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Abstract

In this article we consider a linearized Calderón problem for polyharmonic operators of order 2m (m ≥ 2)

in the spirit of Calderón’s original work [7]. We give a uniqueness result for determining coefficients of 
order ≤ 2m − 1 up to gauge, based on inverting momentum ray transforms.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Let n ≥ 3 and let � ⊂ Rn be a bounded domain with smooth boundary ∂�. For m ≥ 2, we 
consider the following polyharmonic operator L with lower order anisotropic perturbations up to 
order 2m − 1:

L(x,D) = (−�)m + Q(x,D), (1.1)

where
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Q(x,D) =
2m−1∑
l=0

al
i1···il (x)Di1···il (1.2)

is a differential operator of order 2m − 1 with 1 ≤ i1, · · · , il ≤ n and al is a smooth symmetric 
tensor field of order l in �. Einstein summation convention is assumed for repeated indices 
throughout the article.

The boundary measurements corresponding to the equation L(x, D)u = 0 in � may be en-
coded in terms of the Cauchy data set (see e.g. [27] for the general case)

CL = {(u|∂�, ∂νu|∂�, · · · , ∂2m−1
ν u|∂�) : u ∈ H 2m(�), Lu = 0}.

The inverse problem of interest is to determine some information on the coefficients of the oper-
ator L, up to suitable gauge transformations, from the knowledge of the Cauchy data set L.

For various special choices of boundary conditions, one could define a Dirichlet-to-Neumann 
type operator for solutions of Lu = 0 in �. This requires that the boundary conditions lead to 
an elliptic boundary value problem (Lopatinskii-Shapiro condition) and that 0 is not an eigen-
value for this problem. For example, one could consider solutions with the clamped boundary 
conditions

u|∂� = f0, ∂νu|∂� = f1, . . . , ∂m−1
ν u|∂� = fm−1

and consider the boundary map

�C
L : (f0, . . . , fm−1) �→ (∂m

ν u|∂�, . . . , ∂2m−1
ν u|∂�).

Alternatively, one could consider Navier boundary conditions

u|∂� = f0, (−�)u|∂� = f1, . . . , (−�)m−1u|∂� = fm−1

and consider the boundary map

�N
L : (f0, . . . , fm−1) �→ (∂νu|∂�, ∂ν(−�)u|∂�, . . . , ∂ν(−�)m−1u|∂�).

If 0 is not an eigenvalue of the corresponding elliptic boundary value problem, then knowing the 
Cauchy data set is equivalent to knowing the boundary map. One can view the Cauchy data set as 
a generalization of such boundary maps that is independent of the choice of (elliptic) boundary 
conditions.

The most classical case is m = 1, so that L is a second order elliptic operator. The prototypical 
inverse problem for such operators is the inverse conductivity problem posed by Calderón [7]. 
The original problem was stated for the equation div(γ∇u) = 0, but if the conductivity function 
γ is C2 and positive one can reduce matters to the Schrödinger equation (� + q)u = 0 for some 
potential q . One can further consider equations of the form �u + A(x) · ∇u + qu = 0 for some 
vector field A and potential q . This includes the magnetic Schrödinger equation and equations 
with convection terms, which are clearly of the form (1.1). Various results are known for related 
inverse problems for determining the vector field A(x), sometimes up to a gauge of the form 
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A �→ A + ∇φ, and the potential q from boundary measurements. We refer the reader to the 
survey [34,35] for more information and references on the second order case.

In this paper we consider a Calderón type problem for polyharmonic operators of order 2m

with a lower order perturbation up to order 2m − 1. There are many previous results on inverse 
problems for polyharmonic operators, including [18,19,14,15,2–4]. In all of these results one 
only determines lower order coefficients up to order ≤ m from boundary measurements. The 
reason for this restriction is that the method of complex geometrical optics solutions used in 
these inverse problems requires certain L2 Carleman estimates, which can become highly del-
icate for higher order operators. In the previous works the required Carleman estimate for the 
polyharmonic operator has been obtained by using a well known Carleman estimate for second 
order equations several times in a row. Since there is a loss of half derivative in the original Car-
leman estimate (it involves a limiting Carleman weight), iterating it many times leads to a loss of 
several derivatives and thus restricts the method to lower order terms of degree ≤ m.

In this article we will consider a general higher order elliptic operator given by (1.1) and 
recover several lower order coefficients up to order 2m − 1. However, because of the restriction 
mentioned above, we are not able to consider the full nonlinear inverse problem. Rather, we will 
only consider the linearization of this inverse problem. In the linearized problem it is sufficient 
to use solutions of the “free” equation (−�)mv = 0 in the recovery of the coefficients, and this 
avoids the need to use Carleman estimates. However, even in the linearized problem the recovery 
of higher order terms becomes intricate. We will follow the ideas of [5] where it was observed that 
momentum ray transforms (MRT) appear naturally in solving inverse problem for polyharmonic 
operators. The inversion of various MRT is crucial for recovering the coefficients. In particular, 
to handle the coefficient of order 2m − 1, we study the kernel of a partial MRT. To do so, we 
demonstrate a new trace free Helmholtz type decomposition result for symmetric tensor fields.

The rest of the article is organised as follows. In Section 2 we derive the linearized inverse 
problem and state our main results. Section 3 is devoted to the unique recovery of tensor fields up 
to order 2m − 2. Then Section 4 deals with the recovery of coefficients up to order 2m − 1 under 
certain assumptions. Section 5 deals with gauge transformations and recovery of coefficients up 
to natural obstructions; see Theorem 2.3. Finally, in Section 6 we describe the kernel of MRT 
which is the key tool for proving our main results. The required Helmholtz type decomposition 
result for tensor fields is then proved in Section 7. In Appendix A we review some known results 
and give the construction of special solutions (known as CGO solutions) of (−�)mu = 0. The 
Navier to Neumann map is then linearized in Appendix B by computing the Fréchet derivative.

2. Linearization and main results

We now derive the formal linearization of the polyharmonic inverse problem. The forward 
operator is formally given by the map L �→ CL. Since CL is a set and not necessarily an element 
in a Banach space, we cannot directly compute the Fréchet derivative of the forward operator. 
We instead assume that

CLε
= CL0 for all ε ∈ (−a, a), a > 0, (2.1)

where L0 = (−�)m, Lε = (−�)m + Q(x, ε, D) and Q(x, ε, D) =
2m−1∑
l=0

al
i1···il (x, ε) Di1···il . We 

assume that al depend smoothly on x and ε and that al(x, 0) = 0 for all 0 ≤ l ≤ 2m − 1, i.e. we 
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are computing the linearization at the case of zero lower order coefficients. Using that CLε
=

CL0 , from [27, Lemma 2.8] we have the integral identity

〈(Lε −L0)u, v〉L2(�) = 0, (2.2)

for any u, v ∈ H 2m(�) satisfying Lεu = 0 and L∗
0 v = 0 in �. This can be rewritten as

〈
2m−1∑
l=0

al
i1···il (x, ε)Di1···il u(x, ε), v(x)

〉
= 0 for all ε ∈ (−a, a).

Differentiating this with respect to ε we obtain

〈
2m−1∑
l=0

∂ε(a
l
i1···il (x, ε))Di1···il u(x, ε), v(x)

〉
+
〈

2m−1∑
l=0

al
i1···il (x, ε)Di1···il ∂εu(x, ε), v(x)

〉
= 0.

Writing w = u|ε=0 and setting ε = 0, we have

〈
2m−1∑
l=0

∂εa
l
i1···il (x,0)Di1···ilw(x), v(x)

〉
= 0. (2.3)

Setting ε = 0 in the equation Lu = 0 and using al(x, 0) = 0 for all 0 ≤ l ≤ 2m − 1, we see 
that w solves (−�)mw = 0. It follows that the identity (2.3) holds for any w and v solving 
(−�)mw = (−�)mv = 0 in �.

We can now formulate (with slightly different notation) the main uniqueness question for the 
linearized inverse problem considered in this article.

Question 2.1. If al
i1···il for 0 ≤ l ≤ 2m − 1 are smooth tensor fields in � and if

∫
�

2m−1∑
l=0

al
i1···il (D

i1···il u)v dx = 0

for all u, v ∈ H 2m(�) satisfying (−�)mu = (−�)mv = 0, is it true that the coefficients al
i1···il

vanish possibly up to suitable gauge transformations?

We mention that if the Cauchy data set is the graph of suitable Dirichlet-to-Neumann type 
map, one can make the above formal derivation rigorous and the linearized problem is still given 
by Question 2.1. See Appendix B where this is done for the Navier boundary conditions.

We now show that it is not in general possible to recover all the coefficients in Question 2.1
due to the presence of a gauge. One possible gauge is obtained by replacing L by e−φLeφ for a 
suitable function φ. Note that if

φ ∈ C2m(�) and ∂j
ν φ|∂� = 0 for 0 ≤ j ≤ 2m − 1, (2.4)
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then u and eφu will have the same Cauchy data up to order 2m − 1. Thus for such functions φ
one has

CL = Ce−φLeφ .

It is easy to compute the highest order terms for the conjugated operator:

e−φLeφu = e−φ((−�)m + a2m−1
i1···i2m−1

Di1···i2m−1 + . . .)eφu

= (e−φ(−�)eφ)m u + e−φ(a2m−1
i1···i2m−1

Di1···i2m−1 + . . .)(eφu)

= (−1)m(�φ + |∇φ|2 + 2∇φ · ∇ + �)m u + e−φ(a2m−1
i1···i2m−1

Di1···i2m−1 + . . .)(eφu)

= (−�)mu + (a2m−1
i1···i2m−1

Di1···i2m−1 + (−1)m2m∇φ · ∇(�)m−1)u + . . . .

Above . . . denotes lower order terms. Thus there is always a gauge invariance, where one can 
add terms of the form (−1)m2m∇φ · ∇(�)m−1 to the term of order 2m − 1. There will be 
corresponding changes in the lower order terms as well.

However, if we only consider operators L for which a2m−1 = 0, then this type of gauge does 
not arise: if the term (−1)m2m∇φ · ∇(�)m−1 vanishes identically, then necessarily ∇φ = 0 and 
hence φ = 0 using the condition φ|∂� = 0.

Our first main result states that for operators with a2m−1 = 0, one can recover all the lower 
order terms completely in the linearized inverse problem.

Theorem 2.1. Suppose that

∫
�

2m−2∑
l=0

al
i1···ilD

i1···il u v = 0 whenever �mu = �mv = 0. (2.5)

Then al = 0 in � for 0 ≤ l ≤ 2m − 2.

As an immediate corollary of Theorem 2.1 one obtains the following density result on certain 
spaces of symmetric tensor fields. For density results involving harmonic functions and tensor 
fields see e.g. [8]. One may also expect other related density results as a consequence of the 
method of proof of Theorem 2.1. See Remark 3.3.

Corollary 2.2. For each even integer M ≥ 0 consider the set

AM := span

{
v ⊕0≤|α|≤M Dαu : �

[
M+2

2

]
u = �

[
M+2

2

]
v = 0 in �

}
.

Then AM is dense in SM
(
C∞(�)

) = ⊕M
p=0S

p
(
C∞(�)

)
, where Sp

(
C∞(�)

)
stands for the 

space of smooth symmetric p tensor fields in � and ⊕ is the direct sum.
411



S.K. Sahoo and M. Salo Journal of Differential Equations 360 (2023) 407–451
Note that for m = 1, Theorem 2.1 reduces to the statement that if f ∈ C∞(�) satisfies

∫
�

f uv = 0 whenever �u = �v = 0 in �,

then f vanishes identically in �. This is just the linearized Calderón problem for the Schrödinger 
equation (linearized at the zero potential), which has been studied in various settings including 
partial data [11,32] and Riemannian manifolds [16,17]. Results for such linearized problems 
have recently become important in the context of inverse problems for nonlinear PDEs, see e.g. 
[24,25].

Now we state our second main result. It also includes terms of order 2m − 1 and gives a com-
plete answer (modulo an assumption for a2m−1 on ∂�) for the linearized Calderón problem for 
polyharmonic operators when m = 2, 3, showing that one can determine the coefficients uniquely 
up to the gauge transform L → e−φLeφ . In particular, there are no other gauge invariances in 
this problem. We also obtain a partial answer when m ≥ 4.

Theorem 2.3. Let L be as in (1.1)–(1.2) and suppose ∂r
νa2m−1 = 0 on ∂� for all 0 ≤ r ≤ 2m −1. 

Assume that

∫
�

2m−1∑
l=0

al
i1···ilD

i1···il u v = 0 whenever �mu = �mv = 0.

1. For m = 2 or m = 3, one has

L = e−φ(−�)meφ

for some φ satisfying (2.4). In particular,

a2m−1 = im−1
δ (∇φ)

where iδ is the symmetrization with Kronecker delta tensor; see (3.1) for the definition.
2. For m ≥ 4, if we additionally assume that a2m−1 = im−1

δ A1 for some vector field A1 ∈
C∞(�), then L = e−φ(−�)meφ for some φ satisfying (2.4). In particular,

A1 = ∇φ.

Remark 2.4. In Theorem 2.3, the boundary assumption on the coefficient a2m−1 can be removed 
through a boundary determination result.

In the next section we present the proof of Theorem 2.1. Then, in Section 4, we prove few 
results (mainly Proposition 4.3), which we then employ in Section 5 to demonstrate Theorem 2.3.
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3. Proof of Theorem 2.1

In this section we demonstrate the proof of Theorem 2.1. The proof will be based on the trace 
free decomposition on Sm, the space of symmetric m tensor fields over �. To this end, we define 
two operators iδ : Sm → Sm+2 and jδ : Sm → Sm−2 as follows:

(iδf )i1···im+2 := σ(fi1···im ⊗ δim+1im+2) (3.1)

(jδf )i1···im−2 :=
n∑

k=1

fi1···im−2kk, (3.2)

where σ denotes the symmetrization of a tensor field. Here δij is the Kronecker delta tensor 
which is equal to 1 for i = j and 0 otherwise. We also define jδf = 0 for f ∈ S0 or f ∈ S1. Note 
that the operators iδ and jδ are dual to each other with respect to the L2 inner product. Based on 
this observation we write the trace free decomposition of tensor fields from [9,28] as follows: for 
l ≥ 2 one has

al =
[ l

2 ]∑
kl=0

i
kl

δ bl,kl (3.3)

where bl,kl is a symmetric tensor field of order l − 2kl with jδb
l,kl = 0. Any f ∈ Sm satisfies 

jδf = 0 is known as trace free tensor field. For l = 0, 1 any tensor field al is trace free.
Note that (3.3) is an orthogonal decomposition on the space of square integrable symmetric 

tensor fields over �, denoted by L2(Sm). This implies that al = 0 if and only if bl,kl = 0 for all 
kl with 0 ≤ kl ≤ [ l

2 ]; see [30, Equation 6.4.2]. Thus in the remainder of this section we show that 
under the conditions in Theorem 2.1, if al has the decomposition (3.3) for 0 ≤ l ≤ 2m − 2, then 
bl,kl = 0 for all kl with 0 ≤ kl ≤ [ l

2 ]. This completes the proof of Theorem 2.1.

Proof of Theorem 2.1. We insert (3.3) in the integral identity (2.5) and obtain

0 =
2m−2∑
l=0

[ l
2 ]∑

kl=0

(i
kl

δ bl,kl )i1···ilDi1···il u v =
2m−2∑
l=0

[ l
2 ]∑

kl=0

b
l,kl

i1···il−2kl
Di1···il−2kl (−�)kl u v (3.4)

whenever �mu = �mv = 0. We now recall suitable complex geometrical optics (CGO) solutions 
to the polyharmonic equation given in (A.5),

u(x;h) =e
1
h
(e1+iη2)·x

(
a0(x) + ha1(x) + · · · + hm−1am−1(x) + r(x;h)

)
= e

1
h
(e1+iη2)·xÃ,

v(x;h) =e− 1
h
(e1+iη2)·x

(
b0(x) + hb1(x) + · · · + hm−1bm−1(x) + r̃(x;h)

)
= e− 1

h
(e1+iη2)·xB̃,

where the error terms r(x; h) and r̃(x; h) satisfy the estimate ‖r(x, h)‖H 2m
scl

≤ chm and 

‖̃r(x, h)‖H 2m
scl

≤ chm. Moreover, we also have that aj and bj are smooth functions in � for 
all j with 0 ≤ j ≤ m − 1. Substituting the expressions for u and v given above in the identity 
(3.4) and using (A.2) and (A.3) we obtain
413
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0 =
2m−2∑
l=0

[ l
2 ]∑

kl=0

b
l,kl

i1···il−2kl
Di1···il−2kl

[
e

1
h
(e1+iη2)·x(− 1

h
T − �)kl Ã

]
e− 1

h
(e1+iη2)·xB̃

=
2m−2∑
l=0

[ l
2 ]∑

kl=0

b
l,kl

i1···il−2kl
(Di1 + 1

h
(e1 + iη2)i1) · · · (Dil−2kl

+ 1

h
(e1 + iη2)il−2kl

)

×
[
(− 1

h
T − �)kl Ã

]
B̃

=
2m−2∑
l=0

[ l
2 ]∑

kl=0

l−2kl∑
j=0

∫
�

(
l − 2kl

j

) b
l,kl

i1···il−2kl

hl−2kl−j
(e1 + iη2)i1 · · · (e1 + iη2)il−2kl−j

× Dil−2kl−j+1 · · ·Dil−2kl ((− 1

h
T − �)kl Ã) B̃. (3.5)

Here η2 can be any unit vector with e1 · η2 = 0. From now on we write η = η2. We recover 
the coefficients one by one multiplying (3.5) with suitable powers of h, by letting h → 0 and by 
inverting momentum ray transforms (MRT, see Lemma 3.1). This will be done in several steps.

Step 1. We first show that

b2m−2,0 = 0.

We start by multiplying (3.5) by h2m−2. Next utilizing the estimates given in Lemma A.4, 
‖r(x, h)‖H 2m

scl
≤ chm, ‖r̃(x, h)‖H 2m

scl
≤ chm and letting h → 0, we see that only 

∫
Rn

b
2m−2,0
i1···i2m−2

(e1 +
iη)i1 · · · (e1 + iη)i2m−2a0 b0 term survives and other terms will be 0. This implies∫

Rn

b
2m−2,0
i1···i2m−2

(e1 + iη)i1 · · · (e1 + iη)i2m−2a0 b0 = 0. (3.6)

Adapting ideas from [21] we write,

b
2m−2,0
i1···i2m−2

(e1 + iη)i1 · · · (e1 + iη)i2m−2

=
2m−2∑
p=0

(i)p
(

2m − 2

p

)
b

2m−2,0
i1···ip1···1ηi1 · · ·ηip

=
2m−2∑
p=0

b
2m−2,0,p
i1···ip ηi1 · · ·ηip , 2 ≤ i1, · · · , ip ≤ n for each 0 ≤ p ≤ 2m − 2, (3.7)

where b2m−2,0,p
i1···ip := (i)p

(2m−2
p

)
b

2m−2,0
i1···ip1···1 for each p with 0 ≤ p ≤ 2m − 2.

Recall that a0 and b0 solve the transport equations T ma0 = T mb0 = 0. We utilize (A.6) and 
choose the following specific solutions a0 and b0, where y2 denotes the direction of η and y′′ =
(y3, . . . , yn) are orthogonal directions:
414
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a0 = ym−1
2 g(y′′)e−iλ(y1+iy2) and b0 = yk

2 for all k with 0 ≤ k ≤ m − 1.

Here λ ∈ R and g(y′′) is any smooth function in the y′′ variable. This along with (3.6) and (3.7)
implies

∫
Rn−2

⎛⎜⎝ ∫
R2

2m−2∑
p=0

b
2m−2,0,p
i1···ip (y1, y2, y

′′) ηi1 · · ·ηip ym−1+k
2 e−iλ(y1+iy2)dy1 dy2

⎞⎟⎠g(y′′)dy′′ = 0.

Since g can be any smooth function in the y′′ variable, varying g and fixing k = m − 1 yields

∫
R

2m−2∑
p=0

b̂
2m−2,0,p
i1···ip (λ, y2, y

′′) ηi1 · · ·ηip y2m−2
2 eλy2dy2 = 0. (3.8)

Here (̂·) is the partial Fourier transform in the x1 variable. This notation will be used throughout 
the rest of the article to denote the partial Fourier transform. Next, we set λ = 0 in above to obtain

∫
R

2m−2∑
p=0

b̂
2m−2,0,p
i1···ip (0, y2, y

′′) ηi1 · · ·ηip y2m−2
2 dy2 = 0.

Recall that η can be any unit vector orthogonal to e1, and y2 is the coordinate in direction of η. 
Thus the above identity can be interpreted as the vanishing of a certain MRT. By Lemma 3.1 we 
obtain ̂b2m−2,0(0, x′) = 0. We next argue by induction and assume that

dr

dλr
b̂2m−2,0(0, x′) = 0 for 0 ≤ r ≤ M. (3.9)

Now differentiating (3.8) with respect to λ for M + 1 times, then setting λ = 0 and using (3.9)
we obtain ∫

R

2m−2∑
p=0

(
dM+1

dλM+1 b̂
2m−2,0,p
i1···ip

)
(0, y2, y

′′) ηi1 · · ·ηip y2m−2
2 dy2 = 0.

The combination of this with Lemma 3.1 implies dM+1

dλM+1 b̂2m−2,0(0, x′) = 0. Hence by induction 
we have

dr

dλr
b̂2m−2,0(0, x′) = 0 for all non-negative integers r. (3.10)

Since b2m−2,0 is compactly supported, the function b̂2m−2,0(λ, x′) is analytic in the λ variable 
by the Paley-Wiener theorem. This together with (3.10) gives b2m−2,0 = 0.

Step 2. In this step we prove that for each r with 0 ≤ r ≤ m − 2, we have

b2m−2−k,r−k = 0 for all 0 ≤ k ≤ r. (3.11)
415
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The proof is based on induction in r . For r = 0 (3.11) follows from Step 1. Assume that (3.11)
is true for all s with 0 ≤ s ≤ r < m − 2. Our goal is to prove (3.11) for r + 1. To this end, we first 
separate the integrals for j = 0 and that of for j ≥ 1 in (3.5). Then we again separate the term 
corresponding to j = 0 into two terms. As a result from (3.5) we obtain,

0 =
2m−2−r−1∑

l=0

[ l
2 ]∑

kl=0

∫
�

b
l,kl

i1···il−2kl

hl−2kl
(e1 + iη2)i1 · · · (e1 + iη2)il−2kl

((− 1

h
T − �)kl Ã) B̃

+
2m−2∑

l=2m−2−r

[ l
2 ]∑

kl=0

∫
�

b
l,kl

i1···il−2kl

hl−2kl
(e1 + iη2)i1 · · · (e1 + iη2)il−2kl

((− 1

h
T − �)kl Ã) B̃

+
2m−2∑
l=0

[ l
2 ]∑

kl=0

l−2kl∑
j=1

∫
�

(
l − 2kl

j

) b
l,kl

i1···il−2kl

hl−2kl−j
(e1 + iη2)i1 · · · (e1 + iη2)il−2kl−j

× Dil−2kl−j+1 · · ·Dil−2kl ((− 1

h
T − �)kl Ã) B̃.

Simplifying and utilizing induction assumption in the second integral above we conclude,

0 =
2m−2−r−1∑

l=0

[ l
2 ]∑

kl=0

∫
�

b
l,kl

i1···il−2kl

hl−2kl
(e1 + iη2)i1 · · · (e1 + iη2)il−2kl

× ((− 1

h
T − �)kl Ã) B̃

+
[ 2m−2−r

2 ]∑
k2m−2−r=1

∫
�

b
2m−2−r,k2m−2−r

i1···il−2kl

h2m−2−r−2k2m−2−r
(e1 + iη2)i1 · · · (e1 + iη2)i2m2−2−r−2k2m−2−r

× ((− 1

h
T − �)k2m−2−r Ã) B̃

+ · · · +
m−1∑

k2m−2=r+1

∫
�

b
2m−2,k2m−2
i1···i2m−2−2k2m−2

h2m−2−2k2m−2
(e1 + iη2)i1 · · · (e1 + iη2)i2m−2−2k2m−2

× ((− 1

h
T − �)k2m−2Ã) B̃

+
2m−2∑
l=0

[ l
2 ]∑

kl=0

l−2kl∑
j=1

∫
�

(
l − 2kl

j

) b
l,kl

i1···il−2kl

hl−2kl−j
(e1 + iη2)i1 · · · (e1 + iη2)il−2kl−j

× Dil−2kl−j+1 · · ·Dil−2kl ((− 1

h
T − �)kl Ã) B̃. (3.12)

Our next goal is to find the limit limh→0 h2m−2−r−1× (3.12). To achieve this, we consider the 
non-zero integrals in the R.H.S. of (3.12) with h(2m−2−r−1) in the denominator. Observe that, 
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these terms are derived from first three integrals in the preceding equation (for certain values of 
summation variables) and there will be no contribution from the last term in the above displayed 
equation as we see below. We show this by examining the last term for each value of j , when 
l ≥ 2m −2 − r as j ≥ 1. We verify this only for j = 1 and for other values of j similar arguments 
work. Therefore we consider

2m−2∑
l=0

[ l
2 ]∑

kl=0

∫
�

(
l − 2kl

1

) b
l,kl

i1···il−2kl

hl−2kl−1 (e1 + iη2)i1 · · · (e1 + iη2)il−2kl−1D
il−2kl ((− 1

h
T − �)kl Ã) B̃

=
2m−2−r−1∑

l=0

[ l
2 ]∑

kl=0

∫
�

(
l − 2kl

1

) b
l,kl

i1···il−2kl

hl−2kl−1 (e1 + iη2)i1 · · · (e1 + iη2)il−2kl−1

× Dil−2kl ((− 1

h
T − �)kl Ã) B̃

+
2m−2∑

l=2m−2−r

[ l
2 ]∑

kl=0

∫
�

(
l − 2kl

1

) b
l,kl

i1···il−2kl

hl−2kl−1 (e1 + iη2)i1 · · · (e1 + iη2)il−2kl−1

× Dil−2kl ((− 1

h
T − �)kl Ã) B̃

=
2m−2−r−1∑

l=0

[ l
2 ]∑

kl=0

∫
�

(
l − 2kl

1

) b
l,kl

i1···il−2kl

hl−2kl−1 (e1 + iη2)i1 · · · (e1 + iη2)il−2kl−1

× Dil−2kl ((− 1

h
T − �)kl Ã) B̃

+
[ 2m−2−r

2 ]∑
k2m−2−r=1

∫
�

(
2m − 2 − r − 2k2m−2−r

1

) b
2m−2−r,k2m−2−r

i1···im−2−r−2k2m−2−r

h2m−2−r−2k2m−2−r−1

× (e1 + iη2)i1 · · · (e1 + iη2)i2m−2−r−2k2m−2−r−1

× D
i2m−2−r−2k2m−2−r ((− 1

h
T − �)k2m−2−r Ã) B̃ + · · ·

+
m−1∑

k2m−2=r+1

∫
�

(
2m − 2 − 2k2m−2

1

) b
2m−2,k2m−2
i1···i2m−2−2k2m−2

h2m−2−2k2m−2−1

× (e1 + iη2)i1 · · · (e1 + iη2)i2m−2−2k2m−2−1

× D
i2m−2−2k2m−2 ((− 1

h
T − �)k2m−2Ã) B̃.

We arrived at the last equality using the induction hypotheses. Now notice that the highest power 
of h in the denominator of the aforementioned terms is 2m − 2 − r − 2, therefore these terms 
will disappear, when multiplying them by h2m−2−r−1 and then letting h → 0. Thus multiplying 
(3.12) by h2m−2−r−1 and letting h → 0, we obtain
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r+1∑
k=0

∫
�

b2m−2−k,r+1−k (e1 + iη)i1 · · · (e1 + iη)i2m−2−2(r+1)+k

(
(−T )r+1−ka0

)
b0 = 0. (3.13)

Employing the same strategy as in (3.7), we next express b2m−2−k,r+1−k (e1 + iη)i1 · · · (e1 +
iη)i2m−2−2(r+1)+k

for each 0 ≤ k ≤ r + 1, as the sum of lower order tensors in the following way:

B2m−2−k,r+1−k =
2m−2−2(r+1)+k∑

p=0

b
2m−2−l,r+1−k,p
i1···ip ηi1 · · ·ηip for 0 ≤ k ≤ r + 1.

Next, we choose a0 = ym−1
2 g(y′′)e−iλ(y1+iy2) and b0 = y

m−1−p
2 for 0 ≤ p ≤ r +1 to be the solu-

tion of the transport equation T m(·) = 0, where g is an arbitrary smooth function in y′′. Plugging 
this into (3.13), then utilizing arbitrariness of g and performing integral in the y1 variable from 
(3.13) we conclude

r+1∑
k=0

∫
R

cr+1−kB̂
2m−2−k,r+1−k(λ, y2, y

′′) y
2m−2−2(r+1)+k+(r+1−p)
2 eλy2dy2 = 0

for 0 ≤ p ≤ r + 1 (3.14)

where cr+1−k are non-zero constants for 0 ≤ k ≤ r + 1. Note that the constant (−1)r+1−k ap-
pearing in the equation (3.13) is absorbed into cr+1−k . Next, we specify λ = 0 in above to obtain

r+1∑
k=0

cr+1−kI
2m−2−2(r+1)+k+(r+1−p)B̂2m−2−k,r+1−k = 0 for 0 ≤ p ≤ r + 1,

where for all non-negative integers m, Im stands for the MRT defined in Section 6; see equation 
(6.2). We next combine Lemma 6.7 with Lemma 3.1 to deduce that b̂2m−2−k,r+1−k(0, x′) = 0
for all 0 ≤ k ≤ r + 1. At first, applying Lemma 6.7 from the preceding equation we segre-
gate MRT of different order tensor fields. This means that for any 0 ≤ k ≤ r + 1, we have 
I 2m−2−2(r+1)+kB̂2m−2−k,r+1−k = 0. This along with Lemma 3.1 entails ̂b2m−2−k,r+1−k(0, x′) =
0 for all 0 ≤ k ≤ r + 1.

We next argue by induction and for each 0 ≤ k ≤ r + 1 assume that(
dp

dλp
b̂2m−2−k,r+1−k

)
(0, x′) = 0 for all 0 ≤ p ≤ M. (3.15)

Next differentiating (3.14) M + 1 times more and then evaluating at λ = 0 and using (3.15) we 
obtain

r+1∑
k=0

cr+1−kI
2m−2−2(r+1)+k+(r+1−p)

(
dM+1

dλM+1 B̂2m−2−k,r+1−k

)
= 0.

This together with Lemma 6.7 entails
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I 2m−2−2(r+1)+k

(
dM+1

dλM+1 B̂2m−2−k,r+1−k

)
= 0 for all 0 ≤ k ≤ r + 1.

By Lemma 3.1 this gives 
(

dM+1

dλM+1 b̂2m−2−k,r+1−k
)

(0, x′) = 0 for all 0 ≤ k ≤ r + 1. Hence by 
induction for all non-negative integers p, we obtain(

dp

dλp
b̂2m−2−k,r+1−k

)
(0, x′) = 0 for all 0 ≤ k ≤ r + 1. (3.16)

We have that for each 0 ≤ k ≤ r + 1, the tensor b2m−2−k,r+1−k is compactly supported in the 
x1 variable. This implies the tensor b̂2m−2−k,r+1−k(λ, x′) is analytic in the λ variable by the 
Paley-Wiener theorem. This together with (3.16) implies that, for each 0 ≤ k ≤ r + 1 we have 
b2m−2−k,r+1−k = 0 in �. This finished the induction step and completes the proof of (3.11).

Observe that, m ≤ 2m − 2 − k ≤ 2m − 2 and 0 ≤ r − k ≤ m − 2 − k whenever 0 ≤ k ≤ r and 
0 ≤ r ≤ m − 2. After a re-indexing we conclude combining Step 1 and Step 2 that

bl,kl = 0 for all kl such that 0 ≤ kl ≤ l − m and m ≤ l ≤ 2m − 2.

At this stage, inserting above findings into the integral identity (3.4) we obtain

0 =
2m−2∑
l=m

[ l
2 ]∑

kl=l−m+1

b
l,kl

i1···il−2kl
Di1···il−2kl (−�)kl u v +

m−1∑
l=0

[ l
2 ]∑

kl=0

b
l,kl

i1···il−2kl
Di1···il−2kl (−�)kl u v.

Step 3. Next, we show that

bl,kl =
{

0 for all 0 ≤ kl ≤ [
l
2

]
where 0 ≤ l ≤ m − 1

0 for all l − m < kl ≤ [
l
2

]
where m ≤ l ≤ 2m − 2.

(3.17)

This step can be carried out using the same analysis used in [5, Theorem 1.1]. However, we 
give an alternate proof using the ideas from Step 2. To this end, we multiply (3.5) by hm−1 and 
let h → 0 (using similar arguments given in Step 2) to obtain

2m−2∑
l=m−1

∫
�

bl,kl (e1 + iη)i1 · · · (e1 + iη)il−2kl
T kl a0 b0 = 0, (3.18)

where m − 1 − km−1 = · · · = 2m − 2 − k2m−2 = A = m − 1 and a0, b0 satisfy T m(·) = 0. This 
entails

2m−2∑
l=m−1

∫
�

bl,l−(m−1) (e1 + iη)i1 · · · (e1 + iη)i2m−2−l
T l−(m−1) a0 b0 = 0

with T ma0 = T mb0 = 0.
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Extending the tensor fields bl,l−(m−1) by 0 outside of �, then choosing a0=ym−1
2 g(y′′)e−iλ(y1+iy2)

and b0 = y
m−1−p
2 for 0 ≤ p ≤ m − 1, varying g to be any smooth function in the y′′ variable and 

performing integral in the y1 variable, we obtain for almost every y′′ that

2m−2∑
l=m−1

cl−(m−1) e
λy2 I 2m−2−l+(m−1−p)B̂l,l−(m−1)(λ, y2, y

′′)dy2 = 0

for all p with 0 ≤ p ≤ m − 1,

where Bl,l−(m−1) can be expressed in terms of bl,l−(m−1) as it was done in (3.7). At this stage, 
utilizing Lemma 6.7 we deduce that I 2m−2−l B̂l,l−(m−1) = 0 for every l satisfying m − 1 ≤ l ≤
2m −2. This along with Lemma 3.1 yields ̂bl,l−(m−1)(0, x′) = 0 for m −1 ≤ l ≤ 2m −2. We now 
use induction to conclude that for all non-negative integers p, dp

dλp b̂l,l−(m−1)(λ, x′) = 0, where 
m − 1 ≤ l ≤ 2m − 2, which is similar to the line of argument presented in the previous steps; see 
for instance [(3.9)-(3.10)]. Combining this with Paley-Wiener theorem we obtain bl,l−(m−1)(x) =
0, where m − 1 ≤ l ≤ 2m − 2.

Next we consider the coefficients multiplying (3.5) by hm−2 and letting h → 0. In this case, 
we will obtain the next identity by replacing m by m − 1 in (3.18).

2m−4∑
l=m−2

∫
�

bl,kl (e1 + iη)i1 · · · (e1 + iη)il−2kl
T kl a0 b0 = 0,

where m − 2 − km−2 = · · · = 2m − 4 − k2m−4 = A = m − 2. Iterating similar steps as above we 
can infer that bl,l−(m−2) = 0 for all l with m − 2 ≤ l ≤ 2m − 4. In doing so, after finitely many 
steps, we conclude (3.17). Now the proof of Theorem 2.1 is complete combining all the steps 
(Step 1, Step 2 and Step 3). �
Lemma 3.1. Let f (x1, x′) be a bounded symmetric m-tensor field in Rn, compactly supported 
in x′ variable. Suppose for all unit vectors η ⊥ e1, writing x′ = (x2, x′′) where x2 is the direction 
of η and x′′ are orthogonal directions, we have that

∫
R

xm
2 fi1···im(0, x2, x

′′)

⎛⎝ m∏
j=1

(e1 + iη)ij

⎞⎠dx2 = 0, for a.e. x′′.

Then,

f (0, x′) =
{

iδv(0, x′) for m ≥ 2

0 for m = 0,1

where v is a symmetric m − 2 tensor field compactly supported in x′ variable. In addition, if we 
assume that f satisfies jδf = 0 then f (0, x′) = 0.

We do not present the proof of this lemma as it follows from [5, Lemma 3.7]. We end this 
section with the following remarks.
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Remark 3.2. This remark suggests that there is a another way of avoiding the gauge appearing in 
the Theorem 2.3. Instead of assuming a2m−1 = 0, one can assume that al = iδb

l−2 for m ≤ l ≤
2m − 1 in Theorem 2.1 and conclude in a similar way that aj = 0 for all j with 0 ≤ j ≤ 2m − 1.

Remark 3.3. Corollary 2.2 gave a density result for even integers. For odd integers K ≥ 0, The-
orem 2.1 implies the following (non-optimal) result: the set

AK = span

{
v ⊕|α|≤K Dαu : �

[
K+2

2

]
+1

u = �

[
K+2

2

]
+1

v = 0 in �

}
is dense in the space SK

(
C∞(�)

)= ⊕K
p=0S

p
(
C∞(�)

)
.

One could also ask if the linear span of the set

Ap1p2 :=
{
Dαv ⊗ Dβu : �p1+1u = �p2+1v = 0 in �,

for all multi-indices α, β such that |α| = p1, |β| = p2

}
,

is dense in the space smooth symmetric tensor fields defined in � of order p1 + p2. Here ⊗
denotes the symmetric tensor product.

In particular when p1 = p2 = 1, this is asking if the linear span of tensor products of gradients 
of any two biharmonic functions is dense in the space of smooth symmetric two tensor fields. 
However, a similar density result is not true if one replace biharmonic functions by harmonic 
functions. The latter density question arises in the linearized version of the boundary rigidity 
problem; see [30, Chapter 1] and [28, Chapter 11]. This question also appears while linearizing 
certain anisotropic elliptic PDE from the Cauchy data set; see [8, Section 6].

4. Recovery of coefficients under an additional assumption

In this section we present the proof of Proposition 4.3 which will be the main ingredient 
to prove Theorem 2.3 in the following section. To proceed further, we define two differential 
operators on C∞(Sm), the space of smooth symmetric tensor fields of order m.

Definition 4.1. [30, Chapter 2] The symmetric covariant derivative d : C∞(Sm) → C∞(Sm+1)

is given by

(df )i1···im+1 = σ(i1 · · · im+1)
∂fi1···im
∂xim+1

, 1 ≤ i1 · · · , im+1 ≤ n.

Definition 4.2. [30, Chapter 2] The divergence operator δ : C∞(Sm+1) → C∞(Sm) is given by

(δf )i1···im =
n∑

k=1

∂fi1···imk

∂xk

, 1 ≤ i1 · · · , im ≤ n.

The operators −d and δ are dual to each other with respect to L2 inner product. We also define 
dk : C∞(Sm) → C∞(Sm+k) by taking composition of d with itself k times. Similarly we define 
δk : C∞(Sm) → C∞(Sm−k). In particular,
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δmf =
n∑

i1,··· ,im=1

∂mfi1···im
∂xi1 · · · ∂xim

, for any f ∈ C∞(Sm),

dmφ = ∂mφ

∂xi1 · · · ∂xim

, for any φ ∈ C∞(�).

Our next result is as follows.

Proposition 4.3. Let m ≥ 1. Suppose

∫
�

2m−1∑
l=0

al
i1···ilD

i1···il u v = 0 whenever �mu = �mv = 0. (4.1)

1. Then we have a2m−1 = 0 in � if we additionally assume

δ2m−1a2m−1 = 0 and jδa
2m−1 = 0. (4.2)

As a result, this implies aj = 0 in � for 0 ≤ j ≤ 2m − 1 by Theorem 2.1.
2. Moreover, we also have

a2m−1 = d2m−1φ + iδa
2m−1,1 where φ fulfils ∂l

νφ|∂� = 0 for 0 ≤ l ≤ 2m − 2,

(4.3)

where φ is a scalar function and a2m−1,1 is a symmetric tensor of order 2m − 3.

Proof. Step 1. Extend a2m−1 by zero to Rn. We first prove that (4.1) implies∫
Rn

a2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0, whenever T ma0 = T mb0 = 0. (4.4)

This step can be proved by choosing u and v to be CGO solutions as in (A.5) and then 
multiplying (4.1) by h2m−1 and letting h → 0.

Step 2. Here we show that (4.4) implies that certain MRTs of

â2m−1,odd :=
m−1∑
p=0

i
′m−1−p
δ â2m−1,2p+1(0, y2, y

′′) and

â2m−1,even :=
m−1∑
p=0

i
′m−p
δ â2m−1,2p(0, y2, y

′′)

become 0. Recall that â denotes the Fourier transform of a in x1, and note that ̂a2m−1,odd and 
â2m−1,even are tensor fields of order 2m − 1 and 2m − 2 respectively. Also i′δ and j ′

δ are same as 
(3.1) and (3.2) respectively. However in this case the indices vary from 2 to n.
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Similar to (3.7)) we next write

a2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 + iη)i2m−1

=
2m−1∑
p=0

a
2m−1,p
i1···ip ηi1 · · ·ηip , 2 ≤ i1, · · · , ip ≤ n for each 0 ≤ p ≤ 2m − 1,

where a2m−1,p
i1···ip = (i)p

(2m−1
p

)
a2m−1
i1···ip1···1 = cp (i)p a2m−1

i1···ip1···1. This together with (4.4) implies

∫
Rn

2m−1∑
p=0

a
2m−1,p
i1···ip ηi1 · · ·ηipa0 b0 = 0.

Next we choose a0 = ym−1
2 g(y′′)e−iλ(y1+iy2), b0 = ym−1

2 . Then utilizing the arbitrariness of g
and taking partial Fourier transform in the first variable, we obtain

∫
R

eλy2

2m−1∑
p=0

â
2m−1,p
i1···ip (λ, y2, y

′′) ηi1 · · ·ηip y2m−2
2 dy2 = 0. (4.5)

Next, we specify λ = 0 in above, after that we replace η by −η and again put λ = 0 in above. As 
a result, we obtain following two equations.

0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
R

2m−1∑
p=0

â
2m−1,p
i1···ip (0, y2, y

′′) ηi1 · · ·ηip y2m−2
2 dy2

∫
R

2m−1∑
p=0

(−1)p â
2m−1,p
i1···ip (0, y2, y

′′) ηi1 · · ·ηip y2m−2
2 dy2.

We add and subtract above two relations. This entails

∫
R

2m−1∑
p=0

(1 ± (−1)p) â
2m−1,p
i1···ip (0, y2, y

′′) ηi1 · · ·ηip y2m−2
2 dy2 = 0.

This allows us to separate even and odd modes of a2m−1. After a re-indexing this entails

0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
R

m−1∑
p=0

â
2m−1,2p+1
i1···i2p+1

(0, y2, y
′′) ηi1 · · ·ηip y2m−2

2 dy2

∫
R

m−1∑
p=0

â
2m−1,2p
i1···i2p

(0, y2, y
′′) ηi1 · · ·ηip y2m−2

2 dy2.

Utilizing Lemma 6.5, the next identities follow from the definition of a2m−1,odd and a2m−1,even.
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∫
R

â
2m−1,odd
i1···i2m−1

(0, y2, y
′′) ηi1 · · ·ηi2m−1 y2m−2

2 dy2 = 0, (4.6)

∫
R

â
2m−1,even
i1···i2m−2

(0, y2, y
′′) ηi1 · · ·ηi2m−2 y2m−2

2 dy2 = 0. (4.7)

Step 3. We now assume the additional conditions (4.2). Then we claim that

â2m−1(0, x′) = 0.

Observe that, combining Lemma 6.2 and (4.6) we have 
∫
R

â
2m−1,odd
i1···i2m−1

(0, y2, y′′)ηi1 · · ·ηi2m−1y
p

2 dy2

= 0 for all 0 ≤ p ≤ 2m − 2. In other words, vanishing the highest order moment is enough. 
This along with [30, Theorem 2.17.2] entails that there is a distribution φ(0, x′) satisfying 
â2m−1,odd(0, x′) = d2m−1

x′ φ(0, x′). This implies

â2m−1,2m−1 = −
m−2∑
p=0

i
′m−1−p
δ â2m−1,2p+1 + d2m−1

x′ φ. (4.8)

From [30, Theorem 2.17.2] we also have φ(0, x′) = 0 outside of some ball in Rn−1.
Using the fact that â2m−1,odd(0, x′) ∈ L2(Rn−1) and d2m−1

x′ φ(0, x′) = (∂j1...j2m−1φ(0,

x′))2≤j1,...,j2m−1≤n, it follows that φ ∈ H 2m−1(Rn−1). Here Hk(Rn−1) denotes the L2 based 
Sobolev space of order k; see e.g. [12, Chapter 5] for precise definition. We next consider the L2

inner product of ̂a2m−1,2m−1 in the following way:

〈̂a2m−1,2m−1(0, x′), â2m−1,2m−1(0, x′)〉

=
n∑

i1,···i2m−1=2

∫
Rn−1

â
2m−1,2m−1
i1···i2m−1

(0, x′) â
2m−1,2m−1
i1···i2m−1

(0, x′) dx′.

This together with (4.8) entails

〈̂a2m−1,2m−1, â2m−1,2m−1〉

=
〈̂
a2m−1,2m−1,−

m−2∑
p=0

i
′m−1−p
δ â2m−1,2p+1 + d2m−1

x′ φ

〉

=
〈̂
a2m−1,2m−1,−

m−2∑
p=0

i
′m−1−p
δ â2m−1,2p+1

〉
+
〈̂
a2m−1,2m−1, d2m−1

x′ φ
〉

= −
m−2∑
p=0

〈̂
a2m−1,2m−1, i

′m−1−p
δ â2m−1,2p+1

〉
+
〈̂
a2m−1,2m−1, d2m−1

x′ φ
〉
.

(4.9)

Now we take the Fourier transform of jδa
2m−1 = 0 in the x1 variable and evaluate at the origin 

to obtain jδâ
2m−1(0, x′) = 0. This implies
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j ′
δâ

2m−1,2m−1 =
n∑

k=2

â
2m−1,2m−1
i1···i2m−3kk =

n∑
k=2

(i)2m−1 â2m−1
i1···i2m−3kk = −(i)2m−1â2m−1

i1···i2m−311

= −
(

2m − 1

2m − 3

)−1

(i)2m−1−(2m−3)â2m−1,2m−3 = 1

c2m−3
â2m−1,2m−3.

Proceeding in this way we obtain

j
′m−1−p
δ â2m−1,2m−1 = 1

cp

â2m−1,2p+1 for 0 ≤ p ≤ m − 2. (4.10)

Taking Fourier transform of the relation δ2m−1a2m−1 = 0 with respect to x1 variable gives 
2m−1∑
k=0

(2m−1
k

)
λk δ2m−1−k

x′ â2m−1(λ, x′) = 0. This for λ = 0 entails

δ2m−1
x′ â2m−1(0, x′) = 0 =⇒ δ2m−1

x′ â2m−1,2m−1(0, x′) = 0.

Let φN ∈ C∞
c (Rn−1) such that φN → φ in H 2m−1, then from above as N → ∞ we see that

0 = (−1)2m−1〈δ2m−1
x′ â2m−1,2m−1, φN 〉 = 〈̂a2m−1,2m−1, d2m−1

x′ φN 〉 → 〈̂a2m−1,2m−1, d2m−1
x′ φ〉.

This implies 〈̂a2m−1,2m−1, d2m−1
x′ φ〉 = 0. The combination of this along with (4.9) and (4.10)

implies

〈̂a2m−1,2m−1, â2m−1,2m−1〉 = − 1

cp

m−2∑
p=0

〈̂
a2m−1,2p+1, â2m−1,2p+1

〉
.

To put it another way, it gives

〈̂a2m−1,2m−1, â2m−1,2m−1〉 +
m−2∑
p=0

1

cp

〈̂
a2m−1,2p+1, â2m−1,2p+1

〉
= 0.

This in addition to the fact that cp > 0 for 0 ≤ p ≤ m − 2 implies

â2m−1,2p+1(0, x′) = 0 for 0 ≤ p ≤ m − 1.

By Lemma 3.1 and jδa
2m−1 = 0 from (4.7) we obtain â2m−1,even(0, x′) = 0. This together 

with jδa
2m−1 = 0 implies 

m−1∑
p=0

1
cp

〈̂
a2m−1,2p, â2m−1,2p

〉 = 0. We have that cp > 0 for all p with 

0 ≤ p ≤ m − 1, this entails â2m−1,2p(0, x′) = 0 for all 0 ≤ p ≤ m − 1. The combination of 
â2m−1,2p(0, x′) = â2m−1,2p+1(0, x′) = 0 for all p with 0 ≤ p ≤ m − 1 implies ̂a2m−1(0, x′) = 0.

Step 4. We still assume the additional conditions in (4.2), and show that a2m−1 = 0.

Since a2m−1 is compactly supported in the x1 variable, this implies ̂a2m−1(λ, x′) is analytic 
in λ by Paley-Wiener theorem. Therefore it is enough to show that
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dl

dλl
â2m−1(0, x′) = 0 for all non-negative integers l.

From previous step we have ̂a2m−1(0, x′) = 0. We now argue by induction and assume that

dl

dλl
â2m−1(0, x′) = 0 for all integers l with 0 < l ≤ M. (4.11)

For M + 1, differentiating (4.5) M + 1 times with respect to λ gives

M+1∑
k=0

∫
R

(
M + 1

k

)
yM+1−k

2 eλy2
dk

dλk

⎛⎝2m−1∑
p=0

â
2m−1,p
i1···ip (λ, y2, y

′′)

⎞⎠ ηi1 · · ·ηip y2m−2
2 dy2 = 0.

We now specify λ = 0 in preceding equation and then utilize (4.11) to conclude

∫
R

2m−1∑
p=0

(
dM+1

dλM+1 â
2m−1,p
i1···ip (0, y2, y

′′)
)

ηi1 · · ·ηip y2m−2
2 dy2 = 0. (4.12)

Differentiating the relation 
2m−1∑
k=0

(2m−1
k

)
λk δ2m−1−k

x′ â2m−1(λ, x′) = 0, M + 1 times more with 

respect to λ gives

M+1∑
r=0

2m−1∑
k=r

(
2m − 1

k

)
k!

(k − r)!λ
k−r dM+1−r

dλM+1−r
δ2m−1−k
x′ â2m−1(λ, x′) = 0. (4.13)

From (4.11) we obtain

dM+1−r

dλM+1−r
δ2m−1−k
x′ â2m−1(0, x′) = 0 for 1 ≤ r ≤ M + 1 and 1 ≤ k ≤ 2m − 1.

In the last relation above we have used the fact that, d
dλ

commutes with ∂x′ . Setting λ = 0 in 

(4.13), then utilizing above findings we obtain dM+1

dλM+1 δ2m−1
x′ â2m−1(0, x′) = 0. Since jδa

2m−1 = 0, 

this implies jδ

(
dM+1

dλM+1 â2m−1(0, x′)
)

= 0. Using the last two relations and repeating the similar 

analysis as before for the integral (4.12) we obtain dM+1

dλM+1 â2m−1(0, x′) = 0. This completes the 
induction step and implies

dl

dλl
â2m−1(0, x′) = 0 for all non-negative integers l.

Combining this with Paley-Wiener theorem we obtain a2m−1(x) = 0 in �. In combining all 
of the above steps with Theorem 2.1, we conclude that aj (x) = 0 for all 0 ≤ j ≤ 2m − 1. To 
complete the proof of Proposition 4.3 we will use a decomposition result proved in Lemma 7.1.

Step 5. In this step we prove (4.3).
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We first substitute u and v from (A.5) in the integral identity (4.1) and obtain

∫
�

2m−1∑
l=0

al
i1···ilD

i1···il
(

e
(e1+iη)·x

h Ã

)
e− (e1+iη)·x

h B̃ = 0.

Multiplying above by h2m−1 and letting h → 0 we arrive at 
∫
�

a2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 +
iη)i2m−1a0 b0 = 0, where a0 and b0 solve the transport equation T ma0 = T mb0 = 0. Thanks to 
Lemma 7.1 we can decompose a2m−1 in the following way:

a2m−1 = ã2m−1 + iδb
2m−3 + d2m−1φ with ∂l

νφ|∂� = 0 for l = 0,1, · · · ,2m − 2,

and ã2m−1 meets the following conditions δ2m−1ã2m−1 = jδã
2m−1 = 0 in �. This is known as 

trace free Helmholtz type decomposition of symmetric tensor fields proved in Section 7. Plugging 
this decomposition of a2m−1 into 

∫
�

a2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0 and utilizing 
〈e1 + iη, e1 + iη〉 = 0 we obtain∫

�

(ã2m−1 + d2m−1φ)i1···i2m−1(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0. (4.14)

Since φ fulfils ∂l
νφ|∂� = 0 for 0 ≤ l ≤ 2m − 2, this along with integration by parts entails

(−1)2m−1
∫
�

(d2m−1φ)i1···i2m−1(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0

=
∫
�

φ

2m−1∑
k=0

(
2m − 1

k

)
T 2m−1−ka0 T kb0.

We next make use of transport equations T ma0 = 0 and T mb0 = 0 to deduce

∫
�

φ

2m−1∑
k=0

(
2m − 1

k

)
T 2m−1−ka0 T kb0 = 0.

This implies 
∫
�
(d2m−1φ)i1···i2m−1(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0. Combining this with 

(4.14) we arrive at 
∫
�

ã2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0. We next extend ã2m−1 to 

be 0 outside of � and obtain∫
Rn

ã2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0, where a0 and b0 solve T m(·) = 0.

Since ã2m−1 satisfies the conditions in (4.2), utilizing previous steps we obtain ã2m−1 = 0. This 
implies a2m−1 = iδb

2m−3 + d2m−1φ, where φ satisfies ∂l
νφ|∂� = 0 for 0 ≤ l ≤ 2m − 2. This 

completes the proof. �
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5. Proof of Theorem 2.3

The proof of Theorem 2.3 will be presented in this section. However, before we get to the 
proof of Theorem 2.3, let us have a look at the gauge transformation for the case of m = 2.

5.1. Gauge transformation

To this end we denote

La3,a2,a1,a0 = (−�)2 + a3
ijkD

ijk + a2
ijD

ij + a1
i D

i + a0,

L0 = (−�)2.

Note that Cauchy data of v and eφv up to order 3 are the same if φ ∈ C4(�) satisfies ∂j
ν φ|∂� = 0

for 0 ≤ j ≤ 3. Now we compute

e−φL0e
φv = e−φ(−�)2eφv

= (e−φ(−�)eφ)2v

= (�φ + |∇φ|2 + 2∇φ · ∇ + �)(�φ + |∇φ|2 + 2∇φ · ∇ + �)v

= (�)2v + �(∇φ · ∇v) + �(f (φ)v) + 2∇φ · ∇(�)v

+ 4∇φ · ∇(∇φ · ∇v) + 2∇φ · ∇(f (φ)v) + f 2(φ)v + 2f (φ)∇φ · ∇v + f (φ)�v

= (�)2v + 4∇φ · ∇�v︸ ︷︷ ︸
third order term

+4∇2φ · ∇2 + 4∇φ ⊗ ∇φ · ∇2 + 2f (φ)�

+ 2∇�φ · ∇v + 4∇φ · ∇2φ · ∇v + f (φ)∇φ · ∇v + 2∇f (φ) · ∇v

+ 4f (φ)∇φ · ∇v + v�(f (φ)) + 2v∇φ · ∇f (φ) + v f 2(φ),

where f (φ) = �φ + |∇φ|2.
The above calculation shows that if φ is as above, then

Ca3,a2,a1,a0 = C0,

where a3 = 4iδ(∇φ), and a2, a1, a0 can be read off from the computation above. Such calcula-
tions can also be done for m ≥ 3, but it will be somewhat cumbersome.

5.2. Summary of results

Here we summarize few important results we have gotten so far from previous sections since 
they will help us and the reader when we apply them in this section.

Lemma 5.1. Let aM ∈ C∞(�) be a symmetric M tensor field where M ≥ 0 is an integer.
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1. Let M = 2m − 1 and assume that

∫
Rn

a2m−1
i1···i2m−1

(e1 + iη)i1 · · · (e1 + iη)i2m−1a0 b0 = 0 for all unit vectors η ⊥ e1

where T ma0 = T mb0 = 0. Then we have a2m−1 = d2m−1φ + iδa
2m−1,1, where a2m−1,1 is 

a smooth symmetric tensor field of order 2m − 3, and φ ∈ C∞(�) satisfies ∂l
νφ|∂� = 0 for 

0 ≤ l ≤ 2m − 2.
2. Let M = 2m and assume that∫

Rn

a2m
i1···i2m

(e1 + iη)i1 · · · (e1 + iη)i2m
T a0 b0 = 0 for all unit vectors η ⊥ e1

where T m+1a0 = T m+1b0 = 0. Then we have a2m = d2mφ1 + iδa
2m,1, where a2m,1 is a 

smooth symmetric tensor field of order 2m − 2, and φ1 ∈ C∞(�) satisfies ∂l
νφ1|∂� = 0 for 

0 ≤ l ≤ 2m − 1.

Proof. For first part we refer Step 2-5 in the proof of Proposition 4.3. One can employ similar 
line of arguments for second part as well. �
Lemma 5.2. Let al be the same as above such that l ≤ m. Suppose there holds

m∑
j=1

∫
�

a
j
i1···ij (e1 + iη)i1 · · · (e1 + iη)ij T m−j a0b0 = 0 for all unit vectors η ⊥ e1

where T ma0 = T mb0 = 0. Then for some tensor aj,1 of order j − 2 we have

aj = djφj + iδa
j,1 where φj matches the boundary condition ∂lφj |∂� = 0 for 0 ≤ l ≤ j − 1.

Note that, a1,1 = 0.

Proof. The proof relies on the careful choice of solution of transport equations a0 and b0 along 
with second condition of Lemma 6.7 and Lemma 5.1. The proof of Theorem 2.1 which uses 
the first hypothesis of Lemma 6.7, involves a similar argument; see in Step 2 from equation 
(3.13)-(3.16). �
5.3. Proof of Theorem 2.3

Proof. The proof of Theorem 2.3 will be divided into several steps. Note that, for simplicity, in 
the proof we may use same symbols such as φ0, φ1, to express tensor fields of different order.

Step 1. The case of m = 2.
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By the assumption of Theorem 2.3 we have

∫
�

3∑
l=0

al
i1···ilD

i1···il u v = 0 whenever �2u = �2v = 0.

We insert CGO solutions of u and v given in (A.5) and derive

∫
�

3∑
l=0

al
i1···ilD

i1···il
(

e
(e1+iη)·x

h Ã

)
e− (e1+iη)·x

h B̃ = 0. (5.1)

To continue we then multiply (5.1) by h3 and let h → 0 to obtain∫
�

a3
i1···i3(e1 + iη)i1 · · · (e1 + iη)i3 a0 b0 = 0.

Here a0 and b0 solve T 2a0 = T 2b0 = 0. This together with Proposition 4.3 entails

a3 = d3φ0 + iδa
3,1 where φ0 fulfils ∂l

νφ0|∂� = 0 for 0 ≤ l ≤ 2 (5.2)

where a3,1 is a smooth vector field in �. Recall that, am,k denotes a symmetric tensor field of 
order m − 2k for every non-negative integers m and k for which m − 2k ≥ 0. After that, we 
see that the coefficient of h3 is indeed zero by plugging (5.2) into (5.1). However, it can be 
seen from the discussion at the beginning of this section that we have not yet obtained the exact 
gauge, which is iδ(∇φ), for some scalar φ. This differs from inverse problems involving second 
order elliptic partial differential equations, where the gauge can be obtained in a single step by 
multiplying a particular integral equation by h and then letting h → 0. The form of a3 presented 
in (5.2) can eliminate the coefficient of h3, but not the one corresponding to h2. As a result, 
multiplying (5.1) by h2 and setting h → 0 yields

3
∫
�

a3
i1···i3(e1 + iη)i1(e1 + iη)i2 ∂xi3

a0 b0 +
∫
�

a2
i1i2

(e1 + iη)i1 (e1 + iη)i2a0 b0 = 0.

This together with (5.2) implies

0 =3
∫
�

∂3
i1i2i3

φ0 (e1 + iη)i1(e1 + iη)i2 ∂xi3
a0 b0 +

∫
�

a2
i1i2

(e1 + iη)i1 (e1 + iη)i2a0 b0

+
∫
�

a
3,1
i (e1 + iη)i T a0 b0. (5.3)

Combining integration by parts, boundary conditions of φ0 and T 2a0 = T 2b0 = 0 from above 
we derive
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3

4

∫
�

∂i3φ0 ∂xi3
T a0 T b0 +

∫
�

a2
i1i2

(e1 + iη)i1 (e1 + iη)i2a0 b0 +
∫
�

a
3,1
i (e1 + iη)i T a0 b0 = 0.

The factor 1
4 appears in the above expression because T = 2(e1 + iη) · ∂x . Now we choose 

a0 = x · η. This gives T a0 = 2i and ∂xi3
T a0 = 0 for 1 ≤ i3 ≤ n. This implies

∫
�

a2
i1i2

(e1 + iη)i1 (e1 + iη)i2(x · η)b0 + 2i
∫
�

a
3,1
i (e1 + iη)i b0 = 0.

We next use Lemma 5.2 for m = 2 to obtain a2 = d2φ1 + iδa
2,1 and b1 = dφ2. Substituting this 

into above integral identity and using the boundary conditions of φ1 and φ2 we arrive at

a3,1 = dφ1 and a2 = d2φ1 + iδa
2,1

where φ1 satisfies ∂l
νφ1|∂� = 0 for 0 ≤ l ≤ 1. Inserting the above form of a3,1 and a2 in (5.3) and 

then performing integration by parts we obtain 
∫
�

φ0 (�T a0 T b0 + 〈∇T a0,∇T b0〉 ) = 0. Ex-
tending φ0 = 0 outside � and doing the change of variable x �→ y we obtain 

∫
Rn φ0

(
�T a0 T b0 +

〈∇T a0, ∇T b0〉
)= 0. We choose T a0 = y2 and T b0 = g(y′′) e−iλ(y1+iy2) for all λ with λ �= 0 and 

g is any smooth function in y′′ variable. This implies

�T a0 = 0, ∇T a0 = (0,1,0, · · · ,0) and ∇T b0 = e−iλ(y1+iy2)
(−λig(y′′), λg(y′′),∇y′′g(y′′)

)
.

Inserting above into the integral identity 
∫
Rn φ0 (�T a0 T b0 + 〈∇T a0,∇T b0〉) = 0 and then 

varying g and taking partial Fourier transform in the first variable, we obtain for almost every y′′
that 

∫
R φ̂0(λ, y2, y′′) eλy2 dy2 = 0 for all λ with λ �= 0. Since y2 varies in a compact set, one can 

let λ → 0 using Lebesgue dominated convergence theorem and obtain 
∫
R φ̂0(0, y2, y′′) dy2 = 0. 

This along with uniqueness of the ray transform [30, Chapter 2] implies φ0(0, x′) = 0. One can 
now repeat arguments used before to show that dl

dλl φ0(λ, x′)|λ=0 = 0 for all non-negative integers 
l. This implies φ0 = 0 by Paley-Wiener. As a result we obtain{

a3 = iδ(∇φ1) with φ1|∂� = 0

a2 = d2φ1 + iδa
2,1 with φ1|∂� = ∂νφ1|∂� = 0.

Since ∂l
νa

3|∂� = 0 for 0 ≤ l ≤ 3, this implies ∂l
νφ1 = 0 on ∂� for 0 ≤ l ≤ 3. Thus φ1 satisfies 

the conditions in (2.4). We now perform the gauge transformation in the third order perturbation 
and replace a3 by 0. After gauge transformation lower order terms will change accordingly. We 
denote them by ãl for l = 0, 1, 2. Note that ãl’s are now depends on φ1 and can be recovered 
using Theorem 2.1. In other words we obtain

L (·) = e−φ1 (−�)2eφ1(·) where φ1 fulfils (2.4) for m = 2.

This completes the proof of Theorem 2.3 for m = 2.

Step 2. The case of m = 3.
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The proof for m = 3 is similar to the case of m = 2. Therefore, in this case we do not give the 
complete details of the proof. By the assumption we have

∫
�

5∑
l=0

al
i1···ilD

i1···il u v = 0 where u and v solve �3u = �3v = 0. (5.4)

Inserting the CGO form of u and v given in (A.5) and multiplying (5.4) by h5 and then letting 
h → 0 we obtain from Proposition 4.3 that a5 = d5φ0 + iδa

5,1, where φ0 fulfils ∂l
νφ0|∂� = 0 for 

0 ≤ l ≤ 4. Next we multiply (5.4) by h4 and let h → 0 and repeat similar analysis for the case 
of m = 2 to deduce a5 = iδd3φ1 + i2

δ a5,2, a4 = d4φ1 + iδa
4,1 and φ0 = 0, where φ1 satisfies the 

boundary conditions ∂l
νφ1 = 0 for 0 ≤ l ≤ 3. We now consider coefficients of h−3. To do that, 

we multiply (5.4) by h3 and let h → 0 to obtain

0 =
∫
�

a3
i1i2i3

(e1 + iη)i1 · · · (e1 + iη)i3 a0b0 +
∫
�

a
4,1
i1i2

(e1 + iη)i1(e1 + iη)i2 T a0b0

+
∫
�

a
5,2
i1

(e1 + iη)i1 T 2a0b0 + 4
∫
�

d4
i1···i4φ1 (e1 + iη)i1 · · · (e1 + iη)i3 (∂i4a0)b0

+ 3
∫
�

d3
i1···i3φ1 (e1 + iη)i1(e1 + iη)i2 (T (∂i3a0))b0

+
∫
�

d3
i1···i3φ1 (e1 + iη)i1 · · · (e1 + iη)i3 �a0b0. (5.5)

We next analyze the last three terms in the above expression. To this end, we make use of in-
tegration by parts and ∂l

νφ1|∂� = 0 (where 0 ≤ l ≤ 3), then followed by T 3a0 = T 3b0 = 0. We 
are not going to mention where we applied these assumptions because it will be clear from the 
context. As a result, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�

d3
i1···i3φ1 (e1 + iη)i1 · · · (e1 + iη)i3 �a0b0 = − 1

8

∫
�

φ1
(
3T 2�a0 T b0 + 3T �a0 T 2b0

)
,∫

�

d3
i1···i3φ1 (e1 + iη)i1(e1 + iη)i2 T (∂i3a0) b0 = − 1

4

∫
�

φ1

[
2
〈∇T 2a0,∇T b0

〉+ 〈∇T a0,∇T 2b0
〉 ]

− ∫
�

φ1

[
2T 2�a0 T b0 + T �a0 T 2b0)

]
,∫

�

d4
i1···i4φ1 (e1 + iη)i1 · · · (e1 + iη)i3 (∂i4a0)b0 = 1

8

∫
�

φ1
(
3T 2�a0 T b0 + 3T �a0 T 2b0

)
+ ∫

�

φ1
(
3 〈∇T 2a0,∇T b0〉 + 3 〈∇T �a0,∇T 2b0〉

)
.

Choosing a0 = x · η, we see that T a0 = 2 i. This implies P(D)T a0 = 0, where P(D) is any 
differential operator. This along with (5.5) implies

0 =
∫
�

a3
i1i2i3

(e1 + iη)i1 · · · (e1 + iη)i3 a0 b0 +
∫
�

a
4,1
i1i2

(e1 + iη)i1(e1 + iη)i2T a0 b0. (5.6)
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The combination of this with Lemma 5.2 implies{
a3 = d3ψ1 + iδa

3,1 with ∂l
νψ1|∂� = 0 for 0 ≤ l ≤ 2,

a4,1 = d2ψ2 + iδa
4,2 with ∂l

νψ2|∂� = 0 for 0 ≤ l ≤ 1.

To proceed further we next establish a relation between ψ1 and ψ2. To do so, we substitute above 
relations into (5.6) and use integration by parts to conclude

1

8

∫
�

ψ1 (3T 2a0 T b0 + 3T a0 T 2b0) − 1

4

∫
�

ψ2 (2T 2a0 T b0 + T a0 T 2b0) = 0.

Since we choose a0 = x · η, this implies T 2a0 = 0 but T a0 �= 0. Next choosing b0 such that 
T 2b0 �= 0, we obtain 2ψ2 − 3ψ1 = 0 in �. Next we choose a0 such that T 2a0 = c, for certain 
non-zero constant and b0 such that T b0 = 0. With these choices of a0 and b0 from (5.5) we 
obtain 

∫
�

a
5,2
i1

(e1 + iη)i1 T 2a0b0 = 0. This implies a5,2 = dψ3, where ψ3 = 0 on ∂�. Thus we 
have{

a3 = d3ψ1 + iδa
3,1, a4,1 = 3

2 d2ψ1 + iδa
4,2 with ∂l

νψ1|∂� = 0 for 0 ≤ l ≤ 2

a5,2 = dψ3 with ψ3|∂� = 0.

Substituting this into (5.5) and then choosing a0 and b0 such that T 2a0 = c for some non-zero 
constant c and T 2b0 = 0, we obtain 

∫
�
(4 ψ3 + 3 ψ1)(T

2a0 T b0) = 0. This entails ψ3 = − 3
4 3ψ1. 

Thus we obtain

a3 = d3ψ1 + iδa
3,1, a4,1 = 3

2
d2ψ1 + iδa

4,2, a5,2 = −3

4
dψ1.

Again inserting above findings into (5.5) and utilizing integration by parts and boundary con-
ditions of ψ1, we see that the first three integrals in (5.5) disappear. As a result we end up with 
integral identities involving ϕ1 and one can iterate similar arguments presented in Step 2 to con-
clude ϕ1 = 0 in �. This entails a5 = − 3

4 i2
δ dψ1, a4 = iδ(

3
2 d2ψ1 + iδa

4,2) and a3 = d3ψ1 + iδa
3,1, 

where ψ1 satisfies the boundary conditions ∂l
νψ1|∂� = 0 for 0 ≤ l ≤ 2. We next use the assump-

tion from Theorem 2.3 that ∂l
νa

5|∂� = 0 for 0 ≤ l ≤ 5 to conclude ∂l
νψ1|∂� = 0 for 0 ≤ l ≤ 5. 

In this stage we perform the gauge transformation and substitute a5 = 0. Then the new set of 
coefficients can be recovered uniquely by Theorem 2.1. In particular we have

L (·) = e−ψ1(−�)3eψ1(·) where ψ1 satisfies (2.4) for m = 3.

This completes proof of Theorem 2.3 for the case of m = 3.

Step 3. The case of m ≥ 4.

In this case a2m−1 = im−1
δ A1, for some vector field A1 ∈ C∞(�) by the assumption of Theo-

rem 2.3. This implies we have the following integral identity.

∫
�

A1
i D

i(−�)m−1uv +
∫
�

2m−2∑
l=0

al
i1···ilD

i1···il u v = 0 where �mu = �mv = 0. (5.7)
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We next choose suitable CGO solutions of the polyharmonic operators given in Lemma (A.4). 
Note that, Laplace operator (−�) acting on such solutions can produce maximum one negative 
power of h; see (A.2). Thus Di(−�)m−1 will produce maximum m-th negative power of h when 
applied to CGO solutions. Therefore, we will encounter the vector field A1 when we multiply 
(5.7) by hm and the integral 

∫
�

A1
i D

i(−�)m−1u v will disappear when we multiply it by hm+k

for some integer k ≥ 1 and let h → 0. We start by multiplying (5.7) by h2m−2, · · · , hm+1 respec-
tively and utilize Theorem 2.1 to derive a2m−l = im−l

δ b2m−l,m−l for certain smooth symmetric 
tensors b2m−l,m−l of order l defined in � for each l with 2 ≤ l ≤ m − 1. Inserting these into (5.7)
and then multiplying (5.7) by hm we obtain

∫
�

A1
i (e1 + iη)i T

m−1a0 b0 +
m∑

l=2

∫
�

b
2m−l,m−l
i1···il (e1 + iη)i1 · · · (e1 + iη)il T

m−la0 b0 = 0. (5.8)

We next write above integrals over Rn by extending the symmetric tensor fields by 0 outside 
�. Then we choose particular solution of the transport equation T ma0 = T mb0 = 0. Now combi-
nation of these, (5.8) and Lemma 5.2 entail A1 = dφ1 and b2m−l,m−l = dlφl + iδb

2m−l,m−l+1 for 
2 ≤ l ≤ m, where each φl for 1 ≤ l ≤ m satisfies the boundary conditions ∂l−1

ν φl |∂� = 0. Sub-
stituting above relations into (5.8) we obtain 

∫
�

∑m
l=1

〈
dlφl, (e1 + iη)⊗l

〉
T m−la0 b0 = 0. This 

along with integration by parts and the boundary conditions for φl implies

m∑
l=1

(−1)l φl

l∑
p=1

(
l

p

)
T m−pa0 T pb0 = 0.

We next choose b0 in such a way that T p+1b0 = 0 while T pb0 �= 0 for 1 ≤ p ≤ m − 1. The com-
bination of this with 

∑m
l=1(−1)l φl

∑l
p=1

(
l
p

)
T m−pa0 T pb0 = 0 implies 

∑m
l=p

(
l
p

)
(−1)l φl = 0

for each p with 1 ≤ p ≤ m − 1. We obtain m − 1 relations involving m unknown. Fix x0 ∈ �, 
then from above we obtain

m∑
l=p

(
l

p

)
(−1)l φl(x0) = 0 for 1 ≤ p ≤ m − 1.

It is evident that the above matrix equation has one dimensional kernel. Therefore φ1(x0) =
φ2(x0) = · · · = φm(x0) = φ(x0) (say). Since the matrix is independent of x, this implies one 
can vary x0 and obtain φ1(x) = φ2(x) = · · · = φm(x) = φ(x) in �. Therefore we obtain 
a2m−1 = im−1

δ A1 = im−1
δ (∇φ) with ∂m−1

ν φ|∂� = 0. By the assumption of Theorem 2.3 we have 
∂l
νa

2m−1|∂� = 0 for 0 ≤ l ≤ 2m − 1, this immediately gives the same for φ. Since φ satisfies 
(2.4), this implies we can now implement the gauge transformation and eliminate the highest 
order perturbation a2m−1. Lower order coefficients will change as a result and those terms can 
be retrieved using Theorem 2.1. Thus we obtain

L(·) = e−φ(−�)meφ (·) where φ fulfils ∂l
νφ|∂� = 0 for 0 ≤ l ≤ 2m − 1.

This completes the proof. �
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5.4. Remarks about general case

We wrap up this section with a discussion regarding how one might proceed in the general 
case. Since the operator (1.1) we consider is not symmetric, the gauge we encounter in the term 
a2m−1 will propagate up to a0. One expects gauges in the different orders:

a2m−1 involves first order derivatives of some scalar function

a2m−2 involves second order derivatives of some scalar function

...

am involves mth order derivatives of some scalar function

Here is one possible approach to recover the coefficients:

(1) Multiplying h2m−1 in the integral identity (3.5) one can infer that

a2m−1 = d2m−1φ0 + iδa
2m−1,1 where φ0 satisfies ∂l

νφ0 = 0 for 0 ≤ l ≤ 2m − 2.

(2) Next multiplying h2m−2 in (3.5) we obtain

a2m−2 = d2m−2φ1 + iδa
2m−2,1, a2m−1,1 = c1d2m−3φ1 + iδa

2m−1,2, φ0 = 0

where φ1 satisfies ∂l
νφl = 0 for 0 ≤ l ≤ 2m − 3.

(3) In general at k-th stage one can expect the following

a2m−l = ck,l i
m−1
δ d2m−2k+lφk + ik+1−l

δ a2m−l,k+1−l

holds for 1 ≤ l ≤ k and 1 ≤ k ≤ m and φl = 0 for 1 ≤ l ≤ k − 1.
(4) If the above assertion is proved, then substituting k = m, l = 1 in the above we obtain

a2m−1 = im−1
δ ∇φm with ∂l

νφm = 0 l = 0,1.

(5) At this point, one can perform the gauge transformation to replace a2m−1 by 0. The new set 
of coefficients up to order 2m − 2 can be then recovered by Theorem 2.1.

6. Momentum ray transforms

Let Sm = Sm(C∞
c (Rn)) be the space of smooth compactly supported symmetric m-tensor 

fields in Rn. For f ∈ Sm and for each non-negative integer k, the momentum ray transform 
(MRT) is denoted by J k and given by

J kf (x, ξ) :=
∞∫

−∞
tk fi1···im(x + tξ ) ξ i1 · · · ξ im dt for all (x, ξ) ∈ Rn × (Rn \ {0}).
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These transforms were first introduced by Sharafutdinov [29,30]. For k = 0, J 0f = J f is the 
classical ray transform/X-ray transform, which is well studied due to its potential application in 
different branches of science such as medical imaging, seismology, and inverse problems related 
to partial differential equations. For m = 0, MRT appears when studying the inversion of the cone 
transform and conical Radon transform, where the latter transforms have promising applications 
in Compton cameras; see [23]. We also need to define the MRT of F ∈ Sm = S0 ⊕S1 ⊕· · ·⊕Sm. 
Any such F can be written uniquely as

F :=
m∑

p=0

f (p) = f
(0)
i0

+ f
(1)
i1

dxi1 + · · · + f
(p)
i1···ip dxi1 · · ·dxip + · · · + f

(m)
i1···imdxi1 · · ·dxim

=
(
f

(0)
i0

, f
(1)
i1

, · · · , f
(m)
i1···im

) (6.1)

which can be viewed as sum of a function, a vector field, and symmetric tensor fields with 
f (p) ∈ Sp for each 0 ≤ p ≤ m. For any smooth and compactly supported F ∈ Sm and for all 
(x, ξ) ∈ Rn ×Rn \ {0} and for every integer k ≥ 0 the momentum ray transform [5] is given by

J kF (x, ξ) :=
m∑

p=0

J kf (p)(x, ξ)

:=
∞∫

−∞
tk
(
f

(0)
i0

(x + tξ ) + f
(1)
i1

(x + tξ ) ξ i1 + · · · + f
(m)
i1···im(x + tξ ) ξ i1 · · · ξ im

)
dt.

(6.2)
We now introduce the notion of MRT on the set Sm(E ′) consisting of compactly supported 

distributions in Sm. This will be done by using adjoints. The momentum ray transforms J k :
Sm(E ′) → D′(Rn ×Rn \ {0}) [5, Definition 4.4] are defined as:

〈J kF,�〉=〈F, (J k)∗�〉 =
m∑

p=0

〈f (p), (J k)∗p�〉 where � ∈ C∞
c (Rn ×Rn \ {0}),

and (J k)∗� is given by

((J k)∗�)(x) =
(∫
Rn

∫
R

tk �(x − tξ, ξ)dt dξ, · · · ,

∫
Rn

∫
R

tk ξ i1 · · · ξ im �(x − tξ, ξ)dt dξ

)
,

which is an element of ⊕m
p=0C

∞(Sp) and

(J k)∗p� =
∫
Rn

∫
R

tk ξ i1 · · · ξ ip �(x − tξ, ξ)dt dξ.

6.1. Injectivity of MRT

We denote I kF := J kF |Rn×Sn−1 for every integers k ≥ 0. In this section we recall certain 
injectivity results of the operator F �−→ JmF and F �−→ ImF from [5] without their proofs.
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Lemma 6.1. [5, Theorem 4.5] Let F ∈ Sm(E ′) and m ≥ 0. Then

J kF = 0 holds for all integers k with 0 ≤ k ≤ m =⇒ F = 0.

Lemma 6.2. [5, Lemma 4.8] Let F ∈ Sm(E ′), then the operator J kF satisfies the following rela-
tion

〈ξ,
∂

∂x
〉pJ kF =

{
(−1)p

(
k
p

)
p!J k−pF if p ≤ k

0 if p > k.

After taking restrictions on Rn × Sn−1 this gives

〈ξ,
∂

∂x
〉pI kF =

{
(−1)p

(
k
p

)
p! I k−pF if p ≤ k

0 if p > k.

This lemma entails that highest order MRT (JmF) uniquely determines all the lower order 
MRT (J kF ) 0 ≤ k ≤ m. Analogous result holds if one replaces J kF by I kF . Consequently, one 
can obtain next results.

Lemma 6.3. Suppose F ∈ Sm(E ′) and m ≥ 0. Then JmF = 0 =⇒ F = 0.

Lemma 6.4. [5, Theorem 4.18] Let m ≥ 2 and F =
m∑

l=0
f (l) ∈ Sm(E ′). Then

ImF = JmF |Rn×Sn−1 = 0

if and only if

f
(
2
[

m
2

])
= −iδ

⎛⎝[
m
2

]∑
l=1

i

[
m
2

]−l

δ f (2l−2)

⎞⎠ and f

(
2
[

m−1
2

]
+1

)
= −iδ

⎛⎜⎜⎝
[

m−1
2

]∑
l=1

i

[
m
2

]−l

δ f (2l−1)

⎞⎟⎟⎠ .

Moreover, ImF = 0 if and only if F = 0 for m = 0, 1.

Lemma 6.5. The following equality

I k(i
p
δ f (l))(x, ξ) = I kf (l)(x, ξ)

holds for any f (l) ∈ Sl and for all integers p with p ≥ 1. For p = 0 this holds trivially because 
i0
δ is the identity operator.

Remark 6.6. We know that any symmetric m-tensor field in Rn has 
(
m+n−1

m

)
distinct compo-

nents. Suppose F is the same as in (6.1). Then F has a total of 
m∑

l=0

(
l+n−1

l

) = (
m+n
m

)
distinct 

components. As a consequence, recovering F in Rn is equivalent to recovering a symmetric 
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m-tensor field in Rn+1. However to recover a symmetric m-tensor field in Rn+1, MRT informa-
tion is required on the tangent bundle of unit sphere which is a 2(n + 1) − 2 = 2n dimensional 
data set. As a result, the kernel of JmF is trivial (see Lemma 6.3), whereas the kernel of ImF

is nontrivial when m ≥ 2 (see Lemma 6.4) because ImF is specified on the unit sphere bun-
dle.

Next we prove the following result, which was used to segregate MRT of different order tensor 
fields in the previous sections.

Lemma 6.7. Let Fm ∈ Sm(E ′) and m ≥ 0.

1. Suppose

cmIk+mFm + · · · + c1I
k+1F1 + c0I

kF0 = 0

holds for certain non-zero constants cj where 0 ≤ j ≤ m and for all 0 ≤ k ≤ m. Then

IpFp = 0 for p = 0,1, · · · ,m. (6.3)

2. Additionally, if we assume

dmIk+m−1Fm + · · · + d1I
kF1 = 0

holds for certain non-zero constants dj where 0 ≤ j ≤ m − 1 and for all 0 ≤ k ≤ m − 1. 
Then

IpFp+1 = 0 for p = 0,1, · · · ,m − 1. (6.4)

Proof. We only give the proof of (6.3) and that of (6.4) follows similarly. We have that

cmIk+mFm + · · · + c1I
k+1F1 + c0I

kF0 = 0.

Applying 〈ξ, ∂x〉k to the above equation and then using Lemma 6.2 we obtain

cm

(
k + m

k

)
ImFm + cm−1

(
k + m − 1

k

)
Im−1Fm−1 + · · ·

+ c1

(
k + 1

k

)
I 1F1 + c0

(
k

k

)
I 0F0 = 0,

for all k with 0 ≤ k ≤ m. The above relation can be written as the matrix equation AX = 0 where
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X = (ImFm, · · · , I 0F0)
t ,

A =

⎛⎜⎜⎜⎜⎜⎜⎝

cm cm−1 · · · c1 c0

cm

(
m+1

1

)
cm−1

(
m
1

) · · · c1
(2

1

)
c0

cm

(
m+2

2

)
cm−1

(
m+1

2

) · · · c1
(3

2

)
c0

...
... · · · ...

...

cm

(2m
m

)
cm−1

(2m−1
m

) · · · c1
(
m+1
m

)
c0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We now complete the proof by showing detA �= 0. This follows from Lemma 6.8. This implies 
X = 0, i.e.

IpFp = 0 for p = 0,1, · · · ,m. �
Lemma 6.8. detA = (−1)

m(m+1)
2 c0 · · · cm.

Proof. We have

detA = c0 · · · cm detAm+1

where

Am+1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1(
m+1

1

) (
m
1

) · · · (2
1

)
1(

m+2
2

) (
m+1

2

) · · · (3
2

)
1

...
... · · · ...(2m

m

) (2m−1
m

) · · · (
m+1
m

)
1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We now subtract the (m − k)-th column from the (m − k − 1)-th column for 1 ≤ k ≤ m − 2 to 
obtain

Am+1 −→

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0(
m+1

1

) −1 · · · −1(
m+2

2

) −(
m+1

1

) · · · −(2
1

)
...

... · · · ...(2m
m

) −(2m−1
m−1

) · · · −(
m

m−1

)

⎞⎟⎟⎟⎟⎟⎟⎠ .

This implies detAm+1 = (−1)m detAm, where Am is obtained from Am+1 by considering first 
m rows and m columns respectively. Proceeding in this way after finally many steps we obtain 

detAm+1 = (−1)m+(m−1)+···+2+1. This implies detA = (−1)
m(m+1)

2 c0 · · · cm. �
7. A new decomposition of symmetric tensor fields

We now prove a suitable trace free Helmholtz type decomposition of symmetric tensor fields, 
which we used in the previous section to deal with partial data MRT.
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Lemma 7.1. Let f be a smooth symmetric m tensor field in �. Then the following decomposition 
holds:

f = f̃ + iδv + dmφ, with jδf̃ = δmf̃ = 0

and ∂l
νφ|∂� = 0, l = 0, 1, · · · , m −1, where f̃ ∈ Sm, v ∈ Sm−2 and φ ∈ S0 are smooth symmetric 

tensor fields in �.

This is a generalization of the decomposition shown in [9]. In [26], they proved certain de-
composition of symmetric tensors.

Remark 7.2. For m = 1, this is the well known Helmholtz (or solenoidal) decomposition.

Proof. We closely follow the arguments used in [9]. We first assume that f can be written in the 
given form as

f = f̃ + iδv + dmφ, (7.1)

and we derive an equation for φ. Applying jδ to (7.1) and using jδf̃ = 0 we get

jδf = jδiδv + jδdmφ.

Since jδiδ is invertible by [9, Lemma 2.3], we obtain

v = (jδiδ)
−1(jδf − jδdmφ). (7.2)

This together with (7.1) implies

f = f̃ + iδ((jδiδ)
−1(jδf − jδdmφ)) + dmφ. (7.3)

Denote q = iδ(jδiδ)
−1jδ and p = (Id − q). From [9, equation (2.15)] we have that p is the 

projection to the trace free component of a symmetric tensor and that p(iδv) = 0 for any v. Thus 
from (7.3) we obtain

pf = f̃ + pdmφ.

Applying δm to the above identity and using δmf̃ = 0 we obtain

δmpdmφ = δmpf.

Hence, φ solves the following boundary value problem.

(−1)mδmpdmφ = (−1)mδmpf in �

∂l φ = 0 on ∂� for l = 0,1, · · · ,m − 1.
(7.4)
ν
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We next show that δmpdm acting on scalar functions in � is a strongly elliptic operator in the 
sense of [33, Formula 11.79, Section 5.11]. Then by [33, Exercise 3, Section 5.11] the map

H 2m(�) ∩ Hm
0 (�) −→ L2(�)

φ −→ δmpdmφ
(7.5)

will be Fredholm operator of index zero. To prove the ellipticity of δmpdm we follow [9, Sec-
tion 5] and introduce the following. For x ∈ Rn, we define the symmetric multiplication operators 
ix : Sm → Sm+1 by

(ixf )i1i2...im+1 = σ(i1, . . . , im, im+1)(xim+1fi1i2...im).

We also define the dual of the operator ix , the contraction operator jx : Sm → Sm−1 by

(jxf )i1i2...im−1 = fi1i2...imxim.

Similarly, ix⊗k and jx⊗k are defined by taking the composition of ix and jx with itself k
times, respectively. The principal symbol of δmpdm at (x, ξ) ∈ � × (Rn \ {0}) is given by 
(−1)m jξ⊗mpiξ⊗m , where (i)m jξ⊗m and (i)m iξ⊗m are the principal symbols of δm and dm re-
spectively. Thus the principal symbol of (−1)mδmpdm is jξ⊗mpiξ⊗m , which is real valued and 
non-negative since for any φ

〈jξ⊗mpiξ⊗mφ,φ〉 = 〈piξ⊗mφ, iξ⊗mφ〉 = 〈piξ⊗mφ,piξ⊗mφ〉.

Also by Lemma 7.3 we obtain jξ⊗mpiξ⊗m �= 0 for ξ �= 0. Thus we have shown the ellipticity of 
the boundary value problem (7.4). By elliptic regularity any element in the kernel of (7.4) will 
be smooth. Now (−1)mδmpdmφ = 0 in � and ∂l

νφ|∂� = 0 for 0 ≤ l ≤ m − 1 gives

〈(−1)mδmpdmφ,φ〉 = 〈pdmφ,pdmφ〉 = 0 using integration by parts.

This implies pdmφ = 0. From [9, Lemma 3.4, Equation 3.8] we have that

dpf = pdf + m

n + 2m − 2
iδδpf for f ∈ Sm.

Replacing f by dm−1φ entails

dpdm−1φ = m − 1

n + 2m − 4
iδδpdm−1φ.

Denote u = pdm−1φ and v = m−1
n+2m−4δpdm−1φ. Note that, trace of u = 0. This gives

du = iδv.

Hence u is a trace free conformal Killing tensor field. Now using the boundary conditions 
∂l
νφ|∂� = 0 for 0 ≤ l ≤ m − 1 we conclude u|∂� = 0. By [9, Theorem 1.3] we have u = 0. 

Repeating this process finitely many times we will obtain pdφ = dφ = 0. Since φ|∂� = 0, this 
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implies that φ = 0 in �. Thus the boundary value problem has (7.4) has zero kernel. Since it has 
Fredholm index zero, this says (7.4) also has zero co-kernel. This shows that the mapping (7.5)
is an isomorphism.

Finally, given f ∈ Sm, the fact that (7.5) is an isomorphism together with ellipticity shows 
that there exists a unique φ ∈ C∞(�) solving (7.4). We then define v by (7.2), which implies 
that iδv = qf − qdmφ. We also define f̃ = f − iδv − dmφ. It follows that

f̃ = f − (qf − qdmφ) − dmφ = pf − pdmφ.

Then jδf̃ = 0 and δmf̃ = δmpf − δmpdmφ = 0. This proves the required decomposition. �
Lemma 7.3. For any ξ �= 0, if

piξ⊗mφ = 0,

then φ = 0.

Proof. For m = 1 we have piξφ = iξ φ. Since ξ �= 0 and (iξφ)k = ξkφ, we obtain φ = 0. We 
proceed by induction and assume that

ξ �= 0, piξ⊗mφ = 0 =⇒ φ = 0.

Suppose that piξ⊗m+1φ = 0. Then by [9, Lemma 5.3] we have

iξpiξ⊗mφ − 2

m + 1
iδ(jδiδ)

−1jξpiξ⊗mφ = 0.

Denote f = piξ⊗mφ. Taking the inner product of the above equation with iξf gives

〈iξ f, iξ f 〉 − 2

m + 1
〈iδ(jδiδ)

−1jξf, iξ f 〉 = 0

=⇒ 〈jξ iξ f, f 〉 − 2

m + 1
〈(jδiδ)

−1jξf, jδiξ f 〉 = 0. (7.6)

From [30, Lemma 3.3.3] we have

jξ iξ f = |ξ |2
m + 1

f + m

m + 1
iξ jξ f.

Combining jδf = 0 with the formula jδiξ = 2
m+1jξ + m−1

m+1 iξ jδ on Sm given in [9, Equation 5.6], 
we get

jδiξ f = 2

m + 1
jξf.

From [9, Equation 5.13], which can be used since jδf = 0, we obtain
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(jδiδ)
−1jξf = m(m + 1)

2(n + 2m − 2)
jξf.

The combination of last two displayed equations and (7.6) give

|ξ |2|f |2 + m

(
1 − 2

n + 2m − 2

)
|jξf |2 = 0.

Since 
(
1 − 2

n+2m−2

)≥ 0 for n ≥ 2 and m ≥ 1, this implies f = piξ⊗mφ = 0. Hence by induction 
we have φ = 0. �
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Appendix A. Construction of special solutions

In this section, we describe the construction of special solutions known as complex geometric 
optic (CGO) solutions of polyharmonic operators that we have already utilized in the earlier 
sections.

A.1. Carleman estimate

Let � ⊂ Rn, n ≥ 3 be a bounded domain with smooth boundary. In this section, we construct 
Complex Geometric Optics (CGO) solutions for (1.1) following a Carleman estimate approach 
from [6,10].

We first introduce semiclassical Sobolev spaces. For h > 0 be a small parameter, we define 
the semiclassical Sobolev space Hs

scl(R
n), s ∈ R as the space Hs(Rn) endowed with the semi-

classical norm

‖u‖2
Hs

scl(R
n) = ‖〈hD〉s u‖2

L2(Rn)
, 〈ξ 〉 = (1 + |ξ |2) 1

2 .

For open sets � ⊂Rn and for non-negative integers m, the semiclassical Sobolev space Hm
scl(�)

is the space Hm(�) endowed with the following semiclassical norm

‖u‖2
Hm

scl(�) =
∑

|α|≤m

‖(hD)α u‖2
L2(�)

.

These two norms are equivalent when � =Rn and for every integers m ≥ 0.
Let �̃ be an open subset containing � in its interior and let ϕ ∈ C∞(�̃) with ∇ϕ �= 0 in �. We 

consider the semi-classical conjugated Laplacian P0,ϕ = e
ϕ
h (−h2�)e

−ϕ
h , where 0 < h � 1. The 
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semi-classical principal symbol of this operator P0,ϕ is given by p0,ϕ(x, ξ) = |ξ |2 − |∇xϕ|2 +
2iξ · ∇xϕ.

Definition A.1 ([22]). We say that ϕ ∈ C∞(�̃) is a limiting Carleman weight for P0,ϕ in � if 
∇ϕ �= 0 in � and Re(p0,ϕ), Im(p0,ϕ) satisfies{

Re(p0,ϕ), Im(p0,ϕ)
}
(x, ξ) = 0 whenever p0,ϕ(x, ξ) = 0 for (x, ξ) ∈ �̃ × (Rn \ {0}),

where {·, ·} denotes the Poisson bracket.

Examples of such ϕ are linear weights ϕ(x) = α ·x, where 0 �= α ∈Rn or logarithmic weights 
ϕ(x) = log |x − x0| with x0 /∈ �̃.

As mentioned already, we consider the limiting Carleman weight in this paper to be ϕ(x) = x1.

Proposition A.2 (Interior Carleman estimate). Let ϕ(x) be a limiting Carleman weight for the 
conjugated semiclassical Laplacian. Then there exists a constant C = C�,Aj ,q such that for 
0 < h � 1, we have

hm‖u‖L2(�) ≤ C‖h2me
ϕ
h (−�)me− ϕ

h u‖
H−2m

scl
, for all u ∈ C∞

0 (�).

This follows by iterating a Carleman estimate for the semiclassical Laplacian with a gain of 
two derivatives proved in [31]. We omit the proof here. We refer the reader to [19,18,15].

A.2. Construction of CGO solutions

Next we use Proposition A.2 to construct CGO solutions for the equation (−�)mu = 0. To 
this end, we state an existence result whose proof is standard; see [10,18] for instance.

Proposition A.3. Let ϕ be as defined in Proposition A.2. Then for any v ∈ L2(�) and small 
enough h > 0 one has u ∈ H 2m(�) such that

e− ϕ
h (−�)me

ϕ
h u = v in �, with ‖u‖H 2m

scl (�) ≤ Chm‖v‖L2(�).

We now use Proposition A.3 to construct a solution for (−�)m u = 0 of the form

u(x;h) = e
ϕ+iψ

h

(
a0(x) + ha1(x) + · · · + hm−1am−1(x) + r(x;h)

)
, (A.1)

= e
ϕ+iψ

h (A(x;h) + r(x;h)), where A(x;h) =
m−1∑
j=0

hjaj (x).

Here {aj (x)} and r(x; h) will be determined later. We choose ψ(x) ∈ C∞(�) in such a way 
that p0,ϕ(x, ∇ψ) = 0. This implies |∇ϕ| = |∇ψ | and ∇ϕ · ∇ψ = 0 in �. We calculate the term 

(−�)me
ϕ+iψ

h A(x; h) in �. Due to the choices of ϕ and ψ we have ∇(ϕ + iψ) · ∇(ϕ + iψ) = 0
in � and thus we obtain
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e− ϕ+iψ
h (−�)me

ϕ+iψ
h A(x;h) =

(
− 1

h
T − �

)m

A(x;h) (A.2)

where

T = 2∇x(ϕ + iψ) · ∇x + �x(ϕ + iψ). (A.3)

We now make the coefficient of h−m+j to be 0 for 0 ≤ j ≤ m −1 and obtain the following system 
of transport equations.{

T ma0(x) = 0 in �,

T maj (x) = −∑j
k=1 Mkaj−k(x) in �, and 1 ≤ j ≤ m − 1,

(A.4)

where Mj ’s are certain differential operator of order m + j (1 ≤ j ≤ m −1) and can be computed 
from (A.2).

It is well known that equations in (A.4) have smooth solutions; see for instance [10]. We 
provide an explicit form for the smooth solution a0 solving (A.4) for our inverse problem, which 
will be effective in getting the generalized MRT of the coefficients. Using a0(x), · · · , am−1(x) ∈
C∞(�) satisfying (A.4), we see that

e− ϕ+iψ
h (−�)me

ϕ+iψ
h a(x;h) � O(1).

Now if u(x; h) as in (A.1) is a solution of (−�)mu(x; h) = 0 in �, we see that

0 = e− ϕ+iψ
h (−�)mu = e− ϕ+iψ

h (−�)me
ϕ+iψ

h (A(x;h) + r(x;h)) .

This implies

e− ϕ+iψ
h (−�)me

ϕ+iψ
h r(x;h) = F(x;h), for some F(x;h) ∈ L2(�), for all h > 0 small.

By our choices, aj (x) annihilates all the terms of order h−m+j in e− ϕ+iψ
h L(x; D)e

ϕ+iψ
h a(x; h)

in � for j = 0, . . . , m − 1. Thus we get ‖F(x, h)‖L2(�) ≤ C, where C > 0 is uniform in h for 
h � 1.

Using Proposition A.3 we have the existence of r(x; h) ∈ H 2m(�) solving

e− ϕ+iψ
h (−�)me

ϕ+iψ
h r(x;h) = F(x;h),

with the estimate

‖r(x;h)‖H 2m
scl (�) ≤ Chm, for h > 0 small enough.

Similarly, we can construction CGO solution of the adjoint equation (e− ϕ+iψ
h (−�)me

ϕ+iψ
h )∗u =

e
ϕ+iψ

h (−�)me− ϕ+iψ
h u = 0. We now sum up the above calculation in the next lemma.
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Lemma A.4. Let h > 0 small enough and ϕ, ψ ∈ C∞(�) satisfy p0,ϕ(x, ∇ψ) = 0. There are 
suitable choices of a0(x), . . . , am−1(x), b0(x), . . . , bm−1(x) ∈ C∞(�) and r(x; h), ̃r(x; h) ∈
H 2m(�) such that

u(x;h) =e
ϕ+iψ

h

(
a0(x) + ha1(x) + · · · + hm−1am−1(x) + r(x;h)

)
= e

ϕ+iψ
h Ã,

v(x;h) =e− ϕ+iψ
h

(
b0(x) + hb1(x) + · · · + hm−1bm−1(x) + r̃(x;h)

)
= e− ϕ+iψ

h B̃

solving (−�)mu(x) = (−�)mv(x) = 0 in � for h > 0 small enough, with the estimates 
‖r(x; h)‖H 2m

scl (�), ‖̃r(x; h)‖H 2m
scl (�) ≤ Chm. Moreover, a0(x) and b0(x) solve the transport equa-

tions

T ma0 = T mb0 = 0.

A.3. Solutions with linear phase

Now we choose a suitable coordinate system and express the solutions in that system. We 
choose ϕ(x) = x · e1 = x1, where e1 = (1, 0, 0 · · · , 0). Choose an orthonormal frame {η1 =
e1, η2, · · · , ηn}, where {η2, · · · , ηn} are unit vectors on the hyperplane perpendicular to e1. Then 
we choose ψ(x) = x · η2. We denote y = (y1, y2, · · · , yn) is the coordinate with respect to new 
basis and y′ = (y2, · · · , yn), y′′ = (y3, · · · , yn). With this choice of ϕ and ψ the solutions in 
Lemma A.4 take the form

u(x;h) =e
1
h
(e1+iη2)·x

(
a0(x) + ha1(x) + · · · + hm−1am−1(x) + r(x;h)

)
= e

1
h
(e1+iη2)·xÃ,

v(x;h) =e− 1
h
(e1+iη2)·x

(
b0(x) + hb1(x) + · · · + hm−1bm−1(x) + r̃(x;h)

)
= e− 1

h
(e1+iη2)·xB̃

(A.5)
The transport equation T ma0 = 0 becomes

T ma0 = 2m (∂y1 + i∂y2)
ma0 = 0.

Denote the complex variable z = y1 + iy2. Then the above transport equation reduces to

∂m
z̄ a0 = 0.

A complex valued function satisfying ∂m
z̄ a0 = 0 is known as poly-analytic function; see [1] for 

more details. The general solution of ∂m
z̄ a0 = 0 is given in the following lemma.

Lemma A.5. The general solution of ∂m
z̄ a0 = 0 is given by a0 =

m−1∑
k=0

(z − z̄)kfk(z), where fk is a 

holomorphic function for all 0 ≤ k ≤ m − 1.

We do not give the proof of this lemma as it follows from standard induction argument; see 
[5, Lemma 2.6]. This immediately gives the following particular solution of T ma0 = T mb0 = 0
having the form
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a0 = b0 = yk
2f (z)g(y′′), for each 0 ≤ k ≤ m − 1, (A.6)

where g is any smooth function in y′′ variable. This particular form of solution will be helpful in 
order to get the MRT of unknown coefficients.

Appendix B. Linearization of Navier to Neumann map

In this section, we linearize the Navier-to-Neumann map by computing its Fréchet derivative. 
We follow the analogous argument used in [20, Lemma 4.4]. To this end we first recall the 
operator (1.1) together with its Navier boundary conditions.{

L(x,D) = (−�)m + Q(x,D), in �

γu = (u,−�u, · · · , (−�)m−1u) = (f0, · · · , fm−1) on ∂�,
(B.1)

where Q(x, D) is a partial differential operator of order 2m − 1 and given by:

Q(x,D) =
2m−1∑
l=0

al
i1···il (x)Di1···il .

If 0 is not an eigenvalue of L(x, D), then (B.1) has a unique solution u ∈ H 2m(�) for any 
(f0, · · · , fm−1) ∈ ∏m−1

k=0 H 2m−2k− 1
2 (∂�); see [13]. The Navier to Neumann map is denoted by

NQ and defined as follows.

{
NQ :∏m−1

k=0 H 2m−2k− 1
2 (∂�) −→∏m−1

k=0 H 2m−2k− 3
2 (∂�) by

NQ(f0, · · · , fm−1) = (∂νf0|∂�, · · · , ∂νfm−1|∂�).
(B.2)

The Fréchet derivative of NQ is given in the next lemma.

Lemma B.1. Suppose 0 is not an eigenvalue of (−�)m u + Q(x, D)u = 0 in �. Let PQ :∏m−1
k=0 H 2m−2k− 1

2 (∂�) → H 2m(�) be the solution operator for the Dirichlet problem{
((−�)m + Q(x,D))PQf = 0 in �

γPQf = (PQf,−�PQf, · · · , (−�)m−1PQf ) on ∂�.
(B.3)

Suppose GQ : L2(�) → D(L) be the Green operator satisfies

((−�)m + Q)GQF = F in �, γGQF = 0 on ∂�.

Then the linearized (or Fréchet derivative of) Navier to Neumann map

BQ = (DN )Q : L∞(�) −→ B

(
m−1∏
k=0

H 2m−2k− 1
2 (∂�),

m−1∏
k=0

H 2m−2k− 3
2 (∂�)

)
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is given by

(BQH)(f ) = ∂νγGQ(−HPQf )|∂�. (B.4)

Proof. Suppose ‖H‖L∞(�) is small so that NQ+H is well defined, where H is same as Q with 

different set of smooth tensor fields. Given f = (f0, f1, . . . , fm−1) ∈∏m−1
k=0 H 2m−2k− 1

2 (∂�) we 
have

NQ+H f −NQf = ∂ν(γPQ+H f − γPQf )|∂�.

The function w := PQ+H f − PQf satisfies the following partial differential equation.

(
(−�)m + Q(x,D)

)
w = −H w − H PQf in �

γw = (w, (−�)w, · · · , (−�)m−1w) = 0 on ∂�.

We can write w = GQ(−H w) + GQ(−HPQf ) and w ∈ D(L). Utilizing the continuity of the 
Green operator GQ(H w) we obtain

‖GQ(H w)‖H 2m(�) ≤ c‖H w‖L2(�) ≤ 1

2
‖w‖H 2m(�) if ‖H‖L∞(�) is small.

We have ‖w‖H 2m(�) = ‖GQ(−H w) + GQ(−HPQf )‖H 2m(�). The combination of this with 
triangle inequality and last displayed relation implies

‖w‖H 2m(�) ≤ ‖H‖L∞(�) ‖f ‖∏m−1
k=0 H

2m−2k− 1
2 (∂�)

.

Next we observe that,

(NQ+H −NQ − DNQ(H))(f ) = ∂ν

(
γw − γGQHPQf

) |∂� = ∂ν(γGQ(−Hw))|∂�.

By trace theorem, continuity of GQ and ‖w‖H 2m(�) ≤ ‖H‖L∞(�) ‖f ‖∏m−1
k=0 H

2m−2k− 1
2 (∂�)

we ob-

tain from above

‖∂ν(γGQ(−Hw))‖∏m−1
k=0 H

2m−2k− 3
2 (∂�)

≤ ‖GQ(H w)‖H 2m(�) ≤ ‖H‖L∞(�) ‖w‖H 2m(�) ≤ ‖H‖2
L∞(�) ‖f ‖∏m−1

k=0 H
2m−2k− 1

2 (∂�)
.

This proves that the Fréchet derivative of Q �→NQ at Q is BQ. �
Our next result gives the required integral identity involving unknown coefficients under the 

assumption that BQ = 0 at Q = 0. Compare next result with (2.3) where a formal computation 
is given.
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Lemma B.2. Assume that the linearized (or Fréchet derivative of) Navier to Neumann map van-
ishes at Q = 0 i.e., (B0H)f = 0. Then the following integral identity

∫
�

2m−1∑
l=0

ãl
i1···il (x)Di1···il u v = 0 such that �mu = �mv = 0 in �,

holds. Where H is same as Q represented by ãl , for certain smooth symmetric tensor fields of 
order l for each 0 ≤ l ≤ 2m − 1.

Proof. Let P0g ∈ H 2m(�) be an arbitrary function satisfying

(−�)mP0g = 0 in � and γP0g = g on ∂�,

where g = (g0, · · · , gm−1) ∈∏m−1
k=0 H 2m−2k− 1

2 (∂�). Next consider the following:

〈(B0H)f,g〉∏m−1
k=0 H

2m−2k− 3
2 (∂�),

∏m−1
k=0 H

2m−2k− 1
2 (∂�)

=
∫
∂�

∂νγG0(−HP0f )g

where G0(−HP0f ) solves (−�)mG0(−HP0h) = −H P0f in � and γG0(−HP0f )|∂� = 0. 
Multiplying P0g to the equation (−�)mG0(−HP0h) = −H P0f we get∫

�

(−�)mG0(−HP0h)P0g = −
∫
�

P0g H(P0f ).

We next make use of integration parts, (−�)mP0g = 0 in � and γG0(−HP0f ) = 0 on ∂� to 
derive

∫
�

(−H P0f )P0g =
m−1∑
k=0

∫
∂�

∂ν(−�)m−k−1G0(−HP0f ) (−�)kP0g

= 〈B0(f ), g〉∏m−1
k=0 H

2m−2k− 3
2 (∂�),

∏m−1
k=0 H

2m−2k− 1
2 (∂�)

.

This along with (B0H)f = 0 implies 
∫
�

(−H P0f ) P0g = 0, where P0f and P0g solve 

(−�)m (·) = 0. Recall that H is same as Q represented by ãl . This finishes the proof. �
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