stehr did not report 
the total number of bars in each solo, but the total number of bars in all solos was 
799 for Parker’s solos, 523 for Konitz’s solos, and 261 for Marsh’s solos (Stehr, 
2016, p. 80). Norgaard (2014) used a sample of forty-eight solos by Charlie Parker. 
The total number of bars (or notes) in each solo or the overall number of bars (or 
notes) in the sample was not reported. 

In most of these studies, a recurring interval sequence was defined as an 
interval sequence that occurred at least twice in the corpus of solos. As a result, 
the proportion of repeated melodic patterns is expected to increase with the num-
ber of solos in the corpus. On the other hand, it also makes sense to argue that 
the shorter the improvisation, the easier it is to reach a high proportion of novel 
melodies and thus the proportion of repeated melodic patterns is expected to de-
crease with the length of the improvisation. Note that the latter prediction is re-
lated to the length of a single improvisation, whereas the former prediction is 
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related to the size of a corpus of improvisations. Also note that the number of 
identified pre-learned melodic patterns may be inflated, at least to some degree, 
if accidental repetitions of melodic patterns are not ruled out. Accidental repeti-
tion of melodic patterns refers to the situation where a particular melodic pattern 
is not actually retrieved from long-term memory during performance, but it is 
invented anew in several performances. It should be noted that all these studies 
also used a very low threshold level to identify pre-learned melodic patterns. All 
melodic patterns that occurred at least twice were categorized as pre-learned me-
lodic patterns. 

Second, it is possible that the high proportion of repeated melodic patterns 
in Weisberg et al. (2004) and Norgaard (2014) was caused by that harmonic con-
text was disregarded in both studies. Harmonic context was also disregarded in 
Stehr (2016). Harmonic context constrains what note choices are appropriate. As 
a result, the number of recurring melodic patterns is likely to increase when har-
monic context is disregarded, because the same interval sequence is appropriate 
in a number of harmonic contexts. It is also noteworthy that Weisberg and his 
colleagues ignored all rests, and all analyzed improvisations were also based on 
the same chord progression, both of which may have exaggerated the proportion 
of recurring melodic patterns in this study (as noted by Norgaard, 2014, p. 274). 
In addition to Weisberg et al. (2004), also Stehr’s (2016) sample consisted of im-
provisations based on a single chord progression. Note that Stehr’s data consisted 
of sequences of pitch events (e.g., C, D, E) instead of interval sequences and he 
ignored the melodic contour of these sequences and calculated the repetition of 
melodic patterns using data where all pitch events were transformed to occur in 
a single octave. 

Third, melodic patterns that function as chunks must have a specific begin-
ning and ending. In case this issue is not considered, identified melodic patterns 
may have no perceptual relevance and there is no evidence that these melodic 
patterns were retrieved from memory as a single unit. This problem may occur 
when repeated melodic patterns are identified at any metrical position regardless 
of whether identified melodic patterns form plausible musical units with a be-
ginning and end or not. In contrast to Owens (1974), segmentation of melodic 
patterns based on psychologically relevant segment boundaries was ignored in 
Weisberg et al. (2004), Norgaard (2014), Norgaard & Römer (2022), and Stehr 
(2016). 

Finally, note that even if Norgaard (2014) removed overlapping patterns 
that started at the same note, this procedure was not used in Weisberg et al. (2004) 
and Stehr (2016). The decision not to remove overlapping melodic patterns may 
exaggerate the average length of melodic patterns and overestimate the number 
of repeated melodic patterns. For instance, consider the following example. Fig-
ure 3 shows a simple artificial melody with a repeated 3-interval melodic pattern 
[+2, +2, +1], first in C major (repeated 4 times) and then in D major (repeated 3 
times). In this example, 18% (7/39) of notes started a repeated melodic pattern. 
When overlapping melodic patterns were not removed, there were three re-
peated melodic patterns: [+2, +2] (7 occurrences), [+2, +1] (7 occurrences), and 
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[+2, +2, +1] (7 occurrences). In this case, 54% (21/39) of notes started a repeated 
melodic pattern. 

 
FIGURE 3  Overlapping melodic patterns in an artificial melody (example 1) 

 
Figure 4 shows yet another simple artificial melody. In this case, there are four 
repeated melodic patterns: [0, 0, 0, 0] (bars 1-4) (4 occurrences), [+2, -2, +2, -2] 
(bars 5-8) (4 occurrences), [+2, +2, -4] (bars 9-11) (4 occurrences) and [+2, +2, +1, 
-5] (bars 13-16) (4 occurrences). As a result, 27% (16/60) of notes started a re-
peated melodic pattern. When overlapping melodic patterns were not removed, 
there were 101 recurring melodic patterns (range of intervals in each pattern: 2-
15; range of frequency: 2-15) in this simple melody when the minimum length of 
patterns is two intervals, and the minimum number of occurrences is two. In this 
case, 95% (57/60) of notes started at least one repeated melodic pattern. 

 

 
FIGURE 4  Overlapping melodic patterns in an artificial melody (example 2) 

3.1.4 Schema theory of motor skills 

According to Schmidt’s (1975) schema theory of motor skills, a single motor pro-
gram can be used to produce a number of variations of a particular movement 
(e.g., throwing a ball) by setting different specifications for the movement (e.g., 
throwing a ball with a different speed or different force) (Schmidt, 1975, p. 232). 
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Since a limited number of motor programs can be used to produce a large variety 
of actions, which implies that each movement does not require a separate motor 
program, Schmidt used the term ‘generalized motor program’ for a motor pro-
gram for a particular class of movements. Schmidt’s notion of generalized motor 
program is mentioned in several studies on the psychology of jazz improvisation 
(e.g., Pressing, 1988; Norgaard, 2014; Norgaard et al., 2023). For instance, Pressing 
(1988, p. 153) argued that “it is schemata for action that are triggered, not precise 
movement details, and subsequent motor fine tuning based on feedback pro-
cesses goes on after each time point.” 

According to Schmidt (1975), four types of information are stored when an 
individual makes a goal-directed movement: “(a) the initial conditions, (b) the 
response specifications for the motor program, (c) the sensory consequences of 
the response produced, and (d) the outcome of that movement” (Schmidt, 1975, 
p. 235). These four types of information are used to form two types of schemata:
recall schemata and recognition schemata. The recall schemata are formed by in-
formation on initial conditions, actual outcomes, and response specifications. The
recognition schemata are formed by information on initial conditions, actual out-
comes, and sensory consequences. (Schmidt, 1975, p. 237.)

A major advantage of Schmidt’s notion of generalized motor program is 
that it helps to circumvent the problem of storage demands: if there should exist 
a distinct motor program for each movement or a similar number of references 
to which actualized movements are compared to, the number of learned move-
ments would produce a severe storage problem (Schmidt, 1975, p. 229). Accord-
ing to Schmidt, his theory is also able to explain the generation of novel move-
ments. The same generalized motor program can be used to produce a number 
of movements by using different movement specifications. Since these specifica-
tions may not have been used before, the actual movement may be novel and 
never tried before. (Schmidt, 1975, p. 236.) 

According to Schmidt, movements can be slightly modified even within the 
timescale of some tens of milliseconds. However, whenever a motor program 
must be replaced by another after it has been initiated, the course of action cannot 
be changed until the motor program has “run its course for approximately 200 
msec,” or more likely for nearly 400 milliseconds depending on response type 
(Schmidt, 1975, pp. 232-233). In contrast to slow movements, rapid movements 
do not “allow feedback to be used while the movement is in progress” (Schmidt, 
1975, p. 241). If the speed of movements is fast enough, action monitoring and 
error detection must rely on predictive feedforward control mechanisms instead 
of sensory feedback (Maidhof et al., 2009, p. 5). For instance, rapid finger move-
ments of musicians are too fast to be controlled based on sensory feedback (Lash-
ley, 1951, p. 123). However, it is easy to find activities in which motor programs 
cannot be successfully executed in absence of sensory feedback. For instance, 
downhill skiing becomes incredibly difficult if one’s eyes are closed. (Hommel et 
al., 2016, p. 130.)44 

44  The role of sensory feedback in jazz improvisation is discussed in more detail in Chap-
ter 4.1.5: The role of sensory feedback in idea generation. 
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The notion of generalized motor program (or a scaleable response structure, 
to use Shea and Wulf’s terminology) as an abstract structure that shares a set of 
invariant features (e.g., invariant order of submovements) and enables to pro-
duce a number of actions with different movement specifications, continues to be 
useful although some parts of the theory need revision in order to conform with 
recent empirical findings (Shea & Wulf, 2005). 

3.2 Theories and models on jazz improvisation 

3.2.1 Pressing’s cognitive theory of improvisation 

Pressing argued that improvisations consist of series of non-overlapping sections, 
which he called event clusters (Pressing, 1988, pp. 152-153)45. Event clusters are 
often, but not always, separated from each other based on various musical cues 
(e.g., pause, phrase boundary, or any another cue that sets a musical boundary) 
(Pressing, 1988, p. 153). In addition to musical cues, motor cues (e.g., fingering, 
hand position) and cognitive cues (e.g., knowledge of performer’s musical style) 
may also be useful in setting boundaries between event clusters (Pressing, 1987, 
p. 161). Unfortunately, Pressing was not specific in his principles to segmentation
of event clusters.

Another important aspect of Pressing’s theory is that all event clusters can 
be considered from different points of view (aspects): as it is heard (acoustic as-
pect), as it is represented in terms of musical concepts (musical aspect), in terms 
of motor actions, timing, touch, and proprioception (movement aspect), as it is 
seen (visual aspect), and as it is emotionally experienced (emotional aspect). 
Other relevant aspects may also exist. (Pressing, 1988, p. 154.) Event clusters can 
be further divided to three types of components (which Pressing called “arrays”): 
objects (e.g., a chord or motif), features (e.g., loudness or duration), and processes 
(e.g., making a quotation of a well-known musical work) (Pressing, 1988, pp. 154, 
156; Pressing, 1998, p. 56)46. Continuity and discontinuity between event clusters 

45  Pressing’s emphasis on event clusters indicates that he regarded action control at the 
level of event groups to be especially important in improvised music. Action control at 
the level of event groups means that note choices are made in groups and thus each 
note is not chosen separately. Pressing defined event cluster as “an integrally con-
ceived motoric and musical unit consisting of one or more events [e.g., a single note or 
a sequence of notes]” (Pressing, 1987, pp. 159-160). 

46  Pressing’s distinction between objects and processes is presented most clearly in Press-
ing (1984). In this paper, Pressing wrote: “the musical improviser typically practices in 
two rather distinct ways. One method is to practice the execution of specific forms, 
motives, scales, arpeggios or less traditional musical gestures, so that such musical ob-
jects and generalized representations of them are entered into long-term ‘object 
memory’ [i.e., declarative memory] in conceptual, muscular and musical coding. A 
second method is to practice the ‘process’ of compositional problem-solving: transi-
tions, development and variation techniques, and methods of combining and juxtapo-
sition are practiced in many musical contexts and with many different referents. This 
experience (along with actual performance) forms the basis for long-term ‘process 
memory’ [i.e., procedural memory].” (Pressing, 1984, p. 355.) 
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is achieved by associative and interrupt generation. Continuity between two 
event clusters means that event clusters must share some property in any of the 
three types of arrays (object, feature, process). (Pressing, 1988, p. 155.) In other 
words, continuity can be achieved at the level of note duration (e.g., continued 
use of eighth notes), intervals (e.g., continued use of perfect fourths), note choices 
(e.g., continued use of the notes E, G, and B), key (e.g., continued use of notes 
from the key of C major), and so on (Pressing, 1988, pp. 162-164). Besides building 
continuity between event clusters, improvisers may also interrupt the associative 
stream of event clusters by abandoning the current musical direction (interrupt 
generation) (Pressing, 1988, p. 155). 

The referent and the knowledge base are also key concepts in Pressing’s 
theory. Pressing defined the referent as “an underlying formal scheme or guiding 
image specific to a given piece, used by the improviser to facilitate the generation 
and editing of improvised behaviour on an intermediate time scale” (Pressing, 
1984, p. 346). In jazz, the referent is most often the song form (including melody 
and chord progression) (Pressing, 1998, p. 52). The referent has several roles in 
music performance. For instance, it gives identity to a musical piece and guides 
expectancies in musical improvisation. The use of referent also increases pro-
cessing efficiency because it provides pre-learned material for the improviser47 
and thus makes it possible to decrease cognitive demands on the selection and 
generation of actions and reduces the amount of decision-making in music per-
formance. Also, a shared referent makes it possible to allocate less attention to 
other musicians’ actions. (Pressing, 1998, p. 52.) In addition to the referent, an 
expert improviser also has an extensive knowledge base to increase his/her flu-
ency in improvisation. The knowledge base consists of “musical materials and 
excerpts, repertoire, subskills, perceptual strategies, problem-solving routines, 
hierarchical memory structures and schemas, generalized motor programs, and 
more. It is a cauldron of devices collected and fine-tuned on the basis of optimiz-
ing improvisatory performance” (Pressing, 1998, pp. 53-54). 

Pressing (1988, p. 152) suggested that all theories of musical improvisation 
must not only explain “how people improvise,” but also how they learn to im-
provise, and what is the origin of novel actions. However, there is very little dis-
cussion in Pressing (1988) about the second and the third topic. The second topic 
(how people learn to improvise) is only discussed for two pages. According to 
Pressing, there are three cognitive changes that occur with the development of 
improvisational skills: (1) increased memory for objects, features, and processes, 
(2) increased accessibility of long-term memory, and (3) increased attunement to
perceptual information (Pressing, 1988, p. 166). Pressing argued that practice al-
lows to recognize redundancy in sensory information which leads to reduced
cognitive load (Pressing, 1984, p. 355; Pressing, 1988, p. 167). Practice also helps
to focus on relevant sensory input (Pressing, 1988, p. 167), to execute motor ac-
tions with increasing economy (Pressing, 1984, p. 355), and to reach a level of

47  According to Pressing (1984, p. 346), improvising musicians cannot avoid using pre-
learned materials and respectively no musician can avoid making at least small varia-
tions to the music. 
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musicianship where variable and novel actions can be produced through auto-
mated use of motor programs (Pressing, 1988, p. 140). The third topic (the origin 
of novel actions) is discussed briefly and in a vague way. Pressing identified three 
sources of novel actions: “the evolution of movement control structures for newly 
discovered objects, features and processes, […] the motor enactment of novel 
combinations of values of array components, [… and] distorting aspects of exist-
ing [actions]” (Pressing, 1988, pp. 161-162). 

According to Pressing’s (1988), automation allows to attend higher levels of 
musical expression (e.g., dynamics, emotion)48. Attention to higher levels of mu-
sic also plays a role in musical creativity. According to Chaffin et al. (2006), crea-
tivity in a highly automated performance depends on the use of higher-level per-
formance cues49. Performance cues are defined as “the landmarks of the piece 
that a musician attends to during performance, carefully selected and rehearsed 
during practice so that they come to mind automatically and effortlessly as the 
piece unfolds, eliciting the highly practised movements” (Chaffin et al., 2006, pp. 
201-202). Performance cues also provide locations in music that can be directly 
retrieved without the need to rewind the whole musical piece from the beginning 
to find a particular location (Chaffin et al., 2006, p. 202). Jazz musicians too use 
this memorization strategy when they are learning new musical works (Noice et 
al., 2008). 

Creativity in performance is most likely to occur if attention is focused on 
expressive cues (the highest level of performance cues), which “allows the artist 
to adjust the performance to the unique opportunities and demands of the occa-
sion to achieve the maximum possible impact on the audience” (Chaffin et al., 
2006, p. 215)50. Creativity in performance is less likely to occur if attention is fo-
cused on lower levels of performance cues (basic cues and interpretive cues) 
(Chaffin et al., 2006, p. 215)51. This claim has received some support from recent 
qualitative studies. For example, one of Norgaard’s (2011) interviewees reported 
that he often starts to improvise with a general plan like: “start the solo with 
sparse melodic material, develop this material in subsequent choruses building 
to an emotional peak in the second to last chorus, and finally ‘wind down’ in the 
last chorus” (Norgaard, 2011, p. 122). Similarly, Wilson and MacDonald (2016) 
found that free improvisers’ “choices suggest a focus on larger structural aspects 

 
48  According to Pressing (1988), increased automation allows performers to attend “al-

most exclusively to a higher level of emergent expressive control parameters […] like 
form, timbre, texture, articulation, gesture, activity level, pitch relationships, motoric 
‘feel’, expressive design, emotion, note placement and dynamics” (p. 139). 

49  Cuing refers to a process where activation of a memory automatically activates other 
memories that are associated with it (Snyder, 2000, p. 70). 

50  This claim is not far from Berliner’s conception of improvisation. According to Ber-
liner (1994, p. 241): “improvisation involves reworking precomposed material and de-
signs in relation to unanticipated ideas conceived, shaped, and transformed under the 
special conditions of performance, thereby adding unique features to every creation.” 

51  Similarly, Pressing (1984, p. 359) claimed that a strategy where attention is directed to 
a general overview of the music “is normally considered to produce better music” 
compared to a strategy where attention is focused on details and lower levels of musi-
cal hierarchy. 
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of the music as it emerged, such as overall texture or need for, and rate of, change” 
(p. 1039). 

Pressing’s theory of improvisation is among the most, if not the most cited 
theory of improvisation. It has influenced much of the later improvisation re-
search since the publication of his landmark works in the 1980’s. Pressing’s the-
ory is useful for understanding some fundamental aspects of improvisation and 
some of his articles (Pressing, 1984, 1988, 1998) are still excellent sources for a 
multifaceted discussion on a variety of topics related to improvisation. However, 
Pressing did not provide any explicit predictions that could be tested. In addition, 
Pressing did not provide sufficiently specific principles of how to partition event 
clusters. In terms of predictive power, I agree with Clarke (2005) who argued that: 

[Pressing’s theory] identifies a considerable number of abstract processes and kinds of 
data that may be involved in producing an improvised performance, but despite the 
rather intimidating appearance of its formalism, it is actually not formal enough to be 
implemented as a testable working model. It seems to be more like an attempt to indi-
cate as many as possible of the components that might be involved in improvising […], 
but with no sense of how these categories really work in any particular instance. 
(Clarke, 2005, p. 170.) 

3.2.2 Johnson-Laird’s computational model of jazz improvisation 

According to Johnson-Laird (2002), decision-making would be too slow if work-
ing memory for intermediate results was a crucial component in jazz improvisa-
tion (p. 424). As evidence to this claim, Johnson-Laird referred to an experiment 
carried out by him and Ivor Holloway, where they found out that cognitive load 
“had no adverse effects on improvisation” (Johnson-Laird, 2002, p. 439). Together 
with Rich Feit, Johnson-Laird also designed a computer program that was able 
to produce plausible jazz bass lines without storing intermediate results except 
for the previous note. In their view, the results were “at the level of a moderately 
competent beginner,” (Johnson-Laird, 2002, p. 438) but they claimed that the re-
sults could have been easily improved by using a larger knowledge base of con-
tours and passing notes. (Johnson-Laird, 2002, pp. 437-439.) 

Johnson-Laird identified three types of algorithms that could be used to 
model creativity in jazz improvisation. In neo-Darwinian algorithms, creative 
products are first created arbitrarily and then evaluated. The second type of al-
gorithm, neo-Lamarckian algorithm, has a set of genre-specific criteria to allow a 
set of possibilities from which the algorithm makes an arbitrary choice. The third 
type of algorithm has a set of constraints for decision-making and another set of 
criteria for evaluation. Johnson-Laird concluded that the generation of chord pro-
gressions in jazz is likely based on similar processes as the third algorithm, 
whereas the generation of novel melodies is likely a result of similar processes as 
the neo-Lamarckian algorithm. (Johnson-Laird, 2002, p. 439.) 

Another central aspect of Johnson-Laird’s model is that both composition 
of chord progressions and improvisation of melodies are based on rules instead 
of previously learned patterns (Johnson-Laird, 2002, pp. 439-440). Johnson-Laird 
claimed that note choices in improvisation are determined by two rules (or con-
straints). The first constraint determines which scale is appropriate based on the 
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current chord. The second constraint determines the appropriate melodic con-
tour based on the context. (Johnson-Laird, 2002, p. 436.) These constraints reduce 
the number of options in each musical context, but the final choice among differ-
ent possibilities is arbitrary (Johnson-Laird, 2002, p. 437). 

Research on algorithmic expert systems is a natural framework in which to 
evaluate Johnson-Laird’s claims. Many current expert systems are based on Mar-
kov-based models, where future events are “only determined by the current state 
(or the N last current states, depending on the chosen order)” (Pachet, 2012, p. 
139). In other words, an event is determined by the probability of alternative pos-
sibilities based on N previous events (except in zeroth order Markov chains 
where previous events are disregarded). As such, low-order Markov models im-
plement the idea of no-memory like Johnson-Laird. However, the application of 
some improvisational techniques (like side-slipping technique) requires the 
memory of previous phrase, which is contradictory to the idea that working 
memory is futile in improvisation (Pachet, 2012, p. 143). 

According to Norgaard (2011), Johnson-Laird’s focus on rules may offer a 
one-sided view of improvisation. In his view, pre-learned patterns (emphasized 
by Pressing, 1988) and internalized rules (emphasized by Johnson-Laird, 2002) 
are both used at different times to create improvised melodies in jazz. Evidence 
for this claim was provided from interviews, where participants reported that 
their choices were based on both pre-learned patterns and harmonic/melodic 
rules. (Norgaard, 2011, pp. 121-122.) In another study which investigated pattern 
use in a corpus of 48 solos by Charlie Parker, Norgaard (2014) found that 82.6% 
of notes started a recurring 4-interval melodic pattern and 99.3% of notes were 
part of some recurring melodic pattern with three or more intervals. Norgaard 
concluded that these findings support Pressing’s (1988) theory of improvisation 
(according to which the use of pre-learned patterns plays an important role in 
improvisation) in contrast to Johnson-Laird’s (2002) emphasis on the importance 
of rule-guided decision-making.52 

3.2.3 Love’s ecological model on jazz improvisation 

According to Love’s (2017) ecological model (or ecological description to use his 
preferred term) on jazz improvisation, improvisation is learned by developing 
perception through trial and error. Learning takes place when a person becomes 
more sensitive to affordances (i.e., possibilities for action) that exist in the 

52  Note that even if Johnson-Laird claimed that it would be impractical to rely on a large 
number of pre-learned melodic patterns instead of creating novel melodies (Johnson-
Laird, 2002, p. 430) and argued that no one, possibly except for beginners, depends on 
pre-learned melodic patterns all the time (Johnson-Laird, 1988, p. 211), he acknowl-
edged that musicians often repeat the same melodic patterns in their improvisations. 
In fact, Johnson-Laird (2002) was quite explicit on this matter: “jazz musicians can 
generate long-term relations in their improvisation without using working memory. 
They can make repeated use of a motif or a phrase throughout an improvisation be-
cause it is in long-term memory. […] But, when musicians extemporize a striking 
phrase, they are likely to store it in long-term memory and perhaps to improvise vari-
ations on it. […] There is no need for a working memory of intermediate computa-
tional results” (Johnson-Laird, 2002, p. 423). 
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relationship between a person and his/her environment. Love emphasized that 
perceptual learning is not the same as memory. In his view, repetition in improv-
isation does not require memory but it is a consequence of perceiving familiar 
affordances in the environment. (Love, 2017.) Love also argued that even if rules 
can be used to describe appropriate actions, they cannot explain these actions and 
claimed that “the psychological processes underlying expert improvisation do 
not depend on rules at any level” (Love, 2017, p. 34). 

The term ’affordance’ was introduced by Gibson (1977), who used it to refer 
to properties of the environment, whose meaning is related to what they offer. In 
Gibson’s words: “the affordances of the environment are what it offers animals, 
what it provides or furnishes, for good or ill” (Gibson, 1977, p. 68). For instance, 
sharp and rigid objects afford cutting, certain kinds of surfaces that are at the 
right height afford the possibility to sit on it, air affords breathing and so on (Gib-
son, 1977, pp. 68, 71, 75). Usually (but not always), affordances can be perceived 
directly, which means that perception of affordances often does not require sub-
stantial learning and that properties of a perceived object are specified in the 
structure of that object and hence its affordances already exist in the object (Gib-
son, 1977, pp. 79-80, 82). Moreover, affordances are not subjective nor objective 
properties of things since the meaning of an object (i.e., what kind of actions it 
makes possible to a person or an animal) does not depend on the observer and 
things do not afford anything if they are considered as objects of the outside 
world independent from the observer (Gibson, 1977, pp. 69-70). 

Love’s use of the term ’affordance’ is quite different. In his view, af-
fordances are both objective and subjective. They are objective in that “the refer-
ent and style offers up the same affordances to every improviser, and improvisers 
succeed or fail to the extent they play inside these lines” (Love, 2017, p. 34). For 
example, jazz compositions offer the same basic song form and chord progres-
sion to all improvisers. According to Love, affordances are also subjective in the 
sense that the number of affordances for any referent is “practically infinite” and 
“for any particular passage, each improviser experiences a unique set of af-
fordances, and these affordances usually appear before the improviser’s percep-
tion unmediated by rules” (Love, 2017, p. 34). In contrast to this view, Gibson’s 
affordances are “facts of the environment” (Gibson, 1977, p. 70). According to 
Gibson (1977, p. 81), a person can fail “to perceive what is present in the environ-
ment” and perceive something that is “not present in the environment,” because 
“either the available information is inadequate or, if not, the process of infor-
mation pickup is deficient.” The possibility of misperceiving the environment is 
not in conflict with the view that affordances are independent from the observer. 

Love’s approach has significant strengths in that it offers new ways of un-
derstanding psychological processes involved in improvisation. Also, it offers ex-
plicit predictions unlike Pressing (1988), for example. First, Love predicted that 
when soloists improvise on unfamiliar musical works, their initial actions (re-
gardless of their quality or appropriateness) are unwittingly repeated from one 
chorus to the next. The explanation is that if improvisers do not have any previ-
ous experience of improvising in a specific context, their initial actions 
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“constitute the whole of their experience in this environment” (Love, 2017, p. 42). 
Second, Love predicted that musicians repeat the same patterns more often com-
pared to what has been suggested in previous research and fast “attention-taxing 
tempos will not inhibit this repetition, as it does not depend on acts of recall” 
(Love, 2017, p. 42). Third, Love predicted that new affordances will spontane-
ously emerge as time goes by. Fourth, Love predicted that soloists make familiar-
path errors53 when a musical work deviates from stylistic norms (e.g., when a 
musical work is based on unordinary chord progression). Such familiar-path er-
rors are caused by misperceptions of familiar affordances. (Love, 2017, p. 42.) 

3.2.4 Goldman’s theory of improvisation 

According to Goldman (2016), musicians from different musical traditions differ 
in their ways of knowing musical structures. For instance, there are many ways 
to understand what a C major chord is: it may be known in terms of haptics, 
proprioception, the way it sounds, how it is physically produced, or what it looks 
like on notation (Goldman, 2016, para. 3.2). By investigating differences between 
musicians from different backgrounds, Goldman proposed a research program 
to “compare perceptual and cognitive processes, and structural and functional 
neuroscientific features, between kinds of musicians” (Goldman, 2016, para. 4.2). 

As the basis of his theory, Goldman (2016) noted that there are several con-
cepts (e.g., novelty, spontaneity, and freedom) which have been widely used in 
improvisation studies. However, he argued that these are culturally contingent 
terms and relative to what musical parameter (e.g., melody, rhythm, harmony) 
is focused, because of why it is problematic to define improvisation using these 
concepts. Moreover, Goldman claimed that the measurement and identification 
of novelty, spontaneity, and freedom depends on the person who does it and that 
“there is no objective way to claim that a given performance really has those fea-
tures, and to what extent it has them” (Goldman, 2016, para. 1.10). Finally, Gold-
man noted that both improvisation and non-improvisation can produce the same 
result, because of why one cannot distinguish between improvisation and non-
improvisation based on the final product. As an alternative way to define im-
provisation and to distinguish between improvisation and other forms of musi-
cianship, Goldman suggested that improvisation could be defined as ways of 
knowing that are specific to improvisation (Goldman, 2016, para. 8.1).54 

Goldman’s (2016) proposal to investigate differences in knowledge between 
improvisers and other kinds of musicians offers a promising way to acquire new 

53  As also noted by Love (2017), the concept of error is problematic in improvisation, 
where it is impossible to identify errors based on comparing a performance of music 
with pre-written notes in a score. Despite of this problem, errors certainly exist in im-
provisations too (e.g., in the form of an unintended arrival to a strong beat or chord 
change too early, false perceptions of the written chord progression, and making mis-
takes in memory recall of the song form or chord progression). 

54  Note that Goldman (2016) did not claim that concepts like novelty, freedom, and spon-
taneity should be rejected in improvisation studies. In fact, if we are interested in as-
pects of improvisation that are appreciated by improvising musicians themselves, 
these concepts cannot be fully ignored. 
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insights on cognitive processes underlying jazz improvisation. There are already 
a few studies that have investigated these differences. In a study by Bianco et al. 
(2018), a group of classical pianists and jazz pianists were shown photos of one-
hand chord sequences and they were asked to play these chord sequences with a 
muted piano. Half of the chord sequences were typical in terms of classical har-
mony and fingering, but the other half contained violations to conventional clas-
sical harmony and/or fingering. The chord sequences also differed in key and 
length. According to the results, jazz pianists executed incongruent chords faster 
than classical pianists, which indicates that jazz pianists were quicker to repro-
gram their action plans and they were more flexible in handling harmonic viola-
tions. On the other hand, classical pianists displayed fewer fingering errors com-
pared to jazz pianists, but they “experienced higher cognitive effort to resolve 
conflict in response to the unexpected chord” (Bianco et al., 2018, p. 392). The 
authors concluded that “generative jazz training coincides with a higher flexibil-
ity to deal with harmonic possibilities, whereas interpretative classical training 
enhances the preparedness to accurately set fine movement parameters” (Bianco 
et al., 2018, p. 392). 

In another study, Goldman et al. (2020) asked their participants to listen to 
chord progressions and to respond as quickly as possible if they noticed anything 
unusual in them. Participants were also instructed to respond only if they were 
certain that there was something unusual in the chord progression. According to 
their results, participants with more experience in improvisation perceived devi-
ant chord progressions more quickly and more accurately when the deviant 
chord was from a different functional category compared to when the deviant 
chord was from the same functional category, which indicates that experienced 
improvising musicians are sensitive to functional categories of chords. (Goldman 
et al., 2020.) Greater sensitivity to unexpected chords among jazz musicians has 
also been shown by Przysinda et al. (2017). 

Nichols et al. (2018) investigated six working memory tasks under cognitive 
load. Jazz musicians outperformed classical musicians, when participants were 
asked to recall arpeggiated triads played on piano and to play them accurately. 
Regarding the other working memory tasks, no differences between the groups 
were found. Finally, Vuust et al. (2012) and Tervaniemi et al. (2016) found that 
specialization in a particular musical style influences musicians’ perceptual skill. 
According to Vuust et al. (2012), jazz musicians were more sensitive to changes 
in auditory stimuli compared to classical and rock/pop musicians, especially re-
garding pitch and pitch slides. These results can be explained by the fact that ear 
training plays a significant role in jazz schools and the complexity of chord pro-
gressions, chords, and rhythms in modern jazz places great demands on musi-
cians’ auditory skills. (Vuust et al., 2012.) In another study, Tervaniemi et al. (2016) 
found that experience in classical music was associated with enhanced sensitivity 
to violations in tuning compared to non-musicians. Experience in jazz was asso-
ciated with better auditory skills regarding timbre compared to rock musicians. 
Both classical and jazz musicians were more sensitive to violations in timing com-
pared to non-musicians. 
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3.3 Other perspectives on musical creativity 

3.3.1 Implications from expert systems research 

Expert systems are computer algorithms designed to imitate human expertise 
(Gobet, 2016, p. 236). They can be divided to at least four broad and non-exclusive 
categories based on their design: evolutionary algorithms (also known as genetic 
algorithms and neo-Darwinian algorithms), rule-based algorithms (also known 
as grammar-based algorithms), probabilistic algorithms, and artificial neural net-
work-based algorithms (also known as connectionist algorithms). 

Evolutionary algorithms are based on random generation of ideas from 
which some of the ideas are selected for further elaboration. As described by 
Johnson-Laird (1988), “its first stage consists of a procedure that combines ele-
ments at random to generate a potentially vast number of putative products, and 
its second stage uses a set of constraints to filter out the products that are not 
viable” (p. 217). Jazz musicians spend a vast amount of time rehearsing their skill 
“offline,” trying new ideas and evaluating their goodness. To the extent that these 
new ideas have a random origin, evolutionary algorithms are consistent with the 
way jazz musicians create new ideas. On the other hand, there is an important 
weakness in evolutionary algorithms. Random generation of initial sequences 
may produce outcomes that are not viable, which makes these systems inefficient 
(Johnson-Laird, 1988, p. 217) and forces to use manual editing (Pachet, 2012, p. 
127). As a solution to this problem, Brown (2004) combined features of evolution-
ary and rule-based algorithms to decrease the influence of inherent weaknesses 
related to these types of algorithms. After a careful selection of settings, Brown 
was able to produce melodies which displayed not only well-formedness but also 
some aesthetic value and novelty. 

As an alternative to evolutionary algorithms, many expert systems have 
adopted rule-based search strategies to select appropriate musical choices. As a 
particularly interesting example, Ramalho et al. (1999) created an expert system 
called ImPact, which can produce jazz bass lines based on reusing fragments from 
a database, application of production rules (if-then rules), and context infor-
mation (e.g., chord progression of the musical work, previous note choices). Most 
production rules represented knowledge at the level of abstract musical proper-
ties (e.g., “play syncopated phrase during this last section”) (Ramalho et al., 1999, 
p. 11). All fragments were derived from six bass lines played by Ron Carter for
the Jamey Aebersold play-along multimedia. The authors reported that their bass
lines were rated by professional jazz bassists as “much better than a human be-
ginner’s bass lines” (Ramalho et al., 1999, p. 19).

Rule-based systems can be highly complex. For example, the total number 
of rules in ImPact was eighty-four (Ramalho et al., 1999), but some rule-based 
expert systems are based on much larger sets of rules. In comparison, CHORAL 
used about 350 rules to harmonize four-part chorales in the style of J. S. Bach 
(Ebcioğlu, 1990). The definition of rules is also a laborious process if done manu-
ally (Fernández & Vico, 2013, p. 522). In addition, the requirement to define all 



 
 

66 

possibilities beforehand with if-then rules may lead to descriptions that are too 
complex for practical use (e.g., for teaching the musical style of classical compos-
ers). 

As an example of probabilistic algorithms, Norgaard et al. (2013) created a 
pattern-based algorithm that can produce improvisations in any style based on 
Markov chains and without using any rules. Chord progressions and their func-
tion as constraints for note choices were not considered in this design. As noted 
by the authors, however, it is possible that rules are a necessary part of algorithms 
that aim to produce improvisations based on pre-defined chord progressions 
(Norgaard et al., 2013, p. 251). According to Fernández and Vico (2013, p. 536), 
probabilistic algorithms based on low-order Markov chains can produce unsuc-
cessful results with lack of direction whereas the use of high-order Markov chains 
may lead to mere repetition of patterns from the training data. As one solution to 
this problem, Pachet (2012) used variable-order Markov chains with a maximum 
order of two to ensure “an optimal compromise between similarity and creativity” 
(p. 129). 

Most recent work on expert systems in music has used artificial neural net-
works and deep learning approaches (Civit et al., 2022). These approaches have 
turned out to be highly successful in passing musical Turing tests (where success 
refers to evaluators’ inability to distinguish between works produced by humans 
and computer algorithms) (Briot, 2021, pp. 40-41). However, artificial intelligence 
is still underutilized in creativity research (Gobet & Sala, 2019). According Gobet 
and Sala (2019), artificial intelligence could be highly useful in testing existing 
theories of creativity, developing new theories, providing tasks that are more 
complex and ecologically valid compared to those typically used, identifying do-
main-specific creativity, and training creative abilities in people. 

There are some common problems related to expert systems in general. Ac-
cording to Jordanous (2011), expert systems have lacked a standard evaluation 
system to assess the creativity of their outputs. In addition, the creativity of these 
systems has often not been evaluated at all. In a sample of seventy-five creative 
expert systems, only a third of expert systems were evaluated on the creativity of 
their outputs. (Jordanous, 2011.) Another problem is that expert systems can per-
form complex tasks merely “by force of accumulated data” without the need to 
have any knowledge of how such tasks are performed in the real world (Miller, 
2020, para. 1.7). The ability to imitate a desired behavior does not yet prove that 
the model functions in the same way as humans do, but it does provide an “ade-
quate hypothesis which can then perhaps be tested in more direct way (for ex-
ample, through experimental work)” (Temperley, 2007, p. 6). 

3.3.2 Neuroscience of musical improvisation 

A recurring finding in the neuroscientific research on musical improvisation is 
that “brain networks involved in musical improvisation perform domain-general 
processes that are recruited for the spontaneous generation of music” (Erkkinen 
& Berkowitz, 2019, p. 513). For example, in a study which compared positron 
emission tomography (PET) data during improvised generation of vocal 
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melodies and spoken sentences, Brown et al. (2006) found that both tasks were 
associated with almost the same brain regions. In another study, de Manzano and 
Ullén (2012) showed a considerable overlap of neural substrates between musical 
improvisation and the generation of pseudo-random motor responses. 

As another common finding in the neuroscience of musical improvisation, 
several studies have shown that motor regions of the brain play an important role 
in improvisation (Bashwiner & Bacon, 2019). For example, in a study which in-
volved an extraordinarily large number of participants (N = 239), experience with 
composition and/or improvisation was found to be associated with “greater cor-
tical surface area or volume” in motor regions of the brain, the default mode net-
work, and the limbic network (Bashwiner et al., 2016, abstract). The significant 
role of motor regions in musical improvisation and other forms of human crea-
tivity is not surprising, since the only way to produce musical improvisations 
and any other creative products is through motor actions (Erkkinen & Berkowitz, 
2019, p. 515). Nevertheless, human creativity may also require the motor system 
in a non-trivial sense. Anic et al. (2018) compared the effects of inhibitory versus 
excitatory transcranial direct current stimulation (tDCS) to the primary motor 
cortex (M1) in jazz improvisation. According to their results, excitatory tDCS to 
M1 increased creativity in jazz improvisations as indicated by expert ratings. An 
additional music analysis also revealed that excitatory tDCS increased the variety 
of notes, the number of notes, and pitch range in comparison to inhibitory tDCS. 
These findings indicate that the M1 may not be only responsible for the execution 
of actions, but it might contribute to creative actions in other ways too (Matheson 
& Kenett, 2020, p. 3). According to Matheson and Kenett (2020, p. 4), the larger 
motor regions in musicians’ brains (compared to non-musicians) may not only 
facilitate fine motor control but may also allow “improvisors to generate a greater 
array of potential musical motoric actions to select from, therefore functionally 
contributing to an improvisor’s ability to be creative.” 

Overall, there are several brain areas involved in the planning and execu-
tion of actions, including the dorsolateral prefrontal cortex (DLPFC), primary 
motor cortex (M1), lateral premotor cortex (LPMC), supplementary motor area 
(SMA), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and cerebel-
lum (Hommel et al., 2016, p. 18). Along with these brain regions, musical improv-
isation is also associated with bottom-up networks involved in auditory pro-
cessing and output monitoring (which operate at fast timescales) and top-down 
networks involved in flow states and social aspects of improvisation (which op-
erate at slow timescales) (Faber & McIntosh, 2019). In the following discussion, I 
will focus on interaction between the executive control network and the default 
mode network, the latter of which is associated with spontaneous internally ori-
ented processes such as mind wandering and task-independent thought (An-
drews-Hanna, 2012). 

In one of the first studies on the neuroscience of musical improvisation, 
Limb and Braun (2008) compared functional magnetic resonance imaging (fMRI) 
activation patterns in professional jazz musicians. Participants were asked to 
play a C major scale, improvise melodies using the notes of this scale only, play 
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a pre-learned melody of a jazz composition, and improvise freely based on the 
chord progression of that musical work. Both improvisation settings showed in-
creased activity in the frontal polar cortex (a portion of the medial prefrontal cor-
tex) and simultaneous decreased activation throughout the lateral OFC and the 
DLPFC. Most brain regions showed opposite patterns of activation when partic-
ipants were playing pre-learned musical sequences. 

This pattern of decreased activity of the DLPFC and increased activity of 
the medial prefrontal cortex (MPFC) is associated with deactivation of the exec-
utive control system and activation of the default mode regions (Beaty, 2015, pp. 
111-112). In accordance with Limb and Braun (2008), Berkowitz (2010) proposed 
that expert-level improvisation is characterized by a state of “letting go,” where 
improvisers allow automated processes to operate at lower levels of abstraction 
(e.g., the note-to-note level) and where they direct their “conscious attentional 
resources to higher-level musical processes” (p. 125). In his view, improvising 
musicians are only aware of a small portion of what processes are involved in 
their improvisations. Since many of these processes are only witnessed by impro-
vising musicians, Berkowitz used the name ‘the creator and witness phenome-
non’ to describe this issue. (Berkowitz, 2010, p. 125.) 

The DLPFC is associated with top-down processing, attention to external 
cues, and executive functions such as working memory (Erkkinen & Berkowitz, 
2019, p. 514). Decreased activation in the DLPFC during musical improvisation 
has been reported in several studies (Limb & Braun, 2008; McPherson et al., 2016; 
Tachibana et al., 2019). In addition, Liu et al. (2012) found decreased activation in 
the DLPFC during freestyle rap. However, Tachibana et al. (2019) did not find 
consistent support for deactivation of the DLPFC during improvisation tasks. 
These authors also found that subjective positive feelings regarding the creativity 
of their performance were associated with decreased activation in the DLPFC, 
whereas subjective feelings of formulaic performance were associated with in-
creased activation in the DLPFC (Tachibana et al., 2019). In another study, 
McPherson et al. (2016) found that the expression of positive emotions through 
improvisations was associated with more pronounced deactivation in the DLPFC 
compared to the expression of negative or ambiguous emotions. 

However, the role of the DLPFC in musical improvisation is controversial as 
several studies (Bengtsson et al., 2007; de Manzano & Ullén, 2012; Donnay et al., 
2014; de Aquino et al., 2019) have reported increased activation in the DLPFC dur-
ing musical improvisation, not the other way around. One explanation for these 
contradictory findings regarding the role of the DLPFC in musical improvisation 
is that increased demands on attention and memory may contribute to increased 
activation in the DLPFC (Liu et al., 2012, p. 6). Similarly, Donnay et al. (2014, p. 8) 
argued that the increased activation of the DLPFC may have been caused by the 
social context involved in duo improvisations and the higher demands on working 
memory in duo improvisation compared to solo improvisation. Loui (2018, p. 139) 
proposed that the decreased activity in the DLPFC in Limb and Braun’s (2008) 
study may have been caused by lower demands on working memory in the im-
provisation task compared to the control task in which participants were required 
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to recall and produce novel melodies. In addition, Pinho et al. (2016) found that the 
activity of the DLPFC may depend on task constraints. When they asked their par-
ticipants to improvise with loose task constraints (either happy or fearful emo-
tional content), the DLPFC was less activated compared to when participants were 
asked to improvise with a pre-defined set of notes. 

Several studies have also suggested that the DLPFC may have a different role 
for more experienced musicians versus less experienced musicians, and that dif-
ferent processing modes (in accordance with dual-processing models) may have a 
different role for musicians with different levels of expertise. For instance, Beaty 
(2015, p. 114) noted that while Limb and Braun’s (2008) participants were profes-
sional jazz musicians, participants in several other studies (e.g., Bengtsson et al., 
2007; de Manzano & Ullén, 2012) were classical musicians who probably were not 
as experienced with improvisation as jazz musicians. Rosen et al. (2016) used an-
odal tDCS applied over the right DLPFC (which is associated with Type 2 pro-
cessing) and found that while the quality of performance increased among less 
experienced musicians, the effect was reverse for more experienced musicians. 
Lopata et al. (2017) found that jazz improvisation (for participants with formal 
training in improvisation) was associated with greater frontal upper alpha-band 
activity compared to tasks where participants either listened to music or repro-
duced pre-learned melodies, and interpreted this finding “as evidence of a creative 
mental state characterized by spontaneous processing, and likely by a degree of 
top-down inhibition and internal focus of attention” (Lopata et al., 2017, p. 255). In 
another study, Pinho et al. (2014) found that improvisation experience was nega-
tively correlated with activation of the DLPFC. In addition, musicians with more 
experience in improvisation “showed higher functional connectivity between pre-
frontal, premotor, and motor regions of the frontal lobe” (p. 6161). According to 
these authors, “skilled improvisational performance may thus be characterized by 
both lower demands on executive control and a more efficient interaction within 
the network of involved brain areas” (Pinho et al., 2014, p. 6162). 

In addition to exploring the function of separate brain regions like the 
DLPFC, neuroscientific studies on improvisation have also been particularly in-
terested in interactions between different brain regions. On a systems level, an 
interaction between the default mode network (DMN) and the executive control 
network (ECN) appears to play an important role in creative cognition (Beaty et 
al., 2015; Beaty et al., 2018) and musical improvisation (Beaty, 2015; Belden et al., 
2020). For instance, Belden et al. (2020) reported that both improvising musicians 
and classical musicians showed higher connectivity between the ventral DMN 
and the bilateral ECN compared to subjects with minimal training in music. Im-
provising musicians showed the highest connectivity between the DMN and the 
ECN, whereas classical musicians showed the highest connectivity between the 
ventral DMN and the frontal pole. 

3.3.3 4E cognition and dynamic systems framework 

Recent work on creativity has increasingly adopted the idea that creativity “is 
shaped continually, in real-time, by past, present and anticipated interactions 
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with the external world” (Bishop, 2018, p. 2). The 4E cognition framework (which 
refers to embodied, embedded, enactive, and extended aspects of cognition) con-
sists of different but partially overlapping perspectives on cognition (Malinin, 
2019, p. 2). In short, embodied cognition refers to intrinsic coupling of the mind 
and the body, the view that cognition emerges from interaction between the brain, 
the body, and the environment, and deconstruction of cognition-related dualisms 
such as the distinction between the brain and the body and the distinction be-
tween action and perception55. Embedded cognition refers to how cognitive ac-
tivity is shaped by natural, social, and cultural environment. Enactive cognition 
underlines the notion of sense-making and the two-way process in which an au-
tonomous agent shapes the environment and is shaped by it. Extended cognition 
refers to how cognition is extended to the world when cognition is considered 
not to be bound to the brain or even the body. (Wilson & Foglia, 2017; van der 
Schyff et al., 2018; Malinin, 2019.) 

These approaches emerged as a departure from traditional cognitivist ac-
counts, where the brain was thought to play a primary and almost exclusive role 
in cognition, and which ignored the importance of interactions between the brain, 
the body, and the environment (Gallagher, 2018). These approaches also rejected 
“the sequential sense-think-act processing cycle,” which had dominated the field 
of cognitive science (Beer, 2000, p. 97). Moreover, theories within the 4E cognition 
framework also appeared as a reaction to neurocentric ideals within traditional 
cognitive science (e.g., the idea that all psychological processes can be reduced to 
neuroscience and explained by neuroscientific research) and various neurocen-
tric disciplines that have emerged in recent years (e.g., neurophilosophy, neu-
roeducation, and neuroaesthetics) (Gallagher, 2018). 

From the perspective of embodied cognition, the brain is seen as a part of a 
larger system which consists of the entire human being including the body and 
its sensorimotor abilities. Wilson and Foglia (2017) specified three ways of how 
the body plays a role in cognition and cognitive processing: “the body can func-
tion as a constraint on cognition, as a distributor for cognitive processing, or as a 
regulator of cognitive activity” (Wilson & Foglia, 2017, 3 What embodied cogni-
tion is section). The body as a constraint thesis suggests that the content and type 
of representations are influenced by bodily characteristics. This thesis also sug-
gests that different types of cognition are more natural to some people but diffi-
cult or impossible for others. The body as a distributor thesis suggests that cog-
nitive processing is distributed or shared between the mind and the body. As a 
result, the body may take part in cognitive tasks and reduce cognitive load re-
lated to the task. Finally, the body as a regulator thesis holds that the body en-
sures the coordination between internal states and action through feedback. (Wil-
son & Foglia, 2017.) 

The dynamic systems approach “describes how self-organizing, complex, 
systems emerge and develop over time” (van der Schyff et al., 2018, p. 8). A major 

 
55  The embodiment thesis holds that “the body, the brain, and the mind must be under-

stood as one system” in which thought is not separated “from sensation or action.” In-
stead, “perception, thought, and action” are considered to be codependent processes. 
(Iyer, 2016, p. 76.) 
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difference between this approach and traditional views in psychology is that de-
velopment is thought to be caused directly by changes in the relationship be-
tween multiple components instead of a unidirectional link between the brain 
and behavior (Thelen, 1995). In terms of motor actions, for example, each move-
ment is thought to emerge from multicausal interactions between various com-
ponents including body, context/environment, and task characteristics. 

For infants as well as for adults, movements are always a product of not only the cen-
tral nervous system but also of the biomechanical and energetic properties of the body, 
the environmental support, and the specific (and sometimes changing) demands of the 
particular task. The relations between these components is not simply hierarchical (the 
brain commands, the body responds) but is profoundly distributed, “heterachical,” 
self-organizing, and nonlinear. (Thelen, 1995, p. 81.) 

The dynamic systems approach assumes that complex systems are composed of 
a large number of elements that are in contact with the environment without an 
“executive agent or a programme that produces the organized pattern” (Smith & 
Thelen, 2003, pp. 343-344). As a major advantage compared to classical views, the 
dynamic systems approach can circumvent the homunculus problem. Homun-
culus refers to a theoretical concept or a system which acts as the decisive force 
behind actions. For instance, theories based on concepts like the will, central ex-
ecutive, and attentional supervisory system all suffer from this problem (Hom-
mel et al., 2016, p. 6). The problem is that these concepts lead to circular explana-
tions, where inhibition of actions, for example, is explained by the existence of an 
inhibitory system or where willed actions are explained by the existence of the 
will (Hommel et al., 2016, pp. 6-7). 

Some researchers within the 4E cognition and dynamic systems framework 
have rejected the notion of mental representations in their research. Advocates of 
anti-representional views understate or even deny the significance of mental rep-
resentations (i.e., internal models that can produce behavior independently from 
the world). However, theories of human behavior that ignore mental representa-
tions are faced with insuperable problems which undermine their plausibility and 
generality. For instance, skilled chess players can perform well even with their vi-
sion impaired (as is the case in blindfold chess), which is easy to explain with men-
tal representations but difficult otherwise (Gobet, 2016, p. 201). Also, anticipatory 
behavior cannot be explained solely by an interaction between the organism and 
its environment because anticipation “involves internal factors beyond the imme-
diate constraints of the environment to achieve or fulfill future needs, goals or con-
ditions” (Wilson & Foglia, 2017, 4.2 Mental representation section). Similarly, rare 
medical conditions such as locked-in syndrome show that cognitive functioning 
can remain normal even if a person is completely unable to move his or her limbs 
and to interact with the environment (Paavilainen, 2020, p. 64). 

To my knowledge, there are almost no empirical studies that have explored 
musical creativity from the 4E cognition and dynamic systems framework. As an 
exception, Walton et al. (2018) investigated coordination in piano duos when pi-
anists were playing either with a swing backing track (a bass line for the jazz 
standard There’s No Greater Love) or a continuous drone. According to their results, 
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improvised parts were more similar in terms of note combinations and key press 
timings when the piano duos played with a drone. The duos also produced more 
shared movements with drones. Based on the increased repetition of each other’s 
actions and movements with drones, it is surprising that the musicians reported 
more freedom when they were playing with a drone instead of a swing backing 
track. The authors applied cross-recurrence quantification analysis which can be 
used to identify recurring states between two systems from dynamic systems 
perspective (see Marwan et al., 2007; Marwan, 2008; Demos et al., 2014). More 
specifically, Walton and his colleagues calculated the proportion of shared note 
combinations and key press timings and the maximum length of recurring pat-
terns and key press timings between the two pianists. Cross-recurrence quantifi-
cation analysis was also applied to movements and was supplemented by a post-
session interview with the pianists. Although the authors did not directly address 
musical creativity in their research, their study suggests that cross-recurrence 
quantification analysis could be useful in creativity research. 

Radical forms of the 4E cognition and dynamic systems research seem to 
have limited explanatory power in creativity research. For example, some aspects 
of musical improvisation (e.g., the repetition of melodic patterns in different so-
los of the same musician) are difficult to explain without the notion of mental 
representations. To circumvent this problem, it should be noted that the 4E cog-
nition and dynamic systems approaches do not necessarily require to deny the 
notions of mental representations and preprogramming (Wilson & Foglia, 2017). 
If reformulated to reject an exclusive and unidirectional role of mental represen-
tations, these approaches certainly have much to offer and could provide novel 
insights on cognition. Finally, the 4E cognition framework offers a useful theo-
retical basis to investigate idea generation and the role of familiar instruments in 
music performance. There is little knowledge on whether musicians use different 
sources of idea generation when they switch from one instrument to another (e.g., 
when they switch from playing the trumpet to use their voice; see Chapter 4.1: 
Sources of idea generation in jazz improvisation). In addition, although it is well-
known that musicians prefer to play concerts with familiar instruments (e.g., a 
familiar guitar model) whenever it is possible, a recent study did not find statis-
tically significant differences in timing between performance of scales with three 
different piano keyboards (Lipke-Perry et al., 2019). Also, it could be useful to 
perform case studies to investigate how physical and bodily traumas might affect 
the role of the body as a mediator between the external world and the mind. 

3.3.4 Experts’ insights into their creative process 

Cook (2006, p. 18) warned about intentional fallacy when making inferences 
about composer’s intentions: composer’s intentions cannot be known except 
through an analysis of the composition, and as a result, knowledge of such inten-
tions adds nothing to descriptions of the composition. Similarly, Brownell (1994) 
used the notion of ‘notism’ to describe research that is focused on products rather 
than processes. In his view, it is difficult to see how even the most detailed anal-
ysis could explain how a musical work emerged. In jazz research, however, audio 
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recordings and transcriptions “appear to be the best possible evidence to use, 
especially when studying elite expert performance” (Lehmann & Goldhahn, 2016, 
p. 347). With famous musicians, there are also often no alternatives to using audio 
recordings in data collection (Widmer, 2005, p. 17). 

Another common approach to investigate processes that underlie improvi-
sation is to ask musicians to report their experiences of improvisation process. 
Although such introspective reports may provide valuable information from the 
creator’s point of view, they may be vulnerable to bias. For example, Deliège and 
Richelle (2006) argued that “the more complex the processes at work, the less 
amenable they are to the person itself” (p. 2). It is also important to note that 
when musicians are asked questions in reference to particular recordings, these 
recordings should be recent enough to provide “accurate recollections of their 
thought processes at the moment of creation” (Norgaard, 2011, p. 111). Because 
of this problem, several studies (Hargreaves et al., 1991; Mendonça & Wallace, 
2004; Fidlon, 2011; Norgaard, 2011; Wilson & MacDonald, 2016) have used a pro-
cedure, where participants are asked to think aloud either simultaneously when 
they are performing a task or shortly after that. However, this procedure has its 
own concerns, because instructions “to report cognitive processes may have in-
duced a different mode of control than that which would be employed in typical 
performance” (Christensen et al., 2019, p. 699). 

Although musicians’ knowledge of their craft may help researchers to ask 
relevant questions (McPherson & Limb, 2013) and to provide valuable criticism 
regarding theories of creativity (Huovinen, 2021),56 qualitative studies have lim-
ited possibilities to infer what kinds of processes underlie musical improvisa-
tion57. In fact, subjective reports by expert musicians indicate that their memories 
of their intentions can be vague. For example, the eminent saxophonist David 
Liebman (1996, p. 94) claimed that if he was stopped while playing and asked to 
sing what he was going to play next, he could often only produce the beginning 
of the phrase “in terms of the pitch area, the general melodic contour, rhythmic 
shape and expressive setting (including dynamics, articulation and nuances).”58 
Similarly, Fidlon (2011) found that experienced jazz musicians’ most usual de-
scriptions of what they were going to play next referred to pitch sketches which 
“did not contain specific details about the content or when events would occur” 
(p. 86). In addition, Norgaard (2011) found that experienced jazz musicians 

 
56  Regarding music students’ implicit understanding of musical creativity, Huovinen 

(2021) argued that “students possess a wealth of first-hand experience in musical crea-
tivity and that their theory appraisals might thus tell us something important about 
the scope and nature of theories of creativity” (p. 19). 

57  According to Lehmann and Goldhahn (2016), although musicians may have little diffi-
culties communicating their conscious thought processes, “they admit that the highly 
automatized performance often precludes conscious processing while performing” (p. 
346). 

58  The inability to show exactly what one was going to play next may be partly due to 
unpredictable interactions in group improvisation. According to Liebman (1996, p. 
94), “as the line is revealed, instantaneous response to the accompaniment leads to 
constant revision and reinterpretation. After the outset, a line becomes truly spontane-
ous meaning that where it will end is also unpredictable. This is particularly true for 
the longer lines played.” 
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described their action planning in terms of “architectural elements like note den-
sity, instrument register, and harmonic structure” (p. 116). 

According to Johnson-Laird (2002), cognitive processes that underlie im-
provisation are mostly unconscious and not accessible (for the most part) to con-
scious awareness. As a result, musicians may only have a limited insight into 
what they are doing when they improvise. Other behaviors, like spontaneous 
speech, are no easier in this matter - only a small proportion of processes involved 
in spontaneous speech are available to conscious awareness and therefore it is 
not a simple task to make sense of how people are able to speak fluently. (John-
son-Laird, 2002, p. 417.) Interestingly, musicians can also have major difficulties 
when they are asked to explain basic concepts such as groove and swing. How-
ever, it is likely that the lack of explicit knowledge on the meaning of such con-
cepts has little or no effect on their playing. 

Even experts may have a limited insight of cognitive processes that take 
place during an improvised performance. In fact, much of what happens during 
improvisation is only witnessed by the improvising musician (Berkowitz, 2010, 
p. 125). However, the lack of access to underlying processes of one’s actions does 
not mean that subjective reports about underlying processes are always incorrect. 
Instead of direct awareness of mental processes, subjective reports are based on 
a priori causal theories and beliefs about their plausibility. Depending on the ac-
curacy of such theories, descriptions of underlying causes of actions may be ei-
ther accurate or inaccurate. (Nisbett & Wilson, 1977.) 

According to Dreyfus (2006), skilled actions are characterized by a lack of 
deliberation and reasoning as long as the situation is usual. In his view, expertise 
in any domain requires direct involvement with the situation and rejection of 
rigid context-free rules learned in an earlier phase of progress. Since expertise is 
typically characterized by intuitive responses without deliberation, “all reasons 
advanced to justify a specific action could only be retroactive rationalizations” 
(Dreyfus, 2006, p. 46). Similarly, Høffding (2014) argued: 

In my own investigation of the phenomenology of expert musicians I have not found 
the issue of reason-giving to be of special importance: undertaking a phenomenologi-
cal investigation of expert musicianship, I could ask a musician, ’why are you playing 
this note in this exact way?’ or ’what is the reason you played more loudly in this 
passage?’. Most likely, I would be met with an answer to the effect of ’well I don’t 
know, that is what is written in the score’, ’I guess I just felt like playing it like that’, 
or ’that is how we agreed to do it’. In other words, asking musicians to retroactively 
ascribe reasons to their actions does not yield much insight into their phenomenology. 
(Høffding, 2014, pp. 51-52.) 

On the other hand, the inability to explain the cause of actions does not mean that 
actions are fully automatic. In fact, completely automatic actions probably do not 
exist (Hommel & Wiers, 2017; see also Ericsson & Lehmann, 1996; Christensen et 
al., 2019). 
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4.1 Sources of idea generation in jazz improvisation 

Hargreaves (2012) distinguished between three sources of idea generation in jazz 
improvisation: strategies, audiation, and motor programs59. Musicians may dif-
fer on what source of idea generation they mostly rely on. Musicians may also 
use a different source of ideas when they, for example, switch to a different in-
strument: a trumpet player might primarily rely on strategy-generated ideas 
when playing the trumpet but switch to audiation-generated ideas when singing 
(Hargreaves, 2012, pp. 354, 365). Such a change in the source of ideas is illustrated 
clearly in the following quote (for a similar example, see Hargreaves, 2012, p. 354): 

My quintet was performing and the saxophonist had swiftly moved from alto saxo-
phone to clarinet, and had just concluded a superb solo. Having worked with him for 
five years or so, I knew his ‘voice’ and noticed something. I asked him “You sound 
different, do you feel your ideas on clarinet come the same way?” After some deliber-
ation and reflection, he replied, “No, it’s different” but at the time he did not elaborate. 
I wondered if the change of instrument altered the musician’s creative process. (de 
Bruin, 2015, p. 91.) 

A discussion of different sources of idea generation is relevant to the current 
study because these different sources of idea generation may indicate different 
types of creativity. Any measure of creativity only applies to specific types of 

59  The distinction between motor-generated and audiation-generated ideas resembles 
the two levels of playing discussed by saxophonist David Liebman. The first level re-
fers to playing well-learned ideas which are “immadiately ready to be reproduced in a 
real playing situation” (Liebman, 1996, p. 31). The second level refers to “working out 
of a newly formed, not yet perfected idea,” where the musician “may have an idea in 
his mind or ear but not yet under his fingers” (Liebman, 1996, p. 32). Liebman also 
mentioned an extremely rare third level of playing, where “the artist knows he has 
heard the seeds of something different” (Liebman, 1996, p. 32). 

4 SOURCES AND CONSTRAINTS  
OF IDEA GENERATION 
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creativity. Therefore, researchers should be explicit on what types of creativity 
their research investigates and what kinds of creativity their research ignores. 

4.1.1 Strategy-generated ideas 

According to Hargreaves (2012, p. 359), “strategies provide a specific plan for 
behaviour as a means of solving the compositional demand of improvisation.” 
Strategy-generated ideas do not necessarily require musicians to audiate their 
ideas, because of why this source of ideas can be used even by beginners whose 
audiation skills may yet be underdeveloped (Hargreaves, 2012, p. 360). Strategies 
are also useful in educational settings since they can be consciously analyzed and 
applied (Hargreaves, 2012, p. 363). It is noteworthy that a number of strategies 
used in composition can also be applied in improvised music. Such strategies 
include different forms of variation (e.g., transposition, augmentation, and dim-
inution of musical ideas). However, some strategies used in composition (e.g., 
inversion and retrograde) are cognitively too demanding to be used in impro-
vised music. 

Norgaard (2011) interviewed seven artist-level jazz musicians to reveal 
their thought processes during improvisation. Each participant was first asked to 
play an improvised solo on a familiar key and chord progression (blues in F ma-
jor). After participants completed their improvisations, they were asked to ex-
plain how they constructed their solos. As they explained their behavior, partic-
ipants were introduced to recordings and preliminary transcriptions of their 
playing. According to the results, all musicians reported that they planned and 
evaluated their playing. They also reported four distinct sources of idea genera-
tion: the use of well-learned ideas, making note choices based on harmonic pri-
ority (where appropriateness of note choices in relation to the chord progression 
is prioritized), making note choices based on melodic priority (where attention is 
primarily focused on melody instead of the chord progression), and repeating 
ideas from previous parts of the improvisation with or without modifications. 

In another study, Wilson and MacDonald (2016) investigated strategies 
used in free improvisation. Based on interviews with 15 musicians, the authors 
found two basic strategies: (1) maintaining the current direction of music, and (2) 
changing the current direction of the music either by making an initiative to 
change the current direction of the music or responding to someone else’s initia-
tive to change the current direction of the music. The latter strategy was further 
divided to three substrategies: adoption (where responses are highly similar to 
contributions of another musician), augmentation (where responses are partly 
similar with contributions of another musician), and contrast (where responses 
are different from contributions of another musician). Other strategies reported 
in previous research include creating a certain mood and building a narrative 
(Hargreaves et al., 1991). 
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4.1.2 Audiation-generated ideas 

According to Gordon (1989, p. 3), “a person audiates when he can hear and com-
prehend music for which the sound is not physically present.” Audiation is re-
lated to musical imagery, which refers to “a multimodal process by which an 
individual generates the mental experience of auditory features of musical 
sounds, and/or visual, proprioceptive, kinesthetic, and tactile properties of mu-
sic-related movements, that are not (or not yet) necessarily present in the physical 
world” (Keller, 2012, p. 206). In comparison, audiation is a narrower term and 
limited to auditory modality. Audiation is also related to playing by ear, which 
refers to the ability to use internal models of “what the music should sound like” 
to inform what notes should be played (Woody, 2012, p. 82). 

There are various benefits on audiation skills and other forms of mental im-
agery. For example, playing by ear is an essential skill for musicians and supports 
the development of various other skills including sight-reading, improvisation, 
playing from memory, and performing rehearsed music (for a review, see Woody, 
2012). According to Pecenka and Keller (2009), auditory imagery may also facili-
tate action coordination in musical group performance by improving the ability 
to anticipate future sounds by other musicians. According to their results, partic-
ipants who performed well on pitch imagery and temporal imagery tasks syn-
chronized their tapping more precisely with stable and changing tempo. In addi-
tion, participants who performed well on imagery tasks tended to predict rather 
than track tempo changes. 

In contrast to playing well-learned patterns, the use of audiation as a source 
of ideas allows musicians to use a wider range of ideas that is only constrained 
by what one has heard in his/her lifetime. However, using a musical instrument 
to produce audiation-generated ideas can be difficult even for musicians with the 
highest level of expertise. Performance context may affect the difficulty of pro-
ducing audiation-generated ideas with a musical instrument, but there are prob-
ably several other factors that may also have an effect. According to the legendary 
jazz bassist Ron Carter, the ability to produce audiated sounds can be disturbed 
“if the room is really boomy” (e.g., a gymnasium), if “it has a really high ceiling,” 
or if “there is a lot of carpet in the room” (Nurmi, 2018, p. 23). In accordance with 
these claims, several studies have shown that delayed auditory feedback may 
disrupt music performance (Finney, 1997; Bartlette et al., 2006).60 In addition, Kel-
ler (2001) proposed that several factors including poor acoustics, anxiety, inade-
quate technical skills, and distractions may influence allocation of attentional re-
sources in music performance. 

A growing body of research suggests that perception-action coupling and 
sensory-motor associations play an important role in music performance (for re-
views, see Novembre & Keller, 2014; Maes et al., 2014), including audiation (see 
Keller, 2012). With its roots in the 19th century writings of ideomotor theorists, 
perception-action coupling refers to a view that perception and action are 

 
60  For a discussion on this issue, see Chapter 4.1.5: The role of sensory feedback in idea 

generation. 
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strongly intertwined61. In the words of Novembre and Keller (2014, p. 1), “given 
an association between movements and their ensuing effects, the perception of 
an effect can trigger a representation of the movement necessary to execute it. 
And vice versa, movement can trigger perceptual processes.” Sensory-motor as-
sociations allow to produce intentional actions based on expected sensory conse-
quences (forward modeling) and to activate associated movements based on per-
ceived consequences (inverse modeling) (Maes et al., 2014). 

In support to theories of perception-action coupling in music performance, 
there is neuroscientific evidence that both auditory and motor cortex may be in-
volved during musical imagery (Zatorre & Halpern, 2005). For instance, watch-
ing silent videos of someone playing the piano activates auditory cortex among 
musicians (Haslinger et al., 2005). Conversely, listening to familiar music pro-
duces involuntary activation in the motor cortex among musicians (Haueisen & 
Knöschen, 2001). Experimental studies have also shown that correspondence of 
perceived sounds (or other stimuli) and associated actions has an impact on re-
action time and error-proneness. For example, Drost et al. (2005a) found that ex-
pert pianists produced requested chords faster when they were simultaneously 
presented a congruent auditory stimulus (the requested chord) compared to 
when they were presented an incongruent auditory stimulus (a different chord). 
In another study, these authors also found that incongruent auditory stimuli can 
lead to false responses (Drost et al., 2005b). In accordance with these studies, Kel-
ler and Koch (2008) found that action planning was faster when responses in a 
tapping task triggered congruent auditory effects (e.g., when tapping an upper 
key triggered a high-pitched sound) compared to incongruent auditory effects. 
This effect was more prominent with participants who had more musical experi-
ence, which suggests that audiation skills improve with musical experience and 
lead to an increased role of anticipated action effects in action planning. (Keller 
& Koch, 2008.) 

Learning to play a musical instrument generates links between perceptual 
effects and corresponding motor actions. Perception-action coupling enhances 
the prediction of self-generated and observed actions of others (what and when 
will happen) and helps to entrain behavior in joint actions. (Novembre & Keller, 
2014.) These functions are evident in dancing and orchestral playing, for example, 
both of which require ongoing comparison between self-generated actions and 
those generated by others (Jäncke, 2012, p. 26). Perception-action coupling also 
allows adaptation to novel situations (Goldman, 2016). As an example,  

The action of picking up a glass of water is a different action every time depending on 
the size of the glass, the starting orientation of the body, the distance of the glass from 
the body, etc. In order to successfully interact with the world, we need this kind of 

 
61  According to ideomotor theorists, “human actions are initiated by nothing other than 

the idea of the sensory consequences that typically result from them” (Stock & Stock, 
2004, p. 176). The execution of actions does not require any knowledge of how the mo-
tor system functions. In contrast, individuals learn what effects are linked to which ac-
tions. (Stock & Stock, 2004; for a review on contemporary ideomotor research, see Shin 
et al., 2010.) 
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coupling between sensory and motor systems in order to adapt to new situations. 
(Goldman, 2016, para. 4.6.) 

Acquisition of sensory-motor associations explains how musicians can produce 
audiation-generated ideas with their musical instruments. However, it is possible 
to imagine sounds that one is unable to produce, which indicates that contents of 
imagery are not fully constrained by existing associations between perception 
and action. In addition, one can also imagine things that one has never perceived. 
According to Bishop (2018), an explanation of why humans can imagine some-
thing they have never experienced may be the ability “to selectively recall ele-
ments of prior perceptual experiences and recombine them into something new” 
(p. 12). 

It is important to emphasize that auditory-motor associations are learned 
(Maes et al., 2014) and their strength increases with experience (Keller & Koch, 
2008; Drost et al., 2005a, 2005b). Auditory-motor associations are usually prac-
ticed by imitation and transcription (both of which develop the skill to associate 
sounds with corresponding movements) and by learning musical structures in 
all keys (which develops the ability to produce desired sounds in different con-
texts) (Goldman, 2016, para. 4.8). For less trained musicians, it might be difficult 
to produce audiation-generated ideas with a musical instrument. However, 
transfer of audiated sounds to corresponding actions may not always be success-
ful even for skilled musicians. 

4.1.3 Motor-generated ideas 

Motor-generated ideas refer to the use of well-learned motor programs as a basis 
of idea generation. In contrast to audiation-generated ideas, motor-generated 
ideas do not require prior audiation (Hargreaves, 2012, p. 362)62. This difference 
is illustrated in the following quote from jazz musician Harold Ousley: 

Sometimes, the ideas come from my mind, and I have to find them quickly on my horn. 
[…] But other times, I find that I am playing from finger patterns; the fingers give it to 
you. (Berliner, 1994, p. 190.) 

The role of motor-generated ideas in jazz improvisation has been emphasized in 
several studies. In fact, one of the most persistent ideas in improvisation research 
is that improvisation is a process of stringing together pre-learned musical mate-
rials 63 . As an example, Pressing (1988, p. 168) argued that improvisation is 

62  Saintilan (2015) performed a preliminary study based on nine interviews to investigate 
whether imagery is always used in performance of well-learned music. Most musi-
cians reported using at least auditory imagery during performance. This finding indi-
cates that the clear-cut distinction between motor-generated and audiation-generated 
ideas is questionable. On the other hand, different sources of ideas may become syn-
thesized with increasing expertise (Hargreaves, 2012, p. 365). 

63  This idea should be viewed in the broader context of creativity research, where it has 
been long thought that novel ideas are not developed out of nothing but from combi-
nations of pre-existing units of knowledge (e.g., Mednick, 1962; Schubert, 2011, 2021). 
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basically a process of stringing event clusters together64. There is some evidence 
to support this claim. According to Norgaard (2014), 99.3% of notes in a corpus 
of forty-eight solos by Charlie Parker were part of some recurring melodic pat-
tern with at least three intervals. This finding is similar to Weisberg et al. (2004), 
who found that the average proportion of notes captured by recurring 4-interval 
melodic patterns was 90% in six solos by Charlie Parker. In another study, Nor-
gaard (2011) interviewed seven artist-level jazz musicians and found that one of 
the participants “described his improvisational thinking as connecting smaller 
units to form longer lines” and “compared this to building with Legos, in which 
creation is a process of connecting pre-formed blocks” (p. 118). This idea is also 
common in expert systems research (Ramalho et al., 1999; Hodgson, 2006; Pachet, 
2012). According to Ramalho et al. (1999, p. 6), however, jazz improvisation is not 
limited to reusing and stringing pre-learned musical fragments into larger units, 
but such a design is a successful way to construct expert systems for jazz improv-
isation. 

There is little doubt that people often repeat their typical behaviors, and 
that this also holds true for improvising musicians. However, while musicians 
often reuse the same melodic and rhythmic patterns, and melodic contours in 
their improvisations, novel musical ideas often emerge too (Johnson-Laird, 2002, 
p. 430)65. According to Johnson-Laird (2002, p. 430), relying on a large number of 
pre-learned melodic patterns instead of creating novel melodies during perfor-
mance would be impractical for experienced musicians. 

According to Brownell (1994), improvisation as a process of stringing pat-
terns together was already considered to be an inadequate representation of for-
mulaic theory by its early advocates such as Treitler (1974) and Gushee (1991). 
As an example, consider the following citation from Treitler (1974): 

If the singer has accumulated a repertory of standard formulas, each serves him when 
his knowledge of theme and formulaic system calls for a phrase of its characteristics. 
They belong to a complex of habits and associations that enable the singer to compose 
at high speed. […] But this is not to say that the technique of oral composition depends 
on the singer’s retention of a stock of standard formulas which he strings together. The 
formulaic analysis of an oral poem is a matter, not of making a count of recurrent 
phrases, but of identifying the formulaic systems that regulate the verses of the poem. 
(Treitler, 1974, p. 356.) 

Motor-generated ideas are sometimes thought to have less aesthetic value com-
pared to audition-generated and strategy-generated ideas. According to 
Poutiainen (2019, p. 25), practicing idiomatic patterns (also called formulas, cli-
chés, licks, tricks, pet patterns, mannerisms, signature phrases, vocabulary pat-
terns, and vocabulary phrases) is an important part in learning jazz language. 

 
64  However, there are very few references to this idea in Pressing’s most famous articles 

(Pressing, 1984, 1988, 1998) and therefore it appears that the view of improvisation as 
basically a process of inserting pre-learned building blocks in a row may be a misinter-
pretation of Pressing’s central claims. Pressing also noted himself that his theory has 
been severely misinterpreted in some cases, but unfortunately, he did not specify how 
it has been misunderstood (Pressing, 1998, p. 56). 

65  According to Johnson-Laird (1988, p. 211), no one (except for complete beginners 
maybe) uses pre-learned patterns all the time. 
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However, improvisations where such patterns are used too frequently may have 
little artistic value (Poutiainen, 2019, p. 295). Despite its occasional bad reputation, 
even expert-level musicians sometimes fall back to merely playing their well-
learned clichés (Hargreaves et al., 1991, p. 53). 

4.1.4 Collaborative idea generation 

Jazz is most often performed in groups. As a result, collaborative forms of crea-
tivity have an important role in jazz improvisation. There are several phenomena 
related to collaborative idea generation, including communication, interaction, 
group flow, we-agency, shared cognition, and shared intentions. Importantly, 
collaborative idea generation is distributed across individuals instead of guided 
by a single person and can lead to unpredicted results “that cannot be attributed 
to any one person” (Bishop, 2018, p. 2; see also Sawyer & DeZutter, 2009). As 
another important aspect of collaborative idea generation, collaboration can also 
lead to results that are “greater than the sum of individual contributions” (Bishop, 
2018, p. 2). These two aspects of collaborative idea generation are referred as a 
phenomenon called emergence, which can be defined as follows: 

A property of a system is said to emerge from the system’s parts in interaction when 
(a) the system property is not held by any of the parts (a commonly used example is
water; water is a liquid, but hydrogen and oxygen are not); (b) the system property
could not be predicted even if one held a full and complete knowledge of the parts.
(Sawyer & DeZutter, 2009, p. 83.)

The notion of emergence plays an important role in dynamic system theories, 
where ‘emergence’ refers to “the coming into existence of new forms through 
ongoing processes intrinsic to the system” (Smith & Thelen, 2003, p. 343)66. Line-
arity and nonlinearity are also important notions in dynamic system theories. 
Whereas the output of a linear system is simply a sum of contributions of indi-
vidual parts (Paavilainen, 2020, p. 54), nonlinear systems operate through inter-
actions in which “small changes in one or more components of the dynamic sys-
tem can lead to reorganization and to large differences in behaviour” (Smith & 
Thelen, 2003, p. 347). In linear systems, the outcome is the combined effect of all 
individual parts. In contrast, nonlinear systems can produce surprising effects 
that cannot be explained by properties of individuals parts.67 

Further research could benefit from discovering new ways to measure cre-
ativity in the context of group improvisation. As an alternative to qualitative 
methods to study emergence (e.g., interaction study; see Sawyer & DeZutter, 
2009), quantitative methods using transcriptions and audio recordings could be 

66  Similarly, the notion of emergent property (or emergent product) refers to novelty 
caused by interaction between individual parts of a system (see Paavilainen, 2020, p. 
31). 

67  According to Sawyer and DeZutter (2009, p. 82), collaborative emergence is more 
likely to occur if the following four characteristics take place: the outcome is not pre-
defined, each person’s contributions depend on immediately preceding actions, conse-
quences of actions can be changed by subsequent actions, and each person’s contribu-
tions are equally important. 
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highly useful in improvisation studies. Recurrence quantification analysis and 
cross-recurrence quantification analysis could be helpful in this matter (see Mar-
wan et al., 2007; Marwan, 2008; Demos et al., 2014). 

4.1.5 The role of sensory feedback in idea generation 

Sensory feedback refers to a process where “visual, aural, tactile, and kinaesthetic 
data generated during action allows performers to assess if their intended goal is 
achieved” (Hargreaves, 2012, p. 357). Instrumental improvisers may use feed-
back from all senses, and “the design of some instruments allows more precise 
visual feedback and more categorical kinaesthetic feedback than others” (Press-
ing, 1988, p. 135). In contrast, improvising vocalists can only rely on auditory and 
kinaesthetic feedback (Pressing, 1984, p. 354). Performance conditions may affect 
the importance of sensory feedback. For instance, altered auditory feedback may 
be less disturbing if actual sounds cannot be anticipated (Goldman, 2013, p. 220). 

Auditory feedback facilitates learning of new musical works (Repp, 1999; 
Finney & Palmer, 2003) and plays a major role in intonation and error correction 
among string players (Chen et al., 2008)68. Auditory feedback may also play an 
important role in music performance when playing an unfamiliar instrument or 
in a new environment (Repp, 1999). In addition, continuous feedback allows mu-
sicians to make changes to their action plans (Goldman, 2019). According to 
Goldman, 

performers are continuously evaluating and re-evaluating the sounds they are making 
in relation to themselves and their co-performers. Feedback is continuously guiding 
movements, and thus they are in some sense constantly deciding what to do next. This 
continuous control allows improvisers to change course fluently and at almost any 
point in time in response to a new idea of their own or that of a fellow performer. 
(Goldman, 2019, p. 284.) 

However, it is probably not only continuous feedback per se, which allows im-
provising musicians to make changes to their actions plans but also their rela-
tively short reaction times contributes to this. According to a recent study, musi-
cians’ simple reaction times for auditory and tactile stimuli were shorter com-
pared to non-musicians (Landry & Champoux, 2017), which indicates that musi-
cians may be able to use feedback to guide their choices more fluently compared 
to non-musicians. It is likely that expert jazz improvisers’ ability to use feedback 
of their own playing and their co-performers’ playing is better compared to nov-
ice jazz improvisers. 

 
68  In addition to sensory feedback, predictive control mechanisms also play an important 

role in error detection and error correction (for a review, see Maidhof, 2013). Maidhof 
et al. (2009) and Ruiz et al. (2009, 2011) found that expert pianists can detect erroneous 
notes prior to their onset and prior to the possibility of using auditory feedback for 
this purpose. According to these studies, incorrect notes were also executed more 
slowly (as indicated by increased inter-onset intervals between correct and incorrect 
notes) and with decreased loudness (as indicated by lower MIDI velocity). Moreover, 
Ruiz et al. (2009, 2011) also found that notes after incorrect notes were also executed 
more slowly. 
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Except for learning new musical works (Repp, 1999; Finney & Palmer, 2003), 
the absence of auditory feedback has little effect on piano performance (Finney, 
1997; Repp, 1999; Finney & Palmer, 2003; Ruiz et al., 2009). In contrast to the ab-
sence of auditory feedback, delayed auditory feedback seriously impairs music 
performance by increasing error rates (Finney, 1997) and timing asynchrony be-
tween musicians (Bartlette et al., 2006). Both delayed and altered feedback may 
also disrupt the use of existing sensory-motor associations and thus prevent im-
provisers from using their “well-learned motor patterns in performance, which 
could force them to rely on some other kind of knowledge and process to gener-
ate the music” (Goldman, 2019, p. 287). On the other hand, altered auditory feed-
back does not disrupt musical performance when feedback is noncontextual in 
relation to the performed music (i.e., not part of the note sequence) (Mathias et 
al., 2017) or structurally dissimilar to planned actions (Pfordresher, 2005). In ad-
dition, even if future-oriented altered auditory feedback (where the next note is 
heard instead of the current note) disrupts the production of memorized melo-
dies by causing a temporary slowing down, the same does not apply to past-
oriented altered auditory feedback (where the previous note is heard instead of 
the current note) (Mathias et al., 2017). The absence of auditory feedback may 
have different consequences on the quality of music performance depending on 
whether feedback of one’s own playing or other musicians’ playing is blocked. 
According to Bishop and Goebl (2015), the absence of auditory feedback had neg-
ative effects on synchronization in a duo performance only when auditory feed-
back of the other musician’s playing was blocked. In contrast, the absence of au-
ditory feedback had no effect on synchronization when musicians’ own playing 
was blocked. 

Altered feedback may also have different consequences on the quality of 
music performance depending on modality. Expert musicians who have played 
together for a long time may not necessarily need visual communication or visual 
monitoring of other musicians’ actions to perform successfully as a group and 
they may rely more on auditory feedback instead of visual feedback (Salice et al., 
2019, p. 203). More generally, a reduced need to monitor other musicians’ actions 
may be caused by shared intentions and shared mental models among a group 
of musicians. According to Canonne and Aucouturier (2016), “from the moment 
a band chooses for example My Funny Valentine as a basis for improvisation, they 
know (and know that each of them knows) that the style of music is more likely 
to be jazz than twelve-tone atonality; the musicians will have to follow a given 
chord progression and go into cycles around it; the piece is usually played in a 
moody and relaxed atmosphere, and so on” (p. 545)69. 

There are no studies that have compared performance in normal feedback 
and altered/blocked feedback conditions in the context of jazz improvisation. 
Therefore, it is possible that altered auditory feedback may have a different effect 
on improvised music compared to performance of well-learned music (Goldman, 
2013, p. 220), which is possible with blocked auditory feedback too. 

 
69  According to Sawyer (2006, p. 157), “improvisation could not take place at all without 

some shared conventions, because otherwise communication would be impossible.” 



 
 

84 

4.2 Constraints in idea generation 

A constraint refers to “a rule or condition that imposes limits on what is possible” 
due to limitations of human ability, laws of nature, or limits on what actions are 
acceptable or appreciated in each culture (Leman, 2008, p. 55). In addition, con-
straints impose limits on what actions are appropriate in a particular context. For 
instance, expert musicians must learn to circumvent challenges arising from the 
speed/accuracy trade-off, which refers to increased number of errors with de-
creased response time (for a review on the literature related to the speed-accuracy 
trade-off, see Heitz, 2014). Such a trade-off may occur when musicians “perform 
at the limits of their abilities” which suggests that expert musicians “are subject 
to the same constraints” as everyone else (Pfordresher et al., 2007, p. 85). Any 
musical instrument can also afford only certain possibilities (Goldman, 2013, p. 
212). As a result, the development of musical instruments has played a significant 
role in the increase of virtuosity in Western music (Lehmann, 2012). 

In addition to constraints related to response time, cultural constraints have 
various effects on musicians’ social status, their opportunities for employment, 
appreciation of musical styles, and “the status given to creative or novel musical 
behavior” (Pressing, 1998, p. 57). Constraints also play an important role in mu-
sical style. According to Meyer (1989), “style is a replication of patterning, 
whether in human behavior or in the artifacts produced by human behavior, that 
results from a series of choices made within some set of constraints” (p. 3). This 
definition resembles that of LaRue’s, who defined musical style as repetition of 
similar choices in different compositions (LaRue, 1992, p. ix). In line with Meyer 
and LaRue, Miller (2020, para. 1.13) argued that musical style is “a system of con-
straints within which choices are made that actually produce music.” Musical 
style and music-theoretical guidelines do not place strict limits on note choices. 
Guidelines of music theory can always be bypassed and note choices that have 
never been tried before can emerge in performance. 

Constraints do not only impose limits on what actions are possible or ap-
propriate in a particular context, but they may also facilitate creativity and de-
crease cognitive demands of performing a task. For example, Torrents et al. (2020) 
argued that constraints may lead to the discovery of novel action possibilities. 
New constraints may also release other constraints at different timescales which 
then allows to perform novel actions (Torrents et al., 2020). Moreover, a pre-de-
fined chord progression may decrease cognitive demands in improvisation, be-
cause it provides pre-existing melodic material for the improviser (Laine, 2015, p. 
282) and limits the number of available options in a particular context. 

4.2.1 Constraints on memory 

Human memory is limited and fallible. As an example, it is well-known that 
short-term memory has both capacity limitations (Miller, 1956) and temporal lim-
itations (Peterson & Peterson, 1959). Memories are also vulnerable to changes 
when they are retrieved (also known as the process of memory reconsolidation) 
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(Alberini & LeDoux, 2013). However, memory for melodies might not be vulner-
able to inference and memory decay as long as the melody was encoded success-
fully (Herff et al., 2018). This indicates that memory for melodies is long-lasting 
but depends on whether melodies can be easily encoded. For instance, the recog-
nition accuracy for auditory stimuli is impaired when a stimulus is difficult to 
reproduce or to label, which indicates that such stimuli are not easily stored in 
long-term memory (Schulze et al., 2012). 

Constraints on memory have a crucial role in music perception, music per-
formance, and musical improvisation. Among various theories and models of 
working memory,70 the time-based resource-sharing model of working memory 
(Barrouillet & Camos, 2012) is particularly interesting in the context of the present 
study. According to this model, working memory has two functions (temporary 
storage and processing of information) which share a common limited resource 
(attention). Attention cannot be occupied on both functions simultaneously and 
thus either one of these functions can only take place one at a time. As soon as 
attention is switched from maintenance to processing, memory traces are vulner-
able to temporal decay. (Barrouillet & Camos, 2012.) As a result, tasks that require 
temporary maintenance of intermediary results while performing complex com-
putations (or other complicated cognitive tasks) are difficult, because “calcula-
tions take time, and as time goes by, you may lose track of intermediary results 
because they fade away” (Barrouillet & Camos, 2012, p. 413). Since information 
processing takes time and information cannot be maintained simultaneously 
when it is processed, “the cognitive load of a given activity—that is, its effect on 
the performance of concurrent activities—corresponds to the proportion of time 
during which this activity occupies attention” (Barrouillet & Camos, 2012, p. 414). 

Unfortunately, processing time has received little attention in research that 
investigates the consequences of cognitive load in different tasks. According to 
cognitive load theorists, there are three types of cognitive load (i.e., sources of 
information overload caused by excessive cognitive demands): extraneous, in-
trinsic, and germane cognitive load 71 . Extraneous cognitive load refers to 

 
70  The present study does not distinguish between short-term memory and working 

memory. According to some researchers, working memory differs from short-term 
memory in that the latter refers to short-term maintenance of information but not ma-
nipulation of information in contrast to working memory (Diamond, 2013, p. 143; Jän-
cke, 2019, pp. 237-238). In addition, short-term memory develops earlier and faster 
and it is associated with different neural substrates compared to working memory (Di-
amond, 2013, p. 143). However, there are several definitions of short-term memory 
and working memory, which makes it difficult to distinguish between these two con-
cepts (Cowan, 2008). In addition, Schulze et al. (2018, p. 461) argued that a distinction 
between short-term memory and working memory may not be fruitful, because it is 
often “difficult to know whether a task needs further processing and/or manipulation 
in addition to the passive storage of information.” 

71  According to Sweller (2010), cognitive load theory is an educational theory based on 
five basic principles: (1) long-term memory plays a central role in human cognition, (2) 
learning is a constructive process based on schema construction and automation, in 
which contents acquired through imitation of others and borrowing other people’s 
thoughts are reorganized, (3) random search processes are required when learned 
schemata do not exist for a present problem, (4) changes in long-term memory are 
slow and constrained by limitations of working memory, and (5) there are no limits of 
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excessive demands on working memory caused by instructional design (Kalyuga, 
2010, p. 53). Intrinsic cognitive load refers to excessive demands on working 
memory imposed by simultaneous processing of several elements (Moreno & 
Park, 2010, p. 16). The third source of cognitive load, germane cognitive load re-
fers to cognitive activities that contribute to schema acquisition and automation 
(Kalyuga, 2010, p. 53). Germane cognitive load differs from the other two types 
of cognitive load because of its positive relationship to learning outcomes 
(Moreno & Park, 2010, p. 17). 

In music research, cognitive load has been usually investigated using a 
dual-task paradigm. Dual-task studies investigate how secondary tasks that oc-
cupy attentional resources affect performance of a primary task. For instance, 
Schendel and Palmer (2007) found that recognition accuracy for both auditory 
and visual sequences decreased when participants were asked either to repeat-
edly sing a syllable (“la”) or repeatedly say a short word (“the”) during the recog-
nition task. Fidlon (2011) investigated how musicians with 2-42 years of experi-
ence in jazz performance performed in a dual-task condition, where they were 
asked to play an improvised solo based on the 12-bar blues both in a familiar and 
an unfamiliar key and simultaneously count the number of tactilely perceived 
taps. According to the results, 4 out of the 10 participants were able to perform 
the counting task successfully during their solos regardless of familiarity with 
the key. Two participants successfully performed the counting task when they 
improvised over a familiar key, but not when they improvised over an unfamiliar 
key. Other participants were not able to successfully perform the counting task 
either during their familiar key solos or unfamiliar key solos. Four out of the five 
most experienced participants were able to successfully perform the counting 
task during their solos regardless of key. The remaining participant performed 
poorly in the counting task, probably because of not paying attention to it. Ac-
cording to Fidlon (2011, p. 72), these findings indicate that “experienced impro-
visers can generate music in a way that does not call for the full engagement of 
their attention and working memory.” In another dual-task study, Çorlu et al. 
(2015) found that musicians performed a familiar piece of music with less expres-
sivity when they were asked to simultaneously count the number of circles and 
triangles in a computer screen and ignore the occurrence of squares. The dual-
task setting did not, however, affect performance in terms of producing accurate 
pitches and note durations. Floridou et al. (2017) reported that even a low cogni-
tive load may cause a decline in the occurrence, frequency, and duration of in-
voluntary musical imagery. 

In yet another dual-task study, Norgaard et al. (2016) investigated whether 
musicians use more pre-learned melodic patterns “to help mitigate the cognitive 
demands of creating novel music in real time” (p. 562). To answer this question, 
the authors investigated whether artist-level pianists produced more repeated 
interval patterns and pitch patterns when they were asked to improvise a solo 
and simultaneously attend to an unrelated counting task (dual-task condition) 

 
how much effectively organized information from long-term memory can be pro-
cessed in working memory at one time. 
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compared to when they were only asked to improvise a solo (single-task condi-
tion). In addition, the authors investigated how single-task and dual-task condi-
tions affect the frequency of repeated interval/pitch patterns in situations where 
pianists played in a familiar key or an unfamiliar key. According to the results, 
participants played more repeated interval/pitch patterns when they performed 
in a dual-task condition compared to a single-task condition. Moreover, partici-
pants also played more repeated interval/pitch patterns in a familiar key com-
pared to an unfamiliar key, although there was a statistically significant effect for 
key only with pitch patterns and a single-task condition. Based on the assump-
tion that dual-task performance corresponds to allocation of attention to other 
musicians’ playing in a group performance, Norgaard et al. (2016) concluded that 
that use of pre-learned melodic patterns may be “an essential mechanism that 
allows musicians to focus externally away from their own actions during impro-
vised performances” (p. 569). 

Note that there is also an alternative explanation for the above-mentioned 
finding. Norgaard et al. (2016) found that the frequency of repeated melodic pat-
terns was higher when musicians simultaneously performed an unrelated sec-
ondary task as they were improvising. The authors interpreted this finding by 
suggesting that relying on pre-learned melodic patterns may allow musicians to 
focus on other musicians’ playing instead of their own. Alternatively, in accord-
ance with the association between working memory and inhibition of stereo-
typed actions (Bengtsson et al., 2007), it is also possible to interpret this finding 
by assuming that the secondary task disrupted the inhibition of repeated melodic 
patterns, which then caused participants to play more recurring melodic patterns. 
Also note that high working memory capacity may have more important conse-
quences on the inhibition of repeated melodic patterns that occur farther apart 
compared to tasks where the improviser is required to maintain a memory of 
what he or she just played. 

Cognitive load may also be increased by diverse distracting factors in the 
environment. For instance, performance pressure may reduce working memory 
capacity and decrease the quality of performance outcome depending on the task 
and one’s working memory capacity (Beilock & Carr, 2005; Markman et al., 2006). 
In addition, increasing tempo and unfamiliarity with the musical work may have 
an important role in performance deficiencies among novice improvisers, be-
cause fast tempos may require too quick decision-making for them and unfamil-
iarity with the musical work may force them to direct much of their available 
cognitive resources to trying to remember what the next chord is. 

In summary, these studies indicate that excessive demands on working 
memory may have a negative effect on performance outcome as indicated by re-
dundancy of melodic patterns, loss of musical expressivity, and difficulties in in-
voluntary musical imagery. Note that this finding appears to contradict with that 
expert jazz musicians rely more on Type 1 processing compared to Type 2 pro-
cessing (Limb & Braun, 2008; Liu et al., 2012; Adhikari et al., 2016; Lopata et al., 
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2017; Rosen et al., 2016, 2017, 2020)72. A possible explanation for these seemingly 
discrepant findings is that excessive demands on working memory may have 
considerable negative effects among less experienced musicians but not experts. 
In addition, note that both Type 1 and Type 2 processing are essential in expert-
level improvisation (Rosen et al., 2020). As a result, additional cognitive load may 
affect the balance between Type 1 and Type 2 processing among jazz musicians 
of any level. 

As a common drawback on dual-task studies, they rely on the assumption 
that better performance on a low rather than high cognitive load implies that the 
task requires working memory (see De Dreu et al., 2012, p. 658). However, as 
noted by Dean and Bailes (2016), a decline in performance of a task due to a sim-
ultaneous secondary task provides “a quite indirect assessment of attentional de-
mands and [it is] even less directly related to the issue of conscious versus un-
conscious behaviors” (p. 43). Moreover, Hommel et al. (2016) argued that: 

the commonly used comparison between single-task and dual-task performance is 
methodologically questionable. This comparison confounds a whole number of other 
variables: As compared to single-task situations, dual-task conditions require partici-
pants to keep in mind more instruction-relevant information on working memory, to 
process a larger number of stimuli and responses, and they are likely to exhibit a dif-
ferent level of motivation and stress. Any difference between single-task and dual-task 
performance may be affected by these factors, which limits their interpretation in terms 
of resource-related effects. (Hommel et al., 2016, p. 183.) 

4.2.2 Temporal constraints 

As a modification of Leman’s (2008) definition of constraint, a temporal con-
straint is defined as a time-related “rule or condition that imposes limits on what 
is possible” (Leman, 2008, p. 55). There are at least five ways of how temporal 
constraints can affect jazz improvisation. First, improvised music is generated at 
the same time as it is performed, because of which there are limits to the amount 
of available time to make decisions about what to play in a particular context. 
Second, decision-making at the level of individual notes (i.e., the note-to-note 
level) becomes impossible with increasing tempo (Palmer & van de Sande, 1995; 
Pachet, 2012) and requires a transition from the note-to-note level to planning at 
higher levels of music (Pachet, 2012). According to Pachet (2012, p. 143), all major 
decisions in virtuoso jazz improvisations are made at higher-level properties of 
music instead of individual notes, which “explains how virtuosos improvise mel-
odies satisfying so many difficult and contradictory constraints at high speed. By 
delegating the choice of individual notes with a beat to a non-conscious, sensory-
motor level, they have enough time to focus on high-level decisions, such as in-
fluencing pitch contour, chromaticity, tonality, etc.”73 Third, short-term memory 

 
72  Type 1 processing refers to rapid, automatic, and unconscious processing, whereas Type 

2 processing refers to slow, deliberate, and conscious processing (Evans, 2008, p. 256). 
73  According to Norgaard (2011, p. 122), musicians do not focus on individual notes 

when they improvise. Certainly, it would be highly impractical to make decisions re-
garding each note separately at fast tempos. However, it is likely that musicians are 
well capable of making decisions regarding individual notes as long as they are play-
ing to a very slow tempo with a high inter-onset interval between subsequent notes. 
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has a limited duration, which affects how far musicians can remember what they 
have played before. Fourth, improvisers are required to maintain temporal con-
tinuity, which “reflects a requirement to produce events in a continuous fashion 
without hesitations or temporal interruptions” (Drake & Palmer, 2000, p. 4). Fifth, 
increased temporal constraints can increase redundancy in jazz improvisation. In 
addition to these consequences of temporal constraints in jazz improvisation, 
there may be others too. For example, variability of nerve conduction velocity 
may have some effect in jazz improvisation. In this chapter, I will focus on two 
temporal constraints related to jazz improvisation: reaction times and time pres-
sures caused by fast tempos. 

Reaction time reflects the required time to initiate an action in response to a 
stimulus and it has been widely used to investigate the length of necessary prep-
aration times to execute actions (see e.g., Wong et al., 2017). According to a recent 
study, the simple reaction time for auditory stimulus (in this case, the required 
time to press the left mouse key after hearing a signal) was 194 milliseconds on 
average for musicians and 250 milliseconds on average for non-musicians. The 
simple reaction time for tactile stimulus was 209 milliseconds on average for mu-
sicians and 277 milliseconds on average for non-musicians. The simple reaction 
time for audio-tactile stimulus (i.e., simultaneous auditory and tactile stimulation) 
was 167 milliseconds on average for musicians and 222 milliseconds on average 
for non-musicians. (Landry & Champoux, 2017.) Thus, if expert-level jazz musi-
cians were able to make note-to-note level decisions at the timescale of simple 
reaction times, the minimum inter-onset interval between subsequent notes 
would be about 200 milliseconds (e.g., as when playing quarter notes at a tempo 
of 300 bpm). However, reaction times increase with the number of possible re-
sponses (see Hommel et al., 2016, pp. 114-117) because of why simple reaction 
times underestimate reaction times (and the time needed to plan actions) in jazz 
improvisation (where there are a number of possible responses at any point of 
time). At least to my knowledge, there are also no empirical studies that have 
investigated the length of choice reaction times in jazz improvisation. 

Several recent studies have called for reconsideration of the notion of reac-
tion time. For example, Haith et al. (2016) proposed that after the preparation of 
movement has been completed, there is an involuntary delay before the prepared 
movement is initiated. The authors suggested that movement initiation is de-
layed to avoid “initiating a movement before it has been fully prepared” (p. 3013). 
Such delayed movement initiation allows to make decisions based on more in-
formation before the movement is initiated (Haith et al., 2016). Under time pres-
sure, initial decision-making may also precede the possibility to consider all 
available information. In such cases, information processing continues after the 
initial decision has been made and can lead to a change of mind during the move-
ment execution. (Resulaj et al., 2009.) In another study, Orban de Xivry et al. (2017) 
found that reaction times for reaching far targets were shorter compared to move-
ments that required to reach a closer target, which indicates that movement prep-
aration and movement execution phases may overlap. In addition, Wong et al. 
(2017) found that recent reaction times may influence subsequent reaction times 
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for other actions, which indicates that other factors in addition to the time to pre-
pare actions may also have an effect. 

As noted earlier, temporal constraints may increase the redundancy of me-
lodic patterns in jazz improvisation. Lehmann and Goldhahn (2016) found that 
non-redundancy (in half bar segments from different takes of John Coltrane’s Gi-
ant Steps) was slightly (1.35 times) more likely after longer pauses (0.5 seconds) 
compared to segments that did not appear after a rest. In another study, Dean 
(2014) found that the use of well-learned finger patterns increased in fast pas-
sages in a sample of Pat Metheny’s improvisations. Consistent with these find-
ings, Frieler (2014) found that pattern use increased at fast tempos. However, 
pattern use did not increase with tempo in Frieler et al. (2018).74 In other areas of 
expertise, the scarcity of available time can increase the quantity of ideas, but this 
benefit comes at the expense of lower novelty and quality of ideas (for reviews, 
see Liikkanen et al., 2009; Karau & Kelly, 1992). 

4.2.3 The role of context familiarity 

Goldman (2013) investigated how changes in the mind-body relationship affect 
cognitive processing in jazz improvisation. Ten pianists improvised over a famil-
iar chord progression (Rhythm Changes)75 in eight conditions: familiar key (Bb 
major), less familiar key (B major), playing with the right hand only, playing with 
the left hand only, improvising a melody, and improvising a walking bass line 
(Goldman, 2013, pp. 214-215). The author hypothesized that improvisers would 
not have “access to familiar and overlearned motor patterns,” when they impro-
vised in a less familiar performance condition, and that they “would have a 
smaller repertoire of ideas in terms of their ability to use the range of tonal pos-
sibilities available to them in the key and in terms of more specific licks and pat-
terns acquired over years of practice” (Goldman, 2013, p. 214). Moreover, musi-
cians were expected to be less capable of knowing how to produce desired 
sounds in a less familiar condition and, as a result, they would rely more on chord 
notes and diatonic pitch classes (Goldman, 2013, p. 214). 

As expected, the proportion of diatonic pitch classes was higher in the less 
familiar key (B major). Improvisations were also more predictable in the less fa-
miliar key, as measured by entropy and conditional entropy of pitch class distri-
butions. Both entropy and conditional entropy of pitch class distributions were 
higher in right-hand improvisations compared to left-hand improvisations. Both 
entropy and conditional entropy of pitch class distributions were also higher in 
melody improvisations compared to walking bass lines. These results indicate 
that pianists were able to rely on a larger repertoire of well-learned patterns in a 
familiar performance condition. In a less familiar context, where they had no 

 
74  Unfortunately, both Frieler (2014) and Frieler et al. (2018) are unpublished and only 

the presentation slides of these conference papers were available. 
75  Rhythm Changes contains no less than fifty chord changes, which makes it a difficult 

chord progression to be memorized. On the other hand, this chord progression is 
highly structured which facilitates its learning. (Laine, 2015.) 
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access to procedural knowledge for more complex patterns, pianists relied more 
on their harmonic understanding. (Goldman, 2013, pp. 216-218.) 

To my knowledge, there are only two other studies that have investigated 
the role of context familiarity in jazz improvisation. Norgaard et al. (2016) inves-
tigated whether artist-level jazz pianists used recurring melodic patterns (either 
interval or pitch patterns) more often when they simultaneously attended to an 
unrelated secondary task. According to their results, the frequency of recurring 
interval/pitch patterns was higher when pianists also attended a secondary task 
compared to when they could solely focus on improvisation. In addition, the au-
thors found that the frequency of recurring melodic patterns was higher when 
pianists improvised in a familiar key compared to an unfamiliar key. However, 
the difference between familiar key and unfamiliar key solos was statistically sig-
nificant only when pianists did not simultaneously attend to a secondary task 
and when repetition of melodic patterns was measured based on the similarity 
of pitch class sequences instead of the similarity of interval sequences. (Norgaard 
et al., 2016.) In another study, Mendonça and Wallace (2004) used retrospective 
verbal protocols to investigate cognitive processing in jazz improvisation. Three 
duos of professional musicians improvised both over a common chord progres-
sion (Rhythm Changes) and freely without predefined chord progressions. After 
the improvisation task was completed, musicians were asked to report their 
thought processes as they occurred during performance. Contrary to their expec-
tations, the authors did not find statistically significant differences in the propor-
tion of verbal protocols related to temporal and creative cognition between the 
participants in each duo. (Mendonça & Wallace, 2004.) 

4.2.4 Duration of integrated units in perception and action 

Successive events are automatically integrated into units with a duration of about 
three seconds (Pöppel, 1997; Wittmann & Pöppel, 1999), or about 2-3 seconds 
(Fraisse, 1984; Szeląg et al., 1996), which corresponds to the limits of working 
memory: “if rehearsal is not possible, the content in working memory is available 
for ~3 s only” (Pöppel, 1997, p. 59)76. Higher estimates on the maximum duration 
of integrated units have also been reported. According to Fraisse (1984, pp. 10, 
30), successive events can hardly exceed five seconds in order to be organized as 
a unit77. However, the duration of integrated units can vary as the number of 
events within a given time period changes78. As the number of events per second 
increases, the duration of integrated units can decrease to about one second. 
(Szeląg et al., 1996.)79 

76 Associated with the feeling of nowness, this timescale is also known as the psychologi-
cal present (e.g., Wittmann & Pöppel, 1999; Fraisse, 1982, 1984) or the subjective pre-
sent (e.g., Pöppel, 1997). 

77 Similarly, Fraisse (1982) argued that the timescale of 4-5 seconds is “an extreme limit 
that allows only unstable groupings” (p. 158). 

78 The duration of integrated units can also vary depending on age and cognitive abili-
ties (Szeląg et al., 1996). 

79 Some authors have also argued for wider temporal limits for integrated units. Accord-
ing to Snyder (2000, p. 13), the duration of integrated units is in the range of 3-5 
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The average duration of ordinary actions may also have a role in preference 
for actions of certain length, which may be based on biomechanical constraints 
of actions (e.g., need to change posture or take a rest) (Godøy et al., 2010). For 
instance, composers must consider how distant events listeners can still perceive 
as parts of a single musical unit (Wittmann & Pöppel, 1999, p. 20). In regard to 
jazz improvisation, Frieler et al. (2016) investigated a sample of 140 jazz solos and 
found that the average duration of midlevel units80 was 2.25 seconds, which 
(based on its similarity with the range of the psychological present) they “viewed 
as indirect evidence that the underlying concept of action plans is viable and 
might capture some ‘true’ elements of the underlying psychological processes” 
(Frieler et al., 2016, p. 159). In another study, Lehmann and Goldhahn (2016) 
found that the average length of playing bursts was 2.42 seconds in Giant Steps 
(take 1) and 3.0 seconds in the master take of the same composition. A playing 
burst refers to a distinct musical idea, which is separated from adjacent playing 
bursts based on “long-held notes, silent gaps or brief interjections” (Lehmann & 
Goldhahn, 2016, p. 348). According to these authors, planning the next playing 
burst takes place in resting places (placed in between adjacent playing bursts), 
where musicians have time to think and take a breath (Lehmann & Goldhahn, 
2016, p. 348). 

Some important implications can be drawn from these findings. Based on 
earlier research, action control seems to operate at a timescale of about 2-3 sec-
onds on average, which means that the duration of playing bursts (or midlevel 
units) is usually about 2-3 seconds. The upper limit of playing bursts/midlevel 
units is about 3 seconds and the lower limit of playing bursts/midlevel units is 
about 1 second. Previous research also indicates that the range of planning may 
increase with tempo if measured by the number of events in a given time period 
but not necessarily if measured by the duration of integrated units in a given time 
period. 
 

 
seconds on average. According to Godøy (2014), “what we perceive as coherent 
chunks with highly significant features [is] in the very approximately 0.5 to 5 seconds 
range” (p. 225). 

80  Midlevel units refer to non-overlapping events that represent “distinct playing ideas 
[and action plans] on a middle level between the level of single events (tones) and 
structural levels such as the underlying chord progression, single choruses or even the 
typical head-solo-head structure of a jazz tune” (Frieler et al., 2016, p. 145). 
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5.1 Research questions 

The first main aim of this exploratory research was to investigate the relationship 
between temporal constraints (as operationalized by tempo and harmonic 
rhythm) and creativity in pattern use (as operationalized by the variability of me-
lodic patterns) in bass line reductions of two eminent jazz bassists. As the second 
main aim, the research investigated whether learning a large storage of melodic 
patterns is a necessary requirement for creativity in the generation of jazz bass 
lines. In addition, the research also aimed to investigate the relationship between 
temporal constraints and musical creativity at the level of target notes, melodic 
contour patterns, approach-note patterns, and melodic complexity, and the rela-
tionship between tempo/harmonic rhythm and the length of recurring melodic 
patterns. Finally, several methodological issues were considered. To achieve 
these goals, the following research questions were answered:  

• What is the relationship between tempo and the variability of melodic
patterns?

• What is the relationship between harmonic rhythm and the variability of
melodic patterns?

• What is the relationship between tempo and the variability of target
notes?

• What is the relationship between harmonic rhythm and the variability of
target notes?

• What is the relationship between tempo and the variability of melodic
contour patterns?

• What is the relationship between harmonic rhythm and the variability of
melodic contour patterns?

5 RESEARCH QUESTIONS AND METHODS 
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• What is the relationship between tempo and the variability of approach-
note patterns? 

• What is the relationship between harmonic rhythm and the variability of 
approach-note patterns? 

• To what extent the same melodic pattern classes are repeated across dif-
ferent bass line reductions? 

• What is the relationship between tempo and the melodic complexity of 
bass line reductions? 

• What is the relationship between harmonic rhythm and the melodic com-
plexity of bass line reductions? 

• What is the average and the maximum length of recurring melodic pat-
terns? 

• What is the relationship between tempo and the average/maximum 
length of recurring melodic patterns? 

• What is the relationship between harmonic rhythm and the aver-
age/maximum length of recurring melodic patterns? 

• What is the average and the maximum length of recurring melodic pat-
terns and melodic contour patterns? 

• What is the relationship between tempo and the average/maximum 
length of recurring melodic contour patterns? 

• What is the relationship between harmonic rhythm and the aver-
age/maximum length of recurring melodic contour patterns? 

• How does disregarding the harmonic context influence the results? 
• How does increasing the threshold level of repeated melodic patterns in-

fluence the results? 
• How does disregarding the head sections influence the results? 
• How does disregarding the identification of segment boundaries influ-

ence the results? 
 
Creativity was defined as novel (i.e., unpredictable, different) and appropriate 
products or ideas and the ability to create such products or ideas (where the nov-
elty of a product or an idea only requires that it is new to the creator). Despite the 
generality of this definition, the study focused on a single type of creativity: var-
iability of actions, where the complete lack of repetition (i.e., where all actions 
occur only once) or the highest level of unpredictability (i.e., where the probabil-
ity of all actions is equal) is regarded as the highest level of creativity. All meas-
urements were also solely focused on novelty, unpredictability, and difference 
(measured as the variability of melodic patterns, target notes, melodic contour 
patterns, or approach-note patterns), whereas appropriateness was not measured. 
Instead, all musical works or any part of them were considered appropriate a 
priori. There were several reasons not to measure appropriateness. First, both 
Paul Chambers and Ron Carter are among the most renowned jazz bassists in the 
history of jazz. Among several others, they defined through their music what ac-
tions are appropriate in jazz bass playing. Second, it is unclear how appropriate-
ness should be measured in the context of jazz improvisation (except for 
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considering obvious mistakes or playing unintentionally out of tune as inappro-
priate actions), where appropriateness of note choices partly depends on the de-
cisions of co-performers. If other musicians did not adapt their own playing to 
surprising notes, such note choices would sound inappropriate and wrong. Fi-
nally, the importance of adding appropriateness to definitions of musical or ar-
tistic creativity is in my view merely to acknowledge that all actions are con-
strained and that completely random actions do not represent the highest level 
of creative achievement. Nevertheless, appropriateness may still play an im-
portant role in creativity assessment in the fields of musical and artistic creativity 
depending on the research question. 

Note that risk-taking, the ability to surprise, and avoidance of redundancy 
are acknowledged as valid criteria for expert-level improvisation (Wopereis et al., 
2013)81. In fact, the concept of improvisation disapproves the mere reproduction 
of existing performances and requires that “each improvisation must appear 
more or less different from the preceding one” (Sparti, 2016, p. 190). Therefore, 
definitions of creativity that focus on the novelty, uniqueness, or unpredictability 
of products and the ability to create such products are consistent with common 
artistic goals of expert-level jazz musicians. Of course, jazz musicians have other 
goals as well besides trying to avoid excessive repetition and predictability. For 
example, creativity in jazz improvisation may also occur as finding a personal 
sound or inventing original approaches to improvisation (cf. Boden’s notion of 
transformational creativity; see Boden, 2004, pp. 5-6). In addition, there are sev-
eral factors that contribute to aesthetic evalution of improvisation music – includ-
ing emotional complexity (Huovinen & Keipi, 2022), melodic complexity, and 
technical excellence (Eisenberg & Thompson, 2003). 

5.2 Research material 

5.2.1 Selection of research material 

The research was conducted by analyzing reductions of selected bass lines by 
Paul Chambers (1935-1969) and Ron Carter (b. 1937). Both are some of the most 
significant musicians in the history of jazz. Paul Chambers started as a baritone 
horn and tuba player but turned to double bass in 1949 and soon started to col-
laborate with local musicians in Detroit’s vibrant jazz scene (Feather & Gitler, 

 
81  According to Wopereis et al. (2013), the statement “who doesn’t like repetition, im-

provisation done” was considered as an important or at least quite important quality 
of a good improviser (mean rating: 2.50/5.00). However, two quite similar statements 
“who dares taking risks and who is adventurous, but not reckless” and “a good im-
proviser should surprise” scored considerably higher ratings (mean ratings: 3.50/5.00 
and 3.79/5.00, respectively) among the group of expert musicians, music teachers, and 
music critics who took part in this study. (Wopereis et al., 2013, pp. 228, 231.) It is also 
noteworthy that the aim to find surprising note choices is often noted as one of the 
main goals in Ron Carter’s bass lines (e.g., Ouellette, 2013). Regrettably, there are no 
interviews of Paul Chambers concerning his thoughts about bass playing or improvis-
ing in general, at least to my knowledge. 
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1999, p. 120). In the mid-fifties, Paul Chambers rose to international fame as the 
bassist in Miles Davis’s new quintet. During his short but productive career, Paul 
Chambers played on more than 300 albums (R. Palmer, 2012, p. 3), including a 
number of critically acclaimed albums such as Miles Davis’s Kind of Blue (1959), 
John Coltrane’s Giant Steps (1959), Sonny Rollins’s Tenor Madness (1956), and Ol-
iver Nelson’s The Blues and the Abstract Truth (1961), among many others. Ron 
Carter’s career is no less prolific, and he holds the Guinness World Record for 
being the most recorded bass player in jazz history with 2,221 recording credits 
up to 201582. Ron Carter started as a cellist at the age of ten (Feather & Gitler, 1999, 
p. 115), but he switched to double bass at the age of eighteen (Ouellette, 2013, p.
46). Ron Carter is especially known for his work as the bassist in Miles Davis’s
quintet from 1963 to 1968. In addition, he has played on many highly influential
jazz albums including Wayne Shorter’s Speak No Evil (1965), Herbie Hancock’s
Maiden Voyage (1965), McCoy Tyner’s The Real McCoy (1967), and Freddie Hub-
bard’s Red Clay (1970), to name a few.

There are certain similarities between Paul Chambers and Ron Carter in 
their musical style. According to Nurmi (2006, 2018), both musicians generated 
their walking bass lines in the 1950s and 1960s according to target note technique. 
This technique refers to a strategy of building improvised jazz melodies, where 
one of the tones of the upcoming chord is chosen as a target note and the chosen 
target note is approached with a suitable melodic pattern. Target notes (defined 
here as the first note of each bar) are emphasized using stable notes. For instance, 
Ron Carter often played roots, fifths, and thirds as target notes depending on 
harmonic rhythm in his bass lines from the 1960’s (Nurmi, 2018, p. 32). If the 
chord changed every two bars (one chord per two bars harmonic rhythm), Carter 
usually played either the root or the fifth as a target note. If the chord changed in 
each bar, Carter usually played either the root, the fifth, or the third. If there were 
two chords per one bar, his usual choice of a target note was the root. (Nurmi, 
2018, p. 32.) 

On the other hand, Ron Carter’s walking bass lines during the 1960’s were 
sometimes highly adventurous. For example, upper structure chord notes were 
extensively used in some of Ron Carter’s bass lines during the 1960’s. The use of 
upper structure chord notes gives a wider range of note choices compared to us-
ing mainly roots, thirds, and fifths. In addition, Carter often avoided playing the 
root and other notes that clearly outline the E7alt chord in his walking bass line 
on E.S.P., but then again, he might play roots, fifths, and thirds in the next bar 
(Nurmi, 2018, p. 32). Carter also used different kinds of chord substitutions ex-
tensively during this period. For instance, there are many examples of chord sub-
stitutions in his walking bass line on Seven Steps to Heaven. His adventurous play-
ing is also evident in some of the Miles Davis Quintet’s so-called time no changes 
recordings. As an example, Carter’s note choices for each of the three solos on 
Pinocchio were only loosely related to the original chord progression and some-
times the original chord progression was abandoned altogether. However, Carter 
seems to have been constantly aware of the original form as evidenced by the fact 

82  See https://www.guinnessworldrecords.com. 

https://www.guinnessworldrecords.com/
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that he occasionally played notes that outlined the original chord progression. 
(Nurmi, 2018.) 

The research material consisted of 42 full-length bass line transcriptions (in-
cluding 30 bass lines by Paul Chambers and 12 bass lines by Ron Carter) (see 
Table 1), which were reduced to sequences of quarter notes. I transcribed 17 out 
of the 42 bass lines analyzed in this study, whereas the other transcriptions were 
collected from various sources. The research material was selected with the aim 
of getting as much data as possible from each musical work. However, several 
relatively short transcriptions were also accepted (the total number of analyzed 
bars was less than 150 in ten transcriptions). In addition, some of the research 
data was disregarded because of methodological reasons. The overall quantity of 
research material was 9,335 bars of transcriptions. Bars that were disregarded in 
the analysis were not counted. The average length of transcriptions was 222 bars 
(range: 95 to 465 bars) and the average duration of transcriptions was 280 seconds 
(4 min 40 s) (range: 96 to 638 seconds). The median length of transcriptions was 
219 bars. The median duration of transcriptions was 251 seconds (4 min 11 s). 

There are at least 76 published transcriptions of Paul Chambers’s solos83 
and at least 48 published transcriptions of Ron Carter’s solos84. In addition, there 
are at least 24 published transcriptions of Paul Chambers’s bass lines and 55 pub-
lished transcriptions of Ron Carter’s bass lines. However, most of these bass line 
transcriptions are incomplete and cover only a small part of the complete bass 
line. Solo transcriptions are written from the beginning to the end, but they have 
the disadvantage of much shorter duration compared to walking bass lines (be-
cause of why they provide less data for research purposes compared to walking 
bass lines). For instance, despite the large number of transcribed solos in the Wei-
mar Jazz Database (including 456 solos in total), most of them are quite short 
“with a median of two choruses and a median duration of 87 s (1 min 27 s)” 
(Pfleiderer, 2017, p. 30).85 

 
 

 
83  These transcriptions of Paul Chambers’s solos are published in four books by Jim Stin-

nett: The Music of Paul Chambers (1990), The Music of Paul Chambers Vol. 2 Arcology 
(1999), The Music of Paul Chambers Vol. 3 (2005), and Secret Chambers (2009). 

84  These transcriptions of Ron Carter’s solos are published in two books: Ron Carter Solos 
– Transcribed From 22 Classic Standards (2010) and Ron Carter Solos, Volume 2 (2010). 

85  In terms of the number of transcribed solos, to my knowledge the largest database of 
jazz transcriptions is the DTL1000 database with 1,736 solos. For more information on 
this database, see http://dig-that-lick.eecs.qmul.ac.uk/. 

http://dig-that-lick.eecs.qmul.ac.uk/
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TABLE 1 List of transcriptions 

Musical work (Paul Chambers) Album (recording year / release year if different from recording year) Transcriber 
A Foggy Day Red Garland Trio: A Garland of Red (1956/1957)  P. Bierma 
All of You Miles Davis: ’Round About Midnight (1955-1956/1957) P. Bierma 
All the Things You Are Jimmy Heath Quintet: On the Trail (1964) J. W. Skinner 
Apothegm Kenny Clarke: Jazzmen Detroit (1956) M. Benning 
Autumn Leaves Wynton Kelly: Wynton Kelly! (1961) J. W. Skinner 
Blues by Five Miles Davis Quintet: Cookin’ with the Miles Davis Quintet (1956/1957) M. Nurmi 
Blue Train John Coltrane: Blue Train (1957/1958) P. Bierma 
Chamber Mates Paul Chambers Quartet: Bass on Top (1957) M. Benning 
Chasin’ the Bird Paul Chambers Quartet: Bass on Top (1957) M. Benning 
C-Jam Blues Red Garland Trio: Groovy (1957) P. Bierma 
Cool Struttin’ Sonny Clark: Cool Struttin’ (1958) M. Herridge 
Cotton Tail Kenny Clarke: Jazzmen Detroit (1956) M. Benning 
Crazy Rhythm Red Garland Trio: It’s a Blue World (1958/1970) M. Benning 
Excerpt Warne Marsh: Warne Marsh (1957-1958/1958) D. Fink 
Freddie Freeloader Miles Davis: Kind of Blue (1959) M. Nurmi 
Giant Steps John Coltrane: Giant Steps (1959/1960) M. Nurmi 
I Can't Give You Anything but Love Red Garland Trio: Red Garland’s Piano (1957) D. Fink 
I Could Write a Book Miles Davis Quintet: Relaxin’ with the Miles Davis Quintet (1956/1958) M. Nurmi 
If I Were a Bell Miles Davis Quintet: Relaxin’ with the Miles Davis Quintet (1956/1958) M. Nurmi 
It’s a Blue World Red Garland Trio: It’s a Blue World (1958/1970) M. Benning 
Milestones Miles Davis: Milestones (1958) M. Nurmi 
Moment’s Notice John Coltrane: Blue Train (1957/1958) P. Nabuurs 
Mr. P.C. John Coltrane: Giant Steps (1959/1960) E. Gregor 
Oleo Miles Davis Quintet: Relaxin’ with the Miles Davis Quintet (1956/1958) J. W. Skinner 
So What Miles Davis: Kind of Blue (1959) M. Nurmi 
Syeeda’s Song Flute John Coltrane: Giant Steps (1959/1960) Jazz Bass Tr. 
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Musical work (Paul Chambers) Album (recording year / release year if different from recording year) Transcriber 
Tenor Madness Sonny Rollins Quartet: Tenor Madness (1956) P. Bierma 
The Theme Paul Chambers Quartet: Bass on Top (1957) M. Benning 
Woody’n You Miles Davis Quintet: Relaxin’ with the Miles Davis Quintet (1956/1958) Jazz Bass Tr. 
You’d Be So Nice to Come Home to Paul Chambers Quartet: Bass on Top (1957) M. Benning 

 
Musical work (Ron Carter) Album (recording year / release year if different from recording year) Transcriber 
Autumn Leaves Bobby Timmons Trio: The Bobby Timmons Trio in Person (1961) J. W. Skinner 
Autumn Leaves Miles Davis: Miles in Berlin (1964/1965) T. Kolarczyk 
Dolphin Dance Herbie Hancock: Maiden Voyage (1965) M. Nurmi 
E.S.P. Miles Davis: E.S.P. (1965) M. Nurmi 
Israel Kai Winding & J. J. Johnson: Israel (1968) D. Fink 
Loose Bloose Bill Evans: Loose Blues (1962/1982) M. Nurmi 
Mo’ Joe Joe Henderson: The Kicker (1967/1968) M. Nurmi 
Oleo Charles Bell & the Contemporary Jazz Quartet: Another Dimension (1963) J. W. Skinner 
Passion Dance McCoy Tyner: The Real McCoy (1967) M. Nurmi 
Pinocchio Miles Davis: Nefertiti (1967/1968) M. Nurmi 
Seven Steps to Heaven Miles Davis: Seven Steps to Heaven (1963) M. Nurmi 
Witch Hunt Wayne Shorter: Speak No Evil (1964/1965) M. Nurmi 

Note. Patrick Nabuurs’s (2017) transcription of Paul Chambers’s bass line on Moment’s Notice included the bass line from the beginning 
to the end of the first solo. This transcription was used as the basis for my full-length transcription of this bass line. Five of my own 
transcriptions (Paul Chambers’s Blues by Five, Freddie Freeloader, I Could Write a Book, If I Were a Bell, and So What) were originally 
written for my master’s thesis (Nurmi, 2006). In addition, six of my own transcriptions (Dolphin Dance, E.S.P., Passion Dance, Pinocchio, 
Seven Steps to Heaven, and Witch Hunt) were published as a part of an earlier work (Nurmi, 2018). Jazz Bass Tr. = Jazz Bass Transcrip-
tions portal (https://www.jazzbasstranscriptions.com/). 

https://www.jazzbasstranscriptions.com/
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The present research was focused on walking bass lines (which usually include 
four quarter notes in each bar). As a result, bass solos and parts of bass lines based 
on a repeated riff or pre-composed material (e.g., head sections in Passion Dance, 
So What, and Seven Steps to Heaven) were excluded. Sections in which the bassist 
played nothing (e.g., solos played without bass accompaniment) were excluded 
of course. In addition, all melodic patterns where one or more notes were inau-
dible (or contained a rest) were excluded. Pre-composed intros (e.g., the first five 
bars in Witch Hunt) and outros (e.g., the last four bars in Giant Steps) were ex-
cluded. Also, two-beat bass lines and other bass lines primarily based on half 
notes were excluded (e.g., the bass line for the head section in E.S.P.). Except for 
head sections, there were very few occurrences of half notes in any bass line. 

Since some performances included walking bass lines in head sections (i.e., 
the theme) and others did not, all bass parts played during the head section could 
have been ignored for the sake of clarity. To know how head sections affect the 
results, I calculated the repetition of melodic patterns both when head sections 
were disregarded and when they were considered. The aim was to make sure 
that the decision to take head sections into account (whenever they included 
walking bass lines) had no relevant effect on the relationship between tempo 
and/or harmonic rhythm and the repetition of melodic patterns. 

The research material was collected by selecting at least three walking bass 
lines from each of the four tempo categories: category 1 (100-150 beats per mi-
nute), category 2 (151-200 beats per minute), category 3 (201-250 beats per mi-
nute), and category 4 (251-300 beats per minute). An equal number of walking 
bass lines from each tempo category was preferred, but it turned out to be diffi-
cult to accomplish. To measure tempo, I used two online metronome tools (Szpak, 
n.d.; Reel, 2019), both of which allow to tap beats manually while simultaneously 
listening to an audio recording. Tempo in each bass line was measured three 
times. First, I measured tempo at the end of the first solo with both Szpak’s (using 
the average of the last twenty beats) and Reel’s metronome tools. After that, I 
measured tempo two more times from different parts of the bass line by using 
Reel’s metronome tool. Based on these four measurements, the average tempo in 
each bass line was calculated to avoid measurement errors and to ignore tempo 
changes during any performance. 

The research setting did not allow to collect a similar amount of research 
material from each harmonic rhythm category. To get an equal amount of re-
search material from each harmonic rhythm category, the research material 
should consist of identical chord progressions and an identical overall length of 
bass lines. In practice, it is highly difficult to find performances with both the 
same harmonic structure and an identical overall length. Also, it can be very dif-
ficult to find such works at different tempos. As a result, at least three walking 
bass lines were selected from each of the three harmonic rhythm categories: me-
dium fast harmonic rhythm (harmonic rhythm category I, where the most usual 
distance between chord changes is one bar), slow harmonic rhythm (harmonic 
rhythm category II, where the most usual distance between chord changes is at 
least two bars), and fast harmonic rhythm (harmonic rhythm category III, where 
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the most usual distance between chord changes is two beats). In one bass line 
(Witch Hunt), the distance between chord changes was occasionally six beats (E7 
Eb7 / Eb7). In this bass line, Ron Carter often clearly outlined the latter chord 
using six-note phrases. These parts of Witch Hunt were considered to imply a 
special harmonic rhythm category distinct from the three harmonic rhythm cat-
egories mentioned above. 

Table 2 shows the average tempo of bass lines, the average distance between 
chord changes, the proportion of bars in each harmonic rhythm category per cho-
rus, the title of the work, and the name of the bassist playing in that recording 
(for raw data used to calculate the average tempo in each bass line, see Table 18 
in Appendix 1). For example, 17% of the bars in Freddie Freeloader were based on 
the first category of harmonic rhythm (where the distance between chord 
changes is one bar), whereas 83% of the bars were based on the second category 
of harmonic rhythm (where the distance between chord changes is at least two 
bars). There were no occurrences of the third harmonic rhythm category (where 
the distance between chord changes is two beats) in this bass line.86 Note that 
whenever two subsequent chords differed only slightly (e.g., in case of a se-
quence of a D7 chord and a D9 chord), and they shared the same root note and 
the same triad structure, these chords were considered to be identical. Pedal point 
sections were also considered to be based on a single chord. The average distance 
between chord changes (k) was calculated according to the formula below, 
where ’a’ is the total chorus length in bars, and ’b’ is the total number of chord 
changes. For example, the chorus length was twelve bars and there were five 
chord changes in Freddie Freeloader. Therefore, the average distance between 
chord changes was two bars. 

 
𝑘𝑘 =

𝑎𝑎
𝑏𝑏 + 1

 
 

 
86  All harmonic rhythm category II sections (where the distance between chord changes 

is at least two bars) were disregarded in Syeeda’s Song Flute. 
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TABLE 2 Tempo and harmonic rhythm in each bass line 

Musical work (Paul Chambers) Tempo (bpm) Dist. (in bars) Proportion of bars 
Cool Struttin’ 110 1.00 I (50%), II (33%), III (17%) 
Freddie Freeloader 128 2.00 I (17%), II (83%), III (0%) 
Autumn Leaves 132 1.03 I (56%), II (31%), III (13%) 
Blue Train 133 1.71 I (33%), II (67%), III (0%) 
So What 139 10.67 I (0%), II (100%), III (0%) 
All of You 166 0.84 I (56%), II (13%), III (31%) 
C-Jam Blues 166 2.00 I (17%), II (83%), III (0%) 
You'd Be So Nice to Come Home to 167 0.97 I (50%), II (31%), III (19%) 
Apothegm 171 0.84 I (44%), II (25%), III (31%) 
Tenor Madness 175 1.00 I (50%), II (33%), III (17%) 
Blues by Five 177 1.00 I (75%), II (17%), III (8%) 
Chasin’ the Bird 179 0.84 I (62.5%), II (12.5%), III (25%) 
I Can't Give You Anything but Love 185 1.00 I (47%), II (34%), III (19%) 
If I Were a Bell 187 0.82 I (59%), II (13%), III (28%) 
Syeeda’s Song Flute 189 0.94 I (94%), II (0%), III (6%) 
It’s a Blue World 191 1.23 I (50%), II (44%), III (6%) 
The Theme 211 0.64 I (6%), II (25%), III (69%) 
A Foggy Day 215 1.06 I (88%), II (12%), III (0%) 
Excerpt 221 1.37 I (50%), II (46%), III (4%) 
I Could Write a Book 229 0.70 I (50%), II (0%), III (50%) 
All the Things You Are 232 1.00 I (72%), II (17%), III (11%) 
Milestones 237 4.00 I (0%), II (100%), III (0%) 
Moment’s Notice 244 0.61 I (37%), II (0%), III (63%) 
Cotton Tail 253 0.73 I (25%), II (25%), III (50%) 
Woody'n You 257 0.91 I (62%), II (19%), III (19%) 
Mr. P.C. 260 1.71 I (33%), II (67%), III (0%) 
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Musical work (Paul Chambers) Tempo (bpm) Dist. (in bars) Proportion of bars 
Oleo 267 0.63 I (3%), II (25%), III (72%) 
Chamber Mates 267 1.09 I (83%), II (17%), III (0%) 
Crazy Rhythm 283 1.07 I (38%), II (43%), III (19%) 
Giant Steps 293 0.62 I (37.5%), II (0%), III (62.5) 

 
Musical work (Ron Carter) Tempo (bpm) Dist. (in bars) Proportion of bars 
Loose Bloose 115 0.50 I (0%), II (0%), III (100%) 
Dolphin Dance 122 1.31 I (35%), II (53%), III (12%) 
Autumn Leaves (1964) 133 1.07 I (69%), II (25%), III (6%) 
Autumn Leaves (1961) 136 1.10 I (63%), II (31%), III (6%) 
Witch Hunt 139 2.67 I (17%), II (79%), III (4%) 
Israel 148 1.50 I (25%), II (67%), III (8%) 
Pinocchio 212 1.38 I (33%), II (56%), III (11%) 
Passion Dance 240 12.00 a I (0%), II (100%), III (0%) 
Oleo 244 0.68 I (16%), II (25%), III (59%) 
Seven Steps to Heaven 286 0.78 I (69%), II (0%), III (31%) 
E.S.P. 289 1.19 I (41%), II (50%), III (9%) 
Mo’ Joe 298 0.94 I (44%), II (25%), III (31%) 

Note. Dist. = average distance between chord changes; Proportion of bars = proportion of bars in each harmonic rhythm category.  
a one chord only (no chord changes). 
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5.2.2 Reliability of research material 

All bass lines were typically transcribed or checked two bars at a time at different 
tempos by using the Transcribe! software (Seventh String Software). The accuracy 
of all transcriptions was verified at least twice both by listening to the recordings 
and by playing the bass lines simultaneously when listening to the recordings. 
Many of the already existing transcriptions were very good, although based on 
my own analysis, they also involved some errors that I subsequently corrected. 
Considering only the transcribed notes that were included in the analysis, the 
observed error rate in these previously existing transcriptions was 6%87. In addi-
tion, I made some minor modifications to chord progressions on some occasions 
and used the same chord progression for each chorus in all transcriptions. I also 
used as long transcriptions as possible to increase the reliability of the transcrip-
tions. Because of using relatively long bass lines, I presumed that the proportion 
of incorrect notes was small and practically had no effect on the results of the 
study. 

In addition to imperfect pitch discrimination skills and musicians’ occa-
sional problems with intonation, one reason why completely accurate transcrip-
tions are so difficult to make is that Western music notation offers only a small 
amount of pitch categories for a large variety of sounds. In musicological research, 
intervals smaller than a semitone are ignored, when researchers rely on twelve 
categories in one octave. Categorical perception simplifies the world and the use 
of relatively few categories to describe music naturally leaves out many details 
that could be important both regarding musicians’ intentions and listeners’ ex-
perience of the music. On the other hand, deficiencies caused by categorical per-
ception may not always be a bad thing. On the contrary, it would be difficult to 
perceive similarity in melodic patterns if every minor change in pitch was con-
sidered. 

The accuracy and the quality of the research material can be increased either 
by removing all ambiguities (which means that all notes where the membership 
to a particular pitch category is not clear are removed), or by using a sufficiently 
large amount of research data so that possible errors could not have a significant 
effect on the results. In my view, removing all ambiguous parts may not neces-
sarily increase the quality of the research material, because melodic patterns with 
ambiguous notes are likely to be melodic patterns that occur only rarely in the 
research material. Therefore, removing those parts could unduly increase the 
proportion of recurring melodic patterns. Because of this, ambiguous parts were 
removed only if it was completely impossible to infer what notes were played. 

I searched for published sheet music to find accurate chord progressions for 
the musical works analyzed in this study. Their accuracy was assessed by the 
relationship between individual notes in the transcribed bass lines and the chords 

 
87  In my view, it is often difficult and sometimes (in case of poor sound quality) even im-

possible to produce completely accurate transcriptions of recorded music. Such an ac-
curacy of transcriptions could only be achieved with the use of MIDI instruments. 
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proposed by the lead sheet. If the bass lines clearly outlined the chords in the 
published lead sheet in most cases (though not necessarily always), and espe-
cially during the head sections, I presumed that the published lead sheet was an 
adequately accurate representation of the original lead sheet based on which the 
musicians played the performance. The following sources were used to search 
for chord progressions: Hal Leonard’s The Real Book Volume 1 (for Witch Hunt and 
Passion Dance), Sher Music’s The New Real Book Volume 2 (for Seven Steps To Heaven 
and Mo’ Joe), Sher Music’s The New Real Book Volume 3 (for Dolphin Dance), Keith 
Waters’s The Studio Recordings of the Miles Davis Quintet, 1965-68 (for Pinocchio 
and E.S.P.), and Pascal Wetzel’s Bill Evans Fake Book (for Loose Bloose). Regarding 
the other bass lines, I used chord progressions as they were presented in the tran-
scriptions (with occasional minor changes). 

There are several problems related to chord analysis in the context of jazz 
improvisation. In my view, the aim of chord analysis in jazz research is to reveal 
the harmonic structure of the composition to which the musicians were relying 
on when they recorded the performance. However, even if the chord progression 
was extracted simply by emphasizing what the pianist or the guitarist is playing, 
the result is merely an interpretation of what the original lead sheet might have 
been, since jazz musicians often do not play pre-defined chords throughout the 
performance. Another option is to transcribe all notes that were played either 
simultaneously or within specific time windows to create a general interpretation 
of what chords are implied. This would be a highly time-consuming job, but still 
it would not remove the possibility of false interpretations of what the original 
lead sheet might have been.88 

There are few photographs taken from recording sessions that could verify 
the accuracy of lead sheets. Yet even photographs are sometimes inadequate to 
represent the original lead sheet used in a particular recording session. For ex-
ample, Wayne Shorter’s copyright deposit lead sheets for the Library of Congress 
differ from recorded versions in terms of form, melody, and harmony, which 
suggests that these compositions were altered in the studio before they were rec-
orded (Waters, 2011, p. xii). In addition, although some of the published sheet 
music in books like The New Real Book and others have been verified by the com-
poser, it is not always explicit which lead sheets were verified by the composer, 
and whether these lead sheets are identical to the ones used in original recording 
sessions. Also, published sheet music may sometimes include errors and there-
fore they should be used with reasonable doubt. For example, some published 
lead sheets of Wayne Shorter’s compositions have been claimed to contain inac-
curate chords and even inaccurate melodies (including Orbits, Pee Wee, Prince of 
Darkness, and Pinocchio) (Waters, 2011, p. 8). 

It is important to note that jazz musicians often make changes to predeter-
mined chord progressions during performance in order to follow their musical 
goals or to respond to what other musicians are playing. However, it is necessary 

 
88  According to Laine (2015, p. 287), chord progressions constructed by music analysts 

should be viewed as hypothetical proposals if their aim is to reveal the harmonic 
structure to which a particular musician was relying on when he/she was improvised 
a particular performance. 
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that the analysis of recurring melodic patterns is based on a fixed chord progres-
sion, where the chord progression is identical in each chorus. The use of a fixed 
chord progression eliminates, at least partly, the problem of incorrect chord rep-
resentations since even if a particular chord is transcribed incorrectly, the simi-
larity between two or more melodic patterns is still noticed if they occur in the 
same part of the song form. However, further research is obviously needed to 
provide shared guidelines on lead sheet representations and harmony-based 
analysis of jazz improvisation. 

5.2.3 Basic statistics of the data 

A corpus-level analysis of the data was performed with MeloSpyGUI (Abeßer et 
al., 2018) (except for chordal pitch class distributions which were calculated by 
hand). According to corpus-level pitch class distributions (see Figure 5), G and D 
were the most frequently used pitch classes in both Paul Chambers’s and Ron 
Carter’s bass line reductions. Even if this analysis did not make a difference be-
tween the use of open strings and other note choices (which would require a 
video analysis of the original performances), the use of open strings (especially 
G and D) can be used to help shifting between different positions of the double 
bass and to overcome technical difficulties related to playing the instrument. As 
a result, it is likely that open strings are used often in any double bass perfor-
mance. In fact, Frieler et al. (2018) found that open strings (especially the open G 
string) were the most frequently played notes in the analyzed bass lines. 

According to chordal pitch class distributions (see Figure 6), root notes and 
fifths were the most frequently used chordal pitch classes in the bass line reduc-
tions of both bassists89. Target note distributions also showed that root notes and 
fifths were used most frequently in both bassists’ bass line reductions (see Figure 
7). Distributions of intervals between the last note of the bar and the first note of 
the next bar (see Figure 8) indicated that even though both bassists used ascend-
ing minor seconds and descending minor and major seconds most often in these 
situations, Ron Carter used a larger variety of intervals. The proportion of re-
peated notes was very small in both bassists’ bass line reductions (see Figures 9 
and 10). Corpus-level interval distributions are presented in Chapter 5.3.2: Basic 
conversion and segmentation of research material and so they are not presented 
here too. Nevertheless, it is worthwhile to note here that both bassists used small 
intervals (minor and major seconds) much more often than any other intervals. 

 
89  I also tested whether roots, thirds, and fifths were used more extensively in Paul 

Chambers’s bass line reductions compared to Ron Carter’s bass line reductions. The 
proportion of roots, thirds (including both minor thirds and major thirds), and fifths 
(including both diminished fifths and perfect fifths) was 62.6% in Paul Chambers’s 
bass line reductions and 63.7% in Ron Carter’s bass line reductions. This finding sug-
gests that neither of these two bass players used significantly more upper structure 
chord notes or significantly less roots, thirds, and fifths in their bass line reductions 
compared to the other bass player. 
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FIGURE 5 Corpus-level pitch class distributions 

 

FIGURE 6 Corpus-level chordal pitch class distributions 
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FIGURE 7 Corpus-level target note distributions 

 

FIGURE 8 Corpus-level distribution of 2-note approach-note patterns (ot. = other intervals) 
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FIGURE 9 Corpus-level fuzzy interval distributions 

 

FIGURE 10 Parsons’s code distributions 
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5.3 Research method 

5.3.1 Methodological problems related to segmentation 

In this chapter, my purpose is to discuss differences between melodic groupings, 
melodic patterns, and melodic chunks. After that, I will discuss principles of me-
lodic grouping and their implications on the identification of melodic chunks in 
jazz bass improvisations. Although these considerations are methodological, 
they will also clarify the meaning of some of the key concepts of this study. 

The term ‘melodic grouping’ is often used as a synonym with the term ‘me-
lodic pattern.’ However, these two concepts differ from each other in that me-
lodic groupings refer to perceptually relevant note sequences (although single 
note groupings may also exist, as shown later in this chapter), whereas melodic 
patterns refer to any note sequence that consists of at least two notes. The term 
‘perceptual relevance’ refers to the existence of a stimulus to a person90. In other 
words, perceptually relevant stimuli refer to all stimuli that a person can perceive. 
Distinct from these terms, ’melodic chunk’ refers to a note sequence that is re-
trieved from memory as a single unit. In the context of music performance, me-
lodic chunks provide information about the memory structures of the musician, 
whereas melodic groupings describe the segmentation of music from the lis-
tener’s point of view. 

Grouping is a natural human tendency to organize information into units 
(Snyder, 2000, p. 31). As an example, listeners perceive meaningful sequences of 
notes instead of individual notes that are not related to each other, and they are 
able to detect similarities and connections between different musical units. 
Grouping plays a significant role in making sense of musical works and lays the 
foundation for constructing more complicated understanding of a musical work 
(Lerdahl & Jackendoff, 1983, p. 13). Grouping is also an important ability under-
lying successful music performance. For instance, the phenomenon that singers 
tend to breathe between units rather than within them depends on their ability 
to group events into units (Lerdahl & Jackendoff, 1983, p. 12). 

A necessary condition for all melodic groupings is that they can only exist 
if they are perceptually relevant. Moreover, perceptual relevance can only occur 
when events belonging to a group are contiguous. This condition was expressed 
by Lerdahl and Jackendoff as follows: “any contiguous sequence of pitch-events, 
drum beats, or the like can constitute a group, and only contiguous sequences 
can constitute a group” (Lerdahl & Jackendoff, 1983, p. 37). In other words, indi-
vidual events must occur close in time to be perceived as a grouping and indi-
vidual events that are distant in time cannot be perceived as a melodic grouping. 

 
90  Note that any stimuli may consist of a series of stimulus features (e.g., sound pressure 

level). According to Milne & Herff (2020), perceptual relevance of stimulus features 
can be defined by their effect on memory and/or evaluation (i.e., perceptually rele-
vant stimulus features have systematic effects on tasks like recognition and liking). 
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There are three basic principles that influence how events are grouped to-
gether: proximity, similarity, and continuity. The principle of proximity states 
that events that occur close to each other in time tend to be grouped together. The 
principle of similarity states that similar events tend to form groupings. The prin-
ciple of continuity states that a series of events with the same direction and con-
sistent relationship between events (e.g., the same interval size) tend to be 
grouped together. (Snyder, 2000, pp. 39-43.)91 For example, grouping boundaries 
(which define where a particular grouping begins and ends) can be identified by 
a sufficient change in auditory information (e.g., a change in loudness) (Snyder, 
2000, pp. 33-34) or by searching for signs of how the composer intended his/her 
music to be performed (e.g., notes on articulation and phrasing in sheet music) 
(see Huovinen et al., 2018, p. 1). In addition, structural importance of notes can 
be also used to identify grouping boundaries. 

Following Narmour’s (1990) implication-realization model, Snyder (2000) 
proposed that two intervals (i.e., three notes) is a “minimum size for a typical 
melodic grouping” (Snyder, 2000, p. 146) and constitutes the “basic unit for the 
analysis of melodic grouping” (Snyder, 2000, p. 147). A maximum size of melodic 
and rhythmic groupings is established by constraints of short-term memory. Two 
events that are farther apart than 3-5 seconds are too distant to allow perceiving 
a relationship between them. In such cases, events do not appear to be connected 
and perceiving a relationship between events requires the use of long-term 
memory. Conversely, if two events are temporally too close to each other (closer 
than about 60 milliseconds), it becomes impossible to perceive them as separate 
events. (Snyder, 2000, p. 162.) Of course, it is easy to imagine occasions where 
even a single event may constitute a melodic grouping. For instance, a single 
pitch that continues for a considerable time and begins and ends with silence is 
perceived as a single grouping. Such situations are, however, quite infrequent, 
and marginal in music (see Lerdahl & Jackendoff, 1983, pp. 43-44). 

According to Lerdahl and Jackendoff, musical groupings are perceived in a 
hierarchical fashion and therefore subsequent groupings cannot overlap except 
for shared events that function as the last event of the preceding grouping and 
the first event of the latter grouping (Lerdahl & Jackendoff, 1983, pp. 13-14). Ler-
dahl and Jackendoff also argued that there can be several grouping principles 
that apply simultaneously, and such simultaneously possible grouping princi-
ples may either reinforce or conflict with each other (Lerdahl & Jackendoff, 1983, 
pp. 39-40). The existence of possible groupings that reinforce each other lead to a 
stronger certainty in assessing whether a particular grouping is appropriate. The 
existence of possible groupings that conflict with each other lead to vague and 
ambiguous interpretations of appropriate groupings. (Lerdahl & Jackendoff, 
1983, pp. 39-40.) The same piece of music may afford several interpretations of 
grouping structure. Some of these interpretations are more acceptable or more 

 
91  Along with these basic grouping principles, there are also other factors that can affect 

grouping including accent, articulation, dynamics, harmonic parallelism, motivic par-
allelism, and others (Lerdahl & Jackendoff, 1983, p. 43). 
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preferred than others but possible, nevertheless. (Lerdahl & Jackendoff, 1983, p. 
42.) 

Following Lerdahl and Jackendoff (1983, p. 12), it is reasonable to assume 
that grouping structure and metrical structure are independent components of 
musical organization. Therefore, grouping structure may not necessarily coincide 
with metrical structure as is often the case in jazz solos. Figure 11 (eight bars from 
Paul Chambers’s bass solo on Blues by Five) illustrates this issue. Except for bar 
269, there are no groupings that start at the strong beat. 
 

FIGURE 11 Grouping structure in Paul Chambers’s bass solo on Blues by Five, bars 265-
272 

It is noteworthy that previous research on jazz improvisation has focused on so-
los, whereas other roles of ensemble improvisation have been largely neglected. 
This is a pity since an analysis of walking bass lines provides an ideal approach 
to investigate repetition of melodic patterns, because grouping boundaries in 
walking bass lines are usually equivalent with the metrical structure (in contrast 
to solos). As a result, segment boundaries in walking bass lines can be identified 
mechanically and reliably. The main reason for this correspondence between 
grouping structure and metrical structure in walking bass lines is that blurring 
the metrical structure is rare in walking bass lines. Even if jazz musicians often 
tend to blur the metric and harmonic structure of a composition by extending the 
current chord over the bar line or by playing melody lines that overlap parts of 
the metric and harmonic structure (Tabell, 2004, p. 151), there are only a few oc-
currences of where a chord is implied beyond the bar line in Ron Carter’s bass 
lines (Nurmi, 2018). Regarding Paul Chambers’s bass lines, I have found no such 
occurrences. Instead, both Ron Carter and Paul Chambers often emphasize chord 
changes by playing a stable note on each first beat of a bar (Nurmi, 2006, 2018).92 

In the present study, I used Lerdahl and Jackendoff’s (1983) and Snyder’s 
(2000) principles of melodic grouping to investigate melodic chunks in walking 
bass lines. As noted earlier in this chapter, melodic chunks refer to note sequences 

 
92  Cross and Goldman (2021) recently found that the occurrence of repeated melodic pat-

terns in jazz improvisation may depend on metrical location. These authors found that 
short repeated melodic patterns were more likely to occur on specific metrical loca-
tions than others, which indicates that metrical location is either a part of mental rep-
resentations of well-learned melodic patterns or that certain melodic patterns are eas-
ier to access. Regarding the present study, these findings support the assumption that 
the metrical location of melodic patterns should be considered if identification of seg-
ment boundaries contributes to the reliability of the results. 
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that are retrieved from memory as a single unit. Following Lerdahl and Jackend-
off’s (1983) principles of melodic grouping, I also assumed that melodic chunks 
must have a specific starting and ending point, and that they cannot overlap with 
other melodic chunks. In addition, I assumed that even though melodic chunks 
may share common properties with each other, they can exist as distinct entities 
only if they do not overlap with each other.93 

Like melodic groupings, I assumed that there is a minimum size for melodic 
chunks too: all melodic chunks are required to contain at least one interval (i.e., 
at least two notes). The basic idea is that the more repeated and longer the me-
lodic pattern, the more plausible it is to argue that the repeated melodic pattern 
is a melodic chunk which is memorized and retrieved as a single unit. If a re-
peated note sequence is very short or it is repeated only once, there is little evi-
dence to show that this particular note sequence was memorized as a single unit 
or that it was retrieved from memory as a single unit. It is important to note that 
this reasoning of how to measure the quantity of learned melodic chunks differs 
from how vocabulary size is measured in language studies (see Brysbaert et al., 
2016). The major difference is that the identification of melodic chunks often re-
quires to search for note sequences that are repeated at least twice by the same 
musician. Also, the amount of repetition adds to the plausibility of claiming that 
a particular note sequence was retrieved from memory as a single unit (as op-
posed to invented during the performance or by chance). Repetition of words, 
however, is not required in estimations of vocabulary size. Even a single occur-
rence of a particular word in a text indicates that the author knows at least that 
such a word exists. 

5.3.2 Basic conversion and segmentation of research material 

There are two advantages of using walking bass lines as research data in jazz 
improvisation research compared to solos. As discussed in the previous chapter, 
segmentation of music provides less problems with walking bass lines compared 
to solos. In addition, time values in walking bass lines are usually less varied 
compared to solos. As a result, the inter-onset intervals between subsequent 
notes are more stable compared to solos. However, it turned out to be very diffi-
cult to use only note sequences where the inter-onset intervals between subse-
quent notes were completely stable. Only six bass lines (Paul Chambers’s bass 
lines on Chamber Mates, Excerpt, Milestones, Mr. P.C., and Oleo, and Ron Carter’s 
bass line on Mo’ Joe) were completely based on quarter notes. In addition, both 
bassists used a much larger variety of note durations at slow tempi compared to 
fast tempi. The decision to remove all melodic patterns that consisted of time val-
ues other than quarter notes was discarded, since such a decision would have 

 
93  As will be shown in Chapter 5.3.3.4: Average length of recurring melodic patterns, it is 

impossible to remove all overlapping melodic patterns from the research data. How-
ever, these remaining overlapping melodic patterns were at least partly caused by an 
overlap between the last note of the previous melodic pattern and the first note of the 
next melodic pattern. 



 

114 

caused a significant loss of research data. Instead, a mild form of reduction was 
preferred. 

Reductions have long been used in music analysis, where they are useful to 
reveal common features in different musical examples. In the present study, the 
original bass lines were reduced to sequences of quarter notes to remove all tem-
poral differences between melodic patterns if they shared the same underlying 
interval structure at the beat level. As a result, it was possible to examine whether 
melodic patterns played at slow tempi (based on a variety of note durations) 
shared the same underlying interval structure compared to melodic patterns 
played at fast tempi (usually based on quarter notes). 

Note reductions were implemented in the following way. When two-beat 
bass lines (i.e., bass lines that mainly consist of half notes), bars with whole notes, 
and rests with a minimum duration of a quarter note were removed, all notes 
shorter or longer than a quarter note were converted to quarter notes based on 
applying the following rules: (1) For dotted eighth notes followed by sixteenth 
notes (which is in the context of jazz usually notated as two-note triplets with a 
quarter note followed by an eighth note), disregard the second note (see Figure 
12); (2) For eighth note triplet sequences with three notes, disregard the second 
and the third note; (3) Convert half notes to two quarter notes; (4) Convert dotted 
half notes to three quarter notes; (5) For syncopations (including quarter note tri-
plets), disregard the note farther away from the beat; (6) For double-stops, disre-
gard the lower voice94. As a result, the research material consisted of only quarter 
notes in 4/4 meter. Figure 12 shows a typical example of how note durations 
were removed from data. Figure 13 shows less typical examples of reduction of 
note durations. 
 

 

FIGURE 12 Reduction of note durations in Ron Carter’s bass line on Dolphin Dance, bars 
39-42 

 
 

94  Conversion of double-stops caused some difficulties, since it was not perfectly clear 
which note should be regarded more important compared to others. Although it is a 
common practice to emphasize the highest voice in music analysis (e.g., Gjerdingen, 
1988), and even if the highest voice is more salient for the listeners (Fujioka et al., 
2005), the function of bass lines is to provide the bottom line for all other simultaneous 
voices and thus it would make sense to regard the lowest voice as the most important 
voice in bass lines. The highest voice was considered more salient and therefore the 
lower notes were removed. Again, it should be noted that double-stops were very rare 
in my research material. Therefore, this problem with double-stops had practically no 
effect on the results. 
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FIGURE 13 Less typical reductions 

Note that the present approach avoids problems that occur when all notes are 
equally important. Figures 14 and 15 illustrate this issue. In both examples, the 
first line shows four bars from the original bass line, whereas the second and the 
third line represent two ways to reduce note durations. In the second line, all 
notes are treated as equal. In the third line (the approach used in this study), all 
notes with onsets between the beats (instead of onsets at the beat) are removed. 
Obviously, the third line sounds more similar compared to the original bass line, 
compared to aural similarity between the second line and the original bass line. 
 

 

FIGURE 14 Reduction of note durations in Ron Carter’s bass line on Witch Hunt, bars 78-
81 

 

FIGURE 15 Reduction of note durations in Ron Carter’s bass line on Dolphin Dance, bars 
9-12 
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After all note durations were converted to quarter notes, the research material 
was converted to melodic patterns in two different ways. The first conversion 
method considers both the direction of melodic movement and harmonic context. 
Note that harmonic context is a fundamental constraint to what notes sound con-
sonant in each situation. However, a method of analysis that takes harmonic con-
text into account becomes problematic in situations with atypical or ambiguous 
chord substitutions, or when the relationship between melody and underlying 
chord is unclear because of some other reason. Also, it is often difficult to distin-
guish between the use of chord substitutions (which refer to common ways of 
using alternative chords as substitutes to original chords) from taking of liberties 
in relation to the current harmonic context. 

Figure 16 represents four 4-note melodic patterns with the same chordal 
pitch classes but different melodic direction. 
 

FIGURE 16 Change of melodic direction 

In Figure 17, ‘1’ refers to the root of the chord, ‘+’ refers to an ascending interval, 
‘-’ refers to a descending interval, ‘+3’ refers to an ascending interval leading to 
the third of the current chord, and so on. 

 

FIGURE 17 Conversion method 1 (Paul Chambers’s bass line on If I Were a Bell, bars 41-
48) 

In addition to this conversion method, all bass lines were also converted to MIDI 
files, where harmonic context was disregarded. In this case, the data represents 
the size of consecutive intervals and the direction of melodic movement but does 
not provide any information about the relationship between notes and underly-
ing chords. Ignoring the harmonic context makes it possible to avoid problems 
with chord analysis, but the classification process of melodic patterns is also less 
stringent compared to conversion method 1. For example, the melodic pattern 
Bb-B-C-E in the second bar (bar 42) (see Figures 17 and 18) is also often found in 
the harmonic context of Bb major. When harmonic context is considered, the 
notes would be classified as [1-b2-2-b5] in Bb major and [b7-7-1-3] in C major. If 
harmonic context is disregarded in the classification of the melodic patterns, each 
of these melodic patterns would belong to the same category [+1, +1, +4]. In this 
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example, the numbers refer to interval size (e.g., ‘1’ refers to one semitone, ‘2’ 
refers to two semitones, etc.), and the plus and minus signs refer to direction of 
melodic movement. 

In Figure 18, ‘1’ refers to the root of the chord, ‘+’ refers to an ascending 
interval, ‘-’ refers to a descending interval, ‘+3’ refers to an ascending interval 
leading to the third of the current chord, and so on. 

 

FIGURE 18 Conversion method 2 (Paul Chambers’s bass line on If I Were a Bell, bars 41-
48) 

Once the research material was transformed according to these two conversion 
methods, all note sequences were segmented into 4-note melodic patterns, 3-note 
melodic patterns, and 2-note melodic patterns. Melodic patterns of each length 
were analyzed separately. Except for approach-note patterns, the first note of all 
patterns was always the one that occurred at the first beat of the bar. As previ-
ously mentioned, jazz bassists frequently emphasize the first beat of each bar by 
playing stable notes on these occasions. Note that there are virtually no pauses in 
walking bass lines or subsequent identical melodic patterns that could allow 
other grouping principles to be applied. As a result, playing stable notes on the 
first beat of each bar appears to be a fundamental grouping mechanism in walk-
ing bass lines. 

Even if reduction of note durations is a useful method to reveal similarities 
between melodic patterns, there are some problems with this approach that need 
to be considered. For example, the need to define what is ‘a small variation’ may 
lead to considerable difficulties95. In addition, it is possible that important infor-
mation is lost when the proportion of note reductions increases too much. As 
another problem with reductions, when a small part of the complete musical 
work is used to investigate the creativity of the whole musical work, it is possible 
that a high proportion of disregarded information may decrease the reliability of 
the results. In the present study, the proportion of disregarded information was 
at its greatest in the analysis of target note use (where only the first note in each 
bar was considered). However, although the proportion of disregarded infor-
mation is particularly high in case of target notes, much of the original data must 
be disregarded if the researcher aims to analyze this type of musical creativity at 
all. 

 
95  In the present study, a small variation in melodic patterns was defined as any differ-

ence between melodic patterns that still shared the same underlying interval structure 
at the beat level. 
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Also note that even if reduction allows to remove rhythmical variation and 
to uncover melodic patterns that are only slightly different from each other, other 
types of slight variation of melodic patterns may also exist. Figure 19 shows two 
excerpts from Ron Carter’s bass line on E.S.P. The first five bars are from the be-
ginning of the first chorus of Herbie Hancock’s piano solo and the next five bars 
are from the beginning of the second chorus of Herbie Hancock’s piano solo. 
These two five-bar excerpts are almost identical with only slight differences in 
bars 294 and 326 until the first note of the fifth bar, even though there is no rhyth-
mical variation in these examples. However, this type of slight variability of me-
lodic patterns is quite rare, at least in the present data. 

 

FIGURE 19  Slight variability of melodic patterns in Ron Carter’s bass line on E.S.P., bars 
291-295 and 323-327 

In the present study, the overall number of converted bars was 1,854 (19.9% of all 
bars in the research material). However, the average proportion of bars that in-
cluded at least one reduced note was much higher in Ron Carter’s bass line re-
ductions (M = 45.7%, range: 0% to 89.4%, SD = 32.5). Moreover, the proportion 
of bars that included at least one reduced note was 50% or more in 6 out of the 12 
Ron Carter’s bass line reductions (this proportion was 80% or more in 3 bass line 
reductions). In Paul Chambers’s bass line reductions, the average proportion of 
bars that included at least one reduced note was 12.7% (range: 0% to 42.4%, SD = 
13.8). Except for four bass line reductions (Cool Struttin’, Freddie Freeloader, Blue 
Train, and C-Jam Blues), the proportion of bars with at least one reduced note was 
less than 30% (for proportion of bars that included at least one reduced note in 
each bass line reduction, see Table 19 in Appendix 1). As the proportion of bars 
with at least one reduced note was high in many of Ron Carter’s bass line reduc-
tions, it is possible that much relevant information was lost during the reduction 
process. To avoid this problem, further research could use more sophisticated 
reduction methods where the loss of information is minimized or use both reduc-
tions and original transcriptions to fully understand the effects of the reduction 
process. In some cases, it could also be a good idea to avoid reductions com-
pletely. For example, it might be sometimes useful to restrict the range of tempos 
to make sure that all notes in the original bass lines are quarter notes instead of 
using reductions. Also, sometimes it could be useful to measure the variability of 
melodic patterns without considering pattern lengths (e.g., by considering all 
notes that are played in a bar as a single pattern) with or without reductions. 

Corpus-level interval distributions were visually examined to find out 
whether the reduction process influenced these distributions. Since most target 
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variables in this study were based on either interval patterns or chordal pitch 
class patterns, it might have been useful to also investigate whether chordal pitch 
class distributions differed between bass line reductions and original bass lines. 
However, due to the considerable amount of work required to perform such an 
analysis, differences between these distributions were not analyzed. Visual ex-
amination of interval distributions did not indicate notable differences between 
distributions from bass line reductions and original bass lines except for note rep-
etitions. The proportion of note repetitions was larger in the original bass lines 
compared to bass line reductions, which was especially obvious in Ron Carter’s 
bass lines and bass line reductions. This finding suggests that even if the reduc-
tion process causes loss of information, the interval distributions of the original 
bass lines were preserved (at least approximately) except for the proportion of 
note repetitions. Interval distributions in both original bass lines and bass line 
reductions are presented in Figure 20. For clarity, all intervals larger than eight 
semitones with the same direction are combined into a single category (‘others’). 
 
 
 
 



 

120 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 20 Corpus-level interval distributions in original bass lines and bass line reductions (ot. = others)   
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Despite of these above-mentioned problems, note reductions have an important 
role in the present study. As an important advantage, the use of note reductions 
removes small differences between melodic patterns. As a result, the threshold 
of how much difference between two or more melodic patterns is required to 
consider them different was tightened. Also note that the reduction method al-
lowed to remove all differences between melodic patterns with dotted eighth 
notes followed by sixteenth notes (or two-note triplets with a quarter note fol-
lowed by an eighth note), which are often used in walking bass lines (see Figure 
21)96. Ignoring small variations of melodic patterns makes it more difficult to cre-
ate walking bass lines with a very high amount of variability. In addition, if very 
small variations of melodic patterns were not removed, it would be more difficult 
to identify differences between the creativity of walking bass lines from highly 
distinguished musicians. 
 

 

FIGURE 21 Dotted eighth notes followed by sixteenth notes in Paul Chambers’s bass line 
on Freddie Freeloader, bars 205-212 

Finally, note that the occurrence of pedal point sections in bass lines (where the 
bassist often plays the same note repeatedly for an extended duration) may in-
crease the relative frequency of recurring melodic patterns. The same applies to 
prewritten parts of bass lines. As a result, bass lines where pedal point sections 
are common (or where there are prewritten parts) may appear to be less creative 
compared to bass lines where pedal point sections do not occur (or where there 
are no prewritten parts). Thus, all clearly prewritten bass parts (e.g., in Milestones 
and Moment’s Notice) including all clearly prewritten pedal point sections were 
disregarded from the analysis. However, pedal point sections in bass lines can 
also occur spontaneously, which means that these sections are not prewritten or 
preplanned parts of the composition. Whenever pedal point sections were not 
exactly (or almost exactly) repeated in each chorus, they were not considered to 
be prewritten and thus they were not removed. As an example, Ron Carter’s bass 
line on Israel contains several lengthy pedal point sections, but all of these appear 
to be spontaneously played (in contrast to being prewritten sections). 

 
96  In the present research material, the most frequent note durations (apart from quarter 

notes) were eighth notes, dotted eighth notes followed by sixteenth notes (or two-note 
triplets with a quarter note followed by an eighth note), and eighth note triplets with 
two or three notes. 
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5.3.3 Methods of measurement 

5.3.3.1 Entropy of melodic pattern classes 

Entropy has been widely used as a measure of information content,97 novelty, 
and unpredictability in comparative studies on musical style (e.g., Youngblood, 
1958; Knopoff & Hutchinson, 1983; Snyder, 1990; Manzara et al., 1992) and stud-
ies on music cognition (e.g., Goldman, 2013; Pinho et al., 2014; Daikoku, 2018). 
As an example, Loui and Guetta (2019, p. 277) suggested to define creativity 
based on the information content of products and encouraged to search for “bi-
omarkers of creativity by having rigorously defined outcome measures and re-
lating these outcome measures to data from the brain” (p. 278). 

Entropy of melodic patterns was calculated according to the formula below, 
where ’n’ is the number of melodic pattern classes (melodic pattern class is an 
abstract object to which all occurrences of the same melodic pattern belong), 
and ’pi’ is the probability of each melodic pattern class. For instance, in a melody 
with 4 occurrences of melodic patterns (A, A, A, and B), there are 2 melodic pat-
tern classes (A and B).98 

 

𝐻𝐻 = −�𝑝𝑝𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑖𝑖)
𝑛𝑛

𝑖𝑖

 

 
In music, there is an almost infinite number of different ways to combine notes 
together. For instance, if a musician is restricted to using only two different notes, 
these notes can be used to create 24 (i.e., sixteen) different 4-note melodic patterns. 
In a standard piano keyboard with 88 keys, there are 884 (i.e., nearly 60 million) 
different ways of how to combine whatever four notes in a row. The average 
range of notes in double bass is from low E to high c2. In other words, there are 
334 (more than one million) different possibilities for how to combine four notes 
in a row (note that the number would be higher if micro-intervals were also con-
sidered). Since real music never comes even close to such complexity, a better 
way to measure maximum entropy for the purpose of the present study is to de-
fine maximum entropy as a situation where the probability of all melodic pattern 
classes is equal. For instance, in a melody with one hundred bars (where each bar 
may either contain one novel melodic pattern or one melodic pattern that occurs 
more than once in the same melody), the maximum number of different melodic 
pattern classes is 100. In this case, the maximum entropy is 6.64. 

It is important to note that the number of input values affects the rate of 
entropy and therefore the entropy of two sets of data cannot be compared directly 

 
97  Entropy was originally designed as a measure of information content in messages. In-

formation was defined as the logarithm of possible choices: “if one has available say 
16 alternative messages among which he is equally free to choose, then since 16 = 24 so 
that log216 = 4, one says that this situation is characterized by 4 bits of information” 
(Shannon & Weaver, 1949/1964, pp. 9-10). 

98  For convenience, I will use the term ‘entropy of melodic patterns’ instead of ‘entropy 
of melodic pattern classes’ to avoid the use of confusing terminology like ‘normalized 
entropy of chordal pitch class pattern classes’ when harmonic context is considered. 
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if their quantity of input values is not the same (e.g., Snyder, 1990, p. 134). As a 
result, to compare musical works with a different number of input values, the 
normalized entropy of melodic patterns was also calculated. In addition, an anal-
ysis of how the normalized entropy of melodic patterns varies with pattern 
length was also performed. 

Normalized entropy is “the ratio of the actual [entropy] to the maximum 
entropy” (Shannon & Weaver, 1949/1964, p. 13), where maximum entropy refers 
to the highest possible information content in a message with N symbols99. Nor-
malized entropy (H0) was calculated by using the following formula (e.g., Frieler, 
2017, p. 65), where ‘H0‘ can range from 0 to 1 and where ‘N’ is the total number 
of melodic patterns. 
 

𝐻𝐻0 =
𝐻𝐻

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
=

𝐻𝐻
𝑙𝑙𝑙𝑙𝑙𝑙2𝑁𝑁

 

5.3.3.2 Relative frequency of non-recurring melodic patterns 

I used two different methods to calculate the relative frequency of non-recurring 
melodic patterns. According to the first method (calculation method 1), the rela-
tive frequency of non-recurring melodic patterns was calculated according to the 
formula below, where ’a’ is the total number of non-recurring melodic pattern 
classes100 in a particular musical work (instead of the sub-corpus of all bass line 
reductions of Paul Chambers or the sub-corpus of all bass line reduction of Ron 
Carter) and ’m’ is the total number of melodic pattern classes in a particular mu-
sical work. 

 
𝑓𝑓1 =

𝑎𝑎
𝑚𝑚

× 100 
 
According to the second method (calculation method 2), the relative frequency 
of non-recurring melodic patterns was calculated according to the following for-
mula, where ‘a’ is the total number of non-recurring melodic pattern classes in a 
particular musical work and ‘n’ is the total number of all occurrences of melodic 
patterns in a particular musical work. Using this calculation method, f2 = 30% 
means that non-recurring melodic pattern classes covered 30% of all occurrences 
of melodic patterns in particular musical work. 

 
𝑓𝑓2 =

𝑎𝑎
𝑛𝑛

× 100 
 
To illustrate the difference between these calculation methods, consider the fol-
lowing sequence of melodic patterns: A, A, A, B. In this sequence, there are four 
occurrences of melodic patterns (A, A, A, B), two melodic pattern classes (A, B), 

 
99  Shannon and Weaver (1949/1964) used the term ‘relative entropy’ instead of normal-

ized entropy. 
100  As noted in the previous chapter, the term ‘melodic pattern class’ refers to an abstract 

object to which all instances of the same melodic pattern belong. 
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three occurrences of the melodic pattern class A, and one occurrence of the me-
lodic pattern class B. Using calculation method 1, the relative frequency of non-
recurring melodic patterns is 50%, because there is only one non-recurring me-
lodic pattern class and two melodic pattern classes in total. Using calculation 
method 2, the relative frequency of non-recurring melodic patterns is 25%, be-
cause there is only one non-recurring melodic pattern class (B) and there are four 
occurrences of melodic patterns in total (A, A, A, and B). When combined, these 
results show that the relative frequency of non-recurring melodic patterns was 
50% and these non-recurring melodic patterns covered 25% of all occurrences of 
melodic patterns.101 

Following Norgaard (2014) and Norgaard and Römer (2022), I also calcu-
lated the relative frequency of notes that started a recurring interval pattern at 
any metrical location. In contrast to these studies, however, the relative frequency 
values were calculated separately for each musical work instead of the sub-cor-
pus as a whole (which includes all analyzed improvisations by the same musi-
cian). The relative frequency of notes that started a recurring interval pattern at 
any metrical location was calculated according to the formula below, where ’b’ is 
the number of notes that started a recurring interval pattern at any metrical loca-
tion in a particular musical work and ’c’ is the total number of notes in a particu-
lar musical work. Overlapping interval patterns that started at the same note 
were removed. Analysis was limited to 4-note interval patterns. 

 

𝑓𝑓𝑚𝑚 =
𝑏𝑏
𝑐𝑐

× 100 
 

Note that even slight differences in the number of melodic pattern classes may 
have a considerable effect on the results if the total number of all occurrences of 
melodic patterns in a particular musical work is small. For example, if the total 
number of non-recurring melodic pattern classes in a particular musical work is 
5, the total number of recurring melodic pattern classes is 3, the total number of 
melodic pattern classes is 8, and the total number of all occurrences of melodic 
patterns is 11, the relative frequency of non-recurring melodic patterns (using 
calculation method 1) is 62.5% and the relative frequency of non-recurring me-
lodic patterns (using calculation method 2) is 45.5%, even if the difference be-
tween the number of non-recurring melodic pattern classes and the number of 
recurring melodic pattern classes is only two. 

The relative frequency of non-recurring melodic patterns was calculated 
both when harmonic context was disregarded and when harmonic context was 
considered. Following Frieler (2017), all melodic patterns where harmonic con-
text is disregarded are called interval patterns and all melodic patterns where 
harmonic context is considered are called chordal pitch class patterns. All relative 
frequency values for interval patterns were calculated with MeloSpyGUI (Abeßer 

 
101  As with entropy values, I will use the term ‘relative frequency of non-recurring me-

lodic patterns’ instead of ‘relative frequency of non-recurring melodic pattern classes’ 
to avoid the use of confusing terminology like ‘relative frequency of non-recurring 
chordal pitch class pattern classes’ when harmonic context is considered. 
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et al., 2018), whereas all relative frequency values for chordal pitch class patterns 
were calculated manually. 

5.3.3.3 Variability of target notes 

Variability of target notes (the term ‘target note’ was defined here as the first note 
of each bar) was analyzed in two stages. First, the occurrence of different types 
of target notes (e.g., root notes, major thirds, perfect fifths, etc.) was calculated in 
each bass line. Then, the normalized entropy of target notes, the relative fre-
quency of root notes, and the relative frequency of consonant target notes (root 
notes, major thirds, minor thirds, and perfect fifths combined) were calculated. 
As with the normalized entropy of melodic patterns, the maximum entropy of 
target notes was defined as the equal probability of different target note classes 
in a single bass line. Note that the lower the relative frequency of root notes or 
consonant target notes, the higher the creativity of the bass lines in terms of target 
notes. 

5.3.3.4 Average length of recurring melodic patterns 

To investigate whether expert jazz improvisers compensate increasing time pres-
sures by using larger melodic chunks at fast tempos compared to slow tempos, I 
calculated the average length of recurring melodic patterns and the maximum 
length of melodic patterns in each bass line reduction, when harmonic context 
was disregarded. In this analysis, overlapping melodic patterns were removed in 
three stages. (1) Since melodic patterns were considered to always start at the first 
beat of the bar, melodic patterns that started at any other location were disre-
garded. (2) Overlapping melodic patterns that started at the same location were 
removed except for the longest melodic pattern. These overlapping melodic pat-
terns are caused by the fact that for every recurring melodic pattern with n ele-
ments, there are always n-1 overlapping recurring melodic patterns with fewer 
elements (see Norgaard, 2014, p. 278). As an example, for every recurring 8-in-
terval melodic pattern, there is an overlapping recurring 7-interval melodic pat-
tern that starts at the same location, an overlapping recurring 6-interval melodic 
pattern that starts at the same location, and so on. (3) Recurring melodic patterns 
that were part of a larger recurring melodic pattern and contained five or more 
notes were removed. Since only those recurring melodic patterns that started at 
the first beat of the bar were considered, all recurring melodic patterns with 
twelve notes, for example, were removed if a 16-note recurring melodic pattern 
with the same notes had started at the first beat of the previous bar (except for 
the first four notes of the larger melodic pattern, of course). 

Note that this process does not remove all overlapping melodic patterns 
from the research data. For instance, the process does not remove overlapping of 
the last note of a melodic pattern and the first note of the next melodic pattern. 
However, these overlaps were accepted. See Figure 22 for an example of overlap-
ping melodic patterns that remain in the research data after the three-stage re-
moval process. 
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FIGURE 22  Overlapping melodic patterns after stage three in Paul Chambers’s bass line 
on Blues by Five, bars 1-8 

 
The average length of recurring melodic patterns was reported both as the num-
ber of intervals and approximate duration in seconds. The approximate average 
duration of recurring melodic patterns (in seconds) was calculated by the follow-
ing formula, where ’L’ is the average length of recurring melodic patterns (in in-
tervals), and ’T’ is the approximate tempo of the bass line. 

 
𝐷𝐷 = 𝐿𝐿 ∗ (1 (𝑇𝑇 60⁄ )⁄ ) 

5.3.3.5 Melodic complexity 

Although distinct from musical creativity (e.g., Eisenberg & Thompson, 2003), I 
also investigated the melodic complexity of the bass lines to find out whether 
increasing technical demands at fast tempos influence expert jazz musicians’ note 
choices. To answer this question, two methods were used: entropy of interval 
distribution and pitch proximity (see Eerola, 2016). I hypothesized that expert 
jazz musicians’ note choices are technically less demanding (as implied by lower 
melodic complexity) at fast tempos compared to slow tempos, which facilitates 
the generation of novel melodic patterns at fast tempos. I also investigated 
whether Paul Chambers used roots, thirds, and fifths more extensively in his bass 
lines compared to Ron Carter. In melodic complexity literature, a similar method 
is tonal ambiguity, which is measured by calculating the number of unstable 
notes (Eerola, 2016). 

The entropy of interval distribution was calculated by using the ivsizedist1 
function in MIDI Toolbox (Eerola & Toiviainen, 2004). This function calculates in-
terval size distribution (i.e., probability for each interval size), where interval di-
rection is discarded. Note that the ivsizedist1 function transforms all intervals 
that are larger than an octave to intervals within an octave, which may under-
mine the frequency of large intervals in some bass lines. Also note that the num-
ber of possible intervals is very limited when all intervals larger than an octave 
are disregarded and interval direction is disregarded. The maximum entropy of 
interval distribution was defined as the equal probability of input values in a bass 
line. Pitch proximity (where occurrence of larger intervals implies complexity) 
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was calculated as the average interval size in each bass line as suggested by 
Eerola (2016, p. 4). The average interval size was calculated by using the 
abs_int_mean function in MeloSpyGUI (Abeßer et al., 2018). 

5.3.3.6 Transfer of melodic patterns between bass line reductions 

Transfer of melodic patterns was examined by investigating whether the same 
chordal pitch class patterns were repeated in at least two different bass line re-
ductions by the same musician. Since repetition of melodic patterns may also oc-
cur by chance, the plausibility that a particular melodic pattern was retrieved 
from memory was assessed by using two additional threshold levels: (1) a par-
ticular melodic pattern was considered to be retrieved from memory if the same 
melodic pattern occurred at least three times in at least two bass line reductions, 
and (2) a particular melodic pattern was considered to be retrieved from memory 
if the same melodic pattern occurred at least twice in at least three bass line re-
ductions. The higher the threshold level, the higher the plausibility that a partic-
ular melodic pattern was retrieved from memory. In addition, it was assumed 
that the longer the recurring melodic pattern, the higher the probability that it 
was learned. The analysis was restricted to 2-note, 3-note, and 4-note chordal 
pitch class patterns. 

5.3.3.7 Shared melodic contour patterns 

In addition to reduction (see Chapter 5.3.2: Basic conversion and segmentation of 
research material), contour analysis provides an easily applicable method to 
search for underlying similarities in melodies. In addition to their importance in 
music perception and memory for melodies, melodic contours can function as 
templates of melody that can be used as a source of idea generation in the process 
of improvisation. 

Four types of melodic contour were considered for their applicability to the 
present study. Fuzzy intervals analysis encodes the interval structure based on 
nine categories: descending interval with more than 7 semitones, descending in-
terval with 5-7 semitones, descending interval with 3-4 semitones, descending 
interval with 1-2 semitones, repetition, ascending interval with 1-2 semitones, as-
cending interval with 3-4 semitones, ascending with with 5-7 semitones, and as-
cending interval with more than 7 semitones (Frieler, 2017, p. 67). Parsons’s code, 
originally introduced as a classification system to index musical themes, encodes 
the interval structure based on three categories: ascending melodic direction, de-
scending melodic direction, and repetition of previous note (Parsons, 1975/2008). 
Huron’s (1996) classification system consists of nine contour types. However, its 
reliance on the mean values of mid-phrase notes (i.e., notes that occur between 
the first and the last note in a phrase) makes it an unnecessarily complex method 
regarding the present study. Narmour’s (1990) classification of basic melodic 
structures has the advantage that it was designed to analyze both very short me-
lodic patterns and larger hierarchically organized melodic structures. Narmour’s 
aim was to present a theory of melodic implication that applies to all people and 
all musical styles. The theory predicts what kind of melodic continuations any 
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given interval implies to the listener and how such lower-level implications affect 
melodic implications at higher levels of music. 

According to Narmour’s theory, there are several basic melodic structures 
(i.e., contour types): process (P) (continuity of same-size intervals and melodic 
direction), intervallic process (IP) (continuity of same-size intervals but change 
in melodic direction), registral process (VP) (continuity of melodic direction but 
change in interval size; small to large), duplication (D) (repeated note), intervallic 
duplication (ID) (repeated interval), reversal (R) (change in melodic direction and 
interval size), intervallic reversal (IR) (continuity of melodic direction but change 
in interval size; large to small), registral reversal (VR) (change in melodic direc-
tion and interval size; large to even larger), registral return (aba) (return to the 
same pitch), and near registral return (aba’) (a’ is within one or two semitones 
from a) (Narmour, 1990, pp. 96, 435-437) (see Figure 23). 

 

FIGURE 23  Narmour’s basic types of melodic contour 

Narmour’s contour types can be analyzed by using an available pattern recogni-
tion tool, MIDI Toolbox (Eerola & Toiviainen, 2004). However, an analysis of Nar-
mour’s contour types provides little additional information compared to an anal-
ysis based on fuzzy intervals and Parsons’s code. Therefore, an analysis of Nar-
mour’s contour types was abandoned. 

Melodic contour analysis (based on fuzzy interval patterns and Parsons’s 
code patterns) was performed with MeloSpyGUI (Abeßer et al., 2018). Only me-
lodic contour patterns that started at the first beat of the bar and consisted of 4 
notes (i.e., 3 intervals) were analyzed. Harmonic context was not considered. The 
term ‘fuzzy interval pattern class’ refers to an abstract object to which all occur-
rences of the same fuzzy interval pattern belong. The term ‘fuzzy interval pat-
tern’ refers to all fuzzy interval patterns regardless of their similarity with other 
fuzzy interval patterns. Similarly, ‘Parsons’s code pattern class’ refers to an ab-
stract object to which all occurrences of the same Parsons’s code pattern belong 
and the term ‘Parsons’s code pattern’ refers to all Parsons’s code patterns regard-
less of their similarity with other Parsons’s code patterns. 
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5.3.3.8 Variability of approach-note patterns 

The following four ways to reach a desired target note are extensively used in 
Paul Chambers’s bass lines: the interval between the previous note and the target 
note is either a minor second, a major second, a descending fifth, or an ascending 
fourth (Nurmi, 2006). Longer approach-note patterns are also common: two mi-
nor seconds (e.g., Bb and B if the target note is C) and a changing note pattern 
(e.g., G and D if the target note is C). An extensive use of approach-note patterns 
may decrease cognitive resources required in the generation of novel melodic 
patterns by decreasing the number of elements to be selected. In addition, pre-
learned approach-note patterns may also give additional time to prepare upcom-
ing note choices. 

To investigate the variability of approach-note patterns (which refer to short 
melodic patterns that are used to move towards the next target note), I calculated 
the normalized entropy of interval patterns that started either at the third beat or 
the fourth beat of the bar. Interval patterns that started either at the third beat or 
the fourth beat were also compared to interval patterns that started at the first 
beat of the bar with the same pattern length, in order to find out whether the 
relative frequency values and the normalized entropy values were influenced not 
only by pattern length but also by the metrical location of the patterns (i.e., 
whether patterns either started at the beginning of the bar or at beat 3/beat 4). In 
both cases, the length of analyzed interval patterns was fixed: the length of inter-
val patterns that started at the third beat and ended at the first beat of the next 
bar was always two intervals (i.e., three notes). Similarly, the length of interval 
patterns that started at the fourth beat and ended at the first beat of the next bar 
was always one interval (i.e., two notes). Harmonic context was disregarded in 
these analyses. 

As with melodic, fuzzy interval, and Parsons’s code patterns, the term ‘ap-
proach-note pattern class’ refers to an abstract object to which all occurrences of 
the same approach-note pattern belong. The term ‘approach-note pattern’ refers 
to all approach-note patterns regardless of their similarity or difference from 
other approach-note patterns. 

5.3.3.9 Familiarity with the chord progression 

Subjective familiarity with a chord progression was assessed based on the fol-
lowing assumptions. First, a chord progression was considered familiar if it was 
based on one of the two most widely used chord progressions in jazz (the blues 
or the Rhythm Changes). Second, a chord progression was considered familiar to 
the bassist if the musical work was written or co-written by him. Third, a chord 
progression was considered familiar if the musical work had appeared previ-
ously in at least one recording featuring the same musician. For example, You’d 
Be So Nice to Come Home to (a popular musical work written by Cole Porter) was 
recorded for Paul Chambers Quartet’s album Bass on Top (1957), but it was also 
recorded for Art Pepper’s album Art Pepper Meets the Rhythm Section several 
months earlier and for Cannonball Adderley’s 1955 album Julian “Cannonball” 
Adderley. Therefore, this musical work was thought to be already well-known to 
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Paul Chambers when he recorded the album Bass on Top. Fourth, a musical work 
was considered familiar if it was often featured on the band’s regular live set list. 
The relationship between familiarity with the chord progression and musical cre-
ativity was assessed by investigating whether the average normalized entropy of 
chordal pitch class patterns differed between original or unusual chord progres-
sions and chord progressions which were likely well-known to the musician. 

5.3.4 Correlation analysis 

Since most of the data were proportions, non-parametric correlation analysis was 
used to investigate the relationship between the variables as it makes no assump-
tions on distributions (Williamon et al., 2021, p. 366). As an alternative strategy, 
non-parametric methods to investigate differences between groups could have 
also been used. However, due to the small sample sizes of the present study (es-
pecially regarding Ron Carter’s bass line reductions), correlation analysis was 
preferred over these methods. Among the most common non-parametric corre-
lation methods (Spearman’s rho and the different versions of Kendall’s tau), Ken-
dall’s tau-b was preferred due to the small sample sizes (especially in regard to 
Ron Carter’s bass line reductions) and the large number of tied ranks with har-
monic rhythm data (which represent the average distance between chord 
changes)102. Since the length of analyzed bass line reductions varied considerably 
(which can lead to a situation where the variability of melodic patterns decreases, 
at least partly, simply due to increased length of analyzed bass line reductions), 
Kendall’s tau partial correlation analysis was used to remove the influence of the 
length of the analyzed bass line reductions.103 

 
102  Although Kendall’s tau is the recommended choice for small sample sizes with a large 

number of tied ranks by some researchers (e.g., Williamon et al., 2021, p. 366), some 
have argued instead that Spearman’s rho is a better choice with tied ranks (Puth et al., 
2015). However, Kendall’s tau has an important advantage as it provides narrower 
confidence intervals compared to Spearman’s rho (Puth et al., 2015). Also, it should be 
noted that many of the variables in the present study did not contain ties.  

103  The length of analyzed bass line reductions ranged from 95 to 465 bars (M = 224.9, SD 
= 96.9) in Paul Chambers’s bass line reductions and from 104 to 310 bars (M = 215.8, 
SD = 69.1) in Ron Carter’s bass line reductions. To find out whether the variability of 
melodic patterns decreases, in part, due to the length of analyzed bass line reductions, 
I used Kendall’s tau correlation analysis with Bonferroni correction to determine the 
relationship between the length of analyzed bass line reductions and the variability of 
melodic patterns with the same 19 measurements as used to assess the relationship be-
tween tempo/harmonic rhythm and the variability of melodic patterns. After Bonfer-
roni correction, the alpha level for statistical significance was adjusted to .003 (.05/19). 
The results indicated a moderate negative correlation between the length of analyzed 
bass line reductions and the variability of melodic patterns in both Paul Chambers’s 
bass line reductions (mean absolute tau-b = .40, all p-values were equal or smaller 
than .013, range: .32 to .55, SD = 0.07) and Ron Carter’s bass line reductions (mean ab-
solute tau-b = .34, range: .24 to .52, SD = 0.08). In Paul Chambers’s bass line reduc-
tions, 10 out of the 19 measurements indicated a statistically significant correlation af-
ter Bonferroni correction. In Ron Carter’s bass line reductions, all measurements indi-
cated a statistically non-significant correlation after Bonferroni correction. The direc-
tion of the effect was always negative in both Paul Chambers’s and Ron Carter’s bass 
line reductions. 
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Correlation coefficients were interpreted with the use of Cohen’s standards, 
which suggest that coefficients of .10, .30, and .50 indicate weak, moderate, and 
strong correlation, respectively (Cohen, 1988, pp. 79-81)104. To assess the strength 
of evidence and the precision or uncertainty of observed effect sizes, p-values and 
bootstrapped confidence intervals (with 1,000 replicates) were also reported105. 
Instead of analyzing the data both with and without outliers, correlation analyses 
were performed only with the original data since Kendall’s tau is not sensitive to 
outliers (e.g., Wilcox, 2010, p. 179)106. Finally, Bonferroni correction was used to 
control the increased risk of falsely rejected null hypotheses caused by simulta-
neous comparisons (e.g., Pike, 2011). Multiple testing not only increases the prob-
ability of false positive findings, but it may also lead to biased confidence inter-
vals and increased probability of extreme effect size estimates (Jeffries, 2007). 
Therefore, Bonferroni correction was used not only to adjust alpha levels, but also 
to adjust confidence intervals. All statistical analyses were performed with JASP 
(JASP Team, 2022), except for descriptive statistics which were performed with 
Microsoft Excel.107 

In contrast to standard repeated measures design (where two or more sub-
jects are observed multiple times), the present study was based on a single-

 
104  Several other standards (or rules of thumb) to interpret correlation coefficients have 

also been proposed. For example, Russell (2018, p. 292) suggested that coefficients be-
tween 0 and .29 are weak, coefficients between .30 and .69 are moderate, and coeffi-
cients larger than .70 are strong. Williamon et al. (2021, p. 363) suggested that coeffi-
cients of .10, .30, .50, and .70 indicate weak, medium, strong, and very strong correla-
tions, respectively. Schober et al. (2018, p. 1765) suggested that coefficients between 0 
to .10 indicate negligible correlation, coefficients between .10 to .39 indicate weak cor-
relation, coefficients between .40 to .69 indicate moderate correlation, coefficients be-
tween .70 to .89 indicate strong correlation, and coefficients between .90 to 1 indicate 
very strong correlation. Ferguson (2009) suggested that a coefficient of .20 represents 
the lower limit for a practically significant effect in social sciences, a coefficient of .50 
indicates a moderate effect size, and a coefficient of .80 indicates a strong effect size. 
To my knowledge, there are no standards that are specifically designed for music re-
searchers to interpret effect sizes. In recent textbooks for music researchers, both Rus-
sell (2018) and Williamon et al. (2021) used Cohen’s standards with slight changes to 
interpret correlation coefficients. 

105  The p-value, used to estimate the strength of evidence against the null hypothesis, in-
dicates the probability of the observed (or more extreme) result when the null hypoth-
esis is assumed to be true and all underlying assumptions are correct (Goodman, 2008; 
Wasserstein & Lazar, 2016; Greenland et al., 2016). A confidence interval gives a range 
of values that can be expected to include the true effect with a given level of confi-
dence (e.g., 95% confidence) if the experiment is repeated very many times. The preci-
sion of the confidence interval is measured by the width of the confidence interval. A 
wider confidence interval gives a less precise estimation on the range of plausible ef-
fects compared to a narrower confidence interval. (Greenland et al., 2016.) For recent 
critical discussions on p-values and significance testing, see e.g. Wasserstein et al. 
(2019). 

106  Outliers in the data may have a considerable influence on the results when the sample 
size of the study is small (Marino, 2014, p. 86) and their effect increases as the sample 
size decreases (Asuero et al., 2006, p. 46). 

107 To avoid bloating the number of statistical tests, a single effect size method (Kendall’s 
tau) was used in this study. In general, however, it is recommended to use several ef-
fect size methods. For example, Wilcox (2017) argued that “assuming that a single 
measure of effect size is adequate is a strategy that cannot be recommended. The gen-
eral issue of assessing effect size in a satisfactory manner is a complex problem that 
might require multiple perspectives.” (Wilcox, 2017, pp. 294-295.) 
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subject design where one person is observed multiple times (see Williamon et al., 
2021, p. 217). Since all measurements were performed separately for the two bass-
ists (in other words, all data sets contained observations on a single subject only), 
the fact that the data consisted entirely of statistically dependent observations 
was not considered to be a problem. All common correlation methods (including 
Kendall’s tau) assume independence between observations, which means that 
observations (i.e., data points) should not depend on any other observations 
(Bakdash & Marusich, 2017, p. 2). Violations of this assumption are a problem 
when data consists of observations from two or more subjects and all observa-
tions are mixed in a single group or data set. The reason is that observations on 
the same subject tend to be more similar compared to observations on other sub-
jects (Schober & Vetter, 2018). Similarly, the variability of observations between 
subjects is often greater compared to the variability of observations on a single 
subject (Bland & Altman, 1994, p. 896). However, this problem does not occur 
when only a single subject is measured or when two or more subjects are meas-
ured separately. 

As a disadvantage of correlation analysis, it does not allow to estimate the 
size of the effect based on original units of measurement (original units often 
make it easier to interpret effect sizes compared to standardized effect size meth-
ods) (Baguley, 2009; Peng & Chen, 2014)108. In addition to this problem, even if 
standards such as those proposed by Cohen (1988) provide a simple solution to 
interpret correlation coefficients, they are problematic since even very small ef-
fect sizes can be important depending on the subject matter. For example, inter-
ventions that could reduce the risk of morbidity can have important practical sig-
nificance even with small effect sizes. On the other hand, very small effect sizes 
may not be clinically relevant regardless of the statistical significance of the re-
sults (Phillips et al., 2022). Typical effect sizes can also vary between study de-
signs and even within a discipline (e.g., there are large differences in median ef-
fect sizes between the subdisciplines of psychology), which makes it impossible 
to apply the same standards to interpret effect sizes in all contexts (Schäfer & 
Schwarz, 2019). As indicated by these examples, Cohen’s standards (or any exist-
ing rules of thumb) may lead to false and misleading interpretations of effect size. 
Therefore, it is acknowledged that Cohen’s standards should not be used blindly 
(e.g., Kraft, 2020). In fact, Cohen himself recommended that his standards should 
be used "only when no better basis for estimating the ES index is available" (Co-
hen, 1988, p. 25). 

I deliberately avoided using the term 'lack of correlation' for correlation co-
efficients smaller than tau-b = .10. Instead, the term 'negligible correlation' (Scho-
ber et al., 2018) was used in these situations (where tau-b was smaller than .10). 
The problem with the term 'lack of correlation' is that correlation coefficients that 
are smaller than tau = .10 only indicate that the effect is so small that it has no 
practical significance (however, note that the lowest meaningful effect size 

 
108  On the other hand, unstandardized effect sizes often do not allow to compare the re-

sults from different studies since “units of measurements are rarely identical from one 
study to the next” (Peng & Chen, 2014, p. 44). In contrast, standardized effect sizes al-
low to compare between current effect sizes and those found in relevant literature. 
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depends on the subject matter). Similarly, if the results are statistically non-sig-
nificant, the results do not indicate the lack of effect but only that that there is 
insufficient evidence against the null hypothesis (see Altman & Bland, 1995; Al-
derson, 2004).109 

As noted earlier in this chapter, the sample sizes of the present study were 
small which has consequences for the probability of statistically significant re-
sults and the precision of effect size estimates. For example, statistically signifi-
cant results with small effect sizes can only be detected with large sample sizes 
(Button et al., 2013). Low-powered studies (i.e., studies with inadequate “proba-
bility of rejecting a false null hypothesis”; Serdar et al., 2021, p. 3) are also more 
likely to produce erroneous effect size estimates and a wider range of effect size 
estimates compared to high-powered studies (Button et al., 2013). In addition, 
there is a high probability of Type II errors (where Ho is incorrectly maintained) 
when sample sizes are small and effect sizes are not very large (de Winter, 2013). 
Finally, the probability that a statistically significant result is actually true (in-
stead of being a false positive) decreases with small sample sizes (de Winter, 2013) 
and small statistical power (Button et al., 2013). 

Assuming that May and Looney’s (2020) calculations for Spearman’s rho 
and Kendall’s coefficient of concordance are approximately true for Kendall’s tau, 
the required sample size for each bassist to achieve a statistical power of 0.80 
given an effect size of tau = .30 ( = 0.05, two-tailed) is about 90, and the required 
sample size for each bassist to achieve a statistical power of 0.80 is about 200 
given an effect size of tau = .20 ( = 0.05, two-tailed) (May & Looney, 2020). By 
convention, 0.80 is an acceptable rate of statistical power (e.g., Serdar et al., 2021). 
A statistical power of 0.80 means that the probability for a correctly rejected null 
hypothesis is 80% (Serdar et al., 2021). Since statistical power is calculated as “1 - 
Type II error probability,” a power of 0.80 also indicates that the probability of a 
Type II error is 20% (Serdar et al., 2021, p. 3). 

5.3.5 Consistency of effect directions 

When observed effect sizes are very small, there is a high risk for false estimates 
on the direction of the effect. In this study, consistency of effect directions ob-
tained from multiple measurements was used to assess the level of uncertainty 
in effect direction estimates. At the level of pattern use, musical creativity was 
measured as normalized entropy of chordal pitch class patterns, normalized en-
tropy of interval patterns, relative frequency of non-recurring chordal pitch class 
patterns (using two different calculation methods), relative frequency of non-re-
curring interval patterns (using two different calculation methods), and relative 
frequency of notes that started a recurring interval pattern at any metrical 

 
109  Also note that it is a common misinterpretation of statistically non-significant results 

to claim that the most likely effect based on the data is the null effect. Instead, “the ef-
fect best supported by the data from a given experiment is always the observed effect, 
regardless of its significance.” (Goodman, 2008, p. 136.) As a consequence, statistically 
non-significant results should not be interpreted to indicate a lack of effect (unless the 
observed effect is exactly zero) (Greenland et al., 2016, p. 341). 
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location. Except for the relative frequency of notes that started a recurring inter-
val pattern at any metrical location, all measurements were performed with three 
pattern lengths (2 notes, 3 notes, and 4 notes). In total, creativity in pattern use 
was assessed based on 19 measurements. Note that the relative frequency of 
notes that started a recurring interval pattern at any metrical location is a meas-
ure of redundancy of melodic patterns. As result, the higher the relative fre-
quency of notes that started a recurring interval pattern at any metrical location, 
the lower the creativity of the bass line reduction. 

Musical creativity was also measured at the level of target notes, melodic 
contour patterns, and approach-note patterns. At the level of target notes, musi-
cal creativity was measured as normalized entropy of target notes, relative fre-
quency of root notes, and relative frequency of root notes, major thirds, minor 
thirds, and perfect fifths combined (in total: 3 measurements). In the case of the 
last-mentioned measurement, the lower the relative frequency of target notes, the 
higher the musical creativity. At the level of melodic contour patterns, musical 
creativity was measured as normalized entropy of fuzzy interval patterns, nor-
malized entropy of Parsons’s code patterns, relative frequency of non-recurring 
fuzzy interval pattern classes, relative frequency of non-recurring Parsons’s code 
pattern classes, relative frequency of non-recurring fuzzy interval patterns, and 
relative frequency of non-recurring Parsons’s code patterns when pattern length 
was always four notes (in total: 6 measurements). At the level of approach-note 
patterns, musical creativity was measured as normalized entropy of approach-
note patterns, relative frequency of non-recurring approach-note pattern classes, 
and relative frequency of non-recurring approach-note patterns when pattern 
length was either 2 notes or 3 notes (in total: 6 measurements). 

Since effect direction estimates are particularly prone to be false when cor-
relations are negligible (tau-b < .10), all correlations smaller than tau-b = .10 were 
disregarded when the proportion of negative and positive correlations were cal-
culated. In addition, it was only allowed to make conclusions on the direction of 
the effect if all or most measurements indicated the same effect direction. In any 
other case, the results did not allow to make conclusions on the direction of the 
effect. 

Consistency of effect directions can be only used to provide tentative con-
clusions on effect directions. As a result, further research should consider using 
more sophisticated methods to make conclusions on the direction of the effect. 
Confidence intervals, for instance, could be used for this purpose. If all values in 
the confidence interval are negative (or all values are positive), it is reasonable to 
claim that the direction of the effect is negative (or positive) with a given confi-
dence level. In any other case, the direction of the effect cannot be determined. 
However, if most values in the confidence interval have the same direction, the 
results could be considered as hints and interpreted with statements like the di-
rection of the effect is "uncertain, but plausibly positive" or uncertain, but plausi-
bly negative (Tukey, 1991, p. 103). 
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6.1 Methodological issues 

6.1.1 The role of harmonic context 

When improvising to a specific chord progression, harmonic context limits what 
note choices are available. As a result, I hypothesized that the normalized en-
tropy of melodic patterns and the relative frequency of melodic patterns should 
decrease when harmonic context is disregarded since interval sequences can be 
played in a variety of harmonic contexts instead of just one. As expected, the nor-
malized entropy of interval patterns, the relative frequency of interval patterns 
(calculation method 1), and the relative frequency of interval patterns (calcula-
tion method 2) were almost always lower compared to chordal pitch class pat-
terns measured with the same methods. In a few cases, however, the normalized 
entropy of interval patterns, the relative frequency of interval patterns (calcula-
tion method 1), and the relative frequency of interval patterns (calculation 
method 2) were higher compared to chordal pitch class patterns analyzed with 
the same methods, in contrary to what was expected. 

In Paul Chambers’s bass line reductions, the absolute average difference be-
tween the normalized entropy of chordal pitch class patterns and the normalized 
entropy of interval patterns was 0.018 for 4-note melodic patterns (range: 0 to 
0.053, SD = 0.014), 0.049 for 3-note melodic patterns (range: 0.005 to 0.112, SD = 
0.025), and 0.105 for 2-note melodic patterns (range: 0.022 to 0.206, SD = 0.039). 
The absolute average difference between the relative frequency of chordal pitch 
class patterns and the relative frequency of interval patterns (calculation method 
1) was 3.07 percentage points for 4-note melodic patterns (range: 0 to 8.89, SD =
2.20), 4.76 percentage points for 3-note melodic patterns (range: 0.44 to 11.7, SD
= 3.45), and 19.4 percentage points for 2-note melodic patterns (range: 0 to 35.9,
SD = 8.26). The absolute average difference between the relative frequency of

6 RESULTS 
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chordal pitch class patterns and the relative frequency of interval patterns (cal-
culation method 2) was 4.00 percentage points for 4-note melodic patterns (range: 
0 to 9.90, SD = 2.87), 5.82 percentage points for 3-note melodic patterns (range: 0 
to 16.8, SD = 4.06), and 9.77 percentage points for 2-note melodic patterns (range: 
0.30 to 26.3, SD = 5.76). 

In Ron Carter’s bass line reductions, the absolute average difference be-
tween the normalized entropy of chordal pitch class patterns and the normalized 
entropy of interval patterns was 0.022 for 4-note melodic patterns (range: 0.004 
to 0.046, SD = 0.015), 0.063 for 3-note melodic patterns (range: 0.005 to 0.129, SD 
= 0.036), and 0.150 for 2-note melodic patterns (range: 0.032 to 0.272, SD = 0.062). 
The absolute average difference between the relative frequency of chordal pitch 
class patterns and the relative frequency of interval patterns (calculation method 
1) was 3.44 percentage points for 4-note melodic patterns (range: 0.54 to 8.38, SD 
= 2.61), 9.93 percentage points for 3-note melodic patterns (range: 1.58 to 18.2, SD 
= 4.89), and 27.5 percentage points for 2-note melodic patterns (range: 8.99 to 44.3, 
SD = 10.0). The absolute average difference between the relative frequency of 
chordal pitch class patterns and the relative frequency of interval patterns (cal-
culation method 2) was 6.70 percentage points for 4-note melodic patterns (range: 
0.38 to 13.5, SD = 4.23), 14.8 percentage points for 3-note melodic patterns (range: 
1.14 to 33.7, SD = 8.14), and 19.0 percentage points for 2-note melodic patterns 
(range: 3.03 to 38.4, SD = 9.55). 

According to these results, the decision to use interval patterns (instead of 
chordal pitch class patterns) as a measure of musical creativity had little effect on 
the results with 4-note melodic patterns. However, the difference between the 
measurements based on interval patterns and chordal pitch class patterns in-
creased with shorter melodic patterns. This finding suggests that further studies 
could benefit from using interval patterns instead of chordal pitch class patterns 
to avoid problems with the identification of the chord progression when the 
length of the melodic patterns is at least 4 notes. See also Figures 24 and 25 for 
scatter plots, which indicate that the normalized entropies of chordal pitch class 
patterns were very similar to the normalized entropies of interval patterns when 
pattern length was 4 notes but not when pattern length was 3 notes or 2 notes. 
For the average difference between the normalized entropy of chordal pitch class 
patterns and the normalized entropy of interval patterns in each bass line reduc-
tion, see Table 20 in Appendix 2. 
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FIGURE 24 Effects of tempo on normalized entropy of chordal pitch class patterns and interval patterns with different pattern lengths (blue = 
chordal pitch class patterns; orange = interval patterns) (Paul Chambers’s bass line reductions) 

 

FIGURE 25 Effects of tempo on normalized entropy of chordal pitch class patterns and interval patterns with different pattern lengths (blue = 
chordal pitch class patterns; orange = interval patterns) (Ron Carter’s bass line reductions) 
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6.1.2 Threshold level 

As discussed in Chapter 5.3.1: Methodological problems related to segmentation, 
the more repeated and the longer the melodic pattern, the more plausible it is 
that the melodic pattern was retrieved as a single unit from memory during the 
performance. Previous studies have used a very low threshold level (at least two 
occurrences in a particular performance) to measure repetition in jazz improvi-
sation (e.g., Norgaard, 2014). This threshold level is too low to exclude the possi-
bility that the repeated melodic pattern was repeated by chance. As a rare excep-
tion, Norgaard et al. (2016) used two threshold levels to calculate the frequency 
of repeated melodic patterns: (1) at least two occurrences of the same melodic 
pattern and (2) at least four occurrences of the same melodic pattern. In the pre-
sent study, I calculated the average number of different repeated chordal pitch 
class patterns that occurred at least twice (threshold level 1), at least three times 
(threshold level 2), at least four times (threshold level 3), and at least five times 
(threshold level 4) in a particular bass line reduction. In these analyses, pattern 
length was either 2 notes, 3 notes, or 4 notes. The abbreviation ‘tl’ refers to thresh-
old level. 

In Paul Chambers’s bass line reductions, the average number of different 
repeated 4-note chordal pitch class patterns was 37.4 (tl 1), 20.6 (tl 2), 13.7 (tl 3), 
and 8.73 (tl 4). With 3-note chordal pitch class patterns, the average number was 
36.6 (tl 1), 22.6 (tl 2), 15.5 (tl 3), and 11.2 (tl 4). Finally, the average number of 
different repeated 2-note chordal pitch class patterns was 33.2 (tl 1), 22.4 (tl 2), 
16.8 (tl 3), and 12.9 (tl 4). In Ron Carter’s bass line reductions, the average number 
of different repeated 4-note chordal pitch class patterns was 24.6 (tl 1), 11.1 (tl 2), 
6.75 (tl 3), and 5.00 (tl 4), the average number of different repeated 3-note chordal 
pitch class patterns was 32.9 (tl 1), 15.9 (tl 2), 9.75 (tl 3), and 6.50 (tl 4), and the 
average number of different repeated 2-note chordal pitch class patterns was 35.7 
(tl 1), 19.7 (tl 2), 13.6 (tl 3), and 10.6 (tl 4). 

What is interesting in these results is how much tightening the threshold 
level decreased the average number of different repeated chordal pitch class pat-
terns. For example, the average number of different repeated 4-note chordal pitch 
class patterns was 2.73 times larger in Paul Chambers’s bass line reductions and 
3.64 times larger in Ron Carter’s bass line reductions when threshold level 1 was 
used instead of threshold level 3. As a result, using a low threshold level may 
lead to exaggerated estimations on the size of the vocabulary (i.e., storage of 
learned melodic patterns) of jazz musicians. For the absolute and relative fre-
quency of recurring chordal pitch class patterns in each bass line reduction, see 
Table 21 in Appendix 2. 

6.1.3 Removal of head sections 

As discussed in Chapter 5.2.1: Selection of research material, some head sections 
were ignored due to a frequent use of half notes (e.g., If I Were a Bell). Head sec-
tions were also ignored if they were based on pre-composed material (e.g., So 
What). Note that ignoring head sections may lead to a significant loss of data. As 
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a result, head sections were removed only if necessary, based on the two criteria 
mentioned above. 

The effect of removing head sections on the variability of melodic patterns 
was investigated by calculating the normalized entropy of chordal pitch class 
patterns and the relative frequency of non-recurring chordal pitch class patterns 
(using both calculation method 1 and 2) both when head sections were ignored 
and when they were considered. The average normalized entropy of 4-note 
chordal pitch class patterns was 0.013 units larger in Paul Chambers’s bass line 
reductions when head sections were disregarded compared to when they were 
considered (0.033 units larger in Ron Carter’s bass line reductions). The average 
relative frequency of non-recurring 4-note chordal pitch class patterns (calcula-
tion method 1) was 1.93 percentage points larger in Paul Chambers’s bass line 
reductions when head sections were disregarded compared to when they were 
considered (3.68 percentage points larger in Ron Carter’s bass line reductions). 
The average relative frequency of non-recurring 4-note chordal pitch class pat-
terns (calculation method 2) was 3.75 percentage points larger in Paul Cham-
bers’s bass line reductions when head sections were disregarded compared to 
when they were considered (9.85 percentage points larger in Ron Carter’s bass 
line reductions). 

As expected, the results indicated that the normalized entropy of 4-note 
chordal pitch class patterns and the relative frequency of non-recurring 4-note 
chordal pitch class patterns (regardless of calculation method) were usually 
larger, when head sections were disregarded compared to when they were con-
sidered. See Table 22 in Appendix 2 for the normalized entropy of chordal pitch 
class patterns and the relative frequency of non-recurring chordal pitch class pat-
terns, when head sections were considered and when they were ignored. 

6.1.4 Identification of segment boundaries 

As discussed in Chapter 5.3.1: Methodological problems related to segmentation, 
identification of segment boundaries is a necessary stage to ensure that the ana-
lyzed melodic patterns correspond to plausible grouping structures of the music. 
However, segmentation of melodic patterns has been neglected in several previ-
ous studies (Weisberg et al., 2004; Norgaard, 2014; Norgaard et al., 2016; Nor-
gaard & Römer, 2022). In two of these studies (Norgaard, 2014; Norgaard & 
Römer, 2022), the relative frequency of recurring melodic patterns was calculated 
as the proportion of notes that started a recurring melodic pattern with at least 
two occurrences in relation to the total number of notes110. To find out whether 
and how the decision to disregard the identification of segment boundaries af-
fects the results, I investigated whether the relative frequency of notes that 
started a recurring 4-note interval pattern at any metrical location (where the 
identification of segment boundaries is disregarded) and the relative frequency 
of recurring 4-note interval patterns that started at the first beat of the bar (where 

 
110  In Norgaard et al. (2016), the relative frequency of recurring melodic patterns was cal-

culated as the average number of repeated melodic patterns per 100 notes. 
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the identification of segment boundaries is considered) gives similar results. Fol-
lowing Norgaard (2014), overlapping patterns that started at the same note were 
removed. 

According to the results, the absolute number of notes that started a recur-
ring 4-note interval pattern was considerably higher when segmentation of me-
lodic patterns was neglected. This indicates that the decision to disregard the 
identification of segment boundaries in melodic patterns may overestimate the 
number of recurring melodic patterns in jazz improvisations. In addition, the rel-
ative frequency of recurring interval patterns was higher (but not always) when 
the identification of segment boundaries was neglected. The average difference 
between the relative frequency of notes that started a recurring 4-note interval 
pattern at any metrical location and the relative frequency of recurring 4-note 
interval patterns that started at the first beat of the bar was 8.95 percentage points 
in Paul Chambers’s bass line reductions and 11.1 percentage points in Ron 
Carter’s bass line reductions. The absolute difference between the relative fre-
quency of notes that started a recurring 4-note interval pattern at any metrical 
location and the relative frequency of recurring 4-note interval patterns that 
started at the first beat of the bar was five percentage points or less in eight bass 
line reductions (six Paul Chambers’s bass line reductions and two Ron Carter’s 
bass line reductions). Note that the number of overlapping interval patterns that 
started at the same note was zero in all bass line reductions. However, this does 
not mean that the overall number of overlapping interval patterns is also zero. 
For instance, shorter repeated interval patterns may still occur as a part of longer 
interval patterns. 

In order to determine the similarity of the results produced by these two 
measurement methods, a Kendall’s tau correlation analysis with Bonferroni cor-
rection was performed to investigate the relationship between tempo and the rel-
ative frequency of notes that started a recurring 4-note interval pattern at any 
metrical location (measurement method A) and the relationship between tempo 
and the relative frequency of recurring 4-note interval patterns that started at the 
first beat of the bar (measurement method B). After Bonferroni correction, the 
alpha level for statistical significance was adjusted to .013 (.05/4). Note that cor-
relation analysis was not used to compare the results obtained by these two meas-
urement methods because there are several problems in the use of correlation to 
assess the agreement between two methods of measurement (Bland & Altman, 
1986; Schober et al., 2018). For example, the results from one measurement may 
disagree with the other by being consistently higher or lower even in case of sub-
stantial correlation (Schober et al., 2018). 

In Paul Chambers’s bass line reductions, the results indicated a statistically 
non-significant and weak positive correlation between tempo and the relative 
frequency of notes that started a recurring 4-note interval pattern at any metrical 
location (measurement method A) (tau-b = .27, 98.7% CI [-.08, .59], p = .04), and 
between tempo and the relative frequency of recurring 4-note interval patterns 
that started at the first beat of the bar (measurement method B) (tau-b = .22, 98.7% 
CI [-.15, .54], p = .09). In Ron Carter’s bass line reductions, the results indicated a 
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statistically non-significant and weak positive correlation between tempo and the 
relative frequency of notes that started a recurring 4-note interval pattern at any 
metrical location (measurement method A) (tau-b = .21, 98.7% CI [-.40, .85], 
p = .38), and between tempo and the relative frequency of recurring 4-note inter-
val patterns that started at the first beat of the bar (measurement method B) (tau-
b = .12, 98.7% CI [-.57, .75], p = .64).111 

In summary, the results indicated a statistically non-significant and weak 
correlation between tempo and the relative frequency of recurring interval pat-
terns regardless of the measurement method. The results also indicated that the 
use of measurement method B may lead to weaker correlations compared to 
measurement method A. For raw data used in these tests, see Table 23 in Appen-
dix 2. 

6.2 Temporal constraints and musical creativity 

6.2.1 Tempo and variability of melodic patterns 

Variability of melodic patterns was assessed by using the following methods of 
measurement: normalized entropy of chordal pitch class patterns, normalized 
entropy of interval patterns, relative frequency of non-recurring chordal pitch 
class patterns (with two different calculation methods), and relative frequency of 
non-recurring interval patterns (with two different calculation methods). These 
methods of measurement were used with melodic patterns of various length (2 
notes, 3 notes, and 4 notes). In addition, relative frequency of notes that started a 
recurring 4-note interval pattern at any metrical location was calculated. In total, 
19 measurements were used to determine the relationship between tempo and 
the variability of melodic patterns. The same methods of measurement were also 
used to determine the relationship between harmonic rhythm and the variability 
of melodic patterns. 

See Table 3 for descriptive statistics of the data. Due to a large number of 
measurements, it was not possible to show visualizations of all distributions. In-
stead, scatter plots for the relationship between tempo and the normalized en-
tropy of 4-note chordal pitch class patterns, and the relationship between tempo 
and the relative frequency of notes that started a recurring 4-note interval pattern 
at any metrical location are presented in Figures 26 and 27.112 A visual examina-
tion of these scatter plots suggest that the variability of melodic patterns was 
higher, on average, in Ron Carter’s bass line reductions compared to Paul Cham-
bers’s bass line reductions. Although not evident from these two scatter plots, it 
is also important to note that the variability of melodic patterns always increased 
with pattern length (which can be explained by an increasing number of possible 

 
111  As elsewhere in this study, all confidence intervals were bootstrapped. 
112  Note that all figures in this study are based on descriptive statistics. As a result, effects 

of the length of analyzed bass line reductions were not considered in these figures. 
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combinations). Note that the relative frequency of notes that started a recurring 
interval pattern at any metrical location is a measure of redundancy. As a result, 
increased redundancy of bass line reductions indicates decreased variability of 
melodic patterns, and vice versa. 

TABLE 3 Descriptive statistics 

Method of  
measurement 

M (SD) 
(Chambers) 

Range 
(Chambers) 

M (SD) 
(Carter) 

Range 
(Carter) 

Tempo (bpm) 202.1 (50.0) 110-293 196.8 (71.9) 115-298 
Normalized en-
tropy of 4-note 
chordal pitch class 
patterns 

0.818 (0.072) 
 

0.612-0.934 
 

0.902 (0.060) 
 

0.743-0.985 
 

Normalized en-
tropy of 4-note in-
terval patterns 

0.800 (0.071) 
 

0.613-0.910 0.880 (0.057) 
 

0.739-0.947 
 

Normalized en-
tropy of 3-note 
chordal pitch class 
patterns 

0.752 (0.079) 
 

0.564-0.907 0.851 (0.067) 
 

0.677-0.940 
 

Normalized en-
tropy of 3-note in-
terval patterns 

0.702 (0.078) 
 

0.525-0.853 0.788 (0.057) 
 

0.672-0.864 
 

Normalized en-
tropy of 2-note 
chordal pitch class 
patterns 

0.674 (0.078) 
 

0.492-0.847 0.746 (0.082) 
 

0.536-0.845 
 
 

Normalized en-
tropy of 2-note in-
terval patterns 

0.569 (0.076) 
 

0.395-0.722 
 

0.596 (0.065) 
 

0.468-0.678 
 
 

Relative frequency 
of non-recurring 
4-note chordal 
pitch class pat-
terns (I) 

66.6% (10.0) 
 
 

47.1%-85.9% 
 

84.4% (6.52) 
 
 

75.4%-96.0% 
 

Relative frequency 
of non-recurring 
4-note chordal 
pitch class pat-
terns (II) 

36.8% (14.4) 
 
 

9.61%-70.5% 
 

63.4% (14.5) 
 
 

38.3%-91.4% 
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Method of  
measurement 

M (SD) 
(Chambers) 

Range 
(Chambers) 

M (SD) 
(Carter) 

Range 
(Carter) 

Relative frequency 
of non-recurring 
3-note chordal 
pitch class pat-
terns (I) 

57.1% (10.5) 
 
 

37.5%-78.9% 
 

73.8% (10.0) 
 
 

53.3%-88.8% 
 

Relative frequency 
of non-recurring 
3-note chordal 
pitch class pat-
terns (II) 

25.1% (12.0) 
 
 

6.01%-59.0% 
 

46.6% (15.2) 
 
 

18.6%-72.1% 
 

Relative frequency 
of non-recurring 
2-note chordal 
pitch class pat-
terns (I) 

44.9% (10.6) 
 
 

16.7%-67.2% 
 

57.6% (9.35) 
 
 

43.1%-75.7% 
 

Relative frequency 
of non-recurring 
2-note chordal 
pitch class pat-
terns (II) 

14.6% (8.29) 
 
 

1.50%-41.1% 
 

25.2% (10.9) 
 
 

8.33%-46.0% 
 

Relative frequency 
of non-recurring 
4-note interval 
patterns (I) 

63.9% (9.49) 
 

45.3%-81.9% 
 

81.1% (6.81) 
 

68.8%-91.0% 
 

Relative frequency 
of non-recurring 
4-note interval 
patterns (II) 

32.9% (12.9) 
 
 
 

9.61%-62.1% 
 

56.7% (12.9) 
 

38.2%-77.9% 
 
 

Relative frequency 
of non-recurring 
3-note interval 
patterns (I) 

52.9% (9.64) 
 

35.3%-70.8% 
 

63.9% (6.97) 
 

51.7%-77.6% 
 

Relative frequency 
of non-recurring 
3-note interval 
patterns (II) 

19.3% (9.38) 
 

6.01%-42.1% 
 

31.9% (9.15) 
 

17.4%-49.6% 
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Method of  
measurement 

M (SD) 
(Chambers) 

Range 
(Chambers) 

M (SD) 
(Carter) 

Range 
(Carter) 

Relative frequency 
of non-recurring 
2-note interval 
patterns (I) 

25.5% (8.03) 

 

9.38%-42.1% 

 

30.1% (8.99) 

 

13.6%-44.9% 

 

Relative frequency 
of non-recurring 
2-note interval 
patterns (II) 

4.79% (3.28) 
 

0.81%-14.7% 
 

6.28% (2.90) 
 

1.04%-10.2% 
 

Relative frequency 
of notes that 
started a recurring 
4-note interval 
pattern at any 
metrical location 

76.0% (8.79) 
 
 

58.3%-90.5% 
 

54.4% (12.5) 
 
 

29.1%-72.6% 
 

Note. n = 30 (Paul Chambers’s bass line reductions). n = 12 (Ron Carter’s bass line 
reductions). I = calculation method 1; II = calculation method 2. For an explana-
tion on the difference between these two calculation methods, see Chapter 5.3.3.2: 
Relative frequency of non-recurring melodic patterns. 
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FIGURE 26 Effects of tempo on normalized entropy of 4-note chordal pitch class patterns 

 

FIGURE 27 Effects of tempo on relative frequency of notes that started a recurring 4-note interval pattern at any metrical location
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A Kendall’s tau correlation analysis with Bonferroni correction was performed 
to determine the relationship between tempo and the variability of melodic pat-
terns. After Bonferroni correction, the alpha level for statistical significance was 
adjusted to .003 (.05/19). The results are presented in Table 4. Note that all p-
values in Table 4 (and elsewhere in this study) are original (uncorrected). 

TABLE 4 Correlations between tempo and variability of melodic patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.  
2-tailed) 
(Chambers) 

99.7% CI 
(bootstrap-
ped)  
(Chambers) 

Kendall’s 
tau-b (sig. 
2-tailed) 
(Carter) 

99.7% CI 
(bootstrap-
ped) 
(Carter) 

Normalized entropy 
of 4-note chordal 
pitch class patterns 

τb = -.14  
p = .27 
τb = -.11 
p = .40 

[-.48, .27] 
 
[-.49, .34] 

τb = .12 
p = .64 
τb = .25 
p = .29 

[-.65,.90] 
 
[-.47, .86] 

Normalized entropy 
of 4-note interval 
patterns 

τb = -.16 
p = .21 
τb = -.13 
p = .32 

[-.53, .30] 
 
[-.51, .25] 

τb = .06 
p = .84 
τb = .18 
p = .44 

[-.65, .85] 
 
[-.53, .86] 

Normalized entropy 
of 3-note chordal 
pitch class patterns 

τb = -.14 
p = .28 
τb = -.11 
p = .42 

[-.48, .29] 
 
[-.44, .28] 

τb = .09 
p = .74 
τb = .23 
p = .33 

[-.67, .95] 
 
[-.37, .90] 

Normalized entropy 
of 3-note interval 
patterns 

τb = -.15 
p = .25 
τb = -.11 
p = .39 

[-.53, .21] 
 
[-.51, .28] 

τb = .05 
p = .84 
τb = .15 
p = .53 

[-.67, .74] 
 
[-.56, .72] 

Normalized entropy 
of 2-note chordal 
pitch class patterns 

τb = -.08 
p = .53 
τb = -.04 
p = .74 

[-.48, .34] 
 
[-.42, .38] 

τb = .15 
p = .55 
τb = .33 
p = .16 

[-.66, .80] 
 
[-.44, .81] 

Normalized entropy 
of 2-note interval 
patterns 

τb = -.09 
p = .51 
τb = -.04 
p = .78 

[-.47, .35] 
 
[-.37, .35] 

τb = .30 
p = .20 
τb = .42 
p = .07 

[-.47, .86] 
 
[-.24, .93] 

Relative frequency 
of non-recurring     
4-note chordal pitch 
class patterns (I) 

τb = -.22 
p = .08 
τb = -.20 
p = .14 

[-.62, .19] 
 
[-.61, .24] 

τb = 0 
p = 1 
τb = .11 
p = .63 

[-.74, .85] 
 
[-.72, .84] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig. 
2-tailed) 
(Chambers) 

99.7% CI 
(bootstrap-
ped)  
(Chambers) 

Kendall’s 
tau-b (sig. 
2-tailed) 
(Carter) 

99.7% CI 
(bootstrap-
ped) 
(Carter) 

Relative frequency 
of non-recurring    
4-note chordal pitch 
class patterns (II) 

τb = -.21 
p = .11 
τb = -.17 
p = .19 

[-.60, .21] 
 
[-.57, .17] 

τb = 0 
p = 1 
τb = .11 
p = .63 

[-.79, .77] 
 
[-.76, .81] 

Relative frequency 
of non-recurring    
3-note chordal pitch 
class patterns (I) 

τb = -.25 
p = .05 
τb = -.23 
p = .08 

[-.63, .15] 
 
[-.62, .17] 

τb = -.03 
p = .95 
τb = .07 
p = .77 

[-.75, .77] 
 
[-.80, .60] 

Relative frequency 
of non-recurring    
3-note chordal pitch 
class patterns (II) 

τb = -.24 
p = .06 
τb = -.21 
p = .11 

[-.58, .19] 
 
[-.62, .13] 

τb = -.09 
p = .74 
τb = .05 
p = .84 

[-.85, .71] 
 
[-.73, .72] 

Relative frequency 
of non-recurring     
2-note chordal pitch 
class patterns (I) 

τb = -.21 
p = .10 
τb = -.18 
p = .17 

[-.59, .24] 
 
[-.52, .28] 

τb = -.02 
p = .95 
τb = .16 
p = .50 

[-.76, .73] 
 
[-.55, .61] 

Relative frequency 
of non-recurring    
2-note chordal pitch 
class patterns (II) 

τb = -.18 
p = .17 
τb = -.14 
p = .30 

[-.58, .20] 
 
[-.44, .23] 

τb = .03 
p = .95 
τb = .25 
p = .28 

[-.64, .70] 
 
[-.37, .71] 

Relative frequency 
of non-recurring    
4-note interval pat-
terns (I) 

τb = -.27 
p = .04 
τb = -.24 
p = .06 

[-.61, .10] 
 
[-.62, .11] 

τb = -.18 
p = .46 
τb = -.05 
p = .84 

[-.86, .63] 
 
[-.76, .73] 

Relative frequency 
of non-recurring    
4-note interval pat-
terns (II) 

τb = -.22 
p = .09 
τb = -.19 
p = .16 

[-.61, .24] 
 
[-.56, .23] 

τb = -.12 
p = .64 
τb = .02 
p = .92 

[-.88, .64] 
 
[-.75, .66] 

Relative frequency 
of non-recurring    
3-note interval pat-
terns (I) 

τb = -.30 
p = .02 
τb = -.28 
p = .04 

[-.65, .15] 
 
[-.61, .15] 

τb = -.03 
p = .95 
τb = .07 
p = .77 

[-.83, .91] 
 
[-.78, .71] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig. 
2-tailed) 
(Chambers) 

99.7% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.  
2-tailed) 
(Carter) 

99.7% CI 
(bootstrap-
ped) 
(Carter) 

Relative frequency 
of non-recurring 
3-note interval pat-
terns (II) 

τb = -.28 
p = .03 
τb = -.26 
p = .05 

[-.68, .13] 
 
[-.66, .20] 

τb = -.03 
p = .95 
τb = .09 
p = .70 

[-.83, .72] 
 
[-.63, .80] 

Relative frequency 
of non-recurring 
2-note interval pat-
terns (I) 

τb = -.35 
p = .007 
τb = -.34 
p = .01 

[-.59, .02] 
 
[-.62, .03] 

τb = -.24 
p = .31 
τb = -.18 
p = .45 

[-.90, .56] 
 
[-.85, .46] 

Relative frequency 
of non-recurring 
2-note interval pat-
terns (II) 

τb = -.23 
p = .07 
τb = -.20 
p = .12 

[-.53, .18] 
 
[-.47, .15] 

τb = -.15 
p = .55 
τb < .0001 
p = 1 

[-.85, .65] 
 
[-.81, .65] 

Relative frequency 
of notes that started 
a recurring 4-note 
interval pattern at 
any metrical loca-
tion a 

τb = -.27 
p = .04 
τb = -.24 
p = .07 

[-.62, .12] 
 
[-.64, .17] 

τb = -.21 
p = .38 
τb = -.11 
p = .63 

[-.86, .64] 
 
[-.73, .62] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval; I = calcu-
lation method 1; II = calculation method 2. For an explanation on the difference 
between these two calculation methods, see Chapter 5.3.3.2: Relative frequency 
of non-recurring melodic patterns. a The direction of the effect is corrected. 
 
When controlling for the length of analyzed bass line reductions, all results were 
statistically non-significant after Bonferroni correction. In Paul Chambers’s bass 
line reductions, 17 out of the 19 measurements indicated a statistically non-sig-
nificant and negative correlation between tempo and the variability of melodic 
patterns and 2 out of the 19 measurements indicated a statistically non-significant 
and negligible correlation between the variables. The mean absolute tau-b 
was .18 (range: .04 to .34, SD = 0.08). Based on this value and the high level of 
consistency of effect directions, the results indicated a statistically non-significant 
and weak negative correlation between tempo and the variability of melodic pat-
terns. In Ron Carter’s bass line reductions, 10 out of the 19 measurements indi-
cated a statistically non-significant and positive correlation between the variables, 
7 out of the 19 measurements indicated a statistically non-significant and negli-
gible correlation between the variables, whereas two measurements indicated a 
statistically non-significant and negative correlation between the variables. The 
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mean absolute tau-b was .15 (range: 0 to .42, SD = 0.11), which indicates a weak 
correlation between the variables. However, since only 10 out of the 19 measure-
ments indicated the same effect direction, the results did not allow to make con-
clusions on the direction of the effect in Ron Carter’s bass line reductions. For 
raw data used in these tests, see Tables 24 and 25 in Appendix 3. 

I also investigated whether the data supports two predictions raised by 
Frieler et al. (2018). Based on 332 bass line transcriptions from 78 different bassists, 
Frieler et al. (2018) found that the use of consonant chordal pitch classes de-
creased with tempo and that note repetitions were used more often at fast tempos. 
Since the relative frequency of note repetitions differed between original bass 
lines and bass line reductions (as noted in Chapter 5.3.2: Basic conversion and 
segmentation of research material), I analyzed the relative frequency of note rep-
etitions both with bass line reductions and the original bass lines. 

The average relative frequency of consonant chordal pitch classes (defined 
here as the proportion of root notes, perfect and diminished fifths, and major and 
minor thirds combined) was 62.6% (range: 49.8% to 79.4%, SD = 7.07) in Paul 
Chambers’s bass line reductions and 63.7% (range: 49.0% to 87.3%, SD = 10.1) in 
Ron Carter’s bass line reductions. A Kendall’s tau correlation analysis with Bon-
ferroni correction was performed to determine the relationship between tempo 
and the relative frequency of consonant chordal pitch classes. After Bonferroni 
correction, the alpha level for statistical significance was adjusted to .025 (.05/2). 
When controlling for the length of analyzed bass line reductions, the results in-
dicated a statistically non-significant and negligible correlation between tempo 
and the relative frequency of consonant chordal pitch classes in Paul Chambers’s 
bass line reductions (tau-b = .07, 97.5% CI [-.25, .38], p = .59) and a statistically 
non-significant and moderate negative correlation between the two variables in 
Ron Carter’s bass line reductions (tau-b = -.30, 97.5% CI [-.86, .31], p = .20). 

These results did not support the hypothesis that jazz bassists use conso-
nant chordal pitch classes more frequently at faster tempos compared to slower 
tempos (Frieler et al., 2018). When controlling for the length of analyzed bass line 
reductions, Kendall’s tau correlation analysis indicated a statistically non-signif-
icant and negligible correlation between tempo and the relative frequency of con-
sonant chordal pitch classes in Paul Chambers’s bass line reductions and a statis-
tically non-significant and moderate negative correlation between the two varia-
bles in Ron Carter’s bass line reductions. 

The average relative frequency of note repetitions was 1.49% in Paul Cham-
bers’s bass line reductions (n = 30, range: 0% to 3.78%, SD = 1.17) and 7.99% in 
Ron Carter’s bass line reductions (n = 12, range: 1.26% to 35.2%, SD = 9.72). When 
the relative frequency of note repetitions was measured in the original bass lines 
instead of bass line reductions, the average relative frequency of note repetitions 
was 2.49% in Paul Chambers’s bass lines (n = 30, range: 0% to 7.32%, SD = 1.94) 
and 10.2% in Ron Carter’s bass lines (n = 12, range: 1.34% to 23.4%, SD = 7.95). A 
Kendall’s tau correlation analysis with Bonferroni correction was performed to 
determine the relationship between tempo and note repetitions in bass line re-
ductions and original bass lines. After Bonferroni correction, the alpha level for 
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statistical significance was adjusted to .013 (.05/4). When controlling for the 
length of analyzed bass lines/bass line reductions, the results indicated a statis-
tically non-significant and negligible correlation between tempo and the relative 
frequency of note repetitions in Paul Chambers’s bass line reductions (tau-b = .08, 
98.7% CI [-.26, .42], p = 52), a statistically significant and moderate negative cor-
relation between these two variables in Paul Chambers’s original bass lines (tau-
b = -.37, 98.7% CI [-.65, -.004], p = .005), a statistically non-significant and moder-
ate negative correlation between the variables in Ron Carter’s bass line reduc-
tions (tau-b = -.30, 98.7% CI [-.83, .43], p = .19), and a statistically non-significant 
and moderate negative correlation between the variables in Ron Carter’s original 
bass lines (tau-b = -.57, 98.7% CI [-.92, .15], p = .014). 

However, these results should be taken with caution. Since the reduction 
process removed simple note repetitions (which mainly consisted of dotted 
eighth notes followed by a sixteenth note with the same pitch class), a negative 
correlation between tempo and the relative frequency of note repetitions in orig-
inal bass lines might only indicate that the bassist used less variable rhythms at 
fast tempos (and also fewer patterns where a dotted eighth note was followed by 
a sixteenth note with the same pitch class). In summary, the present results did 
not support the hypothesis that jazz bassists use note repetitions more frequently 
at fast tempos (Frieler et al., 2018). When controlling for the length of analyzed 
bass lines or bass line reductions, all correlations were negative except in Paul 
Chambers’s bass line reductions (where it was not possible to make conclusions 
on the direction of the effect). These differences between the present results and 
those from Frieler et al. (2018) are probably caused by individual differences be-
tween even the most renowned jazz bassists. Some renowned jazz bassists may 
use consonant note choices and note repetitions more often at fast tempos, but 
this does not seem to apply to Paul Chambers and Ron Carter. 

6.2.2 Harmonic rhythm and variability of melodic patterns 

Descriptive statistics of the data regarding target variables were already shown 
in Table 3 and will not be repeated here. The mean average distance between 
chord changes was 1.47 (range: 0.61 to 10.67, SD = 1.86) in Paul Chambers’s bass 
line reductions (n = 30). In Ron Carter’s bass line reductions (n = 12), the mean 
average distance between chord changes was 2.09 (range: 0.50 to 12.0, SD = 3.17). 
As indicated by scatter plots below (see Figures 28 and 29), the range of harmonic 
rhythm values was very restricted as most of the values ranged from about 0.5 to 
about 2.0 notes between chord changes. Many of the harmonic rhythm values 
were also tied. Note that the value of 12.0 (in Ron Carter’s bass line reductions) 
represents the situation where the musical work is based on one chord only (i.e., 
there was no chord changes). Since the average distance between chord changes 
was used to measure harmonic rhythm, it was necessary to use an artificial value 
to represent this situation.
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FIGURE 28 Effects of harmonic rhythm on normalized entropy of 4-note chordal pitch class patterns 

 

FIGURE 29 Effects of harmonic rhythm on relative frequency of notes that started a recurring 4-note interval pattern at any metrical location
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A Kendall’s tau correlation analysis with Bonferroni correction was performed 
to determine the relationship between harmonic rhythm and the variability of 
melodic patterns. After Bonferroni correction, the alpha level for statistical sig-
nificance was adjusted to .003 (.05/19). The results are presented in Table 5. 

TABLE 5 Correlations between harmonic rhythm and variability of melodic patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.  
2-tailed) 
(Chambers) 

99.7% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.  
2-tailed) 
(Carter) 

99.7% CI 
(bootstrap-
ped) 
(Carter) 

Normalized entropy 
of 4-note chordal 
pitch class patterns 

τb = .002 
p = .99 
τb = -.01 
p = .95 

[-.44, .41] 
 
[-.33, .37] 

τb = -.36 
p = .12 
τb = -.32 
p = .17 

[-.97, .64] 
 
[-.92, .56] 

Normalized entropy 
of 4-note interval 
patterns 

τb = -.03 
p = .82 
τb = -.04 
p = .75 

[-.42, .36] 
 
[-.40, .33] 

τb = -.30 
p = .20 
τb = -.26 
p = .27 

[-.87, .53] 
 
[-.81, .54] 

Normalized entropy 
of 3-note chordal 
pitch class patterns 

τb = -.08 
p = .57 
τb = -.09 
p = .49 

[-.49, .29] 
 
[-.45, .29] 

τb = -.39 
p = .09 
τb = -.35 
p = .13 

[-.98, .54] 
 
[-.97, .63] 

Normalized entropy 
of 3-note interval 
patterns 

τb = -.11 
p = .38 
τb = -.14 
p = .30 

[-.51, .34] 
 
[-.55, .33] 

τb = -.20 
p = .37 
τb = -.15 
p = .52 

[-.80, .57] 
 
[-.82, .67] 

Normalized entropy 
of 2-note chordal 
pitch class patterns 

τb = -.18 
p = .17 
τb = -.20 
p = .13 

[-.58, .24] 
 
[-.59, .22] 

τb = -.33 
p = .15 
τb = -.28 
p = .23 

[-.93, .38] 
 
[-.84, .31] 

Normalized entropy 
of 2-note interval 
patterns 

τb = -.24 
p = .07 
τb = -.28 
p = .03 

[-.64, .14] 
 
[-.65, .08] 

τb = -.06 
p = .84 
τb = -.01 
p = .97 

[-.76, .69] 
 
[-.77, .81] 

Relative frequency 
of non-recurring 
4-note pitch class 
patterns (I) 

τb = .01 
p = .94 
τb = -.001 
p = .996 

[-.42, .37] 
 
[-.40, .39] 

τb = -.18 
p = .46 
τb = -.13 
p = .59 

[-.87, .75] 
 
[-.88, .65] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Chambers) 

99.7% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.7% CI 
(bootstrap-
ped) 
(Carter) 

Relative frequency 
of non-recurring           
4-note pitch class 
patterns (II) 

τb = -.02 
p = .86 
τb = -.04 
p = .78 

[-.45, .40] 
 
[-.43, .31] 

τb = -.18 
p = .46 
τb = -.13 
p = .59 

[-.81, .80] 
 
[-.86, .67] 

Relative frequency 
of non-recurring     
3-note pitch class 
patterns (I) 

τb = -.07 
p = .60 
τb = -.08 
p = .52 

[-.51, .33] 
 
[-.44, .29] 

τb = -.15 
p = .55 
τb = -.10 
p = .67 

[-.88, .61] 
 
[-.92, .63] 

Relative frequency 
of non-recurring     
3-note pitch class 
patterns (II) 

τb = -.07 
p = .59 
τb = -.09 
p = .48 

[-.53, .34] 
 
[-.45, .23] 

τb = -.21 
p = .38 
τb = -.14 
p = .54 

[-.86, .67] 
 
[-.86, .59] 

Relative frequency 
of non-recurring     
2-note pitch class 
patterns (I) 

τb = -.07 
p = .59 
τb = -.10 
p = .47 

[-.40, .32] 
 
[-.42, .23] 

τb = -.08 
p = .73 
τb = .02 
p = .93 

[-.75, .60] 
 
[-.64, .54] 

Relative frequency 
of non-recurring    
2-note pitch class 
patterns (II) 

τb = -.10 
p = .45 
τb = -.14 
p = .30 

[-.49, 33] 
 
[-.48, .22] 

τb = -.21 
p = .38 
τb = -.12 
p = .60 

[-.80, .51] 
 
[-.78, .56] 

Relative frequency 
of non-recurring    
4-note interval pat-
terns (I) 

τb = -.02 
p = .87 
τb = -.03 
p = .80 

[-.40, .35] 
 
[-.38, .36] 

τb = -.12 
p = .64 
τb = -.04 
p = .88 

[-.77, .71] 
 
[-.84, .69] 

Relative frequency 
of non-recurring     
4-note interval pat-
terns (II) 

τb = -.05 
p = .71 
τb = -.07 
p = .61 

[-.51, .38] 
 
[-.41, .33] 

τb = -.18 
p = .46 
τb = -.10 
p = .66 

[-.81, .71] 
 
[-.78, .56] 

Relative frequency 
of non-recurring     
3-note interval pat-
terns (I) 

τb = .10 
p = .45 
τb = .09 
p = .47 

[-.27, .44] 
 
[-.22, .39] 

τb = -.15 
p = .55 
τb = -.10 
p = .67 

[-.75, .46] 
 
[-.72, .61] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Chambers) 

99.7% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.7% CI 
(bootstrap-
ped) 
(Carter) 

Relative frequency 
of non-recurring     
3-note interval pat-
terns (II) 

τb = .01 
p = .94 
τb = -.003 
p = .98 

[-.34, .39] 
 
[-.37, .37] 

τb = -.15 
p = .55 
τb = -.09 
p = .71 

[-.75, .55] 
 
[-.78, .66] 

Relative frequency 
of non-recurring     
2-note interval pat-
terns (I) 

τb = .06 
p = .67 
τb = .05 
p = .70 

[-.39, .46] 
 
[-.32, .43] 

τb = .06 
p = .84 
τb = .12 
p = .61 

[-.82, .76] 
 
[-.81, .75] 

Relative frequency 
of non-recurring     
2-note interval pat-
terns (II) 

τb = -.08 
p = .52 
τb = -.12 
p = .37 

[-.47, .39] 
 
[-.46, .30] 

τb = .03 
p = .95 
τb = .15 
p = .53 

[-.74, .92] 
 
[-.67, .72] 

Relative frequency 
of notes that started 
a recurring 4-note 
interval pattern at 
any metrical loca-
tion a 

τb = -.01 
p = .94 
τb = -.03 
p = .84 

[-.40, .35] 
 
[-.39, .35] 

τb = -.15 
p = .55 
τb = -.09 
p = .71 

[-.95, .57] 
 
[-.82, .67] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval; I = calcu-
lation method 1; II = calculation method 2. For an explanation on the difference 
between these two calculation methods, see Chapter 5.3.3.2: Relative frequency 
of non-recurring melodic patterns. a The direction of the effect is corrected. 
 
When controlling for the length of analyzed bass line reductions, all results were 
statistically non-significant after Bonferroni correction. In Paul Chambers’s bass 
line reductions, 14 out of the 19 measurements indicated a statistically non-sig-
nificant and negligible correlation between harmonic rhythm and the variability 
of melodic patterns, whereas 5 out of the 19 measurements indicated a statisti-
cally non-significant and negative correlation between the variables. The mean 
absolute tau-b was .08 (range: .001 to .28, SD = 0.07), which indicates a negligible 
correlation between the variables. Since most measurements indicated a negligi-
ble correlation, the results did not allow to make conclusions on the direction of 
the effect. In Ron Carter’s bass line reductions, 10 out of the 19 measurements 
indicated a statistically non-significant and negative correlation between the var-
iables, 7 out of the 19 measurements indicated a statistically non-significant and 
negligible correlation between the variables, whereas 2 out of the 19 measure-
ments indicated a statistically non-significant and positive correlation between 
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the variables. The mean absolute tau-b was .14 (range: .01 to .35, SD = 0.10), which 
indicates a weak correlation between the variables. Since only 10 out of the 19 
measurements indicated the same effect direction, the results did not allow to 
make conclusions on the direction of the effect. For raw data used in these tests, 
see Tables 24 and 25 in Appendix 3. 

The variability of melodic patterns (with chordal pitch class patterns only) 
was also measured separately in each harmonic rhythm category (instead of us-
ing the average distance of chord changes as a measure of harmonic rhythm). In 
Paul Chambers’s bass line reductions (n = 30), the average normalized entropy 
of 4-note chordal pitch class patterns in a four-beat harmonic rhythm was 0.789 
(range: 0.489 to 1, AN = 102),113 the average normalized entropy of 4-note chordal 
pitch class patterns in an eight-beat harmonic rhythm was 0.803 (range: 0.469 to 
0.987, AN = 92), and the average normalized entropy of 4-note chordal pitch class 
patterns in a two-beat harmonic rhythm was 0.808 (range: 0.589 to 0.971, AN = 
62). In Ron Carter’s bass line reductions (n = 12), the average normalized entropy 
of 4-note chordal pitch class patterns in a four-beat harmonic rhythm was 0.903 
(range: 0.824 to 1, AN = 88), the average normalized entropy of 4-note chordal 
pitch class patterns in an eight-beat harmonic rhythm was 0.878 (range: 0.539 to 
0.986, AN = 119), and the average normalized entropy of 4-note chordal pitch 
class patterns in a two-beat harmonic rhythm was 0.897 (range: 0.775 to 1, AN = 
51). 

Since the number of bars in a particular harmonic rhythm category was very 
small in some bass line reductions especially in a two-beat harmonic rhythm, I 
also calculated the average normalized entropy of chordal pitch class patterns in 
each harmonic rhythm category when all normalized entropy values based on 
less than 30 chordal pitch class patterns (which equals with the number of bars) 
were disregarded. In Paul Chambers’s bass line reductions (n = 30), the average 
normalized entropy of 4-note chordal pitch class patterns in a four-beat harmonic 
rhythm was 0.775 (range: 0.489 to 0.940, AN = 109), the average normalized en-
tropy of 4-note chordal pitch class patterns in an eight-beat harmonic rhythm was 
0.791 (range: 0.469 to 0.925, AN = 112), and the average normalized entropy of 4-
note chordal pitch class patterns in a two-beat harmonic rhythm was 0.800 (range: 
0.589 to 0.895, AN = 96). In Ron Carter’s bass line reductions (n = 12), the average 
normalized entropy of 4-note chordal pitch class patterns in a four-beat harmonic 
rhythm was 0.901 (range: 0.876 to 0.971, AN = 103), the average normalized en-
tropy of 4-note chordal pitch class patterns in an eight-beat harmonic rhythm was 
0.878 (range: 0.539 to 0.986, AN = 119), and the average normalized entropy of 4-
note chordal pitch class patterns in a two-beat harmonic rhythm was 0.878 (range: 
0.775 to 0.985, AN = 75). 

When a threshold level of at least 30 chordal pitch class patterns in each 
harmonic rhythm category was used, the variability of chordal pitch class pat-
terns was slightly higher in a two-beat harmonic rhythm compared to other har-
monic rhythm categories in Paul Chambers’s bass line reductions. However, dif-
ferences in the average normalized entropy of chordal pitch class patterns 

 
113  AN refers to the average number of bars in a particular harmonic rhythm category. 
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between the harmonic rhythm categories were small (range: 0.775 to 0.800). In 
Ron Carter’s bass line reductions, the variability of chordal pitch class patterns 
was highest in four-beat harmonic rhythm sections. As with Paul Chambers’s 
bass line reductions, there were only slight differences in the average normalized 
entropy of chordal pitch class patterns between different harmonic rhythm cate-
gories (range: 0.878 to 0.901) in Ron Carter’s bass line reductions. These findings 
indicate that harmonic rhythm had little effect on the variability of chordal pitch 
class patterns in both Paul Chambers’s bass line reductions and Ron Carter’s bass 
line reductions. 

Note that the normalized entropy of 4-note chordal pitch class patterns and 
the normalized entropy of 4-note interval patterns in Paul Chambers’s bass line 
reduction on So What, probably the most well-known modal jazz recording in the 
history of jazz, was more than one standard deviation below the average. Modal 
jazz compositions are usually thought to be less constraining because of their 
very slow harmonic rhythm. The lower variability of 4-note melodic patterns 
(compared to the average) in So What raises the question of whether a slow rate 
of chord changes merely caused problems to most musicians at that time, not vice 
versa. Compositions with only one or two chords were a new and challenging 
situation for many jazz musicians in the late 1950’s (Szwed, 2003, pp. 175-176). 
As an example, Jimmy Heath (who replaced John Coltrane on a tour after the 
release of Kind of Blue) “had the same trouble with modes that most other musi-
cians did in that period, trying to stay in one key as if it were a traditional tune, 
instead of reaching out and using a wider range of notes; or not knowing how to 
resolve the piece at the end with the usual harmonics” (Szwed, 2003, p. 179)114. 
However, it should be noted that the other two bass line reductions on modal 
compositions (Milestones with Paul Chambers on bass and Passion Dance with 
Ron Carter on bass) were close to the average normalized entropy of 4-note 
chordal pitch class patterns and the average normalized entropy of 4-note inter-
val patterns. In addition, it is important to note that despite the high rate of re-
curring melodic patterns in Paul Chambers’s bass line reduction on So What, this 
bass line introduced new chord substitutions. There were several occurrences of 
the use of upper structure substitutions in the Eb7 sections in this bass line, which 
were not used in any other Paul Chambers’s bass line analyzed in the present 
study. Similarly, Paul Chambers’s bass line on Freddie Freeloader is extraordinary 
in its frequent use of fifths as target notes which makes it different from any other 
bass line analyzed in this study. 

6.2.3 Variability of target notes 

In Paul Chambers’s bass line reductions (n = 30), the average normalized entropy 
of target notes was 0.262 (range: 0.141 to 0.367, SD = 0.047). The average relative 
frequency of consonant target notes (root notes, major and minor thirds, and 

 
114  According to Jimmy Heath, “what was hard for me was the unfamiliar territory and 

that it … stays in a mode and you don’t resolve it at the end of a cadence like you do” 
(Porter, 1998, p. 162). 
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perfect fifths combined) was 86.4% (range: 63.7% to 97.3%, SD = 7.20). The aver-
age relative frequency of root notes was 54.0% (range: 31.9% to 72.9%, SD = 9.60). 
In Ron Carter’s bass line reductions (n = 12), the average normalized entropy of 
target notes was 0.302 (range: 0.094 to 0.450, SD = 0.090). The average relative 
frequency of consonant target notes was 74.4% (range: 56.7% to 95.1%, SD = 11.2). 
The average relative frequency of root notes was 52.6% (range: 29.8% to 89.8%, 
SD = 16.0).  

As noted in Chapter 5.2.3: Basic statistics of the data, root notes and perfect 
fifths were the most frequently used target notes (the term ‘target note’ refers to 
the first note in each bar) in both Paul Chambers's bass line reductions and Ron 
Carter's bass line reductions. In Paul Chambers’s bass line reductions, root notes 
covered 53.6% of all notes that occurred in the first beat of the bar, whereas per-
fect fifths covered 21.4% of all notes that occurred in the first beat of the bar. In 
Ron Carter’s bass line reductions, root notes covered 53.9% of all notes that oc-
curred in the first beat of the bar, whereas perfect fifths covered 15.1% of all notes 
that occurred in the first beat of the bar. In both Paul Chambers’s bass line reduc-
tions and Ron Carter’s bass line reductions, other target notes were used much 
less frequently. 

A Kendall’s tau correlation analysis with Bonferroni correction was per-
formed to determine the relationship between tempo and the variability of target 
notes and between harmonic rhythm and the variability of target notes. The var-
iability of target notes was measured as the average normalized entropy of target 
notes, the relative frequency of consonant target notes, and the relative frequency 
of root notes. After Bonferroni correction, the alpha level for statistical signifi-
cance was adjusted to .017 (.05/3). The results are presented in Table 6. Note that 
the lower the relative frequency of root notes/consonant target notes, the higher 
the variability of target notes. The direction of the effect is corrected in these re-
sults. 
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TABLE 6 Correlations between tempo/harmonic rhythm and variability of target notes 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.    
2-tailed) 
(Chambers) 

98.3% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.    
2-tailed) 
(Carter) 

98.3% CI 
(bootstrap-
ped) 
(Carter) 

Correlations between tempo and variability of target notes 

Average normal-
ized entropy of tar-
get notes 

τb = .08 
p = .56 
τb = .10 
p = .43 

[-.31, .46] 
 
[-.28, .42] 

τb = .06 
p = .84 
τb = .21 
p = .38 

[-.67, .70] 
 
[-.48, .69] 

Relative frequency 
of consonant target 
notes a 

τb = .002 
p = .99 
τb = .003 
p = .98 

[-.34, .33] 
 
[-.34, .32] 

τb = .24 
p = .31 
τb = .30 
p = .20 

[-.41, .85] 
 
[-.43, .83] 

Relative frequency 
of root notes a 

τb = .02 
p = .86 
τb = .01 
p = .92 

[-.33, .42] 
 
[-.34, .37] 

τb = .18 
p = .46 
τb = .26 
p = .26 

[-.52, .84] 
 
[-.39, .84] 

Correlations between harmonic rhythm and variability of target notes 

Average normal-
ized entropy of tar-
get notes 

τb = .13 
p = .32 
τb = .13 
p = .33 

[-.20, .46] 
 
[-.19, .44] 

τb = -.24 
p = .31 
τb = -.18 
p = .44 

[-.79, .26] 
 
[-.76, .33] 

Relative frequency 
of consonant target 
notes a 

τb = .09 
p = .50 
τb = .09 
p = .50 

[-.29, .47] 
 
[-.28, .44] 

τb = -.18 
p = .46 
τb = -.12 
p = .60 

[-.73, .46] 
 
[-.68, .45] 

Relative frequency 
of root notes a 

τb = .30 
p = .02 
τb = .31 
p = .02 

[-.07, .61] 
 
[-.07, .62] 

τb = -.18 
p = .46 
τb = -.15 
p = .52 

[-.75, .45] 
 
[-.75, .45] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  
a The direction of the effect is corrected. 
 
When controlling for the length of analyzed bass line reductions, all results were 
statistically non-significant after Bonferroni correction. In Paul Chambers’s bass 
line reductions, 2 out of the 3 measurements indicated a statistically non-
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significant and negligible correlation between tempo and the variability of target 
notes, whereas one measurement indicated a statistically non-significant and 
weak positive correlation between the variables. The mean absolute tau-b was .04 
(range: .003 to .10, SD = 0.05). In addition, 2 out of the 3 measurements indicated 
a statistically non-significant and weak/moderate positive correlation between 
harmonic rhythm and the variability of target notes, whereas one measurement 
indicated a statistically non-significant and negligible correlation between the 
variables. The mean absolute tau-b was .18 (range: .09 to .31, SD = 0.12). In Ron 
Carter’s bass line reductions, all measurements indicated a statistically non-sig-
nificant and weak to moderate positive correlation between tempo and the vari-
ability of target notes. The mean absolute tau-b was .26 (range: .21 to .30, SD = 
0.05). Also, all measurements indicated a statistically non-significant and weak 
negative correlation between harmonic rhythm and the variability of target notes. 
The mean absolute tau-b was .15 (range: .12 to .18, SD = 0.03). 

In summary, the results indicated that tempo and harmonic rhythm had 
different effects on the variability of target notes between these two bassists. 
Whereas most measurements indicated a statistically non-significant and weak 
positive correlation between tempo and the variability of target notes in Ron 
Carter’s bass line reductions, most measurements indicated a statistically non-
significant and negligible correlation between tempo and the variability of target 
notes in Paul Chambers’s bass line reductions. Similarly, whereas most measure-
ments indicated a statistically non-significant and positive correlation between 
harmonic rhythm and the variability of target notes in Paul Chambers’s bass line 
reductions, all measurements indicated a statistically non-significant and nega-
tive correlation between harmonic rhythm and the variability of target notes in 
Ron Carter’s bass line reductions. For raw data used in these tests, see Tables 26 
and 27 in Appendix 4. 

6.2.4 Average length of recurring melodic patterns 

In Paul Chambers's bass line reductions (n = 30), the average length of recurring 
melodic patterns (in intervals) was 6.52 (range: 3.68 to 11.4, SD = 2.35). When the 
average length of recurring melodic patterns was converted to seconds based on 
the approximate tempo of the musical work, the average length of recurring me-
lodic patterns (in seconds) was 2.00 (range: 1.06 to 3.93, SD = 0.74). The average 
maximum length of recurring melodic patterns (in intervals) was 28.2 (range: 13 
to 61, SD = 12.6). The average maximum length of recurring melodic patterns (in 
seconds) was 8.58 (range: 3.16 to 15.8, SD = 3.56). In Ron Carter's bass line reduc-
tions (n = 12), the average length of recurring melodic patterns (in intervals) was 
3.76 (range: 2.35 to 5.25, SD = 0.90). The average length of recurring melodic pat-
terns (in seconds) was 1.29 (range: 0.68 to 2.58, SD = 0.57). The average maximum 
length of recurring melodic patterns (in intervals) was 24.5 (range: 7 to 63, SD = 
19.1). The average maximum length of recurring melodic patterns (in seconds) 
was 8.86 (range: 1.81 to 28.4, SD = 8.28).  

A Kendall’s tau correlation analysis with Bonferroni correction was per-
formed to assess the relationship between tempo and the average/maximum 
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length of recurring melodic patterns and between harmonic rhythm and the av-
erage/maximum length of recurring melodic patterns. After Bonferroni correc-
tion, the alpha level for statistical significance was adjusted to .013 (.05/4). The 
results are presented in Table 7. 

TABLE 7 Correlations between tempo/harmonic rhythm and average or maximum 
length of recurring melodic patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.     
2-tailed) 
(Chambers) 

98.7% CI 
(bootstrap-
ped) (Cham-
bers) 

Kendall’s 
tau-b (sig.     
2-tailed) 
(Carter) 

98.7% CI 
(bootstrap-
ped) 
(Carter) 

Correlations between tempo and average/maximum length of recurring me-
lodic patterns 

Average length of 
recurring melodic 
patterns (in inter-
vals) 

τb = .24 
p = .06 
τb = .22 
p = .10 

[-.08, .60] 
 
[-.14, .53] 

τb = .09 
p = .74 
τb < .0001 
p = 1 

[-.66, .70] 
 
[-.58, .71] 

Average length of 
recurring melodic 
patterns (in sec-
onds) 

τb = -.26 
p = .05 
τb = -.30 
p = .02 

[-.56, .09] 
 
[-.57, .03] 

τb = -.61 * 
p = .005 
τb = -.57 
p = .01 

[-.98, -.03] 
 
[-.94, .14] 

Maximum length 
of recurring me-
lodic patterns (in 
intervals) 

τb = .24 
p = .07 
τb = .21 
p = .11 

[-.11, .56] 
 
[-.18, .54] 

τb = -.09 
p = .68 
τb = -.12 
p = .61 

[-.75, .62] 
 
[-.69, .57] 

Maximum length 
of recurring me-
lodic patterns (in 
seconds) 

τb = -.13 
p = .31 
τb = -.18 
p = .18 

[-.47, .24] 
 
[-.50, .22] 

τb = -.39 
p = .09 
τb = -.37 
p = .11 

[-.83, .15] 
 
[-.84, .34] 

Correlations between harmonic rhythm and average/maximum length of re-
curring melodic patterns 

Average length of 
recurring melodic 
patterns (in inter-
vals) 

τb = -.06 
p = .63 
τb = -.06 
p = .66 

[-.38, .26] 
 
[-.35, .23] 

τb = .09 
p = .74 
τb = .04 
p = .88 

[-.54, .66] 
 
[-.61, .60] 

Average length of 
recurring melodic 
patterns (in sec-
onds) 

τb = .13 
p = .32 
τb = .14 
p = .28 

[-.18, .39] 
 
[-.16, .42] 

τb = .12 
p = .64 
τb = .18 
p = .44 

[-.37, .50] 
 
[-.26, .60] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig.     
2-tailed) 
(Chambers) 

98.7% CI 
(bootstrap-
ped) (Cham-
bers) 

Kendall’s 
tau-b (sig.     
2-tailed) 
(Carter) 

98.7% CI 
(bootstrap-
ped) 
(Carter) 

Maximum length 
of recurring me-
lodic patterns (in 
intervals) 

τb = -.04 
p = .73 
τb = -.04 
p = .78 

[-.33, .25] 
 
[-.34, .25] 

τb = .06 
p = .78 
τb = .05 
p = .83 

[-.56, .83] 
 
[-.54, .66] 

Maximum length 
of recurring me-
lodic patterns (in 
seconds) 

τb = .07 
p = .57 
τb = .09 
p = .50 

[-.19, .37] 
 
[-.22, .37] 

τb = .03 
p = .95 
τb = .06 
p = .78 

[-.47, .53] 
 
[-.44, .55] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  
* Correlation is statistically significant at the Bonferroni adjusted alpha level (.013) 
(2-tailed). 
 
When controlling for the length of analyzed bass line reductions, all results were 
statistically non-significant after Bonferroni correction. In both Paul Chambers’s 
and Ron Carter’s bass line reductions, the results indicated a statistically non-
significant and negative correlation between tempo and the average length of re-
curring melodic patterns (in seconds), a statistically non-significant and negative 
correlation between tempo and the maximum length of recurring melodic pat-
terns (in seconds), a statistically non-significant and weak positive correlation be-
tween harmonic rhythm and the average length of melodic patterns (in seconds), 
and statistically non-significant and negligible correlations between harmonic 
rhythm and the average length of recurring melodic patterns (in intervals) and 
between harmonic rhythm and the maximum length of recurring melodic pat-
terns (both in intervals and in seconds). The results were mixed for the two bass-
ists regarding the relationship between tempo and the average length of recur-
ring melodic patterns (in intervals) and between tempo and the maximum length 
of recurring melodic patterns (in intervals). For raw data used in these analyses, 
see Table 28 in Appendix 4. 

Note that the results indicated a statistically non-significant and negative 
correlation between tempo and the average or maximum length of melodic pat-
terns (in seconds) in both Paul Chambers’s and Ron Carter’s bass line reductions, 
and a statistically non-significant and positive correlation between tempo and the 
average or maximum length of melodic patterns (in intervals) in Paul Chambers’s 
bass line reductions (but not in Ron Carter’s bass line reductions). For scatter 
plots on the relationship between tempo and the average length of recurring me-
lodic patterns, see Figures 30 and 31. 
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FIGURE 30 Effects of tempo on average length of recurring interval patterns (in intervals) 

 

FIGURE 31  Effects of tempo on average length of recurring interval patterns (in seconds)
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6.2.5 Melodic complexity 

In the present study, the aim of investigating melodic complexity was to find out 
whether eminent jazz bassists’ note choices are technically less demanding at fast 
tempos and fast harmonic rhythm compared to slow tempos and slow harmonic 
rhythm. In Paul Chambers’s bass line reductions (n = 30), the average interval 
size ranged from 2.17 to 3.71 semitones (M = 2.93, SD = 0.34), and the normalized 
entropy of interval size ranged from 0.282 to 0.415 (M = 0.338, SD = 0.038). An 
average interval size of two semitones refers to a major second, whereas an aver-
age interval size of four semitones refers to a major third. In Ron Carter’s bass 
line reductions (n = 12), the average interval size ranged from 2.89 to 5.14 semi-
tones (M = 3.87, SD = 0.69), and the normalized entropy of interval size ranged 
from 0.328 to 0.488 (M = 0.393, SD = 0.042). An average interval size of three sem-
itones refers to a minor third, whereas an average interval size of five semitones 
refers to a perfect fourth. 

A Kendall’s tau correlation analysis with Bonferroni correction was per-
formed to determine the relationship between tempo and melodic complexity 
and between harmonic rhythm and melodic complexity. After Bonferroni correc-
tion, the alpha level for statistical significance was adjusted to .025 (.05/2). The 
results are presented in Tables 8 and 9. 

TABLE 8 Correlations between tempo and melodic complexity 

Method of 
measurement 
 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Chambers) 

97.5% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.           
2-tailed) 
(Carter) 

97.5% CI 
(bootstrap-
ped) 
(Carter) 

Average inter-
val size 

τb = -.08 
p = .52 
τb = -.08 
p = .57 

[-.40, .19] 
 
[-.34, .23] 

τb = -.32 
p = .15 
τb = -.28 
p = .24 

[-.78, .25] 
 
[-.77, .31] 

Normalized en-
tropy of interval 
size 

τb = -.07 
p = .59 
τb = -.01 
p = .94 

[-.36, 22] 
 
[-.28, .24] 

τb = -.38 
p = .09 
τb = -.22 
p = .34 

[-.83, .15] 
 
[-.67, .26] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  
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TABLE 9 Correlations between harmonic rhythm and melodic complexity 

Method of 
measurement 
 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Chambers) 

97.5% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.           
2-tailed) 
(Carter) 

97.5% CI 
(bootstrap-
ped) 
(Carter) 

Average inter-
val size 

τb = -.08 
p = .52 
τb = -.28 
p = .03 

[-.56, .05] 
 
[-.53, .02] 

τb = -.29 
p = .19 
τb = -.29 
p = .21 

[-.76, .27] 
 
[-.71, .29] 

Normalized en-
tropy of interval 
size 

τb = -.17 
p = .20 
τb = -.21 
p = .11 

[-.45, .14] 
 
[-.46, .06] 

τb = -.17 
p = .45 
τb = -.03 
p = .89 

[-.79, .50] 
 
[-.57, .42] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval. 
 
When controlling for the length of analyzed bass line reductions, all results were 
statistically non-significant after Bonferroni correction. In Paul Chambers’s bass 
line reductions, both measurements indicated a statistically non-significant and 
negligible correlation between tempo and melodic complexity. The mean abso-
lute tau-b was .05 (range: .01 to .08, SD = 0.05). Both measurements also indicated 
a statistically non-significant and weak negative correlation between harmonic 
rhythm and melodic complexity. In this case, the mean absolute tau-b was .25 
(range: .21 to .28, SD = 0.05). In Ron Carter’s bass line reductions, both measure-
ments indicated a statistically non-significant and weak negative correlation be-
tween tempo and melodic complexity. The mean absolute tau-b was .25 
(range: .22 to .28, SD = 0.04). However, whereas the other measurement indicated 
a statistically non-significant and weak negative correlation between harmonic 
rhythm and melodic complexity, the other measurement indicated a statistically 
non-significant and negligible correlation between the two variables. The mean 
absolute tau-b was .16 (range: .03 to .29, SD = 0.18). 

In summary, the results indicated a statistically non-significant and weak 
negative correlation between tempo and melodic complexity in Ron Carter’s bass 
line reductions and a statistically non-significant and neglible correlation be-
tween tempo and melodic complexity in Paul Chambers’s bass line reductions. 
Regarding the relationship between harmonic rhythm and melodic complexity, 
the results indicated a statistically non-significant and weak negative correlation 
between harmonic rhythm and melodic complexity in Paul Chambers’s bass line 
reductions and a statistically non-significant and weak/negligible negative cor-
relation between these two variables in Ron Carter’s bass line reductions. For raw 
data used in these tests, see Table 29 in Appendix 4. 
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6.3 Temporal constraints and musical creativity 

6.3.1 Transfer of melodic patterns 

Transfer of melodic patterns was measured as the proportion of melodic pattern 
classes that occurred at least twice in two or more bass line reductions by the 
same musician in relation to the total number of melodic pattern classes that oc-
curred at least twice in at least one bass line reduction by the same musician. In 
addition, I calculated the proportion of all instances of melodic patterns covered 
by melodic pattern classes that occurred at least twice in two or more bass line 
reductions by the same musician. Although all analyses were based on chordal 
pitch class patterns, I will use the terms ’melodic pattern’ and ‘melodic pattern 
class’ in this chapter to avoid confusing use of words. The basic statistics and 
main results are presented in Table 10. 

TABLE 10 Total number and proportion of melodic pattern classes that occurred at least 
twice in two or more bass line reductions 

 4 notes a 3 notes a 2 notes a 4 notes b 3 notes b 2 notes b 
A 188 186 157 33 71 83 
B 1,122 1,099 996 294 392 428 
C 2,778 4,332 5,616 347 860 1,633 
D 6,746 6,746 6,746 2,589 2,589 2,589 
E 16.8% 

(41.2%) 
16.9% 
(64.1%) 

15.8% 
(83.2%) 

11.2% 
(13.4%) 

18.1% 
(33.2%) 

19.4% 
(63.1%) 

Note. Number of notes refers to pattern length. A = total number of melodic pat-
tern classes that occurred at least twice in two or more bass line reductions by the 
same musician; B = total number of melodic pattern classes that occurred at least 
twice in at least one bass line reduction by the same musician; C = total number 
of instances of melodic patterns that occurred at least twice in two or more bass 
line reductions by the same musician; D = total number of instances of melodic 
patterns in the bass line reductions of the same musician (the size of the sub-
corpus); E = proportion of melodic pattern classes that occurred at least twice in 
two or more bass line reductions by the same musician (proportion of all in-
stances of melodic patterns covered by melodic pattern classes that occurred at 
least twice in two or more bass line reductions by the same musician is presented 
in parentheses). a Paul Chambers’s bass line reductions. b Ron Carter’s bass line 
reductions. 
 
According to the present results, 4-note melodic pattern classes that occurred at 
least twice in two or more bass line reductions covered 41.2% of all instances of 
4-note melodic patterns in Paul Chambers’s bass line reductions (13.4% in Ron 
Carter’s bass line reductions). In contrast, 3-note melodic pattern classes that 
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occurred at least twice in two or more bass line reductions covered 64.1% of all 
instances of 3-note melodic patterns (33.2% in Ron Carter’s bass line reductions) 
and 2-note melodic pattern classes that occurred at least twice in two or more 
bass line reductions covered 83.2% of all instances of 2-note melodic patterns in 
Paul Chambers’s bass line reductions (63.1% in Ron Carter’s bass line reductions). 
Although it is likely that larger sample sizes could have shown larger proportions 
of instances of melodic patterns covered by recurring melodic pattern classes, it 
is noteworthy that these proportions were still quite small when the length of 
analyzed melodic patterns was four notes.115 

The results also showed that the proportion of recurring melodic pattern 
classes that occurred at least twice in two or more bass line reductions was quite 
small. In Paul Chambers’s bass line reductions, 15.8% to 16.9% of all recurring 
melodic pattern classes occurred at least twice in at least two bass line reductions 
depending on pattern length. In Ron Carter’s bass line reductions, 11.2% to 19.4% 
of all recurring melodic pattern classes occurred at least twice in at least two bass 
line reductions depending on pattern length. Note that the proportion of recur-
ring 2-note melodic pattern classes that occurred at least twice in two or more 
bass line reductions was only 15.8% in Paul Chambers’s bass line reductions, 
which means that 84.2% of all recurring 2-note melodic pattern classes occurred 
at least twice in only one bass line reduction. In Ron Carter’s bass line reductions, 
the relative frequency of recurring 2-note melodic pattern classes that occurred 
at least twice in two or more bass line reductions was 19.4%. In other words, 80.6% 
of all recurring 2-note melodic patterns occurred at least twice only in one bass 
line reduction. 

These findings indicate that even if recurring melodic pattern classes cov-
ered a large proportion of the sub-corpus at least when the length of analyzed 
melodic patterns was two notes, most recurring melodic pattern classes were not 
repeated across different bass line reductions. This indicates that both bassists 
used their repertoire of melodic patterns highly flexibly or they were able to in-
vent new melodic patterns in their performances. As another interpretation of 
these results, it is possible that both musicians had a very large repertoire of 
learned melodic patterns and the huge size of the repertoire might explain why 
most of the recurring melodic pattern classes were not repeated across different 
bass line reductions (see Christensen et al., 2019). However, the first explanation 
is more plausible based on the high normalized entropy of melodic patterns and 
the high relative frequency of non-recurring melodic patterns values in many of 
the individual bass line reductions (see Tables 24 and 25 in Appendix 3). Never-
theless, there may be individual differences between jazz musicians with the 
same skill level in their dependence on inflexible repertoire of melodic patterns. 

 
115  Note that the research material contained roughly three times more bass line reduc-

tions from Paul Chambers compared to Ron Carter and that the proportion of in-
stances of melodic patterns covered by melodic pattern classes that occurred at least 
twice in two or more bass line reductions was always higher in Paul Chambers’s bass 
line reductions compared to Ron Carter’s bass line reductions. In other words, the pro-
portion of instances of melodic patterns covered by melodic pattern classes that oc-
curred at least twice in two or more bass line reductions by the same musician scaled 
with sample size. 
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Note that the repetition of the same melodic pattern classes across different 
bass line reductions may also occur by chance, which means that the repetition 
of a melodic pattern class does not necessarily indicate that the repeated melodic 
pattern class was retrieved from memory during the performance. As a result, it 
is possible that using the very loose threshold level of at least two occurrences in 
two or more bass line reductions by the same musician may overestimate the 
number of learned melodic pattern classes that can be retrieved from memory 
during performance. To find out whether tighter threshold levels could substan-
tially decrease the proportion of recurring melodic pattern classes that occurred 
across different bass line reductions, I analyzed the data by using two additional 
threshold levels: at least three occurrences in two or more bass line reductions 
(threshold level 2) and at least two occurrences in three or more bass line reduc-
tions (threshold level 3). The results are presented in Table 11. 

TABLE 11 Proportion of melodic pattern classes that occurred at least three times in two 
or more bass line reductions or at least twice in at three or more bass line re-
ductions 

 4 notes a 3 notes a 2 notes a 4 notes b 3 notes b 2 notes b 
Original 16.8% 

(41.2%) 
16.9% 
(64.1%) 

15.8% 
(83.2%) 

11.2% 
(13.4%) 

18.1% 
(33.2%) 

19.4% 
(63.1%) 

Thresh-
old level 
2 

8.82% 
(29.8%) 

10.5% 
(52.4%) 

10.6% 
(72.6%) 

5.78% 
(9.19%) 

9.44% 
(21.6%) 

10.5% 
(49.1%) 

Thresh-
old level 
3 

8.11% 
(30.6%) 

10.5% 
(56.9%) 

10.3% 
(77.5%) 

2.72% 
(6.22%) 

9.18% 
(23.4%) 

11.2% 
(54.1%) 

Note. Number of notes refers to pattern length. Original = proportion of melodic 
pattern classes that occurred at least twice in two or more bass line reductions. 
Threshold level 2 = proportion of melodic pattern classes that occurred at least 
three times in two or more bass line reductions. Threshold level 3 = proportion 
of melodic pattern classes that occurred at least twice in three or more bass line 
reductions. The proportion of recurring melodic pattern classes in relation to the 
size of the sub-corpus is shown in parentheses. a Paul Chambers’s bass line re-
ductions. b Ron Carter’s bass line reductions. 
 
Unsurprisingly, the use of tighter threshold level decreased the proportion of 
melodic pattern classes that occurred multiple times across different bass line re-
ductions. Using a more restrictive threshold level (threshold level 2 or threshold 
level 3) could be useful to distinguish between learned melodic patterns and 
those that may have occurred by chance. In addition, it should be noted that har-
monic context was considered in these analyses. It is possible that this decision 
may have led to a smaller number and proportion of melodic pattern classes that 
occurred repeatedly across different bass line reductions compared to when 
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harmonic context is disregarded. To investigate how harmonic context might af-
fect the results, further research could analyze the same data both with chordal 
pitch class patterns and interval patterns. 

6.3.2 Transfer of melodic contour patterns 

In Paul Chambers’s bass line reductions (n = 30), the average normalized entropy 
of 4-note fuzzy interval patterns was 0.672 (range: 0.525 to 0.770, SD = 0.064). The 
average normalized entropy of 4-note Parsons’s code patterns was 0.379 (range: 
0.312 to 0.447, SD = 0.031). The average relative frequency of non-recurring 4-note 
fuzzy interval pattern classes was 51.9% (range: 35.4% to 69.4%, SD = 8.96) and 
the average relative frequency of non-recurring 4-note fuzzy interval patterns 
was 17.4% (range: 6.31% to 35.8%, SD = 7.59). The average relative frequency of 
non-recurring 4-note Parsons’s code pattern classes was 13.2% (range: 0% to 
26.7%, SD = 8.48) and the average relative frequency of non-recurring 4-note Par-
sons’s code patterns was 0.78% (range: 0% to 2.65%, SD = 0.63).  

In Ron Carter’s bass lines (n = 12), the average normalized entropy of 4-note 
fuzzy interval patterns was 0.791 (range: 0.687 to 0.908, SD = 0.056). The average 
normalized entropy of 4-note Parsons’s code patterns was 0.442 (range: 0.374 to 
0.504, SD = 0.043). The average relative frequency of non-recurring 4-note fuzzy 
interval pattern classes was 63.3% (range: 51.5% to 82.1%, SD = 8.96) and the av-
erage relative frequency of non-recurring 4-note fuzzy interval patterns was 31.9% 
(range: 20.5% to 61.5%, SD = 11.5). The average relative frequency of non-recur-
ring 4-note Parsons’s code pattern classes was 23.8% (range: 5.88% to 46.7%, SD 
= 11.7) and the average relative frequency of non-recurring 4-note Parsons’s code 
patterns was 2.00% (range: 0.45% to 3.36%, SD = 0.96). 

A Kendall’s tau correlation analysis with Bonferroni correction was per-
formed to determine the relationship between tempo and the variability of me-
lodic contour patterns and between harmonic rhythm and the variability of me-
lodic contour patterns. After Bonferroni correction, the alpha level for statistical 
significance was adjusted to .008 (.05/6). The results are presented in Tables 12 
and 13. 
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TABLE 12 Correlations between tempo and variability of melodic contour patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.   
2-tailed) 
(Chambers) 

99.2% CI 
(bootstrap-
ped) (Cham-
bers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.2% CI 
(bootstrap-
ped) 
(Carter) 

Normalized en-
tropy of 4-note 
fuzzy interval 
patterns 

τb = -.13 
p = .30 
τb = -.10 
p = .43 

[-.42, .18] 
 
[-.41, .23] 

τb = -.12 
p = .64 
τb = -.02 
p = .92 

[-.83, .61] 
 
[-.73, .62] 

Normalized en-
tropy of 4-note 
Parsons’s code 
patterns 

τb = -.02 
p = .87 
τb = .04 
p = .75 

[-.43, .34] 
 
[-.36, .34] 

τb = -.55 
p = .01 
τb = -.47 
p = .04 

[-.89, -.07] 
 
[-.85, .14] 

Relative fre-
quency of non-re-
curring 4-note 
fuzzy interval 
pattern classes 

τb = -.19 
p = .14 
τb = -.16 
p = .23 

[-.55, .24] 
 
[-.53, .17] 

τb = -.64 * 
p = .003 
τb = -.58 
p = .01 

[-1, .-17] 
 
[-.92, .10] 

Relative fre-
quency of non-re-
curring 4-note 
fuzzy interval 
patterns 

τb = -.24 
p = .07 
τb = -.21 
p = .11 

[-.58, .14] 
 
[-.55, .19] 

τb = -.39 
p = .09 
τb = -.26 
p = .26 

[-.89, .21] 
 
[-.80, .30] 

Relative fre-
quency of non-re-
curring 4-note 
Parsons’s code 
pattern classes 

τb = -.002 
p = .99 
τb = -.001 
p = .99 

[-.36, .38] 
 
[-.39, .37] 

τb = .18 
p = .46 
τb = .17 
p = .46 

[-.41, .80] 
 
[-.47, .83] 

Relative fre-
quency of non-re-
curring 4-note 
Parsons’s code 
patterns 

τb = -.07 
p = .62 
τb = -.03 
p = .80 

[-.41, .34] 
 
[-.38, .32] 

τb = -.12 
p = .64 
τb = -.02 
p = .92 

[-.67, .52] 
 
[-.61, .53] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  
* Correlation is statistically significant at the Bonferroni adjusted alpha level (.008) 
(2-tailed). 
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TABLE 13 Correlations between harmonic rhythm and variability of melodic contour 
patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Chambers) 

99.2% CI 
(bootstrap-
ped) (Cham-
bers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.2% CI 
(bootstrap-
ped) 
(Carter) 

Normalized en-
tropy of          4-
note fuzzy inter-
val patterns 

τb = -.01 
p = .94 
τb = -.02 
p = .89 

[-.39, .36] 
 
[-.41, .34] 

τb = -.30 
p = .20 
τb = -.26 
p = .27 

[-.93, .41] 
 
[-.86, .39] 

Normalized en-
tropy of              4-
note Parsons’s 
code patterns 

τb = .03 
p = .84 
τb = .01 
p = .92 

[-.39, .42] 
 
[-.35, .37] 

τb = 0 
p = 1 
τb = .10 
p = .66 

[-.71, .56] 
 
[-.41, .55] 

Relative fre-
quency of non-re-
curring 4-note 
fuzzy interval 
pattern classes 

τb = .07 
p = .59 
τb = .06 
p = .62 

[-.31, .40] 
 
[-.27, .39] 

τb = -.03 
p = .95 
τb = .09 
p = .69 

[-.71, .70] 
 
[-.57, .68] 

Relative fre-
quency of non-re-
curring 4-note 
fuzzy interval 
patterns 

τb = .06 
p = .67 
τb = .05 
p = .71 

[-.28, .38] 
 
[-.27, .34] 

τb = -.09 
p = .74 
τb = .04 
p = .87 

[-.75, .65] 
 
[-.62, .60] 

Relative fre-
quency of non-re-
curring 4-note 
Parsons’s code 
pattern classes 

τb = -.04 
p = .79 
τb = -.04 
p = .78 

[-.37, .28] 
 
[-.34, .28] 

τb = -.12 
p = .64 
τb = -.14 
p = .56 

[-.79, .56] 
 
[-.72, .47] 

Relative fre-
quency of non-re-
curring 4-note 
Parsons’s code 
patterns 

τb = .02 
p = .89 
τb = .01 
p = .93 

[-.29, .35] 
 
[-.33, .28] 

τb = -.18 
p = .46 
τb = -.13 
p = .59 

[-.74, .42] 
 
[-.72, .40] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval. 
 
When controlling for the length of analyzed bass line reductions, all correlations 
between tempo and the variability of melodic contour patterns and between har-
monic rhythm and the variability of melodic contour patterns were statistically 
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non-significant. In Paul Chambers’s bass line reductions, 3 out of the 6 measure-
ments indicated a statistically non-significant and weak negative correlation be-
tween tempo and the variability of melodic contour patterns, whereas the other 
measurements indicated a statistically non-significant and negligible correlation 
between the variables. The mean absolute tau-b was .09 (range: .001 to .21, SD = 
0.08), which indicates a negligible correlation between tempo and the variability 
of melodic contour patterns. Regarding the relationship between harmonic 
rhythm and the variability of melodic contour patterns, all measurements indi-
cated a statistically non-significant and negligle correlation between the variables. 
The mean absolute tau-b was .03 (range: .01 to .06, SD = 0.02). 

In Ron Carter’s bass line reductions, 3 out of the 6 measurements indicated 
a statistically non-significant and negative correlation between tempo and the 
variability of melodic contour patterns, 2 out of the 6 measurements indicated a 
statistically non-significant and negligible correlation between the variables, and 
1 out of the 6 measurements indicated a statistically non-significant and weak 
positive correlation between the variables. The mean absolute tau-b was .25 
(range: .02 to .58, SD = 0.23), which indicates a weak correlation between the var-
iables. However, since only 3 out of the 6 measurements indicated the same effect 
direction, the results did not allow to make conclusions on the direction of the 
effect. In regard to the relationship between harmonic rhythm and the variability 
of melodic contour patterns, 3 out of the 6 measurements indicated a statistically 
non-significant and weak negative correlation between the variables, 1 out of the 
6 measurements indicated a statistically non-significant and weak positive corre-
lation between the variables, and 2 out of the 6 measurements indicated a statis-
tically non-significant and negligible correlation between the variables. The mean 
absolute tau-b was .13 (range: .04 to .26, SD = 0.07), which indicates a weak cor-
relation between the variables. However, the results did not allow to make con-
clusions on the direction of the effect since only half of the measurements indi-
cated the same effect direction. For raw data used in these tests, see Table 30 in 
Appendix 5. 

6.3.3 Average length of recurring melodic contour patterns 

In Paul Chambers’s bass line reductions (n = 30), the average length of recurring 
fuzzy interval patterns (in intervals) was 6.84 (range: 3.79 to 19.2, SD = 3.29). The 
average length of recurring fuzzy interval patterns (in seconds) was 2.08 (range: 
1.06 to 4.48, SD = 0.91). The average maximum length of recurring fuzzy interval 
patterns (in intervals) was 29.6 (range: 13 to 84, SD = 14.8). The average maximum 
length of recurring fuzzy interval patterns (in seconds) was 9.02 (range: 4.03 to 
19.6, SD = 4.00). The average length of recurring Parsons’s code patterns (in in-
tervals) was 8.44 (range: 5.57 to 18.8, SD = 2.84). The average length of recurring 
Parsons’s code patterns (in seconds) was 2.60 (range: 1.32 to 4.85, SD = 0.89). The 
average maximum length of recurring Parsons’s code patterns (in intervals) was 
34.7 (range: 15 to 85, SD = 15.2). The average maximum length of recurring Par-
sons’s code patterns (in seconds) was 10.6 (range: 4.86 to 19.8, SD = 4.31). 
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In Ron Carter’s bass line reductions (n = 12), the average length of recurring 
fuzzy interval patterns (in intervals) was 5.44 (range: 2.36 to 11.0, SD = 3.08). The 
average length of recurring fuzzy interval patterns (in seconds) was 1.94 (range: 
0.62 to 4.94, SD = 1.38). The average maximum length of recurring fuzzy interval 
patterns (in intervals) was 26.5 (range: 7 to 63, SD = 18.2). The average maximum 
length of recurring fuzzy interval patterns (in seconds) was 9.57 (range: 2.01 to 
28.4, SD = 8.07). The average length of recurring Parsons’s code patterns (in in-
tervals) was 6.86 (range: 5.19 to 11.3, SD = 2.07). The average length of recurring 
Parsons’s code patterns (in seconds) was 2.38 (range: 1.07 to 5.10, SD = 1.17). The 
average maximum length of recurring Parsons’s code patterns (in intervals) was 
31.3 (range: 15 to 71, SD = 17.5). The average maximum length of recurring Par-
sons’s code patterns (in seconds) was 11.1 (range: 3.02 to 32.0, SD = 8.10). 

A Kendall’s tau correlation analysis with Bonferroni correction was per-
formed to determine the relationship between tempo and the average or maxi-
mum length of recurring melodic contour patterns and between harmonic 
rhythm and the average or maximum length of recurring melodic contour pat-
terns. After Bonferroni correction, the alpha level for statistical significance was 
adjusted to .006 (.05/8). The results are presented in Tables 14 and 15. 

TABLE 14 Correlations between tempo and average/maximum length of recurring me-
lodic contour patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Chambers) 

99.4% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.4% CI 
(bootstrap-
ped) 
(Carter) 

Average length of 
recurring fuzzy in-
terval patterns (in 
intervals) 

τb = .22 
p = .08 
τb = .20 
p = .13 

[-.14, .55] 
 
[-.14, .52] 

τb = -.12 
p = .64 
τb = -.13 
p = .58 

[-.87, .64] 
 
[-.79, .68] 

Average length of 
recurring fuzzy in-
terval patterns (in 
seconds) 

τb = -.16 
p = .22 
τb = -.20 
p = .14 

[-.56, .28] 
 
[-.52, .16] 

τb = -.52 
p = .02 
τb = -.47 
p = .05 

[-1, .18] 
 
[-.93, .29] 

Maximum length of 
fuzzy interval pat-
terns                  (in 
intervals) 

τb = .22 
p = .09 
τb = .19 
p = .15 

[-.14, .52] 
 
[-.16, .54] 

τb = -.18 
p = .46 
τb = -.19 
p = .41 

[-.90, .61] 
 
[-.83, .55] 

Maximum length of 
fuzzy interval pat-
terns                    (in 
seconds) 

τb = -.16 
p = .22 
τb = -.21 
p = .12 

[-.55, .23] 
 
[-.53, .18] 

τb = -.42 
p = .06 
τb = -.39 
p = .09 

[-.96, .19] 
 
[-.92, .32] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Chambers) 

99.4% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.4% CI 
(bootstrap-
ped) 
(Carter) 

Average length of 
recurring Parsons’s 
code patterns                            
(in intervals) 

τb = .22 
p = .08 
τb = .20 
p = .13 

[-.14, .58] 
 
[-.16, .52] 

τb = -.09 
p = .74 
τb = -.11 
p = .65 

[-.67, .61] 
 
[-.72, .60] 

Average length of 
recurring Parsons’s 
code patterns                          
(in seconds) 

τb = -.33 
p = .01 
τb = -.36 * 
p = .006 

[-.69, .08] 
 
[-.69, .05] 

τb = -.64 * 
p = .003 
τb = -.58 
p = .01 

[-1, .-04] 
 
[-.96, .11] 

Maximum length of 
recurring Parsons’s 
code patterns                          
(in intervals) 

τb = .22 
p = .10 
τb = .19 
p = .15 

[-.17, .54] 
 
[-.17, .51] 

τb = -.15 
p = .49 
τb = -.17 
p = .46 

[-.83, .62] 
 
[-.75, .46] 

Maximum length 
of recurring Par-
sons’s code pat-
terns                         
(in seconds) 

  τb = -.16 
  p = .22 
  τb = -.21 
  p = .11 

  [-.50, .26] 
 
  [-.58, .19] 

  τb = -.52 
  p = .02 
  τb = -.47 
  p = .05 

[-.96, .11] 
 
[-.93, .30] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  
* Correlation is statistically significant at the Bonferroni adjusted alpha level (.006) 
(2-tailed). 
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TABLE 15 Correlations between harmonic rhythm and average/maximum length of re-
curring melodic contour patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Chambers) 

99.4% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.4% CI 
(bootstrap-
ped) 
(Carter) 

Average length of 
recurring fuzzy in-
terval patterns (in 
intervals) 

τb = -.07 
p = .57 
τb = -.07 
p = .60 

[-.36, .21] 
 
[-.37, .21] 

τb = 0 
p = 1 
τb = 0 
p = 1 

[-.63, .72] 
 
[-.64, .58] 

Average length of 
recurring fuzzy in-
terval patterns (in 
seconds) 

τb = .05 
p = .68 
τb = .06 
p = .63 

[-.29, .39] 
 
[-.24, .38] 

τb = .03 
p = .95 
τb = .09 
p = .69 

[-.48, .59] 
 
[-.53, .54] 

Maximum length 
of fuzzy interval 
patterns                  
(in intervals) 

τb = -.01 
p = .96 
τb = .004 
p = .98 

[-.32, .27] 
 
[-.29, .29] 

τb = 0 
p = 1 
τb = 0 
p = 1 

[-.70, .71] 
 
[-.69, .68] 

Maximum length 
of fuzzy interval 
patterns                    
(in seconds) 

τb = .08 
p = .54 
τb = .09 
p = .48 

[-.24, .37] 
 
[-.20, .37] 

τb = 0 
p = 1 
τb = .04 
p = .86 

[-.65, .67] 
 
[-.57, .60] 

Average length of 
recurring Par-
sons’s code pat-
terns                            
(in intervals) 

τb = 0 
p = 1 
τb = .01 
p = .94 

[-.32, .30] 
 
[-.29, .31] 

τb = -.03 
p = .95 
τb = -.04 
p = .87 

[-.60, .68] 
 
[-.60, .59] 

Average length of 
recurring Par-
sons’s code pat-
terns                          
(in seconds) 

τb = .18 
p = .16 
τb = .19 
p = .14 

[-.16, .59] 
 
[-.15, .53] 

τb = -.03 
p = .95 
τb = .06 
p = .80 

[-.66, .59] 
 
[-.53, .58] 

Maximum length 
of recurring Par-
sons’s code pat-
terns                          
(in intervals) 

τb = 0 
p = 1 
τb = .01 
p = .93 

[-.34, .33] 
 
[-.36, .32] 

τb = .03 
p = .89 
τb = .02 
p = .92 

[-.64, .59] 
 
[-.62, .63] 
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Method of  
measurement 
 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Chambers) 

99.4% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.        
2-tailed) 
(Carter) 

99.4% CI 
(bootstrap-
ped) 
(Carter) 

Maximum length 
of recurring Par-
sons’s code pat-
terns                         
(in seconds) 

τb = .12 
p = .35 
τb = .14 
p = .29 

[-.18, .44] 
 
[-.20, .47] 

τb = -.03 
p = .95 
τb = .03 
p = .90 

[-.56, .55] 
 
[-.51, .55] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval. 

 
When controlling for the length of analyzed bass line reductions, all correlations 
were statistically non-significant after Bonferroni correction except for the corre-
lation between tempo and the average length of recurring Parsons's code patterns 
(in seconds) in Paul Chambers's bass line reductions. In Paul Chambers’s bass 
line reductions, all measurements indicated a statistically non-significant and 
weak positive correlation between tempo and the average/maximum length of 
recurring melodic contour patterns (in intervals) (mean absolute tau-b = .20, 
range: .19 to .20, SD = 0.01), whereas 1 out of the 4 measurements indicated a 
statistically significant and moderate negative correlation between tempo and the 
average length of recurring melodic contour patterns (in seconds) and the other 
measurements indicated a statistically non-significant and weak negative corre-
lation between tempo and the average length of recurring melodic contour pat-
terns (in seconds) (mean absolute tau-b = .25, range: .20 to .36, SD = 0.08). More-
over, 3 out of the 4 measurements indicated a statistically non-significant and 
negligible correlation between harmonic rhythm and the average/maximum 
length of recurring melodic contour patterns (in intervals) (mean absolute tau-b 
= .08, range: .01 to .19, SD = 0.08) and between harmonic rhythm and the aver-
age/maximum length of recurring melodic contour patterns (in seconds) (mean 
absolute tau-b = .06, range: .004 to .14, SD = 0.07). In Ron Carter’s bass line reduc-
tions, all measurements indicated a statistically non-significant and weak nega-
tive correlation between tempo and the average/maximum length of recurring 
melodic contour patterns (in intervals) (mean absolute tau-b = .15, range: .11 
to .19, SD = 0.04) and a statistically non-significant and moderate to strong nega-
tive correlation between tempo and the average/maximum length of recurring 
melodic contour patterns (in seconds) (mean absolute tau-b = .48, range: .39 to .58, 
SD = 0.08). All measurements indicated a statistically non-significant and negli-
gible correlation between harmonic rhythm and the average/maximum length 
of recurring melodic contour patterns (in intervals) (mean absolute tau-b = .05, 
range: 0 to .09, SD = 0.04) and between harmonic rhythm and the average/max-
imum length of recurring melodic contour patterns (in seconds) (mean absolute 
tau-b = .02, range: 0 to .04, SD = 0.02). 
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In summary, all measurements indicated a statistically non-significant and 
negative correlation between tempo and the average or maximum length of re-
curring melodic contour patterns (in seconds). In addition, most measurements 
indicated a statistically non-significant and negligible correlation between har-
monic rhythm and the average or maximum length of recurring melodic contour 
patterns (both in intervals and in seconds) in both Paul Chambers’s and Ron 
Carter’s bass line reductions. Regarding the relationship between tempo and the 
average or maximum length of recurring melodic contour patterns (in intervals), 
the results were mixed. In Paul Chambers’s bass line reductions, all measure-
ments indicated a statistically non-significant and weak positive correlation be-
tween tempo and the average/maximum length of melodic contour patterns (in 
intervals). In contrast, all measurements in Ron Carter’s bass line reductions in-
dicated a statistically non-significant and weak negative correlation between 
tempo and the average/maximum length of melodic contour patterns (in inter-
vals). For raw data used in these tests, see Table 31 in Appendix 5. 

6.3.4 Transfer of approach-note patterns 

In Paul Chambers's bass line reductions (n = 30), the average normalized entropy 
of 2-note approach-note patterns was 0.343 (range: 0.207 to 0.445, SD = 0.055), 
and the average normalized entropy of 3-note approach-note patterns was 0.622 
(range: 0.503 to 0.749, SD = 0.061). The average relative frequency of non-recur-
ring 2-note approach-note pattern classes was 28.3% (range: 8.33% to 62.5%, SD 
= 11.0), the average relative frequency of non-recurring 2-note approach-note 
patterns was 2.03% (range: 0.26% to 4.30%, SD = 1.19), the average relative fre-
quency of non-recurring 3-note approach-note pattern classes was 45.9% (range: 
32.1% to 69.4%, SD = 9.05), and the average relative frequency of non-recurring 
3-note approach-note patterns was 12.3% (range: 3.96% to 26.9%, SD = 5.85). 

In Ron Carter's bass line reductions (n = 12), the average normalized en-
tropy of 2-note approach-note patterns was 0.457 (range: 0.352 to 0.561, SD = 
0.058), and the average normalized entropy of 3-note approach-note patterns was 
0.744 (range: 0.599 to 0.860, SD = 0.072). The average relative frequency of non-
recurring 2-note approach-note pattern classes was 30.0% (range: 11.8% to 47.8%, 
SD = 10.3), the average relative frequency of non-recurring 2-note approach-note 
patterns was 3.84% (range: 1.29% to 10.9%, SD = 2.64), the average relative fre-
quency of non-recurring 3-note approach-note pattern classes was 62.9% (range: 
48.0% to 76.6%, SD = 8.29), and the average relative frequency of non-recurring 
3-note approach-note patterns was 28.5% (range: 12.2% to 48.5%, SD = 10.7). 

A Kendall’s tau correlation analysis with Bonferroni correction was per-
formed to determine the relationship between tempo and the variability of ap-
proach-note patterns and between harmonic rhythm and the variability of ap-
proach-note patterns. After Bonferroni correction, the alpha level for statistical 
significance was adjusted to .008 (.05/6). The results are presented in Tables 16 
and 17. 
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TABLE 16 Correlations between tempo and variability of approach-note patterns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.         
2-tailed) 
(Chambers) 

99.2% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Carter) 

99.2% CI 
(bootstrap-
ped) 
(Carter) 

Normalized entropy 
of 2-note approach-
note patterns 

τb = -.10 
p = .44 
τb = -.06 
p = .65 

[-.43, .21] 
 
[-.37, .32] 

τb = -.45 
p = .04 
τb = -.39 
p = .10 

[-.93, .15] 
 
[-.92, .29] 

Normalized entropy 
of 3-note approach-
note patterns 

τb = -.11 
p = .41 
τb = -.06 
p = .65 

[-.42, .23] 
 
[-.33, .23] 

τb = -.14 
p = .54 
τb = .01 
p = .96 

[-.82, .64] 
 
[-.66, .51] 

Relative frequency 
of non-recurring     
2-note approach-
note pattern classes 

τb = .01 
p = .93 
τb = .03 
p = .83 

[-.36, .43] 
 
[-.33, .44] 

τb = -.41 
p = .06 
τb = -.32 
p = .17 

[-.84, .20] 
 
[-.87, .32] 

Relative frequency 
of non-recurring    
2-note approach-
note patterns 

τb = -.13 
p = .32 
τb = -.08 
p = .52 

[-.45, .19] 
 
[-.38, .22] 

τb = -.61 * 
p = .005 
τb = -.54 
p = .02 

[-.93, -.02] 
 
[-.92, .18] 

Relative frequency 
of non-recurring     
3-note approach-
note pattern classes 

τb = -.30 
p = .02 
τb = -.27 
p = .04 

[-.61, .06] 
 
[-.56, .09] 

τb = -.42 
p = .06 
τb = -.33 
p = .16 

[-.89, .24] 
 
[-.82, .35] 

Relative frequency 
of non-recurring     
3-note approach-
note patterns 

τb = -.21 
p = .10 
τb = -.18 
p = .17 

[-.50, .13] 
 
[-.47, .18] 

τb = -.27 
p = .25 
τb = -.14 
p = .54 

[-.79, .38] 
 
[-.65, .44] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  
* Correlation is statistically significant at the Bonferroni adjusted alpha level (.008) 
(2-tailed). 
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TABLE 17 Correlations between harmonic rhythm and variability of approach-note pat-
terns 

Method of  
measurement 
 

Kendall’s 
tau-b (sig.         
2-tailed) 
(Chambers) 

99.2% CI 
(bootstrap-
ped) 
(Chambers) 

Kendall’s 
tau-b (sig.       
2-tailed) 
(Carter) 

99.2% CI 
(bootstrap-
ped) 
(Carter) 

Normalized entropy 
of 2-note approach-
note patterns 

τb = .12 
p = .37 
τb = .12 
p = .38 

[-.21, .41] 
 
[-.22, .43] 

τb = -.03 
p = .95 
τb = .04 
p = .85 

[-.74, .67] 
 
[-.59, .70] 

Normalized entropy 
of 3-note approach-
note patterns 

τb = -.06 
p = .65 
τb = -.08 
p = .54 

[-.35, .35] 
 
[-.37, .24] 

τb = -.29 
p = .19 
τb = -.22 
p = .34 

[-.97, .45] 
 
[-.92, .48] 

Relative frequency 
of non-recurring     
2-note approach-
note pattern classes 

τb = -.19  
p = .16 
τb = -.19 
p = .14 

[-.51, .16] 
 
[-.51, .16] 

τb = -.32 
p = .15 
τb = -.26 
p = .26 

[-.91, .38] 
 
[-.86, .40] 

Relative frequency 
of non-recurring     
2-note approach-
note patterns 

τb = -.03 
p = .82 
τb = -.05 
p = .71 

[-.36, .30] 
 
[-.38, .27] 

τb = -.18 
p = .46 
τb = -.07 
p = .77 

[-.76, .49] 
 
[-.65, .48] 

Relative frequency 
of non-recurring    
3-note approach-
note pattern classes 

τb = .05 
p = .71 
τb = .04 
p = .75 

[-.29, .40] 
 
[-.28, .34] 

τb = 0 
p = 1 
τb = .10 
p = .66 

[-.69, .66] 
 
[-.54, .68] 

Relative frequency 
of non-recurring    
3-note approach-
note patterns 

τb = .06 
p = .64 
τb = -.05 
p = .68 

[-.26, .37] 
 
[-.26, .32] 

τb = -.09 
p = .74 
τb = .01 
p = .98 

[-.74, .56] 
 
[-.66, .66] 

Note. Correlation coefficients from which the influence of the length of analyzed 
bass line reductions was removed are in bold. CI = confidence interval.  

 
When controlling for the length of analyzed bass line reductions, all correlations 
were statistically non-significant. In Paul Chambers’s bass line reductions, 4 out 
of the 6 measurements indicated a statistically non-significant and negligible cor-
relation between tempo and the variability of approach-note patterns, whereas 2 
out of the 6 measurements indicated a statistically non-significant and weak neg-
ative correlation between the varibles. The mean absolute tau-b was .11 
(range: .03 to .27, SD = 0.09). Based on that most measurements indicated a 
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negligible correlation between the variables, the results did not allow to make 
conclusions on the direction of the effect in Paul Chambers’s bass line reductions. 
Moreover, 4 out of the 6 measurements indicated a statistically non-significant 
and negligible correlation between harmonic rhythm and the variability of ap-
proach-note patterns, whereas one measurement indicated a statistically non-sig-
nificant and weak positive correlation between the two variables, and one meas-
urement indicated a statistically non-significant and weak negative correlation 
between the variables. The mean absolute tau-b was .09 (range: .04 to .19, SD = 
0.06). Based on the mean absolute tau-b and the high proportion of negligible 
correlations between harmonic rhythm and the variability of approach-note pat-
terns, the results did not allow to make conclusions on the direction of the effect 
in Paul Chambers’s bass line reductions. 

In Ron Carter’s bass line reductions, 5 out of the 6 measurements indicated 
a statistically non-significant and negative correlation between tempo and the 
variability of approach-note patterns, whereas 1 out of the 6 measurements indi-
cated a statistically non-significant and negligible correlation between the varia-
bles. The mean absolute tau-b was .29 (range: .01 to .54, SD = 0.19). Based on the 
mean absolute tau-b and the high consistency of effect directions, the results in-
dicate a statistically non-significant and weak negative correlation between 
tempo and the variability of approach-note patterns. In regard to the relationship 
between harmonic rhythm and the variability of approach-note patterns, 2 out of 
the 6 measurements indicated a statistically non-significant and weak negative 
correlation between the two variables, 1 out of the 6 measurements indicated a 
statistically non-significant and weak positive correlation between the variables, 
and 3 out of the 6 measurements indicated a statistically non-significant and neg-
ligible correlation between the variables. The mean absolute tau-b was .12 
(range: .01 to .26, SD = 0.10). Based on that half of the measurements indicated 
negligible correlations, the results did not allow to make conclusions on the di-
rection of the effect in Ron Carter’s bass line reductions. 

In summary, the results did not allow to make conclusions on the direction 
of the effect between tempo and the variability of approach-note patterns in Paul 
Chambers’s bass line reductions. In Ron Carter’s bass line reductions, the results 
indicated a statistically non-significant and weak negative correlation between 
tempo and the variability of approach-note patterns. The results did not allow to 
make conclusions on the direction of the effect between harmonic rhythm and 
the variability of approach-note patterns in Paul Chambers’s or Ron Carter’s bass 
line reductions. For raw data used in these tests, see Table 32 in Appendix 5. 

Note that the average relative frequency of recurring 2-note approach-note 
patterns was 98.0% (range: 95.7% to 99.7%, SD = 1.19) (in Paul Chambers’s bass 
line reductions) and 96.2% (range: 89.1% to 98.7%, SD = 2.64) (in Ron Carter’s 
bass line reductions). In comparison, the average relative frequency of recurring 
2-note interval patterns was 95.2% (range: 85.3% to 99.2%, SD = 3.28) (in Paul 
Chambers’s bass line reductionss) and 93.7% (range: 89.8% to 99.0%, SD = 2.90) 
(in Ron Carter’s bass line reductions). These findings indicate that both Paul 
Chambers and Ron Carter used very short well-learned approach-note patterns 
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and melodic patterns to a great extent. The use of short pre-learned patterns may 
decrease cognitive resources required to generate novel melodic patterns, since 
their use decreases the number of novel elements when larger melodic patterns 
are generated. This might partly explain why expert jazz bassists are able to pro-
duce novel melodic patterns effortlessly in real time at any tempo. 

6.3.5 The role of context familiarity on musical creativity 

The role of context familiarity on musical creativity was assessed by calculating 
the mean difference between the normalized entropy of 4-note chordal pitch class 
patterns in musical works with familiar chord progressions and the normalized 
entropy of 4-note chordal pitch class patterns in musical works with original 
chord progressions. A chord progression was considered familiar if the musical 
work was well-known, it was written or co-written by Paul Chambers or Ron 
Carter, or it was based on either the blues chord progression or the Rhythm 
Changes chord progression. 

In Paul Chambers’s bass line reductions, the average normalized entropy of 
4-note chordal pitch class patterns was 0.826 in musical works with familiar 
chord progressions (n = 18, range: 0.701 to 0.902, SD = 0.060) and 0.753 in musical 
works with original chord progressions (n = 6, range: 0.612 to 0.835, SD = 0.079). 
In Ron Carter’s bass line reductions, the average normalized entropy of 4-note 
chordal pitch class patterns was 0.908 in musical works with familiar chord pro-
gressions (n = 3, range: 0.897 to 0.926, SD = 0.016) and 0.902 in musical works 
with original chord progressions (n = 8, range: 0.743 to 0.985, SD = 0.074). These 
results indicate that both Paul Chambers’s and Ron Carter’s bass line reductions 
were at least slightly less repetitive in musical works with familiar chord pro-
gressions. This finding is consistent with Goldman (2013), according to which 
jazz improvisations are less predictable in familiar compared to unfamiliar con-
texts116. However, it should be noted that the difference between the two normal-
ized entropy values was very small in Ron Carter’s bass line reductions, which 
indicates that familiarity with the chord progression had practically no effect on 
the creativity of the bass line reductions. 

Obviously, there are several major limitations to this analysis. First, the 
number of musical works with familiar chord progressions in relation to the 
number of musical works with original chord progressions was not sufficiently 
balanced. Whereas 75% of Paul Chambers’s bass line reductions (18 out of 24) 
were based on a familiar chord progression, 73% of Ron Carter’s bass line reduc-
tions (8 out of 11) were based on original chord progressions117. As another 

 
116  In contrast, Norgaard et al. (2016) found that repeated interval and pitch class patterns 

were played at least slightly more often in a familiar compared to an unfamiliar key. 
There was a statistically significant effect for key only with pitch class patterns and a 
single-task condition. 

117  The following compositions were considered to be based on original chord progres-
sions: Apothegm, Dolphin Dance, E.S.P., Giant Steps, Loose Bloose, Milestones, Mo’ Joe, Mo-
ment’s Notice, Passion Dance, Pinocchio, Seven Steps to Heaven, So What, Syeeda’s Song 
Flute, and Witch Hunt. The following compositions were based on either the blues 
chord progression or the Rhythm Changes chord progression, or they were thought to 
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limitation, it was difficult to assess musicians’ subjective familiarity with chord 
progressions. I found previous recordings by Paul Chambers or Ron Carter only 
for 9 musical works in the research material118. Moreover, the lack of available 
live set lists from the bands investigated in the present study made it difficult to 
assess the familiarity of several musical works. Only in a few cases, it was possi-
ble to conclude that a particular musical work was played regularly on gigs. All 
of You and Autumn Leaves were regularly played by the 1960’s Miles Davis Quin-
tet (featuring Ron Carter) based on that they are featured on several live albums 
(e.g., Miles Davis in Europe recorded in 1963, Live at the 1963 Monterey Jazz Festival, 
and My Funny Valentine recorded in 1964). According to Porter (1998, p. 103), 
Woody’n You and Oleo were regularly played by the 1950’s Miles Davis Quintet 
(featuring Paul Chambers). 

Based on these considerable limitations, the present findings offer (at most) 
preliminary understanding on the role of context familiarity in jazz improvisa-
tion. In order to provide a more reliable assessment of the relationship between 
musical creativity and the familiarity with the chord progression, further re-
search could use experimental conditions and ask expert musicians to improvise 
on completely novel chord progressions and familiar chord progressions based 
on either the blues or the Rhythm Changes chord changes with different prepara-
tion times and different types of ensembles (ensembles where musicians have 
been playing together for a long time and ensembles where musicians have not 
played together before). However, it is noteworthy that since both Paul Cham-
bers and Ron Carter recorded hundreds of albums (including hundreds of indi-
vidual musical works only some of which were also recorded later) and toured 

 
be familiar to the bassist otherwise: A Foggy Day, All of You, All The Things You Are, Au-
tumn Leaves, Blues by Five, Blue Train, Chamber Mates, Chasin’ the Bird, C-Jam Blues, Cool 
Struttin’, Cotton Tail, Crazy Rhythm, Freddie Freeloader, Mr. P.C., Oleo, Tenor Madness, 
The Theme, Woody’n You, and You’d Be So Nice to Come Home to. The following composi-
tions were disregarded since I was not able to assess their familiarity to the bassist: I 
Can't Give You Anything but Love, It's a Blue World, If I Were a Bell, Excerpt (based on the 
chord progression for I'll Remember April), and I Could Write a Book. 

118  In addition to the version analyzed here, A Foggy Day was also recorded live in June 
1956. All The Things You Are was also recorded for Ernie Henry’s Last Chorus (recorded 
in 1957), Johnny Griffin’s A Blowin’ Session (recorded in 1957), and Sonny Red’s Out of 
the Blue (1959) (rejected from the album) several years earlier compared to the version 
that was released in Jimmy Heath Quintet’s album On the Trail (1964). Autumn Leaves 
was also recorded for Ernie Henry’s Last Chorus (1957), and it was recorded live in 
September 1960, October 1960, and April 1961. Crazy Rhythm was also recorded for 
Red Garland Trio’s earlier album Dig It! Paul Chambers recorded several takes of Gi-
ant Steps (non of which were released on John Coltrane’s album Giant Steps) about a 
month before the two recording sessions that consisted of the takes that appeared on 
the album. However, based on the complexity of this composition, Giant Steps was not 
categorized as a familiar musical work. Oleo was also recorded live in June 1956. The 
Theme was also recorded for Miles Davis’s Miles (recorded in November 1955) and 
Workin’ with the Miles Davis Quintet (recorded in May 1956), and it was also recorded 
live in February 1956. Woody’n You was also recorded live in February 1956. You’d Be 
So Nice to Come Home to was also recorded for Cannonball Adderley’s Julian “Cannon-
ball” Adderley (1955) and Art Pepper’s Art Pepper Meets the Rhythm Section (1957). The 
search for previous recordings of the musical works analyzed in this study (including 
live recordings) was mainly carried out by using Rob Palmer’s discography of Paul 
Chambers’s recordings (R. Palmer, 2012) and Peter Losin’s Miles Ahead database 
(Losin, 2021). 
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extensively during this period, it seems plausible that they could not have been 
able to do this if they did not have the ability to learn new musical works and 
new chord progressions quickly. 

I also tested the usefulness of the following two conditions to investigate 
subjective familiarity with a chord progression. According to the first condition, 
a chord progression is familiar if the musical work is well-known to the public. 
As a second condition, a musical work is familiar to the bassist if he/she worked 
as the band leader at the recording session.119 Both of these conditions turned out 
to be problematic. There are a huge number of popular musical works written in 
the first part of the 20th century. As a result, it is difficult to know which popular 
musical works were familiar to jazz musicians without knowing whether they 
had recorded those musical works before and without knowing whether they 
had played those musical works regularly on gigs. Since both Paul Chambers and 
Ron Carter recorded hundreds of albums during the 1950’s and 1960’s and 
played probably thousands of gigs during that time, they were probably familiar 
with a large repertoire of musical works. In addition, note that even if Paul Cham-
bers or Ron Carter led the recording session, this does not necessarily mean that 
the musical works for that recording session were chosen by them. 

It is likely that only a small proportion of the musical works analyzed in 
this study were completely unfamiliar to the bassist before the recording session. 
For example, the musical works recorded for John Coltrane’s Blue Train were re-
hearsed before the recording session (Ratliff, 2007/2011, p. 65; Porter, 1998, p. 
127). As a result, even if John Coltrane’s Moment’s Notice (from Blue Train) was 
based on an original and relatively unfamiliar chord progression, the musical 
work was not completely unfamiliar to Paul Chambers since it was rehearsed at 
least to some extent before the recording session. Similarly, the first recording 
session for John Coltrane’s Giant Steps took place in March 1959, but none of these 
takes were included on the album (Porter, 1998, p. 153). Instead, John Coltrane 
went back to the studio in May 1959 with a different line-up except for Paul 
Chambers who played in both recording sessions (Porter, 1998, p. 154). Note that 
Giant Steps is widely considered to be an especially challenging chord progres-
sion and it is typically played at an extremely fast tempo. Therefore, it is likely 
that Paul Chambers was deliberately trying to create a strong harmonic back-
ground for the soloists to help them keep up with the structure of the musical 
work with the expense of a relatively repetitive bass line. 

 
119  In addition to preparation time and the familiarity with the chord progression, the 

longevity of the ensemble and the amount of experience playing with the other mem-
bers of the ensemble also play a role in context familiarity. Legendary ensembles like 
the 1950’s Miles Davis Quintet (with Miles Davis, John Coltrane, Red Garland, Paul 
Chambers, and Philly Joe Jones) and the 1960’s Miles Davis Quintet (with Miles Davis, 
Wayne Shorter, Herbie Hancock, Ron Carter, and Tony Williams) are well-known for 
their extraordinary level of ensemble playing and because both ensembles worked to-
gether for several years. As an example of how longevity of the ensemble influences 
the music, consider Miles Davis’s comment on Philly Joe Jones (who had started to 
play with Davis already in 1953), “see he knew everything I was going to do, every-
thing I was going to play; he anticipated me, felt what I was thinking” (Kahn, 2018, p. 
47). However, the longevity of the ensembles and the amount of experience playing 
with each other were not considered in the present study. 
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Also note that paid rehearsals were a common policy in Blue Note Records 
(the company that released John Coltrane’s Blue Train) (Ratliff, 2007/2011, p. 65). 
On the contrary, Prestige Records (the company that released many of the record-
ings analyzed in the present study) used a different policy with little preparation 
and rushed recording sessions (Ratliff, 2007/2011, p. 55). At Prestige Records, 
musicians were encouraged to record as many compositions as possible at each 
recording session, to avoid complicated compositions that would require prepa-
ration and several takes, and to use only one take for the sake of spontaneity 
(Porter, 1998, p. 101).120 For example, Miles Davis’s 1956 Prestige recordings (in-
cluding Workin’ with the Miles Davis Quintet, Relaxin' with the Miles Davis Quintet, 
Steamin' with the Miles Davis Quintet, and Cookin' with the Miles Davis Quintet) 
were all recorded in only two days with one take for each musical work (Carr, 
1999, pp. 98-99). However, note that the band had played together extensively by 
that time and the musical works recorded in these sessions consisted of “their 
well-rehearsed live set list” (Kahn, 2018, p. 71)121. As another example, Miles Da-
vis’s So What is considered a musical work with an original chord progression 
based on that modal jazz was a novelty in 1959. Yet, as recalled by Jimmy Cobb 
(who played drums on Kind of Blue), So What was played “once or twice on gigs” 
before the recording session (Kahn, 2018, p. 129). As an exception, many of the 
musical works recorded by the mid-1960’s Miles Davis Quintet were probably 
learned in the studio. Their live set lists consisted of mainly jazz standards with 
only a few original compositions from their albums (Waters, 2011, pp. 6-7). 

 

 
120  As an example of another completely different recording policy, Miles Davis’s early 

recordings for Columbia Records combined parts from different takes to produce the 
best result (Porter, 1998, p. 102; Kahn, 2018, p. 71). 

121  According to Ratliff (2007/2011), however, most of the musical works recorded for 
these 1956 Prestige recordings were not part of the band’s regular repertoire. Based on 
an interview with Ira Gitler, Ratliff claimed that Miles Davis and Bob Weinstock (the 
director of Prestige Records) quickly collected standards and film music as additional 
material to these sessions. (Ratliff, 2007/2011, p. 45.) 
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7.1 General discussion of main results 

7.1.1 Temporal constraints and musical creativity 

Expert-level improvisation is characterized by risk-taking, an ability to surprise, 
and lack of redundancy (Wopereis et al., 2013). In fact, improvisation requires 
that each performance is different and is in contrast to the mere reproduction of 
existing performances (Sparti, 2016). This indicates that measuring creativity as 
the lack of repetition is consistent with common artistic goals of jazz musicians. 
However, the aim to avoid redundancy is not the only artistic goal among jazz 
musicians and the musical quality of jazz improvisations also depends, of course, 
on other qualities than just lack of repetition. Drawing attention solely to the lack 
of repetition disregards other types of musical creativity such as novel chord sub-
stitutions in Paul Chambers’s bass line for So What, for example. 

Only a few previous studies have investigated the relationship between 
temporal constraints and musical creativity in expert-level jazz improvisation. 
According to Lehmann and Goldhahn (2016), melodic patterns that occurred af-
ter longer pauses (0.5 seconds) were 1.35 times more likely to be non-redundant 
compared to melodic patterns which did not appear after a rest. In another study, 
Dean (2014) found that the use of well-learned finger patterns increased in fast 
passages. Both studies investigated jazz musicians of the same level as the cur-
rent research, but these studies were based on very small sample sizes. Lehmann 
and Goldhahn studied eight solos by John Coltrane over the same chord progres-
sion (Giant Steps), whereas Dean studied four solos of Pat Metheny. In addition 
to these studies, Frieler (2014) investigated 204 solos by sixty jazz musicians and 
found that pattern use increased at fast tempos. Frieler also found that repeated 
patterns usually occurred in the same solo and not across different solos. In an-
other study, pattern use was not found to increase with tempo (Frieler et al., 2018). 

7 DISCUSSION 
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Although the latter two studies were based on large sample sizes, it is unclear 
whether and how inter-individual differences between the musicians influenced 
the results. 

One of my main aims in this study was to investigate how tempo and har-
monic rhythm are related to creativity in pattern use (as operationalized by the 
variability of melodic patterns) by using multiple measurements: normalized en-
tropy of chordal pitch class patterns, normalized entropy of interval patterns, rel-
ative frequency of non-recurring chordal pitch class patterns (using two different 
calculation methods), relative frequency of non-recurring interval patterns (using 
two different calculation methods), and relative frequency of notes that started a 
recurring melodic pattern at any metrical location. All these measurements (ex-
cept for the relative frequency of notes that started a recurring melodic pattern at 
any metrical location) were used with three different pattern lengths (2 notes, 3 
notes, and 4 notes). 

The present research was unable to find statistically significant correlations 
between tempo and the variability of melodic patterns in Paul Chambers’s and 
Ron Carter’s bass line reductions. In Paul Chambers’s bass line reductions, 17 out 
of the 19 measurements indicated a statistically non-significant and weak nega-
tive correlation between tempo and the variability of melodic patterns. The mean 
absolute tau-b was .18, which indicates a weak correlation between the two var-
iables. In Ron Carter’s bass line reductions, only 10 out of the 19 measurements 
indicated the same effect direction. Therefore, the results did not allow to make 
conclusions on the direction of the effect. The mean absolute tau-b was .15, which 
indicates a weak correlation between tempo and the variability of melodic pat-
terns. Although the present results were inconclusive, they provide preliminary 
evidence that tempo may have a small or negligible effect on creativity in pattern 
use in Paul Chambers’s and Ron Carter’s bass line reductions. In addition, the 
results from the analysis of Paul Chambers’s bass line reductions provided pre-
liminary support to previous research, according to which creativity in pattern 
use decreases with tempo (Lehmann & Goldhahn, 2016; Dean, 2014; Frieler, 2014; 
for contrasting results, see Frieler et al., 2018). However, the results from the anal-
ysis of Ron Carter’s bass line reductions did not support these findings. 

The research was also unable to find statistically significant correlations be-
tween harmonic rhythm and the variability of melodic patterns in both Paul 
Chambers’s and Ron Carter’s bass line reductions. In Paul Chambers’s bass line 
reductions, most measurements (14 out of 19) indicated a statistically non-signif-
icant and negligible correlation between harmonic rhythm and the variability of 
melodic patterns. The mean absolute tau-b was .08, which also indicates a negli-
gible correlation between the two variables. In Ron Carter’s bass line reductions, 
only 10 out of the 19 measurements indicated the same effect direction, because 
of why the results did not allow to make conclusions on the direction of the effect. 
The mean absolute tau-b was .14, which indicates a weak correlation between the 
variables. Although the results were inconclusive, they provide preliminary evi-
dence that harmonic rhythm may have a small or negligible effect on creativity 
in pattern use in Paul Chambers’s and Ron Carter’s bass line reductions. Also 
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note that when the average normalized entropy of 4-note chordal pitch class pat-
terns was calculated separately in each harmonic rhythm category using a thresh-
old level of at least thirty bars in a particular harmonic rhythm category, differ-
ences in the variability of melodic patterns were small between the harmonic 
rhythm categories. 

Creativity in pattern use was generally lower in Paul Chambers’s bass line 
reductions compared to Ron Carter’s bass line reductions. One explanation for 
this could be Ron Carter’s preference for upper structure chord notes (e.g., b9, #9, 
and #11) in some of his bass lines (Nurmi, 2018). Upper structure chord notes 
offer to take full advantage of the possibilities of the harmonic context and their 
use allows a much wider range of note choices compared to using mainly root 
notes, thirds, and fifths. Based on the present results, however, the differences 
between these two bassists in their use of upper structure chord notes and roots, 
thirds, and fifths were small. As an alternative explanation, it is possible that the 
higher proportion of familiar chord progressions in Paul Chambers’s bass line 
reductions and the higher proportion of novel chord progressions in Ron Carter’s 
bass line reductions contributes to the lower creativity scores in Paul Chambers’s 
compared to Ron Carter’s bass line reductions. In addition, it is possible that Ron 
Carter considered the lack of repetition as a more important goal compared to 
Paul Chambers. 

Based on that the average level of creativity (at the level of pattern use) was 
higher in Ron Carter’s bass line reductions compared to Paul Chambers’s bass 
line reductions, Ron Carter relied on pre-learned melodic patterns to a lesser ex-
tent compared to Paul Chambers. Yet it should be noted that the present results 
indicated a statistically non-significant and positive correlation between tempo 
and the average length of melodic patterns (in intervals) in Paul Chambers's bass 
line reductions (a similar effect was not found in Ron Carter's bass line reduc-
tions). This finding indicates that Paul Chambers may have been able to circum-
vent challenges caused by increasing tempo by playing longer pre-learned me-
lodic patterns at faster tempos. 

Note that creativity was measured at the global level, that is, at the level of 
the entire bass line reduction. Such an approach disregards all differences that 
occur only in a particular harmonic rhythm, for instance. As an example, Paul 
Chambers’s bass line reduction on Freddie Freeloader is exceptional in that fifths 
are used extensively as target notes, but only when harmonic rhythm is one chord 
change per bar. In this bass line reduction, the proportion of fifths that appeared 
as target notes in a one chord change per bar harmonic rhythm was 85.4%, which 
indicates a new way of building bass lines. In addition, the occurrence of root 
notes was exceptionally low in this bass line reduction (specifically in harmonic 
rhythm of one chord change per bar). In this harmonic rhythm, root notes ac-
counted for only 2.08% of all target notes. 

Interestingly, the relatively low level of creativity in Paul Chambers’s bass 
line reduction on So What (probably the most famous example of bass lines in a 
modal jazz context) does not correspond with the common understanding that 
modal jazz is less constraining because of the slow harmonic rhythm. On the 
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contrary, based on the relatively low level of creativity in pattern use in this bass 
line reduction, the slow rate of chord changes seems to be an obstacle to the gen-
eration of novel ideas, not vice versa. However, based on that creativity in pattern 
use was close to average in the two other bass line reductions based on a modal 
song form (Paul Chambers’s bass line reduction on Milestones and Ron Carter’s 
bass line reduction on Passion Dance), and based on the small differences in the 
creativity of the bass line reductions at the level of pattern use between different 
harmonic rhythm categories in regard to both Paul Chambers’s and Ron Carter’s 
bass line reductions, the overall results do not support the claim that slow har-
monic rhythm is related to decreased level of creativity in pattern use, at least in 
regard to Paul Chambers’s and Ron Carter’s bass line reductions. 

7.1.2 Transfer of learning in jazz improvisation 

The present study also investigated transfer of learning among eminent jazz mu-
sicians. Transfer of learning refers to the ability to use acquired knowledge in 
different situations and when learning new skills and knowledge (Haskell, 2001, 
p. xiii). For instance, when a novel task is carried out with ease, it can be assumed 
that there is positive transfer of knowledge between the two tasks (C. Palmer, 
2012). 

Several studies have paid attention to the fact that jazz musicians tend to 
reuse the same melodic patterns in their solos at least to some extent (Owens, 
1974; Berliner, 1994; Weisberg et al., 2004; Norgaard, 2014; Norgaard & Römer, 
2022). For instance, Weisberg et al. (2004) found 3,395 interval patterns that oc-
curred at least twice in six solos by Charlie Parker. Moreover, the average pro-
portion of notes captured by recurring 4-interval melodic patterns was 90% in 
these six solos. Norgaard (2014) found that 99.3% of notes in a sample of 48 solos 
by Charlie Parker were part of some recurring interval pattern with at least three 
intervals. In contrast to these studies, Owens (1974) (in his extensive study of 
about 250 Charlie Parker solos) found only 97 recurring melodic patterns (or mo-
tives, as he called them) that formed 64 pattern categories. Approximately one 
quarter (17/64) of these pattern categories accounted for most of all recurring 
patterns. 

According to the present results, a relatively small proportion of recurring 
melodic pattern classes were repeated two or more times in at least two bass line 
reductions. For example, 16.8% of all recurring 4-note melodic pattern classes oc-
curred at least twice in two or more bass line reductions by Paul Chambers and 
11.2% of all recurring 4-note melodic pattern classes occurred at least twice in 
two or more bass line reductions by Ron Carter. The proportion of recurring me-
lodic pattern classes that occurred at least twice in at least two bass line reduc-
tions by the same musician was small even when the length of analyzed melodic 
patterns was only two notes. In Paul Chambers’s bass line reductions, 15.8% of 
all recurring 2-note melodic pattern classes occurred at least twice in two or more 
bass line reductions. In Ron Carter’s bass line reductions, 19.4% of all recurring 
2-note melodic pattern classes occurred at least twice in two or more bass line 
reductions. In other words, 84.2% of all recurring 2-note melodic pattern classes 
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occurred at least twice in only one bass line reduction (although it is possible that 
some of these melodic pattern classes occurred once in these other bass line re-
ductions). Similarly, 80.6% of all recurring 2-note melodic pattern classes were 
not repeated across different bass line reductions by Ron Carter. 

The present finding that only a small proportion of recurring melodic pat-
tern classes were repeated two or more times in two or more bass line reductions 
by the same musician suggests that learning a large storage of melodic patterns 
does not play a central role in Paul Chambers’s and Ron Carter’s bass line reduc-
tions. In line with this result, Frieler (2014) found that repeated patterns usually 
occurred in the same solo and not across different solos. The present result is also 
consistent with Johnson-Laird (2002), who de-emphasized the importance of ac-
quiring a large storage of well-learned melodic patterns in jazz improvisation. In 
another paper, Johnson-Laird also argued that only a complete beginner, if any-
one, uses well-learned melodic patterns all the time and continued that “it is eas-
ier […] to make up new melodies than to remember a vast array of motifs and to 
modify them to fit the chord sequence” (Johnson-Laird, 1988, p. 211). For this part, 
the present findings contradict with Pressing (1988, 1998), Weisberg et al. (2004), 
and Norgaard (2014), who emphasized the role of well-learned melodic patterns 
in jazz improvisation or improvised music in general. Even if pre-learned me-
lodic patterns may contribute to increased creativity in jazz improvisation, their 
use seems to explain only a part of the creativity of expert-level jazz musicians. 

Also note that the number of pre-learned melodic patterns among eminent 
jazz bassists might not be even close to estimated vocabulary sizes of average 
native speakers. For instance, Brysbaert et al. (2016) estimated that native speak-
ers of American English know about 42,000 lemmas (uninflected words) on av-
erage or about 11,100 word families on average at the age of 20. In addition, these 
authors estimated that average native speakers have acquired a vocabulary of 
about 48,200 lemmas or about 13,400 word families by the age of 60.122 In com-
parison, the total number of melodic pattern classes that occurred at least twice 
in one or more bass line reductions ranged from 996 to 1,122 (depending on pat-
tern length) in Paul Chambers’s bass line reductions and from 294 to 428 (de-
pending on pattern length) in Ron Carter’s bass line reductions. Using a tighter 
threshold level for the number of pre-learned melodic patterns, the total number 
of melodic pattern classes that occurred at least twice in two or more bass line 
reductions ranged from 157 to 188 (depending on pattern length) in Paul Cham-
bers’s bass line reductions and from 33 to 83 (depending on pattern length) in 
Ron Carter’s bass line reductions. The large differences between the estimated 
vocabulary size in language use and the total number of melodic pattern classes 
that occurred at least twice in one or more bass line reductions (or at least twice 
in two or more bass line reductions) indicate that there may be little or no 

 
122  Brysbaert et al. (2016) estimated vocabulary size based on how many words people 

understood (receptive knowledge) instead of how many words they used themselves 
(productive knowledge). According to these authors, productive knowledge of words 
is less than half of the receptive knowledge of words. In addition, note that the num-
ber of word families indicates the number of building blocks from which lemmas 
come from (Brysbaert et al., 2016, p. 8). 
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similarities between language and jazz improvisation in terms of vocabulary use 
even if the number of pre-learned melodic patterns in Paul Chambers’s or Ron 
Carter’s bass line reductions is probably underestimated because of small sample 
sizes. 

Based on previous research, there seems to be considerable differences in 
the use of pre-learned melodic patterns among expert jazz musicians. According 
to Norgaard and Römer (2022, p. 19), for example, the relative frequency of notes 
that started a recurring 4-interval interval pattern at any metrical location was 
62.0% (in Michael Brecker’s solos), 41.6% (in Steve Coleman’s solos), 63.4% (in 
John Coltrane’s solos), 60.3% (in Miles Davis’s solos), 51.2% (in David Liebman’s 
solos), 55.8% (in Charlie Parker’s solos), 48.8% (in Sonny Rollins’s solos), and  
46.4% (in Wayne Shorter’s solos). In comparison, the average relative frequency 
of notes that started a recurring 4-note interval pattern at any metrical location 
was 76.0% in Paul Chambers’s bass line reductions and 54.4% in Ron Carter’s 
bass line reductions. However, it should be noted that Norgaard and Römer 
(2022) did not exclude very small differences between interval patterns. In addi-
tion, Norgaard and Römer calculated the relative frequency of notes that started 
a recurring 4-interval pattern at any metrical location in a corpus, whereas I cal-
culated the relative frequency of notes that started a recurring 4-note (i.e.,  
3-interval) pattern at any metrical location separately for each musical work and 
reported the average of these relative frequency values. As a result, the results 
are not fully comparable. 

7.1.3 Methodological findings 

Recent studies on the rate of repetition in jazz improvisation have disregarded 
harmonic context and have solely focused on interval patterns. However, it has 
been unclear how this decision may have influenced the results. Based on the 
present results, the normalized entropy of melodic patterns and the relative fre-
quency of non-recurring melodic patterns (regardless of which one of the two 
calculation methods was used) were almost always lower when individual notes 
were encoded in relation to the current chord compared to when harmonic con-
text was disregarded. However, differences between these values were very 
small with 4-note melodic patterns. For example, the maximum difference be-
tween the normalized entropy of 4-note chordal pitch class patterns (where har-
monic context is taken into account) and the normalized entropy of 4-note inter-
val patterns (where harmonic context is disregarded) was 0.053 (M = 0.018, SD = 
0.014) (in Paul Chambers’s bass line reductions) and 0.046 (M = 0.022, SD = 0.015) 
(in Ron Carter’s bass line reductions). Based on these very small differences, fur-
ther studies could benefit from ignoring harmonic context to avoid problems 
with the identification of the chord progression as long as the length of analyzed 
melodic patterns is at least 4 notes. The correct identification of harmonic context 
is often not a simple task, and it is also unclear whether harmonic context should 
be identified based on the combined note choices of all musicians or only based 
on the chords played by the pianist or the guitar player. In addition, photographs 
of lead sheets are rarely available from recording sessions. As a result, it is often 



 
 

190 

difficult to know the exact chord progressions to which musicians were impro-
vising in recording sessions. 

’Melodic chunk’ (which refers to information that is composed of smaller 
subsets and retrieved from memory as a single unit) is an important concept in 
the study of repetition of melodic patterns. In the present study, I assumed that 
the more frequently repeated and the longer the melodic pattern in question, the 
more plausible it is that the melodic pattern was retrieved from memory as a 
single unit (i.e., as a melodic chunk) during a performance of music. However, 
previous studies have paid little attention to this issue. In the case of low thresh-
old levels (e.g., two occurrences in a particular musical work), it is always possi-
ble that at least some melodic patterns were repeated by chance instead of being 
retrieved from memory as a melodic chunk. Except for Norgaard (2014), previous 
studies have also paid little attention to overlapping melodic patterns. However, 
the present results indicated that the average length of recurring melodic patterns, 
when all 42 bass line reductions were combined, was only 0.31 intervals (0.12 
seconds) smaller after the third step of the overlapping melodic patterns removal 
process compared to the average length of recurring melodic patterns after the 
first step of the removal process. 

Finally, the present study used walking bass lines to circumvent methodo-
logical difficulties related to segmentation. Walking bass lines provide ideal re-
search data regarding segmentation since they (in contrast to solos) usually do 
not afford conflicting grouping structures. An analysis of grouping structure was 
presumed to be an important, if not a necessary requirement of accurate meas-
urement of how much jazz musicians repeat the same melodic patterns in their 
improvisations. According to the present results, the absolute number of notes 
that started a recurring interval pattern was always higher when the identifica-
tion of segment boundaries was neglected. This finding indicates that the deci-
sion to neglect the segmentation process may overestimate the absolute number 
of recurring melodic patterns in jazz improvisation. In addition, the relative fre-
quency of notes that started a recurring interval pattern at any metrical location 
was usually higher compared to the relative frequency of recurring interval pat-
terns when all patterns were required to have a specific starting and ending point. 
For example, whereas the relative frequency of notes that started a recurring 4-
note interval pattern at any metrical location was 62.6% in the reduced version of 
Paul Chambers’s bass line on I Can’t Give You Anything but Love, the relative fre-
quency of recurring interval patterns that started at the first beat of the bar was 
37.9% in the reduced version of this bass line. However, it is noteworthy that the 
rank orders of the observation pairs were quite similar when the same data was 
analyzed by the relative frequency of notes that started a recurring interval pat-
tern at any metrical location (in which case the identification of segment bound-
aries was neglected) or the relative frequency of interval patterns that started at 
the first beat of the bar (in which case segment boundaries were identified). This 
finding indicates that even if calculating the relative frequency of notes that 
started a recurring interval pattern at any metrical location may produce 



 
 

191 

inaccurate results in terms of the absolute frequency of recurring interval pat-
terns, the results may still be fairly accurate in terms of the rank orders. 

7.2 Implications of the study 

7.2.1 Chunking in motor sequence production 

The emergence of motor chunks (action sequences that are encoded and recalled 
as single units) is often used to explain improvements in performance in various 
tasks. As an example, classic chunking theory predicts that the number and size 
of chunks increase with skill level (Chase & Simon, 1973). In the present study, I 
investigated whether expert jazz bassists rely heavily on pre-learned chunks as 
indicated by the relative frequency of recurring melodic patterns (which were 
assumed to be pre-learned) and whether the size of chunks increases with tempo 
as indicated by a positive correlation between tempo and the average length of 
melodic patterns (in intervals) and between tempo and the maximum length of 
recurring melodic patterns (in intervals). 

According to the present results, the average relative frequency of recurring 
4-note chordal pitch class patterns was 33.4% (range: 14.1% to 52.9%, SD = 10.0) 
and they covered, on average, 17.9% (range: 10.8% to 61.0%, SD = 8.54) of all oc-
currences of chordal pitch class patterns in Paul Chambers’s bass line reductions. 
In Ron Carter’s bass line reductions, the average relative frequency of recurring 
4-note chordal pitch class patterns was 15.6% (range: 4.04% to 24.6%, SD = 6.52) 
and they covered, on average, 11.4% (range: 7.59% to 15.3%, SD = 2.84) of all oc-
currences of chordal pitch class patterns. In comparison, the average relative fre-
quency of recurring 4-note interval patterns was 36.1% (range: 18.1% to 54.7%, 
SD = 9.49) and they covered, on average, 67.1% (range: 37.9% to 90.4%, SD = 12.9) 
of all occurrences of interval patterns in Paul Chambers’s bass line reductions. In 
Ron Carter’s bass line reductions, the average relative frequency of recurring 4-
note interval patterns was 18.9% (range: 8.99% to 31.3%, SD = 6.81) and they cov-
ered, on average, 43.3% (range: 22.1% to 61.8%, SD = 12.9) of all occurrences of 
interval patterns. 

In contrast to the above-mentioned predictions, neither bassist relied heav-
ily on pre-learned melodic patterns as indicated by the relative frequency of re-
curring melodic patterns (at least when the relative frequency of chordal pitch 
class patterns was calculated instead of the relative frequency of interval pat-
terns). However, the present findings do not contradict with the assumption that 
probably all expert jazz musicians rely on pre-learned melodic patterns at least 
to some extent. Whenever pre-learned melodic patterns are used, musicians must 
be able to quickly search for melodic patterns that are appropriate in the present 
context. Most likely, this search process occurs automatically. 

When controlling for the length of analyzed bass line reductions, the results 
indicated a statistically non-significant and weak positive correlation between 
tempo and the average length of recurring melodic patterns (in intervals) and 
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between tempo and the maximum length of recurring melodic patterns (in inter-
vals) in Paul Chambers’s bass line reductions. In contrast, the results indicated a 
statistically non-significant and negligible correlation between tempo and the av-
erage length of recurring melodic patterns (in intervals) and a statistically non-
significant and weak negative correlation between tempo and the maximum 
length of recurring melodic patterns (in intervals) in Ron Carter’s bass line re-
ductions. According to these findings, Paul Chambers may have relied on larger 
chunks at faster tempos to compensate increasing time pressures. However, as 
indicated by contrasting results in Ron Carter’s bass line reductions, this might 
not be a necessary strategy to cope with fast tempos.123 

Further research could investigate whether expert jazz musicians are able 
to update their action plans at very short timescales. If execution of actions can 
be rapidly interrupted and replaced by new action goals, this could (at least 
partly) explain why expert jazz musicians do not need to rely heavily on pre-
learned melodic patterns in order to improvise fluently. According to Goldman 
(2019), improvising musicians are constantly guided by feedback of their own 
playing and their co-performers’ playing and this continuous feedback allows 
them “to change course fluently […] in response to a new idea of their own or 
that of a fellow performer” (Goldman, 2019, p. 284). Further research is needed 
to clarify the relationship between sensory feedback and decision-making in jazz 
improvisation. However, it is likely that it is not only continuous feedback which 
allows improvising musicians to make quick changes to their actions plans, but 
also their ability to make quick responses to feedback may contribute124. 

To acquire more knowledge about whether and how expert jazz musicians 
can make quick changes to their action plans, further research could also investi-
gate whether expert jazz musicians’ superior motor dexterity is related to a ca-
pacity to switch rapidly to new action goals at fast tempos. Increased motor dex-
terity among expert jazz musicians might not only allow them to play effortlessly 
at extreme tempos, but it might also help jazz musicians to make fluent changes 
to their action goals even at a very fast tempo. 

7.2.2 Action planning in expert jazz improvisation 

According to Pachet (2012), expert jazz musicians’ ability to perform effortlessly 
even at virtuoso tempos can be explained by that they delegate the choice of 

 
123  It is possible that an increased length of repeated melodic patterns at fast tempos is re-

lated to mental slowing. The following statement by saxophonist David Liebman is in-
teresting is this regard: “while one may feel the second and fourth beat in each bar at a 
normal tempo, it helps to place four bars together as a unit with only one downbeat 
when the bars are moving quickly. Large groupings of units give the player a wider 
space to think in. This mental slowing down of the pace can help the musical flow.” 
(Liebman, 1996, pp. 39-40.) 

124  According to a recent study, musicians have shorter simple reaction times for auditory 
and tactile stimuli compared to non-musicians (Landry & Champoux, 2017), which in-
dicates that musicians may be able to use feedback to guide their choices more flu-
ently compared to non-musicians. In addition, it is likely that expert jazz improvisers’ 
ability to use feedback of their own playing and their co-performers’ playing is better 
compared to novice jazz improvisers. 
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individual notes to subconscious levels of processing and allocate their attention 
to higher-level properties of music (e.g., melodic contour, chromaticity, tonality). 
Based on this claim, I investigated whether the generation of novel melodic pat-
terns at any tempo might be facilitated using well-learned approach-note pat-
terns and melodic contour patterns. 

The results showed that the average relative frequency of recurring 2-note 
approach-note patterns (i.e., melodic patterns that consist of the last note of the 
bar and the first note of the next bar) was very high (98.0% in Paul Chambers’s 
bass line reductions and 96.2% in Ron Carter’s bass line reductions). Thus, recur-
ring approach-note patterns covered a very large proportion of all 2-note ap-
proach-note patterns in these bass line reductions. In comparison, the average 
relative frequency of recurring 3-note approach-note patterns was substantially 
lower (87.7% in Paul Chambers’s bass line reductions and 71.5% in Ron Carter’s 
bass line reductions). This finding may partly explain why expert jazz bassists 
are able to produce novel melodic patterns effortlessly in real time and regardless 
of tempo. An extensive use of pre-learned approach-note patterns may decrease 
cognitive resources required in the generation of novel melodic patterns by de-
creasing the number of elements to be selected. In addition, the use of pre-learned 
approach-note patterns may give additional time to prepare upcoming note 
choices. 

According to previous research, expert musicians allocate their attention to 
higher levels of music and allow automatic processes to operate at the note-to-
note level (Pressing, 1988; Ramalho et al., 1999; Chaffin et al., 2006; Berkowitz, 
2010). This claim is consistent with Fidlon (2011) and Norgaard (2011), according 
to which action planning among experienced jazz musicians is directed to ab-
stract sketches and architectural features of music (e.g., note density, register) in 
contrast to the surface level of music. In other words, the cognitive control of note 
choices may be (at least at very fast tempos) limited to higher-level musical pa-
rameters (like melodic contour), whereas lower-level decisions like individual 
note choices may be subject to automatic processing in expert jazz improvisation. 
In addition, higher-level action planning (e.g., planning at the level of melodic 
contour) may also function as a constraint for automatic generation of melodic 
patterns. According to the present results, the relative frequency of non-recurring 
melodic contour patterns was low in terms of both fuzzy interval patterns and 
Parsons’s code patterns. In Paul Chambers’s bass line reductions, the relative fre-
quency of non-recurring fuzzy interval patterns was 17.4% (range: 6.31% to 35.8%, 
SD = 7.59) and the relative frequency of non-recurring Parsons’s code patterns 
was 0.78% (range: 0% to 2.65%, SD = 0.63). In Ron Carter’s bass line reductions, 
the relative frequency of non-recurring fuzzy interval patterns was 31.9% (range: 
20.5% to 61.5%, SD = 11.5) and the relative frequency of non-recurring Parsons’s 
code patterns was 2.00% (range: 0.45% to 3.36%, SD = 0.96). Based on the low 
proportion of non-recurring melodic contour patterns, these findings indicate 
that expert jazz bassists’ note choices may be based on a limited set of melodic 
contour patterns. However, it should be noted that the present results only show 
that if expert jazz bassists’ cognitive control of note choices were directed to 
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melodic contour instead of individual notes, their decisions would be based on a 
limited set of melodic contour patterns. 

Interestingly, the average length of melodic patterns was within the usual 
average integration interval (or usual estimated duration of the psychological 
present) in Paul Chambers’s bass line reductions, but not in Ron Carter’s bass 
line reductions. According to earlier studies, an automatic integration process 
(which binds successive events into units) may play a role in both perception and 
action (Pöppel, 1997; Wittmann & Pöppel, 1999). Based on these studies, the max-
imum duration of integrated units is about three seconds (Szeląg et al., 1996; Pöp-
pel, 1997) or five seconds (Fraisse, 1984), whereas the minimum duration of inte-
grated units is about one second (Szeląg et al., 1996). In the present study, the 
duration of integrated units was measured as the average length of recurring me-
lodic patterns in seconds. In Paul Chambers’s bass line reductions, the average 
length of recurring melodic patterns was 2.00 seconds (range: 1.06 to 3.93, SD = 
0.74), whereas the average length of recurring melodic patterns in Ron Carter’s 
bass line reductions was 1.29 seconds (range: 0.68 to 2.58, SD = 0.57). However, 
the average length of melodic patterns was at least two seconds in only 11 out of 
the 30 bass line reductions by Paul Chambers and only 2 out of the 12 bass line 
reductions by Ron Carter. The average length of melodic patterns was more than 
three seconds in three Paul Chambers’s bass line reductions, whereas the average 
length of melodic patterns was always less than 3 seconds in Ron Carter’s bass 
line reductions. The highest average length of recurring melodic patterns was 
3.93 seconds (in Paul Chambers’s bass line reduction on Autumn Leaves). Even if 
the average length of recurring melodic patterns was often smaller than the usual 
2–3 seconds, the average length of these recurring melodic patterns was still 
within the temporal limits of chunk perception (Godøy et al., 2010; Godøy, 2014). 

According to Szeląg et al. (1996), the duration of integrated units decreased 
as the metronome frequency (the number of events per second) increased. In 
comparison, previous research on sight-reading indicates that the distance (in 
seconds) between the fixated note on a musical score and the currently played 
note is reduced at fast tempos (Furneaux & Land, 1999). Although the present 
results were statistically non-significant, it is noteworthy that they indicated a 
negative correlation between tempo and the average length of melodic patterns 
(in seconds) in both Paul Chambers’s bass line reductions and Ron Carter’s bass 
line reductions, and a positive correlation between tempo and the average length 
of melodic patterns (in intervals) in Paul Chambers’s bass line reductions (but 
not in Ron Carter’s bass line reductions). 

Compared to the average length of melodic patterns, the average length of 
fuzzy interval patterns and Parsons’s code patterns in both Paul Chambers’s bass 
line reductions and Ron Carter’s bass line reductions were more similar to the 
previous findings on the average duration of integrated units, although the high-
est average length of fuzzy interval patterns and Parsons’s code patterns ex-
ceeded the usual upper limit of integrated units (about 3 seconds). According to 
the present results, the average length of fuzzy interval patterns was 2.08 seconds 
(range: 1.06 to 4.48, SD = 0.91) in Paul Chambers’s bass line reductions and 1.94 
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seconds (range: 0.62 to 4.94, SD = 1.38) in Ron Carter’s bass line reductions. The 
average length of Parsons’s code patterns was 2.60 seconds (range: 1.32 to 4.85, 
SD = 0.89) in Paul Chambers’s bass line reductions and 2.38 seconds (range: 1.07 
to 5.10, SD = 1.17) in Ron Carter’s bass line reductions. In Paul Chambers’s bass 
line reductions, the average length of fuzzy interval patterns was at least two 
seconds in 12 out of the 30 bass line reductions. The average length of Parsons’s 
code patterns was at least two seconds in 21 out of the 30 bass line reductions. In 
Ron Carter’s bass line reductions, the average length of fuzzy interval patterns 
was at least two seconds in 5 out of the 12 bass line reductions. The average length 
of Parsons’s code patterns was at least two seconds in 7 out of the 12 bass line 
reductions. The average length of fuzzy interval patterns was more than three 
seconds in five Paul Chambers’s bass line reductions and three Ron Carter’s bass 
line reductions. The average length of Parsons’s code patterns was more than 
three seconds in seven Paul Chambers’s bass line reductions and three Ron 
Carter’s bass line reductions. 

Previous research on the range of planning has been based on identifying 
anticipatory and perseveratory errors to indicate the scope of simultaneously ac-
tivated events in music performance (Palmer & van de Sande, 1995; Palmer & 
Pfordresher, 2003; Pfordresher et al., 2007). In case of improvised music, the iden-
tification of errors, however, is not an option since improvisations do not allow 
to verify whether the sounds played by musicians were intentional (i.e., not acci-
dental) by comparing these sounds with those intended by the composer. To cir-
cumvent this problem, I assumed that the average length of recurring melodic 
patterns (i.e., the average length of recurring melodic chunks) could at least pro-
vide a rough estimate of the range of planning in improvised music. This as-
sumption is based on that a melodic chunk is retrieved from memory as a single 
unit (however, it is not plausible that all notes of longer repeated melodic pat-
terns would be simultaneously activated). Note that non-recurring melodic pat-
terns were excluded from this analysis. The reason for this decision was that it is 
impossible to estimate the length of melodic patterns if they are not repeated. 

The range model of planning (Palmer & Pfordresher, 2003; Pfordresher et 
al., 2007) predicts that the range of planning (in number of notes) decreases with 
tempo. The present results, however, indicated a statistically non-significant and 
weak positive correlation between tempo and the average length of recurring 
melodic patterns (in intervals) in Paul Chambers’s bass line reductions and a sta-
tistically non-significant and negligible correlation between tempo and the aver-
age length of recurring melodic patterns (in intervals) in Ron Carter’s bass line 
reductions. Interestingly, the present results also suggested that the range of 
planning might be larger in jazz improvisation compared to non-improvised mu-
sic (or to be more precise, music that is less improvised). Whereas Pfordresher et 
al. (2007, p. 81) found a median range of planning of 2.95 notes, the average length 
of recurring melodic patterns was 6.52 intervals (Mdn: 5.42 intervals) in Paul 
Chambers’s bass line reductions and 3.76 intervals (Mdn: 3.69 intervals) in Ron 
Carter’s bass line reductions. In comparison, Norgaard (2014, p. 278) found that 
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the average length of melodic patterns was 7.3 intervals in a corpus of 48 solos 
by Charlie Parker. 

7.2.3 Towards new theories and models of expert jazz improvisation 

In contrast to underlying mechanisms common to all forms of creativity, recent 
progress in creativity research has identified partly different neural correlates be-
tween artistic and scientific creativity (Shi et al., 2017) and between musical and 
literary/artistic creativity (Chen et al., 2020). Therefore, there seems to be several 
ways of how humans can generate creative products, none of which can explain 
human creativity in all occurrences. 

Previous research has proposed a number of sources of creativity, or more 
generally, sources of variability in behavior. These include, for example, random 
fluctuations at neural level (Faisal et al., 2008; Renart & Machens, 2014), motor 
variability (Dhawale et al., 2017; Orth et al., 2017), constraints (Torrents et al., 
2020), emergence caused by interaction between collaborating musicians (Bishop, 
2018; Sawyer & DeZutter, 2009), novel combinations of pre-existing knowledge 
(Mednick, 1962; Schubert, 2011, 2021), blind variation and selective retention 
(Campbell, 1960; Simonton, 2003), cognitive flexibility and cognitive persistence 
(Nijstad et al., 2010), and mind wandering (Palhares et al., 2022). In this chapter, 
several mechanisms underlying musical creativity in jazz improvisation are re-
viewed and their relation to the present results is discussed. The aim is to inte-
grate isolated findings and contribute to cumulative knowledge on basic mecha-
nisms of musical creativity, which could be used to develop new theories and 
models of expert jazz improvisation. 

In his highly influential theory of jazz improvisation, Pressing (1988, 1998) 
emphasized the role of pre-learned musical materials in fluent improvisation. In 
contrast to this view, Johnson-Laird (2002) argued that decision-making in jazz 
improvisation is primarily based on rules rather than retrieving pre-learned pat-
terns from memory. Johnson-Laird did not deny that jazz improvisers use pre-
learned musical materials in their playing, but he claimed that only a complete 
beginner, if anyone, uses pre-learned patterns all the time (Johnson-Laird, 1988, 
p. 211). According to the present results, pre-learned melodic patterns and the 
acquisition of an extensive “vocabulary” of melodic patterns may have lesser sig-
nificance on expert-level jazz improvisation compared to Pressing (1988, 1998), 
based on that creativity in pattern use (which indicates the rate of online creation 
of novel melodic patterns in contrast to retrieval of pre-learned melodic patterns 
from memory) was quite high in Paul Chambers’s bass line reductions and espe-
cially Ron Carter’s bass line reductions and that the proportion of melodic pat-
tern classes that occurred at least twice in two or more bass line reductions was 
small in both Paul Chambers’s and Ron Carter’s bass line reductions. Consistent 
with Norgaard (2011), the present results suggest that both pre-learned patterns 
and abstract harmonic, rhythmic, and melodic knowledge play a role in expert-
level jazz improvisation. Also note that repetition of melodic patterns occurred 
in all bass line reductions, which suggests that even eminent experts cannot 
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completely avoid repeating their well-learned melodic patterns125. Moreover, the 
present results suggest that expert jazz improvisers might be able to make quick 
changes to their action plans based on that the normalized entropy of melodic 
patterns increased and the proportion of recurring melodic patterns decreased 
with pattern length. As an alternative explanation, the variability of melodic pat-
terns may increase with pattern length simply because increased pattern length 
allows a larger number of possible combinations. 

Pressing (1988) claimed that improvisations are series of non-overlapping 
event clusters, which highlights the importance of event groups in jazz improvis-
ers’ action control. Making decisions at the level of event groups in contrast to 
choosing each note separately provides several advantages for improvising mu-
sicians. For instance, note-to-note level planning of upcoming movements is im-
possible at fast tempos and thus decision-making at the level of event groups 
allows to improvise fluently at fast tempos (Palmer & van de Sande, 1995; Pachet, 
2012). In addition, decision-making at the level of event groups allows more time 
to make decisions compared to the note-to-note level. For example, when plan-
ning occurs at the level of two quarter notes at a time instead of one quarter note 
at a time at the tempo of 300 bpm, the inter-onset interval between the subsequent 
groups of two notes (compared to the inter-onset interval between subsequent 
notes) increases from 200 to 400 milliseconds. In case of 4-note groups, the inter-
onset interval between the subsequent groups of quarter notes is 800 milliseconds 
at this tempo.126 Despite of this advantage at fast tempos, it is important to note 
that decision-making at the note-to-note level may still be useful at very slow 
tempos. For instance, when improvising half notes at the tempo of 60 bpm, the 
inter-onset interval between the subsequent notes is two seconds. At such a slow 
tempo, it is difficult to see how musicians could benefit from planning larger 
units in advance or relying solely on higher-level decision-making. 

Although decision-making at the level of event clusters (to use Pressing’s 
terminology) is an important aspect in jazz improvisation, it is also important to 
consider the role of continuous decision-making. Goldman (2019) recently sug-
gested that improvising musicians continuously evaluate their own decisions 
and those of their co-performers, in which process “feedback is continuously 
guiding movements, and thus they are in some sense constantly deciding what 
to do next” (Goldman, 2019, p. 284). In another study, Norgaard et al. (2023) sug-
gested that “both motor patterns and continuous processes” are involved in mu-
sical improvisation. In their view, “a player may start a line by inserting a pre-
learned pitch pattern of a specific length. But as this specific pattern is played, 
music expectancy principles may shape continuations of the pattern that are then 

 
125  On the other hand, repeated melodic patterns may sometimes operate as cues for 

other musicians and highlight important transitions between the sections of a compo-
sition. 

126  In the present data, the quickest tempos were around 300 bpm. At this tempo, both 
Paul Chambers and Ron Carter merely played quarter notes. Playing quarter notes at 
the tempo of 300 bpm corresponds to playing five notes per second. In other words, 
the maximum inter-onset interval between subsequent quarter notes at this tempo is 
about 200 milliseconds which corresponds to simple reaction times for auditory stimu-
lus among musicians (Landry & Champoux, 2017). 
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played in a continuous dynamical process.” (Norgaard et al., 2023, p. 11.) As sug-
gested by these authors, continuous decision-making in jazz improvisation may 
be based on sensory feedback (Goldman, 2019) or melodic expectations (Nor-
gaard et al., 2023). As a background for this discussion, note that researchers have 
long debated on whether consciousness is characterized by discrete or continu-
ous perceptions (e.g., Herzog et al., 2020). Similarly, the question of whether de-
cision-making is continuous (i.e., operates at the note-to-note level) or discrete 
(i.e., operates at the level of note groups), or both, is a fundamental problem in 
the psychological research of jazz improvisation. 

It is a common view that novel outcomes in jazz improvisation and other 
forms of creativity are never developed ex nihilo (out of nothing) (e.g., Johnson-
Laird, 2002; Canonne & Aucouturier, 2016; Daikoku et al., 2021) and that the gen-
eration of novel products requires formation of new links between pre-existing 
units of knowledge (e.g., Mednick, 1962; Schubert, 2011, 2021). For example, 
Hodgson (2006) proposed that jazz improvisation might involve a process of 
combining pre-learned 2-note structures into larger phrases. With the assump-
tion that all pre-learned 2-note structures are invariant, the relative frequency of 
non-recurring 2-note melodic patterns (using calculation method 1) should be 
zero, at least if a very large amount of data including all performances by a par-
ticular musician was available. 

According to the present results, the relative frequency of non-recurring 
2-note chordal pitch class patterns (using calculation method 1) was relatively 
high (44.9% on average in Paul Chambers’s bass line reductions and 57.6% on 
average in Ron Carter’s bass line reductions), although it should be noted that 
the relative frequency of non-recurring 2-note interval patterns (using calculation 
method 1) was considerably smaller (25.5% in Paul Chambers’s bass line reduc-
tions and 30.1% in Ron Carter’s bass line reductions). It is also noteworthy that 
the proportion of recurring 2-note melodic pattern classes that occurred at least 
twice in two or more bass line reductions was 15.8% in Paul Chambers’s bass line 
reductions. This means that 84.2% of all recurring 2-note melodic pattern classes 
occurred at least twice in only one bass line reduction. In Ron Carter’s bass line 
reductions, the proportion of recurring 2-note melodic pattern classes that oc-
curred at least twice in two or more bass line reductions was 19.4%, which means 
that 80.6% of all recurring 2-note melodic pattern classes occurred at least twice 
in only one of Ron Carter’s bass line reductions. In summary, these findings in-
dicate that even if the proportion of non-recurring 2-note melodic patterns was 
quite high at least with chordal pitch class patterns, a large proportion of all re-
curring 2-note melodic pattern classes occurred at least twice in only one bass 
line reduction in both Paul Chambers’s and Ron Carter’s bass line reductions, 
which indicates that many of the melodic patterns may have been “invented” 
during performance and that other kinds of knowledge (e.g., harmonic 
knowledge of what notes fit to a particular context) and skills (e.g., the ability to 
make variations of melodic patterns) may play a more important role in expert 
jazz bass playing compared to the use of well-learned melodic patterns or 
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combining parts of such melodic patterns, at least in regard to Paul Chambers 
and Ron Carter. 

However, it is important to note that saying something is “invented” during 
performance does not mean that it was created without the use of long-term 
memory. The basic idea of my criticism was not to deny that the generation of 
novel ideas and products is based on acquired knowledge in long-term memory. 
Instead, my criticism was only concerned with the more specific argument that 
the combination of pre-learned melodic patterns with little or no variation plays 
a central role in the creativity of expert-level jazz improvisers. The present results 
do not support the view that expert-level jazz improvisations consist of pre-
learned melodic patterns that are simply combined in a row to create a melody. 
Further research is needed to clarify what kind of knowledge (from long-term 
memory) is used in expert-level jazz improvisation and what types of variation 
expert-level jazz improvisers might use to produce a variety of outputs based on 
a limited knowledge base. 

Inhibition plays an important role in motor control of complex movements 
(Gerloff & Hummel, 2012). Similarly, inhibition of stereotypical actions (Nor-
gaard et al., 2019) and risk-taking (Wopereis et al., 2013) are both associated with 
expertise in jazz improvisation. However, several studies suggest that creativity 
in music and other domains is associated with the lack of inhibitory control and 
not the other way around (Carson et al., 2003; Kleinmintz et al., 2014; Ivancovsky 
et al., 2018). As a result, it is possible that both inhibition of habitual melodic 
patterns and attenuated cognitive control play a role in expert jazz improvisation. 
The latter of these processes, attenuated cognitive control associated with loose 
evaluation of ideas, is important since the generation of novel melodic patterns 
may require a highly flexible web of associations that is facilitated by attenuated 
evaluation of generated responses. Even if these processes seem contradictory, 
they are not necessarily conflicting at all because inhibition of stereotyped actions 
and evaluation of ideas may be two different processes. 

Several previous studies have proposed that lower-level processes in jazz 
improvisation are, at least largely, automatic. According to Berkowitz (2010), 
even expert jazz musicians are unaware of many processes that occur during im-
provisation and much of what occurs in improvisation is only witnessed by the 
improviser. In his view, expert improvisation is characterized by a state of “let-
ting go,” where automated processes operate at the note-to-note level and atten-
tional resources are directed to higher-level processes. Ramalho et al. (1999) pro-
posed that intentions at higher levels of abstraction (e.g., pitch contour, density, 
general plan) may trigger the retrieval of appropriate melodic patterns from 
memory. Similarly, Chaffin et al. (2006) argued that musicians benefit from guid-
ing their attention to higher levels of abstraction in music performance. In addi-
tion, several studies suggest that expert jazz musicians rely more on Type 1 pro-
cessing compared to Type 2 processing (Limb & Braun, 2008; Liu et al., 2012; Ad-
hikari et al., 2016; Lopata et al., 2017; Rosen et al., 2016, 2017, 2020), which indi-
cates that the generation of novel melodic patterns may become automatic, at 
least partly, with extended practice. In support to this claim, several studies have 
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also shown that the activation of brain regions involved in volitional control of 
actions and action planning is decreased during musical improvisation (Limb & 
Braun, 2008; McPherson et al., 2016; Tachibana et al., 2019). 

According to the present results, Paul Chambers’s and Ron Carter’s bass 
line reductions were highly variable at the level of melodic patterns, but there 
was much more repetition at higher levels of musical structure as indicated by 
that the same melodic contour patterns were repeated to a great extent in the bass 
line reductions of both bassists. In Paul Chambers’s bass line reductions, the av-
erage relative frequency of non-recurring 4-note fuzzy interval patterns was 17.4% 
and the average relative frequency of non-recurring 4-note Parsons’s code pat-
terns was 0.78%. In Ron Carter’s bass line reductions, the average relative fre-
quency of non-recurring 4-note fuzzy interval patterns was 31.9% and the aver-
age relative frequency of non-recurring 4-note Parsons’s code patterns was 2.00%. 
Based on earlier research (Berkowitz, 2010; Ramalho et al., 1999; Chaffin et al., 
2006), higher-level planning at the level of melodic contour may constrain auto-
matically generated note choices in jazz improvisation. In addition to melodic 
contour, note choices may be also limited by many other constraints, including 
harmonic context, harmonic knowledge (e.g., knowledge of what notes are ap-
propriate in a given harmonic context), improvisation strategies (e.g., the use of 
target note technique), other higher-level features of music (e.g., timbre, density, 
tonality), and the larger musical context (i.e., what note choices are appropriate 
based on the notes played by other musicians). In addition, it is possible that the 
source of idea generation may also affect the content of automatically generated 
note choices. 

The present results indicate that expert jazz bassists may rely on a limited 
number of melodic contour patterns in their improvisations. In comparison, 
Pachet (2012) argued that expert-level musicians’ ability to perform effortlessly 
at a virtuoso tempo can be explained by that they delegate the choice of individ-
ual notes to subconscious levels of processing and allocate their attention to 
higher-level properties of music. The present results also indicate that both Paul 
Chambers and Ron Carter often repeated the same 2-note approach-note patterns 
in their bass line reductions. It is possible that the use of pre-learned approach-
note patterns may decrease cognitive resources required in the generation of 
novel melodic patterns, since the use of such pre-learned structures decreases the 
number of elements to be selected. This could provide a partial explanation of 
why expert jazz bassists are able to produce novel melodic patterns effortlessly 
in real time at any tempo. 

It is noteworthy that the present results generally did not support Love’s 
(2017) ecological model on jazz improvisation. Love (2017, p. 42) predicted that 
the frequency of repeated melodic patterns should be higher compared to what 
has been suggested in previous research, that the frequency of repeated melodic 
patterns should be high regardless of tempo, and that improvisations on unfa-
miliar musical works should be highly repetitive. According to the present re-
sults, the repetition of melodic patterns was not high. In Paul Chambers’s bass 
line reductions, the average relative frequency of recurring 4-note chordal pitch 
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class patterns was 33.4% and the average relative frequency of recurring 4-note 
interval patterns was 36.1% (using calculation method 1). In Ron Carter’s bass 
line reductions, the average relative frequency of recurring 4-note chordal pitch 
class patterns was 15.6% and the average relative frequency of recurring 4-note 
interval patterns was 18.9%. On the other hand, the present results indicated that 
the bass line reductions were at least slightly more predictable with musical 
works based on original chord progressions compared to familiar chord progres-
sions at least in Paul Chambers’s bass line reductions. Finally, the present results 
provided preliminary evidence that tempo may have a small or negligible effect 
on the variability of melodic patterns. 

The present results did not support the hypothesis that jazz bassists use 
consonant chordal pitch classes more often at fast tempos, which suggests that, 
in contrast to Frieler et al. (2018), neither Paul Chambers nor Ron Carter relaxed 
the harmonic constraints of note choices to circumvent challenges caused by in-
creasing tempo. When controlling for the length of analyzed bass line reductions, 
the results indicated a statistically non-significant and negligible correlation be-
tween tempo and the relative frequency of chordal pitch classes in Paul Cham-
bers’s bass line reductions and a statistically non-significant and moderate nega-
tive correlation between these two variables in Ron Carter’s bass line reductions. 
Similarly, the present results did not support the hypothesis that jazz bassists use 
note repetitions more often at fast tempos (which also allows to circumvent chal-
lenges caused by increasing tempo) (Frieler et al., 2018). When controlling for the 
length of analyzed bass line reductions, the results indicated a statistically non-
significant and negligible correlation between tempo and the relative frequency 
of note repetitions in Paul Chambers’s bass line reductions and a statistically non-
significant and moderate negative correlation between the two variables in Ron 
Carter’s bass line reductions. When original bass lines were analyzed instead of 
bass line reductions, the results indicated a statistically significant and moderate 
negative correlation between the two variables in Paul Chambers’s original bass 
lines and a statistically non-significant and moderate negative correlation be-
tween the two variables in Ron Carter’s original bass lines. Despite the statistical 
significance, however, the importance of these results is not clear as these results 
might only indicate that Paul Chambers and Ron Carter used more variable 
rhythms at slower tempos compared to faster tempos. It is possible that these 
differences between the present results and those of Frieler et al. (2018) are caused 
by individual differences between jazz bassists. Whereas some jazz bassists may 
use relaxed harmonic constraints at fast tempos or more note repetitions at fast 
tempos to circumvent challenges caused by increasing tempo, this does not seem 
to apply with Paul Chambers and Ron Carter. 

Note that Ron Carter’s bass line reductions relied less on pre-learned me-
lodic patterns compared to Paul Chambers’s bass line reductions. There are at 
least three possible explanations for this difference between the two bassists. First, 
jazz musicians’ repertoire of pre-learned melodic patterns may change from time 
to time (see Weisberg et al., 2004, Projection of formulas over time section), be-
cause of why the same melodic patterns are not extensively repeated between 
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bass lines if the bass lines are separated by a long time span (which means that 
some bass lines were recorded much earlier compared to the other bass lines). As 
another possibility, Ron Carter may have simply relied on motor-generated ideas 
to a lesser extent compared to Paul Chambers and concentrated more on other 
sources of idea generation. Third, Ron Carter may have valued the element of 
surprise and unpredictability to a greater extent compared to Paul Chambers, 
which means that the novelty of musical ideas may have been more important to 
Ron Carter compared to Paul Chambers. 
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Although the overall amount of research material in terms of individual notes 
(37,340 notes in total) and melodic patterns (9,335 melodic patterns in total) was 
quite high, the number of bass line reductions was small. The research material 
included only 30 bass line reductions by Paul Chambers and 12 bass line reduc-
tions by Ron Carter. This problem could have been easily avoided by using short 
samples from each bass line reduction instead of using full-length bass line re-
ductions. The explanation for using full-length bass line reductions (if possible) 
was that the accuracy of measurement increases with the length of analyzed mu-
sical works. Compared to solos, I assumed that walking bass lines allow a more 
accurate measurement of musical creativity, because solos are often relatively 
short whereas bassists play all the time from the beginning to the end of the mu-
sical work. Considering the exploratory nature of the present study and the ad-
vantage of using more data from each improvisation compared to previous stud-
ies, the accuracy of measurement (which improves the quality of data) was a 
more important aim than the possibility to use a larger sample size. However, it 
is important to note that a large variation in the length of analyzed bass line re-
ductions can lead to biased results. To avoid this problem, the length of analyzed 
bass line reductions was used as a third variable in Kendall’s tau partial correla-
tion analyses. As another solution, further research could aim to minimize differ-
ences in the length of analyzed bass line reductions. 

As another problem, many of the individual confidence intervals were quite 
wide, which indicates a low precision of effect size estimates. The average width 
of confidence intervals was 0.69 (range: 0.51 to 0.88, SD = 0.08) in Paul Cham-
bers’s bass line reductions and 1.26 (range: 0.86 to 1.60, SD = 0.17) in Ron Carter’s 
bass line reductions. Most confidence intervals also included the null effect, 
which indicates considerable uncertainty in effect direction. The statistical power 
of the results was usually below the generally accepted level of 0.80, which indi-
cates that the probability of Type II errors (i.e., probability of false negative find-
ings) was rarely 20% or less. Assuming that May and Looney’s (2020) calculations 
for Spearman’s rho and Kendall’s coefficient of concordance are approximately 
true for Kendall’s tau, the sample size per each bassist should have been about 

8 LIMITATIONS 



 
 

204 

90 bass line reductions to achieve a statistical power of 0.80 given an effect size 
of tau = .30 ( = 0.05, two-tailed) (May & Looney, 2020). Given an effect size of 
tau = .20 ( = 0.05, two-tailed), a sample size of about 200 bass line reductions per 
each bassist would have been needed to achieve a statistical power of 0.80 (May 
& Looney, 2020). Thus, the present sample sizes were much smaller than what 
would have been required to achieve a generally accepted level of statistical 
power. Sample sizes could have been easily increased by splitting all bass line 
reductions (see Frieler, 2020). As another possibility, all data could have been put 
together (instead of analyzing the bass line reductions from the two musicians 
separately) and analyzed with methods proposed by Bland and Altman (1994, 
1995a, 1995b). In addition, sample sizes could have been increased by using 
shorter transcriptions. However, these possibilities to increase the sample size of 
the study were not utilized. As a defence to this decision, it should be noted that 
the basic intention of my study was merely to provide hypotheses for further 
research, avoid using untested assumptions, and investigate methodological is-
sues that could have unwanted consequences in large-scale studies. 

The present results were mostly statistically non-significant and, therefore, 
inconclusive. As another limitation, the research material included bass line re-
ductions from only two musicians (because of why the results cannot be gener-
alized to other musicians with a similar level of expertise regardless of the statis-
tical significance of the results) and included only a small fraction of the total 
output of these two musicians. As a result, it is possible that the selection of per-
formances may have accidentally influenced the results. However, it is likely that 
the performance level of expert musicians differs little from day to day if their 
skills have not suffered from physical traumas or a sustained decrease in overall 
playing time. Yet, as evident in exceptionally low creativity scores in some bass 
line reductions (e.g., Giant Steps), mediating effects like the complexity of the 
chord progression, the familiarity with the chord progression, or the decision to 
focus on underlining the chord changes as clearly as possible may influence the 
results. 

The present study investigated walking bass lines and therefore the results 
cannot be directly compared with previous studies that have investigated solos. 
Also, it should be noted that the analyzed bass line reductions were recorded 
over a relatively long time. In studies of transfer of learning in jazz improvisation, 
it could be helpful to focus on recordings from a much shorter time span (e.g., by 
analyzing complete albums recorded during one or a few days instead of analyz-
ing performances recorded over several years) since expert jazz musicians’ rep-
ertoire of melodic patterns may change over the years. As another limitation, all 
note durations that differed from quarter notes were converted to quarter notes 
or removed. Accordingly, the present study focused exclusively on melody at the 
expense of losing all information related to rhythm. Finally, it should be noted 
that the present research provides a very limited perspective on creativity. How-
ever, it is fair to say that it is practically impossible to investigate all aspects of 
creativity in a single study. 
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It was necessary to exclude several interesting research questions from this study. 
For instance, the present study focused on chunks and questions regarding the 
effect of statistical learning (e.g., the probability of playing a specific note or notes 
given the notes played earlier) on musical creativity were not investigated. Fur-
ther research could also investigate whether the selection of motor commands to 
achieve a desired action is more difficult at fast tempos compared to slow tempos 
and whether the scarcity of time to select motor commands functions as a source 
of unintentional actions in jazz improvisation regardless of the level of expertise. 

To my knowledge, there are no previous studies that have investigated the 
number of events per second at which a transition from the note-to-note level 
processing to processing at the level of larger and more abstract entities could 
occur. According to previous research, it is impossible (even for virtuoso musi-
cians) to plan upcoming actions at the note-to-note level at fast tempos (Palmer 
& van de Sande, 1995; Pachet, 2012). At the tempo of 300 bpm, for example, the 
distance between the onsets of two beats is 200 milliseconds. At this timescale, 
musicians can merely react to auditory and tactile stimuli in a pre-defined way 
(e.g., press a mouse button when they hear a stimulus) (Landry & Champoux, 
2017). 

It is an open question whether the role of sensory feedback is similar or dif-
ferent in improvised music compared to playing well-learned music from 
memory. There is also a lack of knowledge regarding the role of audiation-gen-
erated ideas in improvised music and the relationship between room acoustics 
and the ability to produce audiated musical ideas correctly. Moreover, the ques-
tion of what underlying processes are involved in creativity among expert-level 
jazz musicians has barely been touched. Further research could also benefit from 
finding new and more reliable ways to measure creativity in improvised jazz so-
los. 

There is still little knowledge of how expert jazz improvisers differ from 
expert classical musicians in terms of their skills. Such knowledge could provide 
new insights for understanding how expert jazz musicians can generate novel 
musical ideas at any tempo. Anticipation and its relation to context familiarity is 
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another little understood aspect of fluent jazz improvisation. It is likely that an-
ticipation of upcoming chord changes and awareness of the present position in a 
song form have a crucial role in fluent improvisation. Unfamiliarity with the 
chord progression is likely to disrupt the anticipation of upcoming chord changes 
and may therefore cause negative effects on performance quality. However, there 
are no studies that have investigated these issues. 

Conservative forms of the 4E cognition and dynamic systems research 
could provide new insights to creative processes in jazz improvisation as sug-
gested by recent research that has investigated how environmental factors and 
bodily experiences can facilitate the production of creative responses in divergent 
thinking tasks. From the 4E cognition framework, it could be useful to investigate 
how familiarity with the instrument and performing in different kinds of venues 
influence musical creativity. Case studies of how physical and bodily traumas 
affect the role of the body as a mediator between the external world and the mind 
could also have an important impact on our knowledge about creativity among 
both expert and amateur musicians. Moreover, further research on emergence 
could help to explain novelty in jazz improvisation without using simplistic ex-
planations based on stringing together pre-learned melodic patterns. Moreover, 
further research could explore the application of methods borrowed from dy-
namic systems research (e.g., cross-recurrence quantification analysis), the rela-
tionship between audiation-generated ideas and sensory-motor associations, and 
the question of whether and to what extent audiation-generated ideas are con-
strained by existing knowledge. 

Carefully conducted interviews with expert musicians could be highly ben-
eficial and provide novel and valuable insights on the psychology of music per-
formance. These qualitative studies could be complemented with empirical re-
search to ensure the reliability and generalization of the evidence. In addition, 
investigations of practicing habits of musicians could be useful to gain more un-
derstanding of underlying processes in improvisation as it is likely that impro-
vised performances are, at least to some extent, based on strategies, knowledge, 
and skills that are practiced offline. Such investigations could focus on musicians 
at all levels of expertise because experts are unlikely to be required to practice the 
same things as novices. 

As an alternative to solos, further research could pay more attention to 
walking bass lines and other less explored forms of musical creativity. The quan-
tity of available walking bass line transcriptions has increased rapidly in recent 
years. As a result, researchers may soon have the opportunity to use relatively 
large databases of walking bass line transcriptions in their work. 
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SUMMARY IN FINNISH 

Tutkimukseni ensisijaisena tavoitteena oli selvittää, miten päätöksentekoon ja 
toiminnan suunnitteluun liittyvät ajalliset rajoitteet sekä sävelkuvioita koskevan 
tietovaraston koko ovat yhteydessä huipputason jazzbasistien luovuuteen. Ajal-
liset rajoitteet ovat improvisoinnin kannalta keskeisessä roolissa, koska improvi-
soitaessa musiikin tekeminen tapahtuu samanaikaisesti sen esittämisen kanssa. 
Näin ollen mitä nopeampi tempo musiikissa on ja mitä tiheämmin esitettävän 
teoksen soinnut vaihtuvat, sitä vähemmän muusikoilla on aikaa tehdä esitettävää 
musiikkia koskevia päätöksiä senhetkisessä musiikillisessa kontekstissa. Myös 
sävelkuvioita koskevan tietovaraston koolla on katsottu olevan merkittävä rooli 
jazzimprovisoinnin kannalta, jopa siinä määrin että laajan sävelkuviovaraston 
oppimisen on ajateltu olevan välttämätön edellytys jazzimprovisointitaitojen ke-
hittymiselle. Tutkimuksen aineisto koostui 42:sta Paul Chambersin (1935–1969) 
ja Ron Carterin (s. 1937) vuosien 1956–1968 välillä levyttämän bassolinjan nuo-
tinnoksesta, joissa neljäsosanuoteista poikkeavat sävelkestot on poistettu tai 
muutettu neljäsosanuoteiksi. Tutkittavat henkilöt ovat jazzmusiikin historian 
kannalta erittäin merkittäviä muusikoita. 

Ajallisten rajoitteiden ja huipputason jazzmuusikoiden luovuuden välistä 
yhteyttä tutkittiin Kendallin osittaisjärjestyskorrelaatiota käyttäen selvittämällä, 
miten esitettävän musiikin tempo ja harmoninen rytmi ovat yhteydessä sävelku-
vioiden vaihtelevuuteen, kun bassolinjareduktioiden pituuden vaikutus tulok-
siin on poistettu. Tutkimuksessa ei löydetty tilastollisesti merkitseviä yhteyksiä 
tempon tai harmonisen rytmin sekä sävelkuvioiden vaihtelevuuden välillä. Paul 
Chambersin bassolinjareduktioissa (n = 30) havaittiin tilastollisesti ei-merkitsevä 
ja heikko negatiivinen korrelaatio tempon ja sävelkuvioiden vaihtelevuuden vä-
lillä (keskimääräinen absoluuttinen tau-b = .18) ja tilastollisesti ei-merkitsevä ja 
käytännössä olematon korrelaatio harmonisen rytmin ja sävelkuvioiden vaihte-
levuuden välillä (keskimääräinen absoluuttinen tau-b = .08). Ron Carterin basso-
linjareduktioissa (n = 12) havaittiin tilastollisesti ei-merkitsevä ja heikko korre-
laatio tempon ja sävelkuvioiden vaihtelevuuden välillä (keskimääräinen abso-
luuttinen tau-b = .15) sekä harmonisen rytmin ja sävelkuvioiden vaihtelevuuden 
välillä (keskimääräinen absoluuttinen tau-b = .14). Vaikka tulokset olivat tilastol-
lisesti ei-merkitseviä, ne antavat alustavaa näyttöä siitä, että tempolla ja harmo-
nisella rytmillä saattaa olla vähäinen tai käytännössä olematon vaikutus sävelku-
vioiden vaihtelevuuteen huipputason jazzmuusikoiden bassolinjoissa. Tulokset 
eivät mahdollistaneet efektin suuntaa koskevia päätelmiä lukuun ottamatta Paul 
Chambersin bassolinjareduktioita tempon ja sävelkuvioiden vaihtelevuuden vä-
lisen yhteyden osalta. 

Neljän sävelen mittaisten sävelkuvioiden keskimääräinen normalisoitu en-
tropia oli 0,818 Paul Chambersin bassolinjareduktioissa ja 0,902 Ron Carterin bas-
solinjareduktioissa, kun sävelten suhde vallitsevaan sointuun otettiin huomioon. 
Tulos viittaa siihen, että bassolinjareduktioiden yllätyksellisyys oli keskimäärin 
varsin lähellä maksimitasoa. Vastaavasti neljän sävelen mittaisten ei-toistuvien 
sävelkuvioluokkien keskimääräinen osuus kaikista samassa 
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bassolinjareduktiossa esiintyneistä sävelkuvioluokista oli Paul Chambersin bas-
solinjareduktioissa 66,6 prosenttia ja Ron Carterin bassolinjareduktioissa 84,4 
prosenttia, kun sävelten suhde vallitsevaan sointuun otettiin huomioon. Tämä 
tarkoittaa sitä, että pääosa sävelkuvioluokista esiintyi vain kerran jossakin tie-
tyssä bassolinjareduktiossa. Samojen sävelkuvioluokkien toistuminen eri basso-
linjareduktioiden välillä oli varsin vähäistä. Vähintään kahdessa eri bassolinja-
reduktiossa ja vähintään kahdesti toistuvien sävelkuvioluokkien osuus kaikista 
toistuvista sävelkuvioluokista oli 15,8–16,9 prosenttia Paul Chambersin bassolin-
jareduktioissa (kattaen 41,2–83,2 prosenttia kaikista sävelkuvioista) ja 11,2–19,4 
prosenttia Ron Carterin bassolinjareduktioissa (kattaen 13,4–63,1 prosenttia kai-
kista sävelkuvioista) tarkasteltujen sävelkuvioiden pituudesta riippuen. Tulos 
viittaa siihen, että sävelkuvioita koskevalla tietovaraston koolla vaikuttaisi ole-
van yllättävän vähäinen merkitys näiden kahden huipputason jazzbasistin luo-
vuudelle. 

Kun esimerkiksi Norgaardin ja Römerin (2022) mukaan Michael Breckerin, 
Steve Colemanin, John Coltranen, Miles Davisin, David Liebmanin, Charlie Par-
kerin, Sonny Rollinsin ja Wayne Shorterin sooloissa 42-63 prosenttia sävelistä 
aloitti jonkun toistuvan neljän intervallin mittaisen sävelkuvion miltä tahansa is-
kulta, Paul Chambersin bassolinjareduktioissa keskimäärin 76,0 prosenttia säve-
listä aloitti jonkun toistuvan neljän sävelen mittaisen sävelkuvion miltä tahansa 
iskulta ja vastaavasti Ron Carterin bassolinjareduktioissa keskimäärin 54,4 pro-
senttia sävelistä aloitti jonkun toistuvan neljän sävelen mittaisen sävelkuvion 
miltä tahansa iskulta. Samalla on kuitenkin huomioitava, että tulokset eivät ole 
täysin vertailukelpoisia. Toisin kuin Norgaardin ja Römerin tutkimuksessa, 
omassa tutkimuksessani kaikki neljäsosanuoteista poikkeavat sävelkestot joko 
poistettiin tai muutettiin neljäsosanuoteiksi. Tämän lisäksi Norgaardin ja Röme-
rin tutkimuksessa tarkasteltujen sävelkuvioiden pituus oli neljä intervallia (eli 
viisi säveltä), kun taas omassa tutkimuksessani tarkasteltujen sävelkuvioiden pi-
tuus oli kolme intervallia (eli neljä säveltä). Lisäksi siinä missä Norgaardin ja Rö-
merin tutkimuksessa jonkun toistuvan sävelkuvion aloittavien sävelten suhteel-
linen frekvenssi laskettiin koko korpuksen eli kaikkien saman esittäjän improvi-
saatioiden tasolla, omassa tutkimuksessani jonkun toistuvan sävelkuvion aloit-
tavien sävelten suhteellinen frekvenssi laskettiin jokaisen bassolinjareduktion 
osalta erikseen ja ilmoitettiin keskiarvon muodossa. 

Tutkimuksessa havaittiin tilastollisesti ei-merkitsevä ja positiivinen korre-
laatio tempon ja toistuvien sävelkuvioiden keskimääräisen pituuden välillä (in-
tervallien lukumääränä mitattuna) Paul Chambersin bassolinjareduktioissa sekä 
tilastollisesti ei-merkitsevä ja negatiivinen korrelaatio tempon ja toistuvien sävel-
kuvioiden keskimääräisen keston välillä (sekunteina mitattuna) niin Paul Cham-
bersin kuin myös Ron Carterin bassolinjareduktioissa. Tutkimuksessa havaittiin 
Paul Chambersin bassolinjareduktioiden osalta myös tilastollisesti ei-merkitsevä 
ja heikko negatiivinen korrelaatio tempon ja sävelkuvioiden vaihtelevuuden vä-
lillä. Tulokset viittaavat siihen, että ainakin Paul Chambers saattoi kompensoida 
päätöksentekoon ja toiminnan suunnitteluun liittyvien ajallisten rajoitteiden tiu-
kentumista käyttämällä nopeissa tempoissa enemmän opittuja sävelkuvioita ja 
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elementtien lukumäärän osalta myös pidempiä opittuja sävelkuvioita verrattuna 
hitaisiin tempoihin. 

Jazzmusiikin tutkimuksen kannalta on merkitsevää, että harmonisen kon-
tekstin huomiotta jättäminen ei juurikaan vaikuttanut tuloksiin, kun analysoita-
vien sävelkuvioiden pituus oli neljä säveltä. Harmonisen kontekstin huomioimi-
nen on ongelmallista tilanteissa, joissa esiintyy epätyypillisiä tai monitulkintaisia 
sointukorvauksia tai joissa melodian suhde sointuun on muuten epäselvä. Koska 
harmonisen kontekstin huomiotta jättäminen ei näyttänyt juurikaan vaikuttavan 
mittaustuloksiin olettaen, että sävelkuvioiden pituus on riittävä, tutkimusten 
luotettavuuden kannalta on suositeltavaa jättää harmoninen konteksti huomiotta, 
kun tarkasteltavien sävelkuvioiden pituus on vähintään neljä säveltä. 

Tutkimukseni poikkesi useimmista aiemmista jazzmusiikin tutkimuksista 
siinä, että tutkimuksen aineisto koostui soolojen sijaan bassolinjoista. Soolojen 
käyttöä tutkimusaineistona puoltaa se, että niiden nuotinnoksia on runsaasti tar-
jolla. Soolot ovat kuitenkin kestoltaan usein melko lyhyitä, millä saattaa olla vai-
kutusta tutkimusten luotettavuuteen. Esimerkiksi hyvin laajassa Weimar Jazz 
Database -tietokannassa olevien jazzsoolojen (N = 456) mediaanikesto on 87 se-
kuntia eli yksi minuutti ja 27 sekuntia (Pfleiderer, 2017, s. 30), kun tutkimukseni 
aineistona käyttämieni bassolinjojen keskimääräinen kesto oli 280 sekuntia eli 
neljä minuuttia ja 40 sekuntia (mediaanikesto: 251 sekuntia). 
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APPENDICES 

Appendix 1: Supplementary tables for Chapters 5.2.1 and 5.3.2 

TABLE 18 Average tempo in each bass line 

Musical work (Paul Chambers) Tempo 1 Tempo 2 Tempo 3 Tempo 4 M Range 
A Foggy Day 212 216 218 ** 215 ** 215 212-218
All of You 166 167 166 165 166 165-167
All the Things You Are 230 231 232 235 232 230-235
Apothegm 171 171 170 170 171 170-171
Autumn Leaves 136 129 136 ** 127 ** 132 127-136
Blues by Five 178 178 176 177 177 176-178
Blue Train 134 135 133 130 133 130-135
Chamber Mates 270 269 259 271 ** 267 259-271
Chasin’ the Bird 179 ** 179 ** 177 ** 182 ** 179 177-182
C-Jam Blues 165 165 173 ** 162 ** 166 162-173
Cool Struttin' 111 110 109 110 110 109-111
Cotton Tail 252 249 252 258 ** 253 249-258
Crazy Rhythm 285 285 283 ** 278 ** 283 278-285
Excerpt 220 223 220 ** 222 ** 221 220-223
Freddie Freeloader 128 128 128 129 128 128-129
Giant Steps 286 291 302 291 ** 293 286-302
I Can't Give You Anything but Love 179 ** 188 ** 188 ** 185 ** 185 179-188
I Could Write a Book 228 230 226 232 229 226-232
If I Were a Bell 190 189 188 182 187 182-190
It’s a Blue World 189 190 195 ** 191 ** 191 189-195
Milestones 238 240 235 233 237 233-240
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Musical work (Paul Chambers) Tempo 1 Tempo 2 Tempo 3 Tempo 4 M Range 
Moment's Notice 236 246 245 247 244 236-247
Mr. P.C. 252 258 268 262 260 252-268
Oleo 268 270 266 265 267 265-270
So What 140 136 139 139 139 136-140
Syeeda's Song Flute 187 189 189 191 ** 189 187-191
Tenor Madness 174 175 177 175 175 174-177
The Theme 209 ** 214 ** 210 211 ** 211 209-214
Woody'n You 255 258 250 263 ** 257 250-263
You’d Be So Nice to Come Home to 169 ** 168 ** 162 ** 168 ** 167 162-169

Musical work (Ron Carter) Tempo 1 Tempo 2 Tempo 3 Tempo 4 M Range 
Autumn Leaves (1961) 135 138 136 ** 136 ** 136 135-138
Autumn Leaves (1964) 135 132 133 132 133 132-135
Dolphin Dance 120 120 124 124 122 120-124
E.S.P. 285 286 295 291 289 285-295
Israel 146 147 147 152 148 146-152
Loose Bloose 115 117 114 115 115 114-117
Mo' Joe 298 300 294 300 298 294-300
Oleo 245 245 245 240 ** 244 240-245
Passion Dance 244 240 238 236 ** 240 236-244
Pinocchio 207 209 215 215 212 207-215
Seven Steps to Heaven 284 286 288 287 286 284-288
Witch Hunt 138 139 139 138 139 138-139

Note. Tempo 1 and tempo 2 were both measured at the end of the first solo. Tempo 3 was measured at the end of the second solo. 
Tempo 4 was measured at the end of the third solo. Exceptions (**): A Foggy Day (tempo 3 was measured at the beginning of the first 
solo, tempo 4 at the end of Red Garland’s second solo). Autumn Leaves (Paul Chambers), Autumn Leaves (1961) (Ron Carter), Crazy 
Rhythm, and It’s a Blue World (tempo 3 was measured at the beginning of the first solo, tempo 4 at the beginning of the final head 
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section). Chamber Mates (tempo 4 was measured at the beginning of the final head section). Chasin’ the Bird (tempo 1 and tempo 2 were 
measured at the end of Hank Jones’s solo, tempo 3 at the end of Kenny Burrell’s solo, tempo 4 at the beginning of Hank Jones’s solo). 
C-Jam Blues (tempo 3 was measured at the beginning of the first solo, tempo 4 at the beginning of Red Garland’s second solo). Oleo
(Ron Carter) (tempo 4 was measured at the beginning of the final head section). Passion Dance (tempo 4 was measured at the beginning
of the second solo). Cotton Tail (tempo 4 was measured at the end of the trade-off section before the final head section). Excerpt (tempo
3 was measured at the end of the musical work, tempo 4 at the middle of the musical work). Giant Steps and Syeeda’s Song Flute (tempo
4 was measured at the beginning of the first solo). I Can't Give You Anything but Love (tempo 1 and tempo 2 were measured at the end
of Red Garland’s solo, tempo 3 at the beginning of Red Garland’s solo, tempo 4 at the beginning of the musical work). The Theme
(tempo 1 and tempo 2 were measured at the end of the second solo, tempo 4 at the beginning of the second solo). Woody’n You (tempo
4 was measured at the beginning of the first solo). You’d Be So Nice to Come Home to (tempo 1 and tempo 2 were at the end of the
second solo, tempo 3 at the end of the third solo, tempo 4 at the beginning of the second solo).
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TABLE 19 Proportion of bars with at least one reduced note 

Musical work (Paul Chambers) Number of reduced bars Proportion of reduced bars Tempo 
A Foggy Day 8 (155) 5.16% 215 
All of You 4 (155) 2.58% 166 
All the Things You Are 12 (275) 4.36% 232 
Apothegm 24 (221) 10.9% 171 
Autumn Leaves 28 (96) 29.2% 132 
Blues by Five 20 (328) 6.10% 177 
Blue Train 95 (288) 33.0% 133 
Chamber Mates 0 (142) 0% 267 
Chasin’ the Bird 35 (128) 27.3% 179 
C-Jam Blues 88 (274) 32.1% 166 
Cool Struttin’ 64 (154) 41.6% 110 
Cotton Tail 4 (261) 1.53% 253 
Crazy Rhythm 2 (113) 1.77% 283 
Excerpt 0 (192) 0% 221 
Freddie Freeloader 122 (288) 42.4% 128 
Giant Steps 17 (333) 5.11% 293 
I Can’t Give You Anything but Love 11 (95) 11.6% 185 
I Could Write a Book 4 (197) 2.03% 229 
If I Were a Bell 19 (270) 7.04% 187 
It’s a Blue World 35 (154) 22.7% 191 
Milestones 0 (204) 0% 237 
Moment’s Notice 2 (369) 0.54% 244 
Mr. P.C. 0 (392) 0% 260 
Oleo 0 (343) 0% 267 
So What 64 (227) 28.2% 139 
Syeeda’s Song Flute 28 (128) 21.9% 189 
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Musical work (Paul Chambers) Number of reduced bars Proportion of reduced bars Tempo 
Tenor Madness 33 (465) 7.10% 175 
The Theme 11 (126) 8.73% 211 
Woody’n You 3 (245) 1.22% 257 
You’d Be So Nice to Come Home to 36 (128) 28.1% 167 

Musical work (Ron Carter) Number of reduced bars Proportion of reduced bars Tempo 
Autumn Leaves (1961) 87 (160) 54.4% 136 
Autumn Leaves (1964) 131 (189) 69.3% 133 
Dolphin Dance 236 (264) 89.4% 122 
E.S.P. 12 (310) 3.87% 289 
Israel 96 (119) 80.7% 148 
Loose Bloose 69 (104) 66.4% 115 
Mo’ Joe 0 (166) 0% 298 
Oleo 63 (216) 29.2% 244 
Passion Dance 79 (288) 27.4% 240 
Pinocchio 99 (224) 44.2% 212 
Seven Steps to Heaven 10 (297) 3.37% 286 
Witch Hunt 203 (252) 80.6% 139 

Note. The number of reduced bars refers to the number of bars that included at least one reduced note. Similarly, the proportion of 
reduced bars refers to the proportion of bars that included at least one reduced note. The total number of bars in each bass line 
reduction is shown in parentheses. 
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Appendix 2: Supplementary tables for Chapters 6.1.1 to 6.1.4 

TABLE 20 The role of harmonic context in measurement of musical creativity 

Musical work (Paul Chambers) 2-note patterns 3-note patterns 4-note patterns No. of bars 
A Foggy Day -0.114 (-21/-8) -0.048 (+4/0) -0.017 (+3/+1) 155 
All of You -0.100 (-29/-18) -0.063 (-11/-14) -0.030 (-8/-9) 155 
All the Things You Are -0.104 (-25/-8) -0.032 (-4/-5) -0.012 (-2/-2) 275 
Apothegm -0.076 (-22/-10) -0.024 (-6/-5) -0.009 (-1/-3) 221 
Autumn Leaves -0.079 (-17/-9) -0.041 (-11/-7) 0 (0/0) 96 
Blues by Five -0.125 (-19/-8) -0.063 (-3/-6) -0.031 (-3/-6) 328 
Blue Train -0.106 (-6/-5) -0.058 (-2/-5) -0.021 (-1/-2) 288 
Chamber Mates -0.108 (-15/-6) -0.060 (-6/-5) -0.024 (-3/-4) 142 
Chasin’ the Bird -0.073 (-10/-9.5) -0.043 (-3.5/-7) -0.013 (-5/-7) 128 
C-Jam Blues -0.142 (-19/-9) -0.071 (-5/-8) -0.033 (-8/-9) 274 
Cool Struttin’ -0.106 (-20/-11) -0.052 (-4/-6) -0.010 (-4/-4) 154 
Cotton Tail -0.147 (-31/-15) -0.085 (-8.5/-10) -0.038 (-3/-5) 261 
Crazy Rhythm -0.102 (-36/-21) -0.043 (-2/-5) -0.012 (-6/-6) 113 
Excerpt -0.129 (-27/-16) -0.054 (-1/-6) -0.016 (-9/-10) 192 
Freddie Freeloader -0.118 (-21/-8) -0.044 (0/-3) -0.009 (0/-2) 288 
Giant Steps -0.022 (0/-1) -0.005 (+1/0) +0.001 (-1/0) 333 
I Can't Give You Anything but Love -0.125 (-27/-26) -0.054 (-11/-17) -0.024 (-4/-9) 95 
I Could Write a Book -0.072 (-10/-7) -0.029 (-6/-6) -0.011 (-2/-3) 197 
If I Were a Bell -0.125 (-23/-12) -0.060 (-12/-12) -0.003 (-2/-4) 270 
It’s a Blue World -0.075 (-17/-11) -0.023 (-2.5/-5) -0.004 (-1/-2) 154 
Milestones -0.206 (-10/-5) -0.112 (-1/-5) -0.053 (-3/-5) 204 
Moment's Notice -0.096 (-32/-7) -0.031 (-3/-4) -0.009 (-3/-2) 369 
Mr. P.C. -0.090 (-11/-2) -0.033 (-2.5/-2) -0.012 (-3/-2) 392 
     



 
 

250 

Musical work (Paul Chambers) 2-note patterns 3-note patterns 4-note patterns No. of bars 
Oleo -0.145 (-14/-8) -0.088 (-1/-5) -0.041 (0/-4) 343 
So What -0.177 (-16/-6) -0.092 (+2/-4) -0.047 (-6/-6) 227 
Syeeda’s Song Flute -0.058 (-16/-5) -0.018 (-7/-5) -0.005 (-1/0) 128 
Tenor Madness -0.096 (-13/-5) -0.047 (-4/-3) -0.010 (-4/-3) 465 
The Theme -0.142 (-28/-19) -0.071 (-10/-14) -0.036 (-3.5/-8) 126 
Woody’n You -0.023 (-18/-5) -0.010 (-5/-2) -0.007 (-2/-2) 245 
You’d Be So Nice to Come Home to -0.079 (-28/-15) -0.022 (+2/-1) -0.013 (+2/+1) 128 
 
Musical work (Ron Carter) 2-note patterns 3-note patterns 4-note patterns No. of bars 
Autumn Leaves (1961) -0.091 (-28/-18.5) -0.026 (-10/-12) -0.006 (-2/-3) 160 
Autumn Leaves (1964) -0.138 (-22/-17) -0.051 (-9/-13) -0.032 (-2/-7) 189 
Dolphin Dance -0.032 (-9/-3) -0.005 (-1/-2) -0.004 (+1/+1) 264 
E.S.P. -0.117 (-35/-18) -0.045 (-13/-16) -0.010 (-4/-6) 310 
Israel -0.155 (-27/-21) -0.087 (-14/-17) -0.046 (-1/-5) 119 
Loose Bloose -0.272 (-31/-28) -0.129 (-18/-34) -0.038 (-5/-13) 104 
Mo’ Joe -0.167 (-33/-31) -0.081 (-10/-19) -0.024 (-5/-9) 166 
Oleo -0.147 (-27/-16) -0.047 (-2/-6) -0.011 (-2/-3) 216 
Passion Dance -0.226 (-35/-14) -0.110 (-6/-12) -0.040 (-8/-12) 288 
Pinocchio -0.181 (-45/-38) -0.060 (-11/-21) -0.019 (-3/-8) 224 
Seven Steps to Heaven -0.161 (-28/-13) -0.080 (-13/-17) -0.034 (-7/-11) 297 
Witch Hunt -0.111 (-10/-10) -0.031 (-10/-10) -0.004 (0/-1) 252 

Note. This table shows the difference between the normalized entropy of chordal pitch class patterns (where harmonic context is 
considered) and the normalized entropy of interval patterns (where harmonic context is disregarded) in each bass. The differences 
(in percentage points) between the relative frequency of chordal pitch class patterns and the relative frequency of interval patterns 
are also shown in parentheses. For example, -0.030 indicates that the average normalized entropy of melodic patterns was 0.030 (3.0 
percentage points) lower when harmonic context was disregarded. 
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TABLE 21 Influence of threshold level 

Musical work (Paul Chambers) At least 2 occurrences At least 3 occurrences At least 4 occurrences At least 5 occurrences 
A Foggy Day (2 notes) 22 (54%/88%) 15 (37%/79%) 13 (32%/75%) 8 (20%/62%) 
A Foggy Day (3 notes) 26 (52%/85%) 18 (36%/74%) 16 (32%/70%) 12 (24%/60%) 
A Foggy Day (4 notes) 28 (45%/78%) 18 (29%/65%) 14 (23%/57%) 9 (15%/45%) 
All of You (2 notes) 25 (40%/75%) 14 (22%/61%) 7 (11%/48%) 6 (10%/45%) 
All of You (3 notes) 22 (26%/59%) 14 (16%/49%) 6 (7%/34%) 6 (7%/34%) 
All of You (4 notes) 19 (18%/46%) 11 (11%/35%) 3 (3%/20%) 3 (3%/20%) 
All the Things You Are (2 notes) 43 (58%/89%) 31 (42%/80%) 23 (31%/71%) 17 (23%/63%) 
All the Things You Are (3 notes) 52 (48%/79%) 31 (28%/64%) 22 (20%/54%) 13 (12%/41%) 
All the Things You Are (4 notes) 52 (34%/64%) 23 (15%/43%) 14 (9%/33%) 9 (6%/26%) 
Apothegm (2 notes) 35 (53%/86%) 23 (35%/75%) 17 (26%/67%) 15 (23%/63%) 
Apothegm (3 notes) 35 (41%/77%) 22 (26%/65%) 16 (19%/57%) 12 (14%/50%) 
Apothegm (4 notes) 39 (32%/62%) 19 (16%/44%) 15 (12%/39%) 8 (7%/26%) 
Autumn Leaves (2 notes) 13 (46%/84%) 8 (29%/74%) 7 (25%/71%) 5 (18%/63%) 
Autumn Leaves (3 notes) 16 (80%/79%) 9 (45%/65%) 7 (35%/58%) 3 (15%/42%) 
Autumn Leaves (4 notes) 14 (33%/71%) 9 (21%/60%) 8 (19%/57%) 4 (10%/41%) 
Blues by Five (2 notes) 54 (59%/89%) 35 (38%/77%) 25 (27%/68%) 20 (22%/62%) 
Blues by Five (3 notes) 65 (46%/77%) 34 (24%/58%) 22 (16%/47%) 14 (10%/38%) 
Blues by Five (4 notes) 56 (29%/58%) 26 (13%/40%) 18 (9%/33%) 10 (5%/23%) 
Blue Train (2 notes) 37 (55%/90%) 26 (39%/82%) 21 (31%/77%) 19 (28%/74%) 
Blue Train (3 notes) 38 (37%/77%) 27 (26%/70%) 23 (22%/66%) 21 (20%/63%) 
Blue Train (4 notes) 44 (31%/66%) 26 (18%/53%) 20 (14%/47%) 13 (9%/37.5%) 
Chamber Mates (2 notes) 24 (65%/91%) 17 (46%/81%) 14 (38%/75%) 14 (38%/75%) 
Chamber Mates (3 notes) 26 (57%/86%) 19 (41%/76%) 14 (30%/65%) 12 (26%/60%) 
Chamber Mates (4 notes) 29 (45%/75%) 17 (27%/58%) 10 (16%/44%) 8 (12.5%/38%) 
Chasin’ the Bird (2 notes) 26 (48%/78%) 16 (30%/62.5%) 9 (17%/46%) 6 (11%/37%) 
Chasin’ the Bird (3 notes) 27 (37.5%/65%) 15 (21%/46%) 7 (10%/27%) 3 (4%/15%) 
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Musical work (Paul Chambers) At least 2 occurrences At least 3 occurrences At least 4 occurrences At least 5 occurrences 
Chasin’ the Bird (4 notes) 24 (27%/48%) 10 (11%/27%) 4 (4%/12.5%) 0 (0%/0%) 
C-Jam Blues (2 notes) 44 (56%/88%) 28 (36%/76%) 22 (28%/69%) 6 (8%/64%) 
C-Jam Blues (3 notes) 48 (37%/70%) 27 (21%/55%) 19 (15%/46%) 15 (12%/41%) 
C-Jam Blues  (4 notes) 44 (28%/59%) 22 (14%/43%) 15 (10%/35%) 8 (5%/25%) 
Cool Struttin’ (2 notes) 36 (60%/84%) 21 (35%/65%) 15 (25%/53%) 10 (17%/40%) 
Cool Struttin’ (3 notes) 37 (47%/73%) 16 (20%/45%) 10 (13%/34%) 5 (6%/21%) 
Cool Struttin’ (4 notes) 35 (37%/61%) 13 (14%/32%) 6 (6%/19%) 3 (3%/11%) 
Cotton Tail (2 notes) 48 (50%/82%) 31 (32%/69%) 19 (20%/55%) 15 (16%/49%) 
Cotton Tail (3 notes) 51 (44%/75%) 26 (22%/56%) 16 (14%/44%) 11 (9%/37%) 
Cotton Tail (4 notes) 51 (36%/66%) 24 (17%/45%) 17 (12%/37%) 9 (6%/25%) 
Crazy Rhythm (2 notes) 20 (40%/73%) 14 (28%/63%) 9 (18%/50%) 5 (10%/35%) 
Crazy Rhythm (3 notes) 20 (33%/65%) 15 (25%/56%) 8 (13%/37%) 5 (8%/27%) 
Crazy Rhythm (4 notes) 19 (24%/48%) 11 (14%/34%) 4 (5%/15%) 1 (1%/4%) 
Excerpt (2 notes) 37 (48%/79%) 22 (29%/64%) 15 (19%/53%) 9 (12%/40%) 
Excerpt (3 notes) 38 (36%/64%) 20 (19%/45%) 10 (9%/30%) 7 (7%/23%) 
Excerpt (4 notes) 30 (22%/45%) 13 (10%/27%) 5 (4%/15%) 3 (2%/10%) 
Freddie Freeloader (2 notes) 36 (47%/89%) 28 (41%/83%) 19 (28%/74%) 16 (24%/70%) 
Freddie Freeloader (3 notes) 46 (39%/75%) 32 (27%/65%) 19 (16%/52%) 11 (9%/41%) 
Freddie Freeloader (4 notes) 48 (29%/58%) 23 (14%/41%) 13 (8%/31%) 7 (4%/22%) 
Giant Steps (2 notes) 25 (83%/98%) 21 (70%/96%) 19 (63%/94%) 17 (57%/92%) 
Giant Steps (3 notes) 32 (62%/94%) 27 (52%/91%) 20 (38%/85%) 16 (31%/80%) 
Giant Steps (4 notes) 36 (53%/90%) 28 (41%/86%) 22 (32%/80%) 19 (28%/77%) 
I Can’t Give You... (2 notes) 19 (33%/59%) 8 (14%/36%) 4 (7%/23%) 4 (7%/23%) 
I Can’t Give You... (3 notes) 15 (21%/41%) 5 (7%/20%) 2 (3%/11%) 1 (1%/6%) 
I Can’t Give You... (4 notes) 11 (14%/29%) 3 (4%/13%) 1 (1%/6%) 1 (1%/6%) 
I Could Write a Book (2 notes) 34 (52%/84%) 17 (26%/66%) 14 (21%/62%) 9 (14%/52%) 
I Could Write a Book (3 notes) 32 (34%/69%) 18 (19%/55%) 12 (13%/46%) 9 (10%/40%) 
I Could Write a Book (4 notes) 30 (27%/58%) 16 (14%/44%) 11 (10%/36%) 6 (5%/26%) 
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Musical work (Paul Chambers) At least 2 occurrences At least 3 occurrences At least 4 occurrences At least 5 occurrences 
If I Were a Bell (2 notes)  51 (55%/84%) 35 (38%/73%) 23 (25%/59%) 16 (17%/49%) 
If I Were a Bell (3 notes)  48 (35%/67%) 28 (20%/52%) 16 (12%/39%) 12 (9%/33%) 
If I Were a Bell (4 notes) 48 (30%/58%) 21 (13%/38%) 14 (9%/30%) 9 (6%/23%) 
It’s a Blue World (2 notes) 28 (49%/81%) 14 (25%/63%) 9 (16%/53%) 9 (16%/53%) 
It’s a Blue World (3 notes) 26 (30%/60%) 14 (16%/44%) 8 (9%/32%) 8 (9%/32%) 
It’s a Blue World (4 notes) 19 (18%/42%) 11 (10%/32%) 7 (6%/24%) 4 (4%/16%) 
Milestones (2 notes) 29 (71%/94%) 22 (54%/87%) 17 (41%/80%) 15 (37%/76%) 
Milestones (3 notes) 32 (48%/83%) 25 (38%/76%) 18 (27%/66%) 13 (20%/56%) 
Milestones (4 notes) 34 (35%/70%) 23 (24%/59%) 17 (18%/50%) 11 (11%/38%) 
Moment’s Notice (2 notes) 40 (59%/92%) 29 (43%/86%) 25 (37%/83%) 22 (32%/80%) 
Moment’s Notice (3 notes) 49 (46%/84%) 29 (27%/73%) 26 (24%/71%) 21 (20%/66%) 
Moment’s Notice (4 notes) 54 (34%/72%) 33 (21%/60%) 26 (16%/55%) 19 (12%/47%) 
Mr. P.C. (2 notes) 39 (75%/97%) 30 (58%/92%) 24 (46%/87.5%) 20 (38%/83%) 
Mr. P.C. (3 notes) 50 (62.5%/92%) 36 (45%/85%) 25 (31%/77%) 19 (24%/71%) 
Mr. P.C. (4 notes) 65 (52%/84%) 44 (35%/74%) 28 (22%/61%) 20 (16%/53%) 
Oleo (2 notes) 57 (61%/89%) 41 (44%/80%) 30 (32%/70%) 22 (23%/61%) 
Oleo (3 notes) 70 (56%/82%) 46 (37%/69%) 27 (21%/52%) 17 (13%/41%) 
Oleo (4 notes) 76 (46%/74%) 45 (27%/56%) 23 (14%/37%) 14 (9%/27%) 
So What (2 notes) 28 (60%/92%) 22 (47%/86%) 15 (32%/77%) 11 (23%/70%) 
So What (3 notes) 31 (50%/86%) 18 (29%/75%) 13 (21%/68%) 9 (15%/61%) 
So What (4 notes) 36 (42%/78%) 20 (24%/64%) 14 (16%/56%) 11 (13%/51%) 
Syeeda's Song Flute (2 notes) 17 (63%/92%) 13 (48%/86%) 12 (44%/84%) 10 (37%/77%) 
Syeeda's Song Flute (3 notes) 23 (46%/79%) 15 (30%/66%) 10 (20%/55%) 6 (12%/42%) 
Syeeda's Song Flute (4 notes) 24 (38%/70%) 12 (19%/51%) 8 (13%/41%) 5 (8%/32%) 
Tenor Madness (2 notes) 53 (61%/93%) 43 (49%/88%) 38 (44%/85%) 28 (32%/77%) 
Tenor Madness (3 notes)  63 (55%/89%) 49 (43%/83%) 42 (37%/78%) 27 (23%/65%) 
Tenor Madness (4 notes)  78 (47%/81%) 54 (33%/71%) 41 (25%/62%) 24 (14%/48%) 
The Theme (2 notes) 28 (47%/75%) 14 (23%/52%) 8 (13%/38%) 6 (10%/32%) 



 
 

254 

Musical work (Paul Chambers) At least 2 occurrences At least 3 occurrences At least 4 occurrences At least 5 occurrences 
The Theme (3 notes) 26 (33%/59%) 8 (10%/30%) 4 (5%/21%) 2 (3%/14%) 
The Theme (4 notes) 22 (24%/46%) 8 (9%/24%)  4 (4%/14%)  2 (2%/8%) 
Woody'n You (2 notes) 27 (59%/92%) 22 (48%/88%) 20 (43%/86%) 19 (41%/84%) 
Woody'n You (3 notes) 34 (55%/89%) 23 (37%/80%) 21 (34%/77%) 19 (31%/74%) 
Woody'n You (4 notes) 34 (44%/82%) 25 (32%/75%) 22 (28%/71%) 18 (23%/64%) 
You’d Be So Nice to… (2 notes) 21 (40%/76%) 11 (21%/60%) 10 (19%/58%) 9 (17%/55%) 
You’d Be So Nice to… (3 notes) 21 (31%/63%) 12 (18%/49%) 7 (10%/37.5%) 7 (10%/37.5%) 
You’d Be So Nice to… (4 notes) 23 (28%/54%) 10 (12%/34%) 7 (9%/27%) 4 (5%/17%) 

 
Musical work (Ron Carter) At least 2 occurrences At least 3 occurrences At least 4 occurrences At least 5 occurrences 
Autumn Leaves (1961) (2 notes) 25 (36%/72.5%) 16 (23%/61%) 10 (14%/50%) 9 (13%/47.5%) 
Autumn Leaves (1961) (3 notes) 23 (22%/49%) 11 (10%/34%) 6 (6%/24%) 4 (4%/19%) 
Autumn Leaves (1961) (4 notes) 14 (11%/28%) 6 (5%/18%) 3 (2%/12.5%) 3 (2%/12.5%) 
Autumn Leaves (1964) (2 notes) 33 (41%/75%) 20 (25%/61%) 13 (16%/50%) 9 (11%/42%) 
Autumn Leaves (1964) (3 notes) 29 (24%/52%) 12 (10%/34%) 10 (8%/31%) 6 (5%/22%) 
Autumn Leaves (1964) (4 notes) 24 (18%/40%) 10 (7%/25%) 7 (5%/21%)  4 (3%/14%) 
Dolphin Dance (2 notes) 29 (57%/92%) 20 (39%/85%) 16 (31%/80%) 13 (25%/76%) 
Dolphin Dance (3 notes)  43 (47%/81%) 20 (22%/64%) 14 (15%/59%) 11 (12%/52%) 
Dolphin Dance (4 notes)  33 (25%/62%) 15 (11%/48%) 7 (5%/39%) 6 (4%/38%) 
E.S.P. (2 notes) 52 (45%/79%) 31 (27%/66%) 21 (18%/56%) 15 (13%/48%) 
E.S.P. (3 notes) 46 (25%/55%) 27 (15%/43%) 14 (8%/31%) 11 (6%/27%) 
E.S.P. (4 notes) 32 (14%/36%) 16 (7%/25%) 10 (4%/20%) 8 (3%/17%) 
Israel (2 notes) 22 (39%/71%) 13 (23%/55%) 9 (16%/45%) 6 (11%/35%) 
Israel (3 notes) 20 (29%/58%) 11 (16%/43%) 8 (11%/35%) 5 (7%/25%) 
Israel (4 notes) 17 (20%/44%) 10 (12%/32%) 5 (6%/19%) 2 (2%/9%) 
Loose Bloose (2 notes) 22 (39%/66%) 9 (16%/41%) 5 (9%/30%) 3 (5%/22%) 
Loose Bloose (3 notes) 11 (13%/28%) 6 (7%/18%) 1 (1%/4%) 0 (0%/0%) 
Loose Bloose (4 notes) 4 (4%/9%) 1 (1%/3%) 0 (0%/0%) 0 (0%/0%) 
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Musical work (Ron Carter) At least 2 occurrences At least 3 occurrences At least 4 occurrences At least 5 occurrences 
Mo’ Joe (2 notes) 31 (31%/59%) 11 (11%/35%) 5 (5%/24%) 5 (5%/24%) 
Mo’ Joe (3 notes) 24 (20%/42%) 9 (7%/23%) 4 (3%/14%) 4 (3%/14%) 
Mo’ Joe (4 notes) 14 (10%/25%) 5 (4%/14%) 4 (3%/12%) 3 (2%/10%) 
Oleo (2 notes) 43 (48%/79%) 20 (22%/57%) 16 (18%/52%) 12 (13%/44%) 
Oleo (3 notes) 46 (38%/65%) 17 (14%/38%) 10 (8%/28%) 7 (6%/23%) 
Oleo (4 notes) 33 (22%/46%) 12 (8%/26%) 9 (6%/22%) 7 (5%/19%) 
Passion Dance (2 notes) 46 (51%/85%) 25 (28%/70%) 21 (23%/66%) 19 (21%/63%) 
Passion Dance (3 notes) 49 (34%/67%) 25 (17%/51%) 15 (10%/40%) 12 (8%/36%) 
Passion Dance (4 notes) 43 (23%/50%) 19 (10%/33%) 12 (6%/26%) 7 (4%/19%) 
Pinocchio (2 notes) 33 (24%/54%) 17 (13%/40%) 8 (6%/28%) 5 (4%/22%) 
Pinocchio (3 notes) 20 (11%/29%) 10 (6%/21%) 6 (3%/15%) 1 (1%/6%) 
Pinocchio (4 notes) 17 (9%/20%) 6 (3%/10%) 3 (2%/6%) 1 (1%/2%) 
Seven Steps to Heaven (2 notes) 54 (53%/84%) 32 (31%/69%) 20 (20%/57%) 17 (17%/53%) 
Seven Steps to Heaven (3 notes) 48 (28%/59%) 28 (16%/45%) 19 (11%/36%) 10 (6%/24%) 
Seven Steps to Heaven (4 notes) 41 (20%/45%) 23 (11%/33%) 14 (7%/24%) 13 (6%/14%) 
Witch Hunt (2 notes) 38 (45%/81%) 22 (26%/68%) 19 (22%/64%) 14 (16%/56%) 
Witch Hunt (3 notes) 36 (24%/55%) 15 (10%/38%) 10 (7%/33%) 7 (5%/28%) 
Witch Hunt (4 notes) 23 (13%/37%) 10 (5%/27%) 7 (4%/23%) 6 (3%/21%) 

Note. To keep this table readable, all percentages are reported without decimals (except for percentages that are exactly half such as 
37.5%). The relative frequency of recurring chordal pitch class patterns is shown in parentheses. For example, the value 43 (47%/81%) 
in the ’min. 2 occurrences’ column means that there were 43 different chordal pitch class patterns that were repeated at least twice in 
that particular bass line, the relative frequency of recurring chordal pitch class patterns in relation to the total number of different 
chordal pitch class patterns was 47% and the relative frequency of recurring chordal pitch class patterns in relation to the total number 
of all occurrences of chordal pitch class patterns was 81%. 
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TABLE 22 Removal of head sections 

Musical work (Paul Chambers) E (3 notes) E (4 notes) R (3 notes) R (4 notes) No. of bars 
A Foggy Day (with themes) 0.692 0.738 48.00%/15.48% 54.84%/21.94% 155 
A Foggy Day (no themes) 0.752 0.795 52.27%/22.77% 61.54%/31.68% 101 
All of You (no themes) 0.803 0.862 74.12%/40.65% 81.55%/54.19% 155 
All the Things You Are (with themes) 0.759 0.837 52.29%/20.73% 65.56%/36.00% 275 
All the Things You Are (no themes) 0.770 0.836 55.43%/23.72% 66.39%/36.74% 215 
Apothegm (with themes) 0.736 0.835 59.30%/23.08% 68.03%/37.56% 221 
Apothegm (no themes) 0.771 0.865 54.29%/23.90% 68.37%/42.14% 159 
Autumn Leaves (no themes) 0.664 0.722 55.56%/20.83% 66.67%/29.17% 96 
Blues by Five (with themes) 0.784 0.859 53.57%/22.87% 70.98%/41.77% 328 
Blues by Five (no themes) 0.802 0.877 54.20%/25.27% 73.60%/46.62% 281 
Blue Train (no themes) 0.729 0.806 63.11%/22.57% 69.01%/34.03% 288 
Chamber Mates (no themes) 0.703 0.779 43.48%/14.08% 54.69%/24.65% 142 
Chasin’ the Bird (no themes) 0.837 0.901 62.50%/35.16% 73.33%/51.56% 128 
C-Jam Blues (with themes) 0.802 0.842 62.79%/29.56% 71.79%/40.88% 274 
C-Jam Blues (no themes) 0.801 0.846 63.30%/30.26% 72.93%/42.54% 228 
Cool Struttin’ (no themes) 0.824 0.871 53.16%/27.27% 63.16%/38.96% 154 
Cotton Tail (with themes) 0.783 0.840 56.03%/24.90% 63.83%/34.48% 261 
Cotton Tail (no themes) 0.810 0.867 58.82%/29.41% 68.55%/41.67% 204 
Crazy Rhythm (with themes) 0.811 0.890 66.67%/35.40% 75.64%/52.21% 113 
Crazy Rhythm (no themes) 0.850 0.916 67.50%/42.19% 75.51%/57.81% 64 
Excerpt (no themes) 0.842 0.902 64.49%/35.94% 77.94%/55.21% 192 
Freddie Freeloader (with themes) 0.752 0.843 61.02%/25.00% 71.43%/41.67% 288 
Freddie Freeloader (no themes) 0.761 0.849 57.84%/24.38% 70.83%/42.15% 242 
Giant Steps (with themes) 0.564 0.612 38.46%/6.01% 47.06%/9.61% 333 
Giant Steps (no themes) 0.572 0.619 44.90%/8.09% 53.23%/12.13% 272 
I Can’t Give You... (no themes) 0.907 0.934 78.87%/58.95% 85.90%/70.53% 95 
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Musical work (Paul Chambers) E (3 notes) E (4 notes) R (3 notes) R (4 notes) No. of bars 
I Could Write a Book (no themes) 0.781 0.832 65.59%/30.96% 73.45%/42.13% 197 
If I Were a Bell (no themes) 0.815 0.847 64.96%/32.96% 70.37%/42.22% 270 
It’s a Blue World (with themes) 0.833 0.887 70.45%/40.26% 82.41%/57.79% 154 
It’s a Blue World (no themes) 0.876 0.922 77.27%/53.13% 88.31%/70.83% 96 
Milestones (with themes) 0.703 0.794 51.52%/16.67% 64.58%/30.39% 204 
Milestones (no themes) 0.718 0.804 53.85%/19.86% 64.79%/32.62% 141 
Moment’s Notice (with themes) 0.685 0.776 54.21%/15.72% 65.82%/28.18% 369 
Moment’s Notice (no themes) 0.695 0.786 57.43%/17.68% 69.33%/31.71% 328 
Mr. P.C. (with themes) 0.646 0.767 37.50%/7.65% 48.41%/15.56% 392 
Mr. P.C. (no themes) 0.638 0.749 40.00%/9.20% 47.54%/16.67% 348 
Oleo (no themes) 0.767 0.831 44.44%/16.33% 53.66%/25.66% 343 
So What (no themes) 0.617 0.718 50.00%/13.66% 57.65%/21.59% 227 
Syeeda’s Song Flute (no themes) 0.720 0.785 54.00%/21.09% 61.90%/30.47% 128 
Tenor Madness (with themes) 0.680 0.753 45.22%/11.18% 53.01%/18.92% 465 
Tenor Madness (no themes) 0.685 0.758 43.75%/11.06% 53.09%/19.41% 443 
The Theme (no themes) 0.854 0.902 66.67%/41.27% 75.56%/53.97% 126 
Woody'n You (with themes) 0.653 0.701 45.16%/11.43% 56.41%/17.96% 245 
Woody'n You (no themes) 0.634 0.680 39.58%/9.22% 54.84%/16.50% 206 
You’d Be So Nice to... (no themes) 0.802 0.868 69.12%/36.72% 71.95%/46.09% 128 

 
Musical work (Ron Carter) E (3 notes) E (4 notes) R (3 notes) R (4 notes) No. of bars 
Autumn Leaves (1961) (no themes) 0.865 0.926 78.10%/51.25% 89.15%/71.88% 160 
Autumn Leaves (1964) (no themes) 0.861 0.901 75.83%/48.15% 82.48%/59.79% 189 
Dolphin Dance (with themes) 0.677 0.743 53.26%/18.56% 75.37%/38.26% 264 
Dolphin Dance (no themes) 0.722 0.788 54.32%/22.45% 77.39%/45.41% 196 
E.S.P. (no themes) 0.855 0.913 75.00%/44.52% 86.15%/64.19% 310 
Israel (no themes) 0.837 0.892 71.43%/42.02% 79.76%/56.30% 119 
Loose Bloose (no themes) 0.940 0.985 87.21%/72.12% 95.96%/91.35% 104 
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Musical work (Ron Carter) E (3 notes) E (4 notes) R (3 notes) R (4 notes) No. of bars 
Mo’ Joe (no themes) 0.905 0.943 80.17%/58.43% 89.93%/75.30% 166 
Oleo (with themes) 0.848 0.897 62.30%/35.19% 78.00%/54.17% 216 
Oleo (no themes) 0.894 0.941 70.64%/48.43% 83.72%/67.92% 159 
Passion Dance (no themes) 0.806 0.878 65.73%/32.64% 77.13%/50.35% 288 
Pinocchio (with themes)  0.924 0.963 88.76%/70.54% 91.37%/80.36% 224 
Pinocchio (no themes) 0.971 0.995 98.06%/91.82% 98.15%/96.36% 110 
Seven Steps to Heaven (with themes) 0.852 0.900 71.93%/41.41% 80.00%/55.22% 297 
Seven Steps to Heaven (no themes) 0.861 0.905 74.85%/45.39% 80.40%/56.74% 282 
Witch Hunt (with themes) 0.836 0.887 75.84%/44.84%                    87.36%/63.10% 252 
Witch Hunt (no themes)  0.889 0.928 80.70%/57.14% 90.84%/73.91% 161 

Note. The first relative frequency value describes the relative frequency of non-recurring chordal pitch class patterns in relation to the 
total number of different chordal pitch class patterns. The second relative frequency value describes the relative frequency of non-
recurring chordal pitch class patterns in relation to the total number of all occurrences of chordal pitch class patterns. In these results, 
harmonic context was considered. E = normalized entropy of melodic patterns; R = relative frequency of chordal pitch class patterns. 
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TABLE 23 Identification of segment boundaries 

Tempo (bpm) + rank Method A + rank Method B + rank Difference Musical work (Paul Chambers) 
293 (1.) 1184 (88.89%) (3.) 301 (90.39%) (1.) -1.50 Giant Steps 
283 (2.) 321 (71.02%) (23.) 61 (53.98%) (26.) 17.04 Crazy Rhythm 
267 (3,5.) 491 (86.44%) (5.) 112 (78.87%) (6.) 7.57 Chamber Mates 
267 (3,5.) 1187 (86.52%) (4.) 267 (77.84%) (7.) 8.68 Oleo 
260 (5.) 1410 (89.92%) (2.) 339 (86.48%) (2.) 3.44 Mr. P.C. 
257 (6.) 847 (86.43%) (6.) 205 (83.67%) (5.) 2.76 Woody’n You 
253 (7.) 840 (80.46%) (10.) 186 (71.26%) (11.) 9.20 Cotton Tail 
244 (8.) 1163 (78.79%) (12.) 274 (74.25%) (10.) 4.54 Moment's Notice 
237 (9.) 671 (82.23%) (9.) 154 (75.49%) (9.) 6.74 Milestones 
232 (10.) 854 (77.64%) (13.) 182 (66.18%) (16.) 11.46 All the Things You Are 
229 (11.) 578 (73.35%) (20.) 120 (60.91%) (21.) 12.44 I Could Write a Book 
221 (12.) 497 (64.71%) (26.) 105 (54.69%) (24,5.) 10.02 Excerpt 
215 (13.) 514 (82.90%) (8.) 120 (77.42%) (8.) 5.48 A Foggy Day 
211 (14.) 344 (68.25%) (24.) 68 (53.97%) (27.) 14.28 The Theme 
191 (15.) 359 (58.28%) (30.) 68 (44.16%) (29.) 14.12 It’s a Blue World 
189 (16.) 331 (64.65%) (27.) 90 (70.31%) (13.) -5.66 Syeeda’s Song Flute 
187 (17.) 797 (73.80%) (18.) 168 (62.22%) (20.) 11.58 If I Were a Bell 
185 (18.) 238 (62.63%) (29.) 36 (37.89%) (30.) 24.74 I Can't Give You Anything but Love 
179 (19.) 343 (66.99%) (25.) 70 (54.69%) (24,5.) 12.30 Chasin’ the Bird 
177 (20.) 1013 (77.21%) (14.) 211 (64.33%) (19.) 12.88 Blues by Five 
175 (21.) 1684 (90.54%) (1.) 390 (83.87%) (4.) 6.67 Tenor Madness 
171 (22.) 640 (72.40%) (21.) 143 (64.71%) (18.) 7.69 Apothegm 
167 (23.) 326 (63.67%) (28.) 68 (53.13%) (28.) 10.54 You'd Be So Nice to Come Home to 
166 (24,5.) 459 (74.03%) (16.) 85 (54.84%) (23.) 19.19 All of You 
166 (24,5.) 817 (74.54%) (15.) 186 (67.88%) (15.) 6.66 C-Jam Blues 
139 (26.) 771 (84.91%) (7.) 191 (84.14%) (3.) 0.77 So What 
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Tempo (bpm) + rank Method A + rank Method B + rank Difference Musical work (Paul Chambers) 
133 (27.) 922 (80.03%) (11.) 197 (68.40%) (14.) 11.63 Blue Train 
132 (28.) 284 (73.96%) (17.) 68 (70.83%) (12.) 3.13 Autumn Leaves 
128 (29.) 826 (71.70%) (22.) 173 (60.07%) (22.) 11.63 Freddie Freeloader 
110 (30.) 452 (73.38%) (19.) 100 (64.94%) (17.) 8.44 Cool Struttin’ 

 
Tempo (bpm) + rank Method A + rank Method B + rank Difference Musical work (Ron Carter) 
298 (1.) 370 (55.72%) (7.) 57 (34.34%) (9.) 21.38 Mo’ Joe 
289 (2.) 690 (55.65%) (8.) 130 (41.94%) (7.) 13.71 E.S.P. 
286 (3.) 863 (72.64%) (1.) 165 (55.56%) (3.) 17.08 Seven Steps to Heaven 
244 (4.) 509 (58.91%) (6.) 106 (49.07%) (4.) 9.84 Oleo 
240 (5.) 761 (66.00%) (2.) 178 (61.81%) (1.) 4.19 Passion Dance 
212 (6.) 347 (38.73%) (11.) 62 (27.68%) (11.) 11.05 Pinocchio 
148 (7.) 300 (63.03%) (3.) 58 (48.74%) (5.) 14.29 Israel 
139 (8.) 465 (46.13%) (9.) 97 (38.49%) (8.) 7.64 Witch Hunt 
136 (9.) 284 (44.38%) (10.) 50 (31.25%) (10.) 13.13 Autumn Leaves (1961) 
133 (10.) 455 (60.19%) (5.) 89 (47.09%) (6.) 13.10 Autumn Leaves (1964) 
122 (11.) 654 (61.93%) (4.) 162 (61.36%) (2.) 0.57 Dolphin Dance 
115 (12.) 121 (29.09%) (12.) 23 (22.12%) (12.) 6.97 Loose Bloose 

Note. The aim of this table is to compare the results from Method A (the relative frequency of notes that started a recurring 4-note 
interval pattern at any metrical location) and Method B (the relative frequency of recurring 4-note melodic patterns that started at the 
first beat of the bar). Number of notes that started a recurring 4-note interval pattern at any metrical location and the number of 
recurring melodic patterns using Method B are also presented. Difference = the difference between the relative frequency values. The 
most repetitive bass line reduction is ranked first. Regarding tempo values, the fastest tempo is ranked first. 
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Appendix 3: Supplementary tables for Chapters 6.2.1 and 6.2.2 

TABLE 24 Normalized entropy of melodic patterns in each bass line reduction 

Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
A Foggy Day 0.620 (0.506) 0.692 (0.644) 0.738 (0.721) 155 
A Foggy Day (x) 0.575 (0.454) 0.659 (0.601) 0.709 (0.689) 135 
A Foggy Day (y) 0.737 (0.593)  0.760 (0.760) 0.797 (0.797) 20 
All of You 0.716 (0.616)  0.803 (0.740) 0.862 (0.832) 155 
All of You (x) 0.667 (0.508) 0.769 (0.686) 0.820 (0.783) 84 
All of You (y) 0.875 (0.707) 0.906 (0.832) 0.987 (0.906) 16 
All of You (z) 0.581 (0.527)  0.710 (0.641) 0.810 (0.789) 55 
All the Things You Are 0.670 (0.566) 0.759 (0.727) 0.837 (0.825) 275 
All the Things You Are (x) 0.606 (0.472) 0.718 (0.675) 0.790 (0.775) 199 
All the Things You Are (y) 0.582 (0.522)  0.696 (0.680) 0.887 (0.879) 46 
All the Things You Are (z) 0.797 (0.708) 0.797 (0.771) 0.895 (0.881) 30 
Apothegm 0.686 (0.610)  0.736 (0.712) 0.835 (0.826) 221 
Apothegm (x) 0.625 (0.518) 0.709 (0.676) 0.842 (0.825) 97 
Apothegm (y) 0.586 (0.510) 0.615 (0.599) 0.683 (0.680) 56 
Apothegm (z) 0.600 (0.509)  0.657 (0.619) 0.809 (0.797) 68 
Autumn Leaves 0.591 (0.512) 0.664 (0.623) 0.722 (0.722) 96 
Autumn Leaves (x) 0.611 (0.457) 0.716 (0.632) 0.737 (0.737) 54 
Autumn Leaves (y) 0.198 (0.184)  0.266 (0.266) 0.469 (0.469) 30 
Autumn Leaves (z) 0.544 (0.544)  0.628 (0.628) 0.628 (0.628) 12 
Blues by Five 0.689 (0.564) 0.784 (0.721) 0.859 (0.828) 328 
Blues by Five (x) 0.622 (0.486) 0.735 (0.661) 0.827 (0.788) 246 
Blues by Five (y) 0.718 (0.567)  0.820 (0.756) 0.883 (0.848) 54 
Blues by Five (z) 0.795 (0.591) 0.866 (0.804) 0.920 (0.920) 28 
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Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Blue Train 0.646 (0.540)  0.729 (0.671) 0.806 (0.785) 288 
Blue Train (x) 0.522 (0.485) 0.634 (0.626) 0.709 (0.709) 96 
Blue Train (y) 0.635 (0.480)  0.721 (0.631) 0.812 (0.780) 192 
Chamber Mates 0.659 (0.551) 0.703 (0.643) 0.779 (0.755) 142 
Chamber Mates (x) 0.636 (0.520)  0.685 (0.622) 0.759 (0.738) 118 
Chamber Mates (y) 0.538 (0.395) 0.592 (0.494) 0.735 (0.673) 24 
Chasin’ the Bird 0.752 (0.679)  0.837 (0.794) 0.901 (0.888) 128 
Chasin’ the Bird (x) 0.657 (0.583)  0.794 (0.751) 0.889 (0.871) 80 
Chasin’ the Bird (y) 0.738 (0.563) 0.844 (0.695) 0.844 (0.801) 16 
Chasin’ the Bird (z) 0.801 (0.696)  0.801 (0.759) 0.861 (0.861) 32 
C-Jam Blues  0.689 (0.547)  0.802 (0.731) 0.842 (0.809) 274 
C-Jam Blues (x) 0.624 (0.597)  0.712 (0.697) 0.759 (0.744) 46 
C-Jam Blues (y) 0.667 (0.495) 0.795 (0.708) 0.837 (0.799) 228 
Cool Struttin’ 0.764 (0.658)  0.824 (0.772) 0.871 (0.861) 154 
Cool Struttin’ (x) 0.731 (0.589)  0.833 (0.772) 0.876 (0.868) 77 
Cool Struttin’ (y) 0.710 (0.570)  0.758 (0.689) 0.821 (0.795) 52 
Cool Struttin’ (z) 0.586 (0.511)  0.618 (0.542) 0.733 (0.733) 25 
Cotton Tail 0.744 (0.597)  0.783 (0.698) 0.840 (0.802) 261 
Cotton Tail (x) 0.651 (0.500)  0.680 (0.607) 0.823 (0.771) 58 
Cotton Tail (y) 0.779 (0.570)  0.818 (0.703) 0.842 (0.792) 66 
Cotton Tail (z) 0.662 (0.483)  0.719 (0.607) 0.781 (0.739) 137 
Crazy Rhythm 0.740 (0.638)  0.811 (0.768) 0.890 (0.878) 113 
Crazy Rhythm (x) 0.758 (0.596) 0.779 (0.701) 0.881 (0.860) 46 
Crazy Rhythm (y) 0.552 (0.463) 0.721 (0.685) 0.819 (0.811) 49 
Crazy Rhythm (z) 0.787 (0.611)  0.830 (0.782) 0.937 (0.910) 18 
Excerpt 0.752 (0.623)  0.842 (0.788) 0.902 (0.886) 192 
Excerpt (x) 0.708 (0.569)  0.823 (0.784) 0.881 (0.864) 94 
Excerpt (y) 0.697 (0.524) 0.798 (0.707) 0.885 (0.864) 91 
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Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Excerpt (z) 0.898 (0.898)  0.898 (0.898) 0.898 (0.898) 7 
Freddie Freeloader 0.627 (0.509)  0.752 (0.708) 0.843 (0.834) 288 
Freddie Freeloader (x) 0.588 (0.577) 0.665 (0.671) 0.770 (0.787) 48 
Freddie Freeloader (y) 0.596 (0.451)  0.740 (0.684) 0.838 (0.825) 240 
Giant Steps 0.492 (0.470)  0.564 (0.559) 0.612 (0.613) 333 
Giant Steps (x) 0.319 (0.319) 0.417 (0.417) 0.489 (0.494) 125 
Giant Steps (z) 0.485 (0.447)  0.557 (0.548) 0.602 (0.604) 208 
I Can't Give You Anything… 0.847 (0.722) 0.907 (0.853) 0.934 (0.910) 95 
I Can't Give You Anything… (x) 0.824 (0.710)  0.897 (0.862) 0.940 (0.918) 45 
I Can't Give You Anything… (y) 0.736 (0.546)  0.830 (0.761) 0.854 (0.826) 33 
I Can't Give You Anything… (z) 0.885 (0.622) 0.943 (0.747) 0.971 (0.903) 17 
I Could Write a Book 0.690 (0.618)  0.781 (0.752) 0.832 (0.821) 197 
I Could Write a Book (x) 0.568 (0.500) 0.666 (0.634) 0.729 (0.711) 101 
I Could Write a Book (y) 0.827 (0.682)  0.867 (0.842) 0.975 (0.975) 19 
I Could Write a Book (z) 0.666 (0.560) 0.805 (0.764) 0.859 (0.849) 77 
If I Were a Bell 0.740 (0.615)  0.815 (0.755) 0.847 (0.844) 270 
If I Were a Bell (x) 0.674 (0.539) 0.764 (0.718) 0.831 (0.818) 172 
If I Were a Bell (y) 0.616 (0.575)  0.724 (0.694) 0.739 (0.739) 28 
If I Were a Bell (z) 0.771 (0.550)  0.848 (0.688) 0.884 (0.830) 70 
It’s a Blue World 0.715 (0.640) 0.833 (0.810) 0.887 (0.883) 154 
It’s a Blue World (x) 0.639 (0.579)  0.779 (0.766) 0.844 (0.844) 86 
It’s a Blue World (y) 0.677 (0.534) 0.833 (0.778) 0.901 (0.887) 60 
It’s a Blue World (z) 0.802 (0.802)  0.802 (0.802) 0.802 (0.802) 8 
Milestones 0.615 (0.409)  0.703 (0.591) 0.794 (0.741) 204 
Milestones (y) 0.615 (0.409)  0.703 (0.591) 0.794 (0.741) 204 
Moment's Notice 0.598 (0.502)  0.685 (0.654) 0.776 (0.767) 369 
Moment's Notice (x) 0.488 (0.382)  0.628 (0.582) 0.687 (0.671) 139 
Moment's Notice (z) 0.580 (0.470)  0.655 (0.626) 0.782 (0.775) 230 
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Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Mr. P.C. 0.583 (0.493)  0.646 (0.613) 0.767 (0.755) 392 
Mr. P.C. (x) 0.482 (0.417)  0.517 (0.482) 0.615 (0.615) 128 
Mr. P.C. (y) 0.509 (0.402) 0.590 (0.555) 0.731 (0.714) 264 
Oleo 0.701 (0.556)  0.767 (0.679) 0.831 (0.790) 343 
Oleo (x) 0.948 (0.737) 0.948 (0.875) 0.948 (0.948) 11 
Oleo (y) 0.757 (0.595)  0.827 (0.776) 0.878 (0.856) 88 
Oleo (z) 0.626 (0.461)  0.707 (0.589) 0.784 (0.730) 244 
So What 0.572 (0.395)  0.617 (0.525) 0.718 (0.671) 227 
So What (y) 0.572 (0.395)  0.617 (0.525) 0.718 (0.671) 227 
Syeeda’s Song Flute 0.583 (0.525) 0.720 (0.702) 0.785 (0.780) 128 
Syeeda’s Song Flute (x) 0.561 (0.498)  0.704 (0.685) 0.775 (0.769) 120 
Syeeda’s Song Flute (z) 0.583 (0.583)  0.750 (0.750) 0.750 (0.750) 8 
Tenor Madness 0.631 (0.535) 0.680 (0.633) 0.753 (0.743) 465 
Tenor Madness (x) 0.567 (0.450)  0.634 (0.580) 0.706 (0.690) 236 
Tenor Madness (y) 0.596 (0.447)  0.663 (0.580) 0.752 (0.741) 152 
Tenor Madness (z) 0.446 (0.415)  0.446 (0.450) 0.589 (0.591) 77 
The Theme 0.790 (0.648) 0.854 (0.783) 0.902 (0.866) 126 
The Theme (x) 1.000 (0.833) 1.000 (1.000) 1.000 (1.000) 8 
The Theme (y) 0.801 (0.701) 0.900 (0.853) 0.925 (0.891) 32 
The Theme (z) 0.723 (0.533) 0.796 (0.697) 0.866 (0.819) 86 
Woody’n You 0.603 (0.580)  0.653 (0.643) 0.701 (0.694) 245 
Woody’n You (x) 0.528 (0.506)  0.584 (0.570) 0.644 (0.638) 147 
Woody’n You (y) 0.353 (0.353)  0.471 (0.471) 0.571 (0.571) 50 
Woody’n You (z) 0.669 (0.586)  0.685 (0.662) 0.685 (0.662) 48 
You'd Be So Nice to… 0.726 (0.647)  0.802 (0.780) 0.868 (0.855) 128 
You'd Be So Nice to… (x) 0.637 (0.520) 0.735 (0.701) 0.819 (0.791) 64 
You'd Be So Nice to… (y) 0.701 (0.588) 0.844 (0.813) 0.908 (0.908) 40 
You'd Be So Nice to… (z) 0.615 (0.597)  0.615 (0.615) 0.731 (0.731) 24 
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Musical work (Ron Carter) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Autumn Leaves (1961) 0.745 (0.654) 0.865 (0.839) 0.926 (0.920) 160 
Autumn Leaves (1961) (x) 0.667 (0.561) 0.809 (0.784) 0.876 (0.865) 100 
Autumn Leaves (1961) (y) 0.762 (0.645) 0.903 (0.864) 0.986 (0.986) 50 
Autumn Leaves (1961) (z) 0.699 (0.590)  0.880 (0.797) 1.000 (1.000) 10 
Autumn Leaves (1964) 0.757 (0.619)  0.861 (0.810) 0.901 (0.869) 189 
Autumn Leaves (1964) (x) 0.730 (0.529)  0.849 (0.770) 0.885 (0.837) 129 
Autumn Leaves (1964) (y) 0.641 (0.600)  0.787 (0.787) 0.872 (0.872) 48 
Autumn Leaves (1964) (z) 0.843 (0.732)  0.907 (0.861) 0.907 (0.861) 12 
Dolphin Dance 0.536 (0.504) 0.677 (0.672) 0.743 (0.739) 264 
Dolphin Dance (x) 0.528 (0.479)  0.757 (0.751) 0.879 (0.879) 94 
Dolphin Dance (y) 0.349 (0.320) 0.491 (0.470) 0.539 (0.526) 137 
Dolphin Dance (z) 0.628 (0.577)  0.751 (0.786) 0.854 (0.878) 33 
E.S.P. 0.746 (0.629)  0.855 (0.810) 0.913 (0.903) 310 
E.S.P. (x) 0.708 (0.578)  0.847 (0.794) 0.915 (0.898) 126 
E.S.P. (y) 0.712 (0.557)  0.845 (0.792) 0.896 (0.888) 154 
E.S.P. (z) 0.497 (0.412)  0.565 (0.497) 0.775 (0.775) 30 
Israel 0.779 (0.624) 0.837 (0.750) 0.892 (0.846) 119 
Israel (x) 0.748 (0.577)  0.853 (0.717) 0.878 (0.821) 30 
Israel (y) 0.735 (0.529)  0.794 (0.691) 0.871 (0.812) 79 
Israel (z) 0.639 (0.639)  0.699 (0.699) 0.797 (0.797) 10 
Loose Bloose 0.812 (0.540)  0.940 (0.811) 0.985 (0.947) 104 
Loose Bloose (z) 0.812 (0.540)  0.940 (0.811) 0.985 (0.947) 104 
Mo’ Joe 0.845 (0.678) 0.905 (0.824) 0.943 (0.919) 166 
Mo’ Joe (x) 0.796 (0.552)  0.878 (0.741) 0.921 (0.888) 72 
Mo’ Joe (y) 0.908 (0.642)  0.940 (0.798) 0.991 (0.921) 40 
Mo’ Joe (z) 0.743 (0.616)  0.841 (0.815) 0.896 (0.896) 54 
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Musical work (Ron Carter) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Oleo 0.761 (0.614) 0.848 (0.801) 0.897 (0.886) 216 
Oleo (x) 0.664 (0.436) 0.785 (0.763) 0.824 (0.824) 26 
Oleo (y) 0.807 (0.666)  0.887 (0.851) 0.943 (0.937) 55 
Oleo (z) 0.688 (0.506)  0.799 (0.731) 0.860 (0.843) 135 
Passion Dance 0.694 (0.468) 0.806 (0.696) 0.878 (0.838) 288 
Passion Dance (y) 0.694 (0.468) 0.806 (0.696) 0.878 (0.838) 288 
Pinocchio 0.842 (0.661)  0.924 (0.864) 0.963 (0.944) 224 
Pinocchio (x) 0.830 (0.628)  0.931 (0.864) 0.971 (0.953) 72 
Pinocchio (y) 0.781 (0.559)  0.889 (0.811) 0.944 (0.918) 130 
Pinocchio (z) 1.000 (0.748)  1.000 (0.959) 1.000 (0.980) 22 
Seven Steps to Heaven 0.729 (0.568)  0.852 (0.772) 0.900 (0.866) 297 
Seven Steps to Heaven (x) 0.682 (0.488) 0.822 (0.723) 0.882 (0.844) 202 
Seven Steps to Heaven (z) 0.726 (0.593)  0.861 (0.797) 0.900 (0.864) 95 
Witch Hunt 0.705 (0.594)  0.836 (0.805) 0.887 (0.883) 252 
Witch Hunt (x) 0.879 (0.768)  0.935 (0.935) 1.000 (1.000) 26 
Witch Hunt (y) 0.645 (0.520)  0.809 (0.766) 0.857 (0.852) 205 
Witch Hunt (q) 0.810 (0.653) 0.840 (0.840) 0.978 (0.978) 21 

Note. Values in parentheses refer to normalized entropy of interval patterns, whereas other values refer to normalized entropy of 
chordal pitch class patterns. Other abbreviations: (x) = one chord per bar harmonic rhythm only; (y) = one chord per at least two bars 
harmonic rhythm only; (z) = two chords per one bar harmonic rhythm only; (q) = one chord per one and a half bars harmonic rhythm 
only. 
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TABLE 25 Relative frequency of non-recurring chordal pitch class patterns and interval patterns 

Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
A Foggy Day 46%/12% (25%/4%) 48%/15% (52%/15%) 55%/22% (58%/23%) 155 
A Foggy Day (x) 40%/9% (24%/3%) 39%/11% (44%/11%) 49%/18% (53%/19%) 135 
A Foggy Day (y) 64%/35% (29%/10%) 75%/45% (75%/45%) 77%/50% (77%/50%) 20 
All of You 60%/25% (31%/7%) 74%/41% (63%/27%) 82%/54% (74%/45%) 155 
All of You (x) 62%/25% (27%/5%) 77%/43% (63%/26%) 87.5%/58% (80%/48%) 84 
All of You (y) 67%/50% (37.5%/19%) 77%/62.5% (64%/44%) 86%/75% (77%/62.5%) 16 
All of You (z) 53%/16% (33%/7%) 68%/31% (62%/24%) 70%/42% (65%/36%) 55 
All the Things You Are 42%/11% (17%/3%) 52%/21% (48%/16%) 66%/36% (64%/34%) 275 
All the Things You Are (x) 33%/7% (6%/0.5%) 46%/16% (39%/11%) 61%/29% (62%/28%) 199 
All the Things You Are (y) 38%/11% (20%/4%) 62%/28% (60%/26%) 70%/50% (66%/46%) 46 
All the Things You Are (z) 67%/40% (31%/13%) 67%/40% (65%/37%) 78%/60% (73%/53%) 30 
Apothegm 47%/14% (25%/5%) 59%/23% (53%/18%) 68%/38% (67%/35%) 221 
Apothegm (x) 45%/13% (25%/4%) 57.5%/24% (54%/20%) 70%/43% (68%/40%) 97 
Apothegm (y) 44%/12.5% (18%/4%) 58%/20% (68%/23%) 67%/29% (71%/30%) 56 
Apothegm (z) 52%/16% (31%/6%) 63%/25% (38%/12%) 66%/37% (61%/32%) 68 
Autumn Leaves 54%/16% (37%/7%) 56%/21% (45%/14%) 67%/29% (67%/29%) 96 
Autumn Leaves (x) 50%/17% (30%/6%) 54%/24% (35%/11%) 67%/33% (67%/33%) 54 
Autumn Leaves (y) 60%/10% (25%/3%) 50%/10% (50%/10%) 67%/20% (67%/20%) 30 
Autumn Leaves (z) 60%/25% (60%/25%) 67%/33% (67%/33%) 67%/33% (67%/33%) 12 
Blues by Five 41%/11% (22%/3%) 54%/23% (51%/17%) 71%/42% (68%/36%) 328 
Blues by Five (x) 38%/8% (25%/2%) 48%/17% (49%/14%) 66%/35% (63%/30%) 246 
Blues by Five (y) 45%/19% (17%/4%) 58%/33% (50%/24%) 79%/57% (71%/46%) 54 
Blues by Five (z) 44%/25% (22%/7%) 70%/50% (59%/36%) 83%/68% (83%/68%) 28 
Blue Train 45%/10% (39%/5%) 63%/23% (61%/18%) 69%/34% (68%/32%) 288 
Blue Train (x) 64%/15% (53%/9%) 66%/22% (65%/21%) 67.5%/28% (67.5%/28%) 96 
Blue Train (y) 36%/8% (29%/3%) 62%/23% (59%/17%) 70%/37% (69%/33%) 192 
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Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Chamber Mates 35%/9% (20%/3%) 43%/14% (37%/9%) 55%/25% (52%/21%) 142 
Chamber Mates (x) 31%/8% (0%/0%) 36%/11% (32%/8%) 51%/22% (49%/19%) 118 
Chamber Mates (y) 50%/17% (67%/17%) 70%/29% (57%/17%) 69%/37.5% (64%/29%) 24 
Chasin’ the Bird 52%/22% (42%/12.5%) 62.5%/35% (59%/28%) 73%/52% (68%/45%) 128 
Chasin’ the Bird (x) 52%/17.5% (42%/10%) 70%/37.5% (65%/30%) 79%/56% (72%/47.5%) 80 
Chasin’ the Bird (y) 56%/31% (50%/19%) 55%/37.5% (50%/25%) 55%/37.5% (50%/31%) 16 
Chasin’ the Bird (z) 50%/28% (38%/16%) 50%/28% (50%/25%) 68%/47% (68%/47%) 32 
C-Jam Blues  44%/12% (25%/3%) 63%/30% (58%/22%) 72%/41% (64%/32%) 274 
C-Jam Blues  (x) 47%/15% (38%/11%) 62%/28% (60%/26%) 62.5%/33% (61%/30%) 46 
C-Jam Blues  (y) 43%/12% (17%/2%) 63%/30% (57%/21%) 73%/43% (65%/32%) 228 
Cool Struttin’ 40%/16% (20%/5%) 53%/27% (49%/21%) 63%/39% (59%/35%) 154 
Cool Struttin’ (x) 50%/21% (19%/4%) 58%/34% (50%/23%) 63%/42% (57%/36%) 77 
Cool Struttin’ (y) 30%/12% (17%/4%) 52%/25% (52%/21%) 68%/40% (66%/37%) 52 
Cool Struttin’ (z) 25%/8% (29%/8%) 33%/12% (37.5%/12%) 54%/28% (54%/28%) 25 
Cotton Tail 50%/18% (19%/3%) 56%/25% (47.5%/15%) 64%/34% (61%/29%) 261 
Cotton Tail (x) 50%/19% (38%/9%) 56%/24% (65%/22%) 71%/43% (70%/36%) 58 
Cotton Tail (y) 58%/29% (7%/2%) 59%/33% (36%/14%) 60%/36% (61%/33%) 66 
Cotton Tail (z) 44%/13% (12.5%/1%) 54%/21% (46%/12%) 62%/30% (56%/23%) 137 
Crazy Rhythm 60%/27% (24%/6%) 67%/35% (65%/30%) 76%/52% (70%/46%) 113 
Crazy Rhythm (x) 50%/24% (25%/7%) 58%/30% (60%/26%) 76%/54% (71%/48%) 46 
Crazy Rhythm (y) 56%/18% (20%/4%) 65%/31% (60%/24%) 66%/39% (61%/35%) 49 
Crazy Rhythm (z) 83%/56% (29%/11%) 85%/61% (83%/56%) 94%/83% (87%/72%) 18 
Excerpt 52%/21% (25%/5%) 64%/36% (63%/30%) 78%/55% (69%/45%) 192 
Excerpt (x) 59%/24% (17%/3%) 67%/38% (60%/31%) 79%/55% (73%/48%) 94 
Excerpt (y) 37.5%/13% (12.5%/2%) 60%/31% (62%/25%) 77%/54% (64%/41%) 91 
Excerpt (z) 83%/71% (83%/71%) 83%/71% (83%/71%) 83%/71% (83%/71%) 7 
Freddie Freeloader 47%/11% (26%/3%) 61%/25% (61%/22%) 71%/42% (71%/40%) 288 
Freddie Freeloader (x) 56%/19% (36%/10%) 73%/33% (73%/33%) 74%/42% (75%/44%) 48 
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Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Freddie Freeloader (y) 44%/10% (19%/2%) 58%/23% (57%/20%) 71%/42% (70%/39%) 240 
Giant Steps 17%/1.5% (17%/1%) 38%/6% (39%/6%) 47%/10% (46%/10%) 333 
Giant Steps (x) 20%/2% (20%/2%) 20%/2% (20%/2%) 45%/8% (41%/7%) 125 
Giant Steps (z) 15%/1% (14%/1%) 46%/8% (47%/8%) 48%/11% (49%/11%) 208 
I Can't Give You Anything… 67%/41% (40%/15%) 79%/59% (68%/42%) 86%/71% (82%/62%) 95 
I Can't Give You Anything… (x) 71%/44% (47%/20%) 79%/60% (74%/51%) 84%/71% (83%/67%) 45 
I Can't Give You Anything… (y) 59%/30% (33%/9%) 73%/48% (61%/33%) 83%/61% (77%/52%) 33 
I Can't Give You Anything… (z) 69%/53% (29%/12%) 87%/76% (60%/35%) 94%/88% (86%/71%) 17 
I Could Write a Book 48%/16% (38%/9%) 66%/31% (60%/25%) 73%/42% (71%/39%) 197 
I Could Write a Book (x) 44%/11% (39%/7%) 58%/21% (53%/17%) 61%/27% (59%/24%) 101 
I Could Write a Book (y) 69%/47% (60%/32%) 71%/53% (62%/42%) 94%/89% (94%/89%) 19 
I Could Write a Book (z) 43%/16% (24%/5%) 70%/39% (66%/32%) 76%/51% (73%/47%) 77 
If I Were a Bell 45%/16% (22%/4%) 65%/33% (53%/21%) 70%/42% (68%/38%) 270 
If I Were a Bell (x) 35%/10% (12.5%/2%) 57%/25% (48%/18%) 63%/35% (62%/33%) 172 
If I Were a Bell (y) 45%/18% (33%/11%) 81%/46% (64%/32%) 88%/54% (88%/54%) 28 
If I Were a Bell (z) 59%/29% (31%/7%) 73%/47% (59%/24%) 78%/56% (72%/44%) 70 
It’s a Blue World 51%/19% (34%/8%) 70%/40% (67.5%/35%) 82%/58% (81%/56%) 154 
It’s a Blue World (x) 37%/12% (21%/5%) 69%/36% (67%/34%) 80%/52% (80%/52%) 86 
It’s a Blue World (y) 58%/23% (31%/7%) 70%/43% (65%/33%) 85%/65% (82%/60%) 60 
It’s a Blue World (z) 83%/62.5% (83%/62.5%) 83%/62.5% (83%/62.5%) 83%/62.5% (83%/62.5%) 8 
Milestones 29%/6% (19%/1%) 52%/17% (51%/12%) 65%/30% (62%/25%) 204 
Milestones (y) 29%/6% (19%/1%) 52%/17% (51%/12%) 65%/30% (62%/25%) 204 
Moment's Notice 41%/8% (9%/1%) 54%/16% (51%/12%) 66%/28% (63%/26%) 369 
Moment's Notice (x) 53%/12% (14%/1%) 62%/20% (59%/16%) 70%/27% (70%/25%) 139 
Moment's Notice (z) 32%/5% (6%/0.4%) 48%/13% (44%/10%) 64%/29% (59%/26%) 230 
Mr. P.C. 25%/3% (14%/1%) 37.5%/8% (35%/6%) 48%/16% (45%/14%) 392 
Mr. P.C. (x) 12.5%/2% (0%/0%) 19%/3% (20%/3%) 39%/10% (39%/10%) 128 
Mr. P.C. (y) 31%/4% (22%/2%) 44%/10% (42%/8%) 52%/18% (48%/15%) 264 
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Musical work (Paul Chambers) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Oleo 39%/11% (25%/3%) 44%/16% (43%/11%) 54%/26% (54%/22%) 343 
Oleo (x) 90%/82% (71%/45%) 90%/82% (89%/73%) 90%/82% (90%/82%) 11 
Oleo (y) 43%/18% (26%/6%) 51%/27% (47.5%/22%) 67%/44% (67%/42%) 88 
Oleo (z) 26%/5% (6%/0.4%) 33%/9% (27.5%/5%) 42%/16% (39%/12%) 244 
So What 40%/8% (24%/2%) 50%/14% (52%/10%) 58%/22% (52%/16%) 227 
So What (y) 40%/8% (24%/2%) 50%/14% (52%/10%) 58%/22% (52%/16%) 227 
Syeeda’s Song Flute 37%/8% (21%/3%) 54%/21% (47%/16%) 62%/30% (61%/30%) 128 
Syeeda’s Song Flute (x) 35%/7% (13%/2%) 56%/21% (47.5%/16%) 64%/31% (63%/30%) 120 
Syeeda’s Song Flute (z) 50%/25% (50%/25%) 40%/25% (40%/25%) 40%/25% (40%/25%) 8 
Tenor Madness 39%/7% (26%/2%) 45%/11% (41%/8%) 53%/19% (49%/16%) 465 
Tenor Madness (x) 40%/7% (21%/2%) 43%/11% (37%/7%) 59%/22% (54%/18%) 236 
Tenor Madness (y) 32%/7% (21%/2%) 45%/12.5% (41%/9%) 46%/18% (42%/16%) 152 
Tenor Madness (z) 54%/9% (40%/5%) 54%/9% (54%/9%) 47%/12% (47%/12%) 77 
The Theme 53%/25% (25%/6%) 67%/41% (57%/27%) 76%/54% (72.5%/46%) 126 
The Theme (x) 100%/100% (67%/50%) 100%/100% (100%/100%) 100%/100% (100%/100%) 8 
The Theme (y) 63%/37.5% (23%/9%) 67%/50% (57%/37.5%) 77%/62.5% (75%/56%) 32 
The Theme (z) 36%/14% (8%/1%) 61%/33% (45%/16%) 71%/47% (67%/37%) 86 
Woody’n You 41%/8% (23%/3%) 45%/11% (40%/9%) 56%/18% (54%/16%) 245 
Woody’n You (x) 36%/5% (18%/2%) 44%/10% (38%/7%) 59%/18% (57%/16%) 147 
Woody’n You (y) 17%/2% (17%/2%) 27%/6% (27%/6%) 47%/14% (47%/14%) 50 
Woody’n You (z) 56%/21% (33%/8%) 58%/23% (53%/19%) 58%/23% (53%/19%) 48 
You’d Be So Nice to... 60%/24% (32%/9%) 69%/37% (71%/36%) 72%/46% (74%/47%) 128 
You’d Be So Nice to... (x) 67%/25% (23%/5%) 75%/37.5% (77%/37.5%) 68%/41% (73%/42%) 64 
You’d Be So Nice to... (y) 50%/22.5% (33%/10%) 65%/42.5% (67%/40%) 77%/60% (77%/60%) 40 
You’d Be So Nice to... (z) 60%/25% (44%/17%) 60%/25% (60%/25%) 69%/37.5% (69%/37.5%) 24 
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Musical work (Ron Carter) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Autumn Leaves (1961) 64%/27.5% (36%/9%) 78%/51% (68%/39%) 89%/72% (87%/69%) 160 
Autumn Leaves (1961) (x) 62%/23% (29%/6%) 78%/46% (65%/34%) 83%/59% (79%/54%) 100 
Autumn Leaves (1961) (y) 65%/34% (37.5%/12%) 79%/60% (71%/48%) 96%/92% (96%/92%) 50 
Autumn Leaves (1961) (z) 67%/40% (60%/30%) 75%/60% (71%/50%) 100%/100% (100%/100%) 10 
Autumn Leaves (1964) 59%/25% (37%/8%) 76%/48% (67%/35%) 82%/60% (80%/53%) 189 
Autumn Leaves (1964) (x) 57%/24% (30%/5%) 79%/51% (67%/33%) 84%/60% (82%/52%) 129 
Autumn Leaves (1964) (y) 53%/19% (36%/10%) 65%/35% (65%/35%) 79%/56% (79%/56%) 48 
Autumn Leaves (1964) (z) 78%/58% (57%/33%) 80%/67% (67%/50%) 80%/67% (67%/50%) 12 
Dolphin Dance 43%/8% (34%/5%) 53%/19% (52%/17%) 75%/38% (76%/39%) 264 
Dolphin Dance (x) 43%/10% (25%/4%) 57%/27% (58%/27%) 77%/53% (77%/53%) 94 
Dolphin Dance (y) 50%/7% (53%/6%) 48%/11% (46%/9%) 69%/23% (70%/23%) 137 
Dolphin Dance (z) 33%/12% (20%/6%) 53%/27% (44%/24%) 83%/61% (84%/64%) 33 
E.S.P. 55%/21% (20%/3%) 75%/45% (62%/29%) 86%/64% (82%/58%) 310 
E.S.P. (x) 61%/25% (14%/2%) 73%/46% (62.5%/32%) 91%/73% (84%/63%) 126 
E.S.P. (y) 47%/17% (19%/3%) 76%/46% (60%/29%) 84%/61% (81%/57%) 154 
E.S.P. (z) 70%/23% (43%/10%) 75%/30% (70%/23%) 72%/43% (72%/43%) 30 
Israel 61%/29% (34%/8%) 71%/42% (57%/25%) 80%/56% (79%/51%) 119 
Israel (x) 76%/43% (33%/10%) 86%/63% (60%/30%) 87%/67% (80%/53%) 30 
Israel (y) 57%/25% (33%/6%) 64%/34% (53%/22%) 78%/53% (80%/51%) 79 
Israel (z) 40%/20% (40%/20%) 67%/40% (67%/40%) 71%/50% (71%/50%) 10 
Loose Bloose 61%/34% (30%/6%) 87%/72% (69%/38%) 96%/91% (91%/78%) 104 
Loose Bloose (z) 61%/34% (30%/6%) 87%/72% (69%/38%) 96%/91% (91%/78%) 104 
Mo’ Joe 69%/41% (36%/10%) 80%/58% (70%/39%) 90%/75% (85%/66%) 166 
Mo’ Joe (x) 60%/33% (29%/7%) 81%/58% (68%/35%) 90%/74% (86%/64%) 72 
Mo’ Joe (y) 77%/60% (50%/17.5%) 85%/72.5% (75%/45%) 97%/95% (88%/72.5%) 40 
Mo’ Joe (z) 71%/37% (31%/9%) 74%/48% (69%/41%) 83%/63% (83%/63%) 54 
Oleo 52%/21% (25%/5%) 62%/35% (60%/29%) 78%/54% (76%/51%) 216 
Oleo (x) 45%/19% (43%/12%) 69%/42% (67%/38%) 78%/54% (78%/54%) 26 
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Musical work (Ron Carter) 2-note melodic patterns 3-note melodic patterns 4-note melodic patterns No. of bars 
Oleo (y) 55%/31% (22%/7%) 61%/42% (60%/38%) 80%/67% (78%/64%) 55 
Oleo (z) 51%/18% (21%/3%) 62%/31% (58%/24%) 77%/49% (75%/45%) 135 
Passion Dance 49%/15% (14%/1%) 66%/33% (60%/21%) 77%/50% (69%/38%) 288 
Passion Dance (y) 49%/15% (14%/1%) 66%/33% (60%/21%) 77%/50% (69%/38%) 288 
Pinocchio 76%/46% (31%/8%) 89%/71% (78%/50%) 91%/80% (88%/72%) 224 
Pinocchio (x) 64%/37.5% (26%/7%) 86%/71% (82%/57%) 92%/85% (92%/81%) 72 
Pinocchio (y) 75%/42% (22%/4%) 88%/65% (71%/40%) 89%/75% (84%/65%) 130 
Pinocchio (z) 100%/100% (58%/32%) 100%/100% (90%/82%) 100%/100% (95%/91%) 22 
Seven Steps to Heaven 47%/16% (19%/3%) 72%/41% (59%/24%) 80%/55% (73%/44%) 297 
Seven Steps to Heaven (x) 47%/15% (17%/2%) 68%/36% (51%/18%) 78%/51% (68%/40%) 202 
Seven Steps to Heaven (z) 47%/19% (21%/4%) 79%/53% (70%/37%) 85%/63% (81%/55%) 95 
Witch Hunt  55%/19% (45%/9%) 76%/45% (66%/35%) 87%/63% (87%/62%) 252 
Witch Hunt (x) 68%/50% (67%/38%) 82%/69% (82%/69%) 100%/100% (100%/100%) 26 
Witch Hunt (y) 44%/11% (13%/1%) 74%/40% (60%/28%) 84%/56% (83%/54%) 205 
Witch Hunt (q) 79%/52% (82%/43%) 80%/57% (80%/57%) 95%/90% (95%/90%) 21 

Note. To keep this table readable, all percentages are reported without decimals (except when the percentage is exactly half as in 
37.5%). The first two percentages refer to the relative frequency of non-recurring chordal pitch class patterns in relation to the total 
number of different chordal pitch class patterns and the relative frequency of non-recurring chordal pitch class patterns in relation to 
the total number of all occurrences of chordal pitch class patterns, respectively. The percentages in parentheses refer to the relative 
frequency of non-recurring interval patterns in relation to the total number of different interval patterns and the relative frequency 
of non-recurring interval patterns in relation to the total number of all occurrences of interval patterns, respectively. Other abbrevia-
tions: (x) = one chord per bar harmonic rhythm only; (y) = one chord per at least two bars harmonic rhythm only; (z) = two chords 
per one bar harmonic rhythm only; (q) = one chord per one and a half bars harmonic rhythm only. 
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Appendix 4: Supplementary tables for Chapters 6.2.3 to 6.2.5 

TABLE 26 Normalized entropy of target notes 

Musical work (Paul Chambers) 4-beat harmonic rhythm 8-beat harmonic rhythm 2-beat harmonic rhythm All 
A Foggy Day 0.254 (135) 0.291 (20) - 0.240 (155) 
All of You 0.307 (84) 0.535 (16) 0.242 (55) 0.290 (155) 
All the Things You Are 0.244 (199) 0.265 (46) 0.434 (30) 0.239 (275) 
Apothegm 0.269 (97) 0.299 (56) 0.282 (68) 0.242 (221) 
Autumn Leaves 0.282 (54) 0.086 (30) 0.370 (12) 0.208 (96) 
Blues by Five 0.264 (246) 0.321 (54) 0.439 (28) 0.268 (328) 
Blue Train 0.116 (96) 0.265 (192) - 0.219 (288) 
Chamber Mates 0.326 (118) 0.312 (24) - 0.311 (142) 
Chasin’ the Bird 0.240 (80) 0.224 (16) 0.379 (32) 0.236 (128) 
C-Jam Blues  0.250 (46) 0.309 (228) - 0.284 (274) 
Cool Struttin’ 0.323 (77) 0.290 (52) 0.195 (25) 0.277 (154) 
Cotton Tail 0.276 (58) 0.393 (66) 0.312 (137) 0.298 (261) 
Crazy Rhythm 0.430 (46) 0.303 (49) 0.477 (18) 0.324 (113) 
Excerpt 0.315 (94) 0.309 (91) 0.695 (7) 0.281 (192) 
Freddie Freeloader 0.163 (48) 0.264 (240) - 0.252 (288) 
Giant Steps 0.131 (125) - 0.164 (208) 0.141 (333) 
I Can't Give You Anything but Love 0.281 (45) 0.413 (33) 0.565 (17) 0.339 (95) 
I Could Write a Book 0.219 (101) 0.633 (19) 0.302 (77) 0.262 (197) 
If I Were a Bell 0.256 (172) 0.247 (28) 0.371 (70) 0.255 (270) 
It’s a Blue World 0.215 (86) 0.326 (60) 0.583 (8) 0.250 (154) 
Milestones - 0.330 (204) - 0.330 (204) 
Moment’s Notice 0.243 (139) - 0.253 (230) 0.232 (369) 
Mr. P.C. 0.193 (128) 0.263 (264) - 0.242 (392) 
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Musical work (Paul Chambers) 4-beat harmonic rhythm 8-beat harmonic rhythm 2-beat harmonic rhythm All 
Oleo 0.570 (11) 0.340 (88) 0.296 (244) 0.285 (343) 
So What - 0.300 (227) - 0.300 (227) 
Syeeda’s Song Flute 0.237 (120) - 0.181 (8) 0.235 (128) 
Tenor Madness 0.256 (236) 0.281 (152) 0.174 (77) 0.232 (465) 
The Theme 0.719 (8) 0.332 (32) 0.365 (86) 0.367 (126) 
Woody’n You 0.090 (147) 0.177 (50) 0.440 (48) 0.191 (245) 
You’d Be So Nice to Come Home to 0.230 (64) 0.295 (40) 0.257 (24) 0.229 (128) 

 
Musical work (Ron Carter) 4-beat harmonic rhythm 8-beat harmonic rhythm 2-beat harmonic rhythm All 
Autumn Leaves (1961) 0.232 (100) 0.317 (50) 0.141 (10) 0.251 (160) 
Autumn Leaves (1964) 0.348 (129) 0.308 (48) 0.442 (12) 0.305 (189) 
Dolphin Dance 0.122 (94) 0.080 (137) 0.142 (33) 0.094 (264) 
E.S.P. 0.308 (126) 0.302 (154) 0.198 (30) 0.267 (310) 
Israel 0.411 (30) 0.387 (79) 0.413 (10) 0.352 (119) 
Loose Bloose - - 0.450 (104) 0.450 (104) 
Mo’ Joe 0.431 (72) 0.554 (40) 0.308 (54) 0.361 (166) 
Oleo 0.470 (26) 0.303 (55) 0.338 (135) 0.321 (216) 
Passion Dance - 0.344 (288) - 0.344 (288) 
Pinocchio 0.435 (72) 0.422 (130) 0.699 (22) 0.382 (224) 
Seven Steps to Heaven 0.305 (202) - 0.294 (95) 0.275 (297) 
Witch Hunt 0.337 (26) 0.226 (205) 0.478 (21) * 0.226 (252) 

Note. Number of bars is presented in parentheses. Harm. = harmonic rhythm. * One chord per one and a half bars harmonic rhythm. 
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TABLE 27 Relative frequency of root notes and consonant target notes (root notes, major thirds, minor thirds, and perfect fifths combined) 

Musical work (Paul Chambers) Root notes Consonant target notes No. of bars 
A Foggy Day 56.77% 87.74% 155 
All of You 57.42% 78.06% 155 
All the Things You Are 53.82% 91.64% 275 
Apothegm 61.99% 90.05% 221 
Autumn Leaves 72.92% 96.88% 96 
Blues by Five 48.78% 84.76% 328 
Blue Train 52.78% 90.28% 288 
Chamber Mates 47.18% 80.99% 142 
Chasin’ the Bird 64.84% 91.41% 128 
C-Jam Blues 47.45% 80.66% 274 
Cool Struttin’ 55.19% 85.06% 154 
Cotton Tail 49.43% 83.52% 261 
Crazy Rhythm 49.56% 84.07% 113 
Excerpt 50.52% 91.15% 192 
Freddie Freeloader 37.85% 86.81% 288 
Giant Steps 69.37% 97.30% 333 
I Can't Give You Anything but Love 51.58% 83.16% 95 
I Could Write a Book 59.39% 83.25% 197 
If I Were a Bell 55.19% 90.00% 270 
It’s a Blue World 58.44% 94.16% 154 
Milestones 31.86% 63.73% 204 
Moment’s Notice 59.08% 86.99% 369 
Mr. P.C. 55.36% 88.27% 392 
Oleo 45.48% 81.05% 343 
So What 39.21% 77.53% 227 
Syeeda’s Song Flute 53.91% 96.88% 128 
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Musical work (Paul Chambers) Root notes Consonant target notes No. of bars 
Tenor Madness 54.62% 87.96% 465 
The Theme 42.86% 74.60% 126 
Woody’n You 68.57% 91.43% 245 
You’d Be So Nice to Come Home to 69.53% 91.41% 128 

 
Musical work (Ron Carter) Root notes Consonant target notes No. of bars 
Autumn Leaves (1961) 70.00% 88.13% 160 
Autumn Leaves (1964) 55.03% 80.42% 189 
Dolphin Dance 89.77% 95.08% 264 
E.S.P. 56.45% 73.23% 310 
Israel 52.10% 74.79% 119 
Loose Bloose 29.81% 56.73% 104 
Mo’ Joe 45.78% 68.07% 166 
Oleo 51.39% 70.37% 216 
Passion Dance 32.99% 64.93% 288 
Pinocchio 40.18% 60.27% 224 
Seven Steps to Heaven 51.85% 78.11% 297 
Witch Hunt 55.56% 82.54% 252 
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TABLE 28 Average and maximum length of recurring melodic patterns after the overlapping melodic patterns removal process 

Musical work (Paul Chambers) Aver. length (int.) Aver. length (sec.) Max. length (int.) Max. length (sec.) 
A Foggy Day (after stage 1) 9.74 (7.72) 2.72 40 11.16 
A Foggy Day (after stage 2) 11.29 (9.04) 3.15 40 11.16 
A Foggy Day (after stage 3) 10.69 (9.50) 2.98 40 11.16 
All of You (after stage 1)  4.59 (3.48) 1.66 18 6.51 
All of You (after stage 2)  5.47 (3.86) 1.98 18 6.51 
All of You (after stage 3)  5.26 (3.80) 1.90 18 6.51 
All the Things You Are (after stage 1) 6.65 (6.63) 1.72 38 9.83 
All the Things You Are (after stage 2) 6.55 (6.15) 1.69 38 9.83 
All the Things You Are (after stage 3) 5.53 (5.14) 1.43 38 9.83 
Apothegm (after stage 1) 5.80 (4.99) 2.04 26 9.12 
Apothegm (after stage 2) 6.16 (5.25) 2.16 26 9.12 
Apothegm (after stage 3) 5.25 (4.90) 1.84 26 9.12 
Autumn Leaves (after stage 1) 8.78 (6.81) 3.99 31 14.09 
Autumn Leaves (after stage 2) 9.84 (8.17) 4.47 31 14.09 
Autumn Leaves (after stage 3) 8.65 (8.92) 3.93 31 14.09 
Blues by Five (after stage 1) 4.41 (3.42) 1.49 20 6.78 
Blues by Five (after stage 2) 5.39 (3.62) 1.83 20 6.78 
Blues by Five (after stage 3) 5.17 (3.56) 1.75 20 6.78 
Blue Train (after stage 1)  5.93 (5.32) 2.68 29 13.08 
Blue Train (after stage 2)  6.49 (5.34) 2.93 29 13.08 
Blue Train (after stage 3)  5.83 (4.81) 2.63 29 13.08 
Chamber Mates (after stage 1) 11.92 (10.01)  2.68 48 10.79 
Chamber Mates (after stage 2) 12.61 (11.40)  2.83 48 10.79 
Chamber Mates (after stage 3) 9.83 (10.75) 2.21 48 10.79 
Chasin’ the Bird (after stage 1) 3.45 (2.44) 1.16 13 4.36 
Chasin’ the Bird (after stage 2) 4.19 (2.68) 1.40 13 4.36 

  



 
 

278 

Musical work (Paul Chambers) Aver. length (int.) Aver. length (sec.) Max. length (int.) Max. length (sec.) 
Chasin’ the Bird (after stage 3) 4.15 (2.82) 1.39 13 4.36 
C-Jam Blues  (after stage 1) 4.95 (4.11) 1.80 23 8.36 
C-Jam Blues  (after stage 2) 5.55 (4.32) 2.02 23 8.36 
C-Jam Blues  (after stage 3) 5.29 (4.31) 1.92 23 8.36 
Cool Struttin’ (after stage 1) 5.49 (5.20) 2.97 28 15.14 
Cool Struttin’ (after stage 2) 5.66 (4.96) 3.06 28 15.14 
Cool Struttin’ (after stage 3) 5.28 (4.37) 2.85 28 15.14 
Cotton Tail (after stage 1) 6.40 (5.27) 1.52 28 6.67 
Cotton Tail (after stage 2) 7.16 (5.77) 1.70 28 6.67 
Cotton Tail (after stage 3) 6.37 (5.82) 1.52 28 6.67 
Crazy Rhythm (after stage 1) 4.23 (3.08) 0.89 15 3.16 
Crazy Rhythm (after stage 2) 5.14 (3.47) 1.08 15 3.16 
Crazy Rhythm (after stage 3) 5.04 (3.68) 1.06 15 3.16 
Excerpt (after stage 1) 3.64 (2.91) 0.99 18 4.91 
Excerpt (after stage 2) 4.26 (2.94) 1.16 18 4.91 
Excerpt (after stage 3) 4.06 (2.83) 1.11 18 4.91 
Freddie Freeloader (after stage 1) 3.77 (2.75) 1.77 16 7.50 
Freddie Freeloader (after stage 2) 4.60 (2.99) 2.16 16 7.50 
Freddie Freeloader (after stage 3) 4.58 (2.16) 2.15 16 7.50 
Giant Steps (after stage 1) 9.74 (8.46) 1.99 50 10.24 
Giant Steps (after stage 2) 11.84 (8.87) 2.42  50 10.24 
Giant Steps (after stage 3) 11.41 (8.42) 2.34 50 10.24 
I Can't Give You Anything... (after stage 1) 3.34 (2.48) 1.08 13 4.22 
I Can't Give You Anything... (after stage 2) 3.75 (2.70) 1.22 13 4.22 
I Can't Give You Anything... (after stage 3) 3.68 (2.70) 1.19 13 4.22 
I Could Write a Book (after stage 1) 6.96 (5.86) 1.82 30 7.86 
I Could Write a Book (after stage 2) 7.20 (6.44) 1.89 30 7.86 
I Could Write a Book (after stage 3) 6.20 (6.37) 1.62 30 7.86 
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Musical work (Paul Chambers) Aver. length (int.) Aver. length (sec.) Max. length (int.) Max. length (sec.) 
If I Were a Bell (after stage 1) 4.41 (3.37) 1.41 20 6.42 
If I Were a Bell (after stage 2) 5.36 (3.64) 1.72 20 6.42 
If I Were a Bell (after stage 3) 5.30 (3.69) 1.70 20 6.42 
It’s a Blue World (after stage 1) 4.26 (3.82) 1.34 21 6.60 
It’s a Blue World (after stage 2) 4.33 (3.73) 1.36 21 6.60 
It’s a Blue World (after stage 3) 3.94 (3.48) 1.24 21 6.60 
Milestones (after stage 1) 5.09 (3.81) 1.29 22 5.57 
Milestones (after stage 2) 6.51 (4.17) 1.65 22 5.57 
Milestones (after stage 3) 6.37 (4.28) 1.61 22 5.57 
Moment's Notice (after stage 1) 5.80 (4.42) 1.43 23 5.66 
Moment's Notice (after stage 2) 6.95 (5.05) 1.71 23 5.66 
Moment's Notice (after stage 3) 6.51 (5.42) 1.60 23 5.66 
Mr. P.C. (after stage 1) 8.64 (6.66) 1.99 35 8.08 
Mr. P.C. (after stage 2) 11.02 (7.63) 2.54 35 8.08 
Mr. P.C. (after stage 3) 10.24 (8.31) 2.36 35 8.08 
Oleo (after stage 1) 8.40 (8.21) 1.89 49 11.01 
Oleo (after stage 2) 9.06 (7.83) 2.04 49 11.01 
Oleo (after stage 3) 7.93 (6.78) 1.78 49 11.01 
So What (after stage 1) 7.03 (5.68) 3.03 31 13.38 
So What (after stage 2) 8.50 (6.23) 3.67 31 13.38 
So What (after stage 3) 8.15 (6.43) 3.52 31 13.38 
Syeeda’s Song Flute (after stage 1) 4.23 (3.36) 1.34 19 6.03 
Syeeda’s Song Flute (after stage 2) 4.92 (3.56) 1.56 19 6.03 
Syeeda’s Song Flute (after stage 3) 4.78 (3.49) 1.52 19 6.03 
Tenor Madness (after stage 1) 10.06 (8.95) 3.45 46 15.77 
Tenor Madness (after stage 2) 11.27 (9.42) 3.86 46 15.77 
Tenor Madness (after stage 3) 9.58 (8.94) 3.28 46 15.77 
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Musical work (Paul Chambers) Aver. length (int.) Aver. length (sec.) Max. length (int.) Max. length (sec.) 
The Theme (after stage 1) 5.25 (4.08) 1.49 18 5.12 
The Theme (after stage 2) 5.75 (4.66) 1.64 18 5.12 
The Theme (after stage 3) 5.05 (4.73) 1.44 18 5.12 
Woody’n You (after stage 1) 13.80 (12.04) 3.22 61 14.24 
Woody’n You (after stage 2) 14.71 (13.25)  3.43 61 14.24 
Woody’n You (after stage 3) 11.19 (12.86)  2.61 61 14.24 
You'd Be So Nice to… (after stage 1) 3.79 (2.80) 1.36 16 5.75 
You'd Be So Nice to… (after stage 2) 4.50 (3.07) 1.62 16 5.75 
You'd Be So Nice to… (after stage 3) 4.35 (3.16) 1.56 16 5.75 

 
Musical work (Ron Carter) Aver. length (int.) Aver. length (sec.) Max. length (int.) Max. length (sec.) 
Autumn Leaves (1961) (after stage 1) 3.09 (2.50) 1.36 13 5.74 
Autumn Leaves (1961) (after stage 2) 3.25 (2.51) 1.43 13 5.74 
Autumn Leaves (1961) (after stage 3) 3.06 (2.41) 1.35 13 5.74 
Autumn Leaves (1964) (after stage 1)  12.04 (14.06)  5.43 63 28.42 
Autumn Leaves (1964) (after stage 2)  6.19 (10.25) 2.79 63 28.42 
Autumn Leaves (1964) (after stage 3)  3.82 (5.57) 1.72 63 28.42 
Dolphin Dance (after stage 1) 6.19 (5.51) 3.04 30 14.75 
Dolphin Dance (after stage 2) 6.06 (5.68) 2.98 30 14.75 
Dolphin Dance (after stage 3) 5.25 (5.31) 2.58 30 14.75 
E.S.P. (after stage 1) 3.22 (2.49) 0.67 13 2.70 
E.S.P. (after stage 2) 3.68 (2.55) 0.76 13 2.70 
E.S.P. (after stage 3) 3.55 (2.54) 0.74 13 2.70 
Israel (after stage 1) 9.32 (10.08) 3.78 47 19.05 
Israel (after stage 2) 6.55 (8.55) 2.66 47 19.05 
Israel (after stage 3) 4.94 (7.12) 2.00 47 19.05 
Loose Bloose (after stage 1) 2.00 (1.18) 1.04 7 3.65 
Loose Bloose (after stage 2) 2.35 (1.24) 1.23 7 3.65 
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Musical work (Ron Carter) Aver. length (int.) Aver. length (sec.) Max. length (int.) Max. length (sec.) 
Loose Bloose (after stage 3) 2.35 (1.24) 1.23 7 3.65 
Mo’ Joe (after stage 1) 2.65 (1.70) 0.53 9 1.81 
Mo’ Joe (after stage 2) 3.37 (1.78) 0.68 9 1.81 
Mo’ Joe (after stage 3) 3.36 (1.82) 0.68 9 1.81 
Oleo (after stage 1) 11.32 (11.79)  2.78 52 12.79 
Oleo (after stage 2) 6.99 (10.14) 1.72 52 12.79 
Oleo (after stage 3) 4.29 (6.56) 1.05 52 12.79 
Passion Dance (after stage 1) 3.48 (2.53) 0.87 14 3.50 
Passion Dance (after stage 2) 4.20 (2.73) 1.05 14 3.50 
Passion Dance (after stage 3) 4.10 (2.75) 1.03 14 3.50 
Pinocchio (after stage 1) 2.21 (1.41) 0.63 9 2.55 
Pinocchio (after stage 2) 2.67 (1.42) 0.76 9 2.55 
Pinocchio (after stage 3) 2.66 (1.42) 0.75 9 2.55 
Seven Steps to Heaven (after stage 1) 4.37 (3.64) 0.92 21 4.41 
Seven Steps to Heaven (after stage 2) 4.91 (3.73) 1.03 21 4.41 
Seven Steps to Heaven (after stage 3) 4.54 (3.58) 0.95 21 4.41 
Witch Hunt (after stage 1) 3.23 (2.79) 1.39 16 6.91 
Witch Hunt (after stage 2) 3.39 (2.66) 1.46 16 6.91 
Witch Hunt (after stage 3) 3.16 (2.49) 1.36 16 6.91 

Note. Standard deviations are presented in parentheses. Aver. length (int.) = average length (in intervals); Aver. length (sec.) = average 
length in seconds; Max. length (int.) = maximum length (in intervals); Max. length (sec.) = maximum length in seconds. 
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TABLE 29 Normalized entropy of interval size and average interval size 

Musical work (Paul Chambers) Norm. interval size Average interval size No. of bars 
A Foggy Day 0.303 2.52 155 
All of You 0.326 2.55 155 
All the Things You Are 0.339 3.09 275 
Apothegm 0.335 2.92 221 
Autumn Leaves 0.415 3.04 96 
Blues by Five 0.309 2.81 328 
Blue Train 0.305 2.88 288 
Chamber Mates 0.353 2.82 142 
Chasin’ the Bird 0.384 3.27 128 
C-Jam Blues  0.327 3.13 274 
Cool Struttin’ 0.361 2.94 154 
Cotton Tail 0.301 2.62 261 
Crazy Rhythm 0.364 2.51 113 
Excerpt 0.361 3.17 192 
Freddie Freeloader 0.324 2.99 288 
Giant Steps 0.360 3.71 333 
I Can't Give You Anything but Love 0.370 2.81 95 
I Could Write a Book 0.332 2.91 197 
If I Were a Bell 0.316 3.08 270 
It’s a Blue World 0.368 3.22 154 
Milestones 0.290 2.42 204 
Moment's Notice 0.336 3.19 369 
Mr. P.C. 0.298 2.50 392 
Oleo 0.317 3.10 343 
So What 0.289 2.72 227 
Syeeda’s Song Flute 0.384 3.26 128 
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Musical work (Paul Chambers) Norm. interval size Average interval size No. of bars 
Tenor Madness 0.282 2.85 465 
The Theme 0.410 3.42 126 
Woody’n You 0.282 2.17 245 
You’d Be So Nice to Come Home to 0.403 3.38 128 

 
Musical work (Ron Carter) Norm. interval size Average interval size No. of bars 
Autumn Leaves (1961) 0.429 4.12 160 
Autumn Leaves (1964) 0.407 4.73 189 
Dolphin Dance 0.369 3.79 264 
E.S.P. 0.373 4.12 310 
Israel 0.411 2.89 119 
Loose Bloose 0.488 5.14 104 
Mo’ Joe 0.376 3.11 166 
Oleo 0.398 4.08 216 
Passion Dance 0.342 3.10 288 
Pinocchio 0.411 4.19 224 
Seven Steps to Heaven 0.328 3.21 297 
Witch Hunt 0.389 3.91 252 

Note. Norm. interval size = normalized entropy of interval size. 
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Appendix 5: Supplementary tables for Chapters 6.3.2 to 6.3.4 

TABLE 30 Normalized entropy of melodic contour patterns and relative frequency of non-recurring melodic contour patterns 

Musical work (Paul Chambers) Norm. entropy (F) Norm. entropy (P) Rel. frequency (F) Rel. frequency (P) 
A Foggy Day 0.591 0.344 59.09%/16.77% 0%/0% 
All of You 0.629 0.347 62.26%/21.29% 11.11%/0.65% 
All the Things You Are 0.713 0.383 46.81%/16.00% 26.67%/1.45% 
Apothegm 0.679 0.368 46.27%/14.03% 20.00%/0.90% 
Autumn Leaves 0.630 0.401 44.44%/12.50% 12.50%/1.04% 
Blues by Five 0.685 0.383 47.52%/14.63% 7.69%/0.30% 
Blue Train 0.640 0.353 50.63%/13.89% 0%/0% 
Chamber Mates 0.677 0.411 35.71%/10.56% 0%/0% 
Chasin’ the Bird 0.759 0.405 59.65%/26.56% 11.11%/0.78% 
C-Jam Blues 0.706 0.386 55.79%/19.34% 7.69%/0.36% 
Cool Struttin’ 0.713 0.407 50.85%/19.48% 25.00%/1.95% 
Cotton Tail 0.626 0.355 48.48%/12.26% 18.18%/0.77% 
Crazy Rhythm 0.690 0.447 60.00%/23.89% 23.08%/2.65% 
Excerpt 0.755 0.394 55.00%/22.92% 16.67%/1.04% 
Freddie Freeloader 0.714 0.370 59.65%/23.61% 21.43%/1.04% 
Giant Steps 0.571 0.351 39.62%/6.31% 18.18%/0.60% 
I Can't Give You Anything but Love 0.748 0.411 69.39%/35.79% 11.11%/1.05% 
I Could Write a Book 0.703 0.375 55.41%/20.81% 0%/0% 
If I Were a Bell 0.702 0.372 54.26%/18.89% 23.08%/1.11% 
It’s a Blue World 0.770 0.406 61.64%/29.22% 20.00%/1.30% 
Milestones 0.600 0.357 60.71%/16.67% 20.00%/0.98% 
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Musical work (Paul Chambers) Norm. entropy (F) Norm. entropy (P) Rel. frequency (F) Rel. frequency (P) 
Moment's Notice 0.666 0.366 47.87%/12.20% 14.29%/0.54% 
Mr. P.C. 0.628 0.360 40.28%/7.40% 0%/0% 
Oleo 0.671 0.357 35.44%/8.16% 10.00%/0.29% 
So What 0.525 0.312 44.19%/8.37% 18.18%/0.88% 
Syeeda’s Song Flute 0.710 0.381 56.25%/21.09% 0%/0% 
Tenor Madness 0.602 0.323 39.51%/6.88% 11.11%/0.22% 
The Theme 0.750 0.439 60.00%/26.19% 18.18%/1.59% 
Woody’n You 0.573 0.381 46.65%/8.57% 23.08%/1.22% 
You’d Be So Nice to Come Home to 0.745 0.415 63.79%/28.91% 9.09%/0.78% 

 
Musical work (Ron Carter) Norm. entropy (F) Norm. entropy (P) Rel. frequency (F) Rel. frequency (P) 
Autumn Leaves (1961) 0.841 0.504 71.88%/43.13% 20.00%/2.50% 
Autumn Leaves (1964) 0.768 0.431 62.07%/28.57% 37.50%/3.17% 
Dolphin Dance 0.687 0.493 67.62%/26.89% 13.04%/1.14% 
E.S.P. 0.779 0.394 51.54%/21.61% 17.65%/0.97% 
Israel 0.756 0.485 68.97%/33.61% 28.57%/3.36% 
Loose Bloose 0.908 0.479 82.05%/61.54% 15.38%/1.92% 
Mo’ Joe 0.785 0.407 58.44%/27.11% 18.18%/1.20% 
Oleo 0.809 0.452 59.80%/28.24% 36.84%/3.24% 
Passion Dance 0.747 0.396 52.21%/20.49% 25.00%/1.74% 
Pinocchio 0.830 0.427 65.57%/35.71% 5.88%/0.45% 
Seven Steps to Heaven 0.762 0.374 53.39%/21.21% 46.67%/2.36% 
Witch Hunt 0.819 0.460 65.67%/34.92% 20.83%/1.98% 

Note. The first relative frequency value refers to the relative frequency of non-recurring melodic contour pattern classes in relation to 
the total number of melodic contour pattern classes, whereas the second relative frequency value refers to the relative frequency of 
non-recurring melodic contour pattern classes in relation to the total number of all occurrences of melodic contour patterns. F = fuzzy 
interval patterns; P = Parsons’s code patterns. 
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TABLE 31 Average length and maximum length of recurring fuzzy interval patterns and Parsons’s code patterns 

Musical work (Paul Chambers) Aver. length (F) Aver. length (P) Max. length (F) Max. length (P) 
A Foggy Day 9.67 (2.70 s) 10.72 (2.99 s) 40 (11.16 s) 41 (11.44 s) 
All of You 4.81 (1.74 s) 6.52 (2.36 s) 18 (6.51 s) 19 (6.87 s) 
All the Things You Are 6.65 (1.72 s) 7.53 (1.95 s) 38 (9.83 s) 38 (9.83 s) 
Apothegm 6.16 (2.16 s) 7.61 (2.67 s) 30 (10.53 s) 30 (10.53 s) 
Autumn Leaves 10.00 (4.47 s) 10.67 (4.85 s) 33 (15.00 s) 37 (16.82 s) 
Blues by Five 4.70 (1.59 s) 6.84 (2.32 s) 20 (6.78 s) 30 (10.17 s) 
Blue Train 6.21 (2.80 s) 7.73 (3.49 s) 32 (14.44 s) 38 (17.14 s) 
Chamber Mates 12.44 (2.80 s) 12.09 (2.72 s) 48 (10.79 s) 48 (10.79 s) 
Chasin’ the Bird 4.08 (1.37 s) 5.89 (1.97 s) 16 (5.36 s) 18 (6.03 s) 
C-Jam Blues  5.11 (1.85 s) 7.10 (2.57 s) 23 (8.31 s) 31 (11.20 s) 
Cool Struttin’ 5.69 (3.10 s) 7.21 (3.93 s) 28 (15.27 s) 33 (18.00 s) 
Cotton Tail 6.44 (1.53 s) 7.75 (1.84 s) 28 (6.64 s) 33 (7.83 s) 
Crazy Rhythm 4.98 (1.06 s) 6.22 (1.32 s) 19 (4.03 s) 23 (4.88 s) 
Excerpt 4.04 (1.10 s) 8.54 (2.32 s) 18 (4.89 s) 45 (12.22 s) 
Freddie Freeloader 4.29 (2.01 s) 6.79 (3.18 s) 20 (9.38 s) 28 (13.13 s) 
Giant Steps 10.45 (2.14 s) 13.03 (2.67 s) 50 (10.24 s) 66 (13.52 s) 
I Can't Give You Anything but Love 3.79 (1.23 s) 5.57 (1.81 s) 13 (4.22 s) 15 (4.86 s) 
I Could Write a Book 6.90 (1.81 s) 8.50 (2.23 s) 30 (7.86 s) 40 (10.48 s) 
If I Were a Bell 4.68 (1.50 s)  6.51 (2.09 s) 20 (6.42 s) 26 (8.34 s) 
It’s a Blue World 4.27 (1.34 s) 6.19 (1.94 s) 21 (6.60 s) 24 (7.54 s) 
Milestones 5.58 (1.41 s) 7.24 (1.83 s) 23 (5.82 s) 23 (5.82 s) 
Moment's Notice 5.95 (1.46 s) 7.57 (1.86 s) 23 (5.66 s) 28 (6.89 s) 
Mr. P.C. 9.45 (2.18 s) 11.38 (2.63 s) 35 (8.08 s) 42 (9.69 s) 
Oleo 8.46 (1.90 s) 9.33 (2.10 s) 49 (11.01 s) 49 (11.01 s) 
So What 7.37 (3.18 s) 9.75 (4.21 s) 31 (13.38 s) 36 (15.54 s) 
Syeeda’s Song Flute 4.46 (1.42 s) 6.29 (2.00 s) 19 (6.03 s) 23 (7.30 s) 
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Musical work (Paul Chambers) Aver. length (F) Aver. length (P) Max. length (F) Max. length (P) 
Tenor Madness 10.07 (3.45 s) 11.60 (3.98 s) 46 (15.77 s) 54 (18.51 s) 
The Theme 5.32 (1.51 s) 6.63 (1.89 s) 18 (5.12 s) 23 (6.54 s) 
Woody’n You 19.20 (4.48 s) 18.76 (4.38 s) 84 (19.61 s) 85 (19.84 s) 
You’d Be So Nice to Come Home to 3.89 (1.40 s) 5.62 (2.02 s) 16 (5.75 s) 16 (5.75 s) 

 
Musical work (Ron Carter) Aver. length (F) Aver. length (P) Max. length (F) Max. length (P) 
Autumn Leaves (1961) 4.53 (2.00 s) 5.39 (2.38 s) 25 (11.03 s) 25 (11.03 s) 
Autumn Leaves (1964) 10.96 (4.94 s) 11.31 (5.10 s) 63 (28.42 s) 71 (32.03 s) 
Dolphin Dance 6.54 (3.22 s) 6.73 (3.31 s) 30 (14.75 s) 30 (14.75 s) 
E.S.P. 3.71 (0.77 s) 6.08 (1.26 s) 16 (3.32 s) 25 (5.19 s) 
Israel 8.95 (3.63 s) 8.43 (3.42 s) 47 (19.05 s) 47 (19.05 s) 
Loose Bloose 2.36 (1.23 s) 5.37 (2.80 s) 7 (3.65 s) 17 (8.87 s) 
Mo’ Joe 3.09 (0.62 s) 5.33 (1.07 s) 10 (2.01 s) 15 (3.02 s) 
Oleo 10.65 (2.62 s) 10.33 (2.54 s) 52 (12.79 s) 55 (13.52 s) 
Passion Dance 3.81 (0.95 s) 6.34 (1.59 s) 14 (3.50 s) 30 (7.50 s) 
Pinocchio 2.74 (0.78 s) 5.19 (1.47 s) 11 (3.11 s) 16 (4.53 s) 
Seven Steps to Heaven 4.39 (0.92 s) 6.42 (1.35 s) 24 (5.03 s) 26 (5.45 s) 
Witch Hunt 3.59 (1.55 s) 5.38 (2.32 s) 19 (8.20 s) 19 (8.20 s) 

 
Note. Aver. length = average length; Max. length = maximum length; F = fuzzy interval patterns; P = Parsons’s code patterns. 
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TABLE 32 Normalized entropy of approach-note patterns and relative frequency of non-recurring approach-note patterns 

Musical work (Paul Chambers) 2-note approach-note 
patterns 

3-note approach-
note patterns 

2-note interval pat-
terns 

3-note interval 
patterns 

A Foggy Day 0.316 (25%/1%) 0.579 (34%/7%) 0.506 (25%/4%) 0.644 (52%/15%) 
All of You 0.304 (12.5%/1%) 0.616 (39%/10%) 0.616 (31%/7%) 0.740 (63%/27%) 
All the Things You Are 0.375 (19%/1%) 0.671 (46%/13%) 0.566 (17%/3%) 0.727 (48%/16%) 
Apothegm 0.363 (25%/2%) 0.680 (43%/12%) 0.610 (25%/5%) 0.712 (53%/18%) 
Autumn Leaves 0.445 (25%/3%) 0.675 (53%/18%) 0.512 (37%/7%) 0.623 (45%/14%) 
Blues by Five 0.286 (29%/1%) 0.597 (41%/8%) 0.564 (22%/3%) 0.721 (51%/17%) 
Blue Train 0.303 (15%/1%) 0.566 (44%/9%) 0.540 (39%/5%) 0.671 (61%/18%) 
Chamber Mates 0.304 (14%/1%) 0.612 (34%/8%) 0.551 (20%/3%) 0.643 (37%/9%) 
Chasin’ the Bird 0.324 (33%/2%) 0.632 (44%/13%) 0.679 (42%/12.5%) 0.794 (59%/28%) 
C-Jam Blues  0.345 (27%/1%) 0.593 (52%/12%) 0.547 (25%/3%) 0.731 (58%/22%) 
Cool Struttin’ 0.338 (23%/2%) 0.617 (45%/12%) 0.658 (20%/5%) 0.772 (49%/21%) 
Cotton Tail 0.271 (18%/1%) 0.551 (48%/9%) 0.597 (19%/3%) 0.698 (47.5%/15%) 
Crazy Rhythm 0.392 (20%/2%) 0.699 (42%/14%) 0.638 (24%/6%) 0.768 (65%/30%) 
Excerpt 0.402 (42%/4%) 0.703 (61%/22%) 0.623 (25%/5%) 0.788 (63%/30%) 
Freddie Freeloader 0.370 (32%/2%) 0.637 (56%/15%) 0.509 (26%/3%) 0.708 (61%/22%) 
Giant Steps 0.379 (19%/1%) 0.577 (33%/5%) 0.470 (17%/1%) 0.559 (39%/6%) 
I Can't Give You Anything but Love 0.376 (40%/4%) 0.650 (69%/27%) 0.722 (40%/15%) 0.853 (68%/42%) 
I Could Write a Book 0.327 (40%/3%) 0.609 (47%/12%) 0.618 (38%/9%) 0.752 (60%/25%) 
If I Were a Bell 0.306 (33%/1.5%) 0.595 (42%/9%) 0.615 (22%/4%) 0.755 (53%/21%) 
It’s a Blue World 0.365 (33%/3%) 0.647 (58%/20%) 0.640 (34%/8%) 0.810 (67.5%/35%) 
Milestones 0.391 (25%/2%) 0.585 (42%/10%) 0.409 (19%/1%) 0.591 (51%/12%) 
Moment's Notice 0.357 (36%/2%) 0.675 (40%/10%) 0.502 (9%/1%) 0.654 (51%/12%) 
Mr. P.C. 0.293 (8%/0.3%) 0.553 (32%/4%) 0.493 (14%/1%) 0.613 (35%/6%) 
Oleo 0.299 (27%/1%) 0.580 (47%/8.5%) 0.556 (25%/3%) 0.679 (43%/11%) 
So What 0.404 (25%/2%) 0.594 (45%/9%) 0.395 (24%/2%) 0.525 (52%/10%) 
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Musical work (Paul Chambers) 2-note approach-note 
patterns 

3-note approach-
note patterns 

2-note interval pat-
terns 

3-note interval 
patterns 

Syeeda’s Song Flute 0.401 (31%/4%) 0.749 (49%/20%) 0.525 (21%/3%) 0.702 (47%/16%) 
Tenor Madness 0.241 (27%/1%) 0.503 (37%/4%) 0.535 (26%/2%) 0.633 (41%/8%) 
The Theme 0.413 (42%/4%) 0.707 (51%/18%) 0.648 (25%/6%) 0.783 (57%/27%) 
Woody’n You 0.207 (62.5%/2%) 0.504 (37.5%/5%) 0.580 (23%/3%) 0.643 (40%/9%) 
You’d Be So Nice to Come Home to 0.404 (38%/4%) 0.706 (62.5%/24%) 0.647 (32%/9%) 0.780 (71%/36%) 

 
Musical work (Ron Carter) 2-note approach-note 

patterns 
3-note approach-
note patterns 

2-note interval pat-
terns 

3-note interval 
patterns 

Autumn Leaves (1961) 0.460 (39%/6%) 0.767 (66%/30%) 0.654 (36%/9%) 0.839 (68%/39%) 
Autumn Leaves (1964) 0.447 (33%/4%) 0.741 (59%/24%) 0.757 (37%/8%) 0.861 (67%/35%) 
Dolphin Dance 0.504 (28%/3%) 0.722 (65%/27%) 0.504 (34%/5%) 0.672 (52%/17%) 
E.S.P. 0.426 (26%/2%) 0.739 (58%/24%) 0.629 (20%/3%) 0.810 (62%/29%) 
Israel 0.437 (44%/6%) 0.710 (64%/26%) 0.624 (34%/8%) 0.750 (57%/25%) 
Loose Bloose 0.561 (48%/11%) 0.847 (77%/49%) 0.540 (30%/6%) 0.811 (69%/38%) 
Mo’ Joe 0.465 (12%/1%) 0.767 (60%/28%) 0.678 (36%/10%) 0.824 (70%/39%) 
Oleo 0.434 (30%/3%) 0.766 (61%/27%) 0.614 (25%/5%) 0.801 (60%/29%) 
Passion Dance 0.394 (19%/1%) 0.649 (53%/16%) 0.468 (14%/1%) 0.696 (60%/21%) 
Pinocchio 0.536 (23%/3%) 0.860 (75%/48%) 0.661 (31%/8%) 0.864 (78%/50%) 
Seven Steps to Heaven 0.352 (33%/2%) 0.599 (48%/12%) 0.568 (19%/3%) 0.772 (59%/24%) 
Witch Hunt 0.471 (24%/3%) 0.755 (68%/31%) 0.594 (45%/9%) 0.805 (66%/35%) 

Note. To keep this table readable, all percentages are reported without decimals (except when the percentage is exactly half as in 
37.5%). Relative frequency of non-recurring approach-note patterns are presented in parentheses. Relative frequency of non-recurring 
interval patterns that started at the first beat of the bar are also presented. 
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