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TIIVISTELMÄ 

Hyttinen, K. 2020. Erilaisten kehon rasvaprosenttimittausten vaikutus maksimaalisen hapenoottokyvyn ”non-

exercise” -arviointiin: validointitutkimus. Liikuntatieteellinen tiedekunta, Jyväskylän Yliopisto, 

Liikuntalääketieteen Pro Gradu -tutkielma, 61 s. 3 liitettä. 

Rasvaprosenttimittauksen sisällyttäminen VO2max:yn “non-exercise” -arviointiin on todettu tuottavan luotettavia 

tuloksia. Tutkielman tavoitteena oli arvioida erilaisten rasvaprosentti (rasva%) -mittausten vaikutusta VO2max:yn 

arviointiin ilman hapenottokyvyn testausta. GE Lunar Prodigy DXA:n, InBody 720:n ja Huawei AH100:n rasva%-

mittausten yhteneväisyyttä ja ekvivalenssia testattiin ja näiden eri laitteiden tuottamien rasva%:ien yhteyksiä 

maksimaalisen hapenottokyvyn kanssa arvioitiin Pearsonin korrelaatiokertoimilla. Lisäksi luotiin ennustemallit 

maksimihapenottokyvylle askeltavaa backward poistomenetelmää käyttäen jokaista käytettyä 

kehonkoostumusmittaria kohden. Tutkimukseen rekrytoitiin terveitä ja vaihtelevan kuntoisia miehiä ja naisia (ikä 

18-54, n=278). Tutkimus oli poikkileikkausasetelmalla toteutettu ja mittaukset suoritettiin maantieteellisesti 

kahdessa paikassa: Jyväskylän Yliopiston ja KIHU:n liikunta- ja terveyslaboratoriossa Jyväskylässä sekä Shanghai 

Jiao Tong -yliopiston liikuntalaboratoriossa Minhangissa. Tutkimuksen analyysit tehtiin kuudessa eri 

analyysiryhmässä riippuen siitä, mihin mittauksiin tutkittavat olivat osallistuneet (GE Lunar Prodigy & InBody 

720 n=146, GE Lunar Prodigy & Huawei AH100 n=95, InBody 720 & Huawei AH100 n=130, VO2max & GE 

Lunar Prodigy n=146, VO2max & InBody 720 n=278, VO2max & Huawei AH100 n=125).  

Huawei AH100 yliarvioi rasva%:ia DXA:aan verrattuna 2,5% (95% LOA -8,7-13,6, MAPE 15,37) ja havaittiin 

negatiivinen proportionaalinen harha mittausten välillä (p<0.001). Vastaavasti InBody 720 aliarvioi rasva%:n GE 

Lunar Prodigy DXA:iin nähden -3,8% (95% LOA -10,3-2,7, MAPE 16,75) ja jälleen proportionaalinen harha 

havaittiin (p<0.001). Huawei AH100 ja InBody 720 erosivat systemaattisesti toisistaan 4,6% (95% LOA -6,7-15,9, 

MAPE 25,69) eikä proportionaalista harhaa havaittu (p=0.634). Pearsonin korrelaatio VO2max:yn ja GE Lunar 

Prodigy-rasva%:n välillä oli -0,81 (p<0.001), VO2max:yn ja InBody 720-rasva%:n välillä vastaavasti -0,62 

(p<0.001) ja VO2max:yn ja Huawei AH100-rasva%:n välilllä oli -0,60 (p<0.001). Kolme luotua lopullista 

VO2max:yn ennustemallia luotiin askeltavalla backward poistomenetelmällä ja mallit selittivät VO2max:yn 

vaihtelusta 71%, 45% ja 40%, ja selkeästi eri analyysiryhmät ja eri laitteilla suoritetut kehonkoostumusmittaukset 

vaikuttivat malleihin. Ensimmäiseen malliin (SEE 3,72) ennustemuuttujiksi valikoituivat GE Lunar Prodigy 

DXA:n rasva% (p<0.001), BMI (p<0.001) ja ikä (p<0.001). Toiseen malliin (SEE 5,69) vastaavasti InBody 720:n 

rasva% (p<0.001), rasvaton pehmytkudosmassa (LBM) (p<0.001), BMI (p<0.001) ja ikä (p<0.001). Kolmanteen 

malliin (SEE 5,94) taas Huawei AH100:n rasva% (p=0.001), ikä (p=0.009) ja sukupuoli (p=0.044). Ensimmäinen 

malli osoittautui tarkimmaksi ja kolmas malli heikoimmaksi. Näissä kolmesssa ennustemallissa VO2max:n 

vaihtelun selittäjiksi osoittautuivat siis rasva%:n lisäksi BMI, ikä, LBM ja sukupuoli. 

Eri laitteiden rasva%:n arvioinnit olivat toisistaan eroavia ja tilastollisesti mittaukset eivät olleet ekvivalentteja. 

Tämän vuoksi olisi suositeltavaa tulkita BIA-mittareiden antamia tuloksia varauksella. Toisekseen laitteiden 

kehonkoostumuksen arvioinnit ja analyysiryhmien erot vaikuttivat maksimaalisen hapenottokyvyn ja rasva% 

korrelaatioihin. Kehonkoostumuksen arviointimenetelmien ja analyysiryhmien erot vaikuttivat paljon myös 

luotujen ennustemallien lopullisiin ennustemuuttujiin ja mallien tarkkuuteen. Tutkielman tuloksista voidaan 

todeta, että tarkasti arvioitu kehonkoostumus voi parantaa maksimihapenottokyvyn ennustettavuutta. Toisaalta 

”non-exercise” -menetelmiin liittyy myös muita epätarkkuutta aiheuttavia tekijöitä, joita tulee myös huomioida. 

Asiasanat: maksimaalinen hapenottokyky, kehon rasvaprosentti, kehonkoostumus, validointi, yhtäläisyys, 

ekvivalenssi, ennustus 

  



 

 

ABSTRACT 

Hyttinen, K. 2020. Influence of different assessments of fat percentage on non-exercise VO2max estimation: A 

validation study. Faculty of sport and health sciences, University of Jyväskylä, Sports and Exercise medicine Pro 

Gradu thesis, 61 p. 3 appendices. 

Estimated fat% in non-exercise estimations of VO2max can yield reliable predictions. The aim of the thesis was to 

assess the influence of different assessments of body fat percentage (fat%) on the estimation of VO2max. The level 

of agreement and equivalence of the assessed fat% were tested between different devices: GE Lunar Prodigy DXA, 

InBody 720, and Huawei AH100. Their associations with VO2max were evaluated by Pearson correlation 

coefficients and prediction models on VO2max were created by stepwise backward elimination method regarding 

each body composition assessment device. Healthy men and women in diverse range in age (18-54), fitness, and 

body composition were recruited (n=278). The study was cross-sectional, and the data was collected at two centres: 

the sports laboratories of the University of Jyväskylä and the Research Institute for Olympic Sports in Jyväskylä 

and Shanghai Jiao Tong University in Minhang. The analyses conducted in six separate groups depending on the 

completed measurements by the subjects (GE Lunar Prodigy & InBody 720 n=146, GE Lunar Prodigy & Huawei 

AH100 n=95, InBody 720 & Huawei AH100 n=130, VO2max & GE Lunar Prodigy n=146, VO2max & InBody 720 

n=278, VO2max & Huawei AH100 n=125). 

Huawei AH100 overestimated fat% compared to GE Lunar Prodigy by 2.5% (95% LOA -8.7-13.6, MAPE 15.37) 

and a negative proportional bias was found (p<0.001). The mean bias of InBody 720 to GE Lunar Prodigy was -

3.8% (95% LOA -10.3-2.7, MAPE 16.75) and a negative proportional bias was found as well (p<0.001). Huawei 

AH100 and InBody 720 were systematically different from each other (4.6%, 95% LOA -6.7-15.9, MAPE 25.69) 

with no proportional bias (p=0.634). Pearson correlation between VO2max and GE Lunar Prodigy-estimated fat% 

was -0.81 (p<0.001), between VO2max and InBody 720-estimated fat% -0.62 (p<0.001), and between VO2max and 

Huawei AH100-estimated fat% -0.60 (p<0.001). When using Lunar Prodigy-estimated fat% to predict VO2max, the 

final predictors in the model were fat% (p<0.001), BMI (p<0.001), and age (p<0.001) which explained 71% (SEE 

3.72) of the variance in VO2max, indicating that, in addition to fat%, BMI and age contributed to the VO2max 

variance. When using fat% assessed by InBody 720 to predict VO2max, the final predictors in the model were fat% 

(p<0.001), lean body mass (LBM) (p<0.001), BMI (p<0.001), and age (p<0.001) which explained 45% (SEE 5.69) 

of the variance of VO2max, showing that LBM, BMI and age are contributed to the VO2max variance. When using 

fat% assessed by Huawei AH100, the final predictors in the model (SEE 5.94) were fat% (p=0.001), age (p=0.009), 

and gender (p=0.044) which explained 40% (SEE 5.94) of the variance of VO2max indicating age and also gender 

contributed to the VO2max variance. The first model turned out to be the most accurate and the third model the least 

accurate model to predict VO2max. 

The estimations of fat% between DXA GE Lunar Prodigy, InBody 720, and Huawei AH100 differed from each 

other. Because of the lack of statistical equivalence, it would be recommended to interpret the estimations of BIA 

devices with caution. Second, the use of different body composition assessment methods and study groups notably 

affected the inverse association between VO2max and fat%. Due to these two affecting factors, the prediction models 

differed greatly from each other. From these results, it can be stated that the accurate assessment of body 

composition may lead to better predictions on VO2max, although there are also other factors to be considered when 

estimating VO2max without exercise.  

Keywords: maximal oxygen consumption, body fat percentage, body composition, validation, agreement, 

equivalence, prediction 

 

  



 

 

ABBREVIATIONS 

 

AT Adipose tissue   TBW Total body water 

BIA Bioelectric impedance analysis TEE Total energy expenditure  

BMI Body mass index  VAT Visceral adipose tissue 

B&A Bland Altman method  VO2max Maximal O2 consumption 

CRF Cardiorespiratory fitness 

CI Confidence interval 

CV Coefficient of variation 

DLW Doubly labelled water 

DXA Dual-energy x-ray absorptiometry 

Fat% Body fat percentage 

FM Body fat mass 

FFM Body fat-free mass 

HR Heart rate 

HW Hydrostatic weighing 

LBM Lean body mass 

LM Lean muscle mass 

LOA Limits of agreement 

MAPE Mean absolute percentage error 

ME/MD Mean error or mean difference 

MRI Magnetic resonance imaging 

PA Physical activity 

SAT Subcutaneous adipose tissue 

SD Standard deviation 

SEE Standard error of estimate 

SEM Standard error of measurement 
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1 INTRODUCTION 

 

There has been a significant effort in research creating valid non-exercise methods to estimate 

VO2max (ml·kg-1·min-1) and many independent predictors have been used in the equations. The 

most utilised are age, physical activity (PA) status, body mass index (BMI), gender, resting 

heart rate (HR), weight, height, waist circumference, smoking status, and body fat percentage 

(fat%) (Wang et al. 2019). This is reasonable as the direct VO2max test requires a significant 

amount of time and effort, nor it is executable for all population groups, and it is a relatively 

expensive procedure. The most accurate prediction equations have included variables such as 

gender, age, objectively assessed PA, moderate- and vigorous PA, perceived functional ability, 

step counts, waist circumference, and BMI (George et al. 1997; Bradshaw et al. 2005; Cao et 

al. 2010a; Cao et al. 2010b, Wang et al. 2019). Besides, there is evidence that using estimated 

fat% in predictions can yield in reliable non-exercise estimations on VO2max (Jackson et al. 

1990; Heil et al. 1995; Whaley et al. 1995; Wier et al. 2006; Jackson et al. 2012). Whether the 

assessment method of body composition influences the prediction of VO2max, has not yet been 

scientifically evaluated.  

While dual-energy x-ray absorptiometry (DXA) as a three-compartment criterion method has 

been used as the reference commonly in research, the most recent studies have concluded a 

two-compartment laboratory-based single-frequency bioelectrical impedance analysis (BIA) 

even more accurate method in estimating body fat mass (FM) and fat-free mass (FFM) 

(Nickerson & Tinsley 2018). Many studies have indicated underestimation in FM and fat% and 

overestimation in FFM by commercial single- and multi-frequency BIA devices compared to 

DXA (Volgyi et al. 2008; Sillanpää et al. 2014; McLester et al. 2018; Moore et al. 2019). 

However, some other authors have found agreement or contradictory biases between devices, 

e.g. Ling et al. (2011) and Burns, Fu and Constantino (2019). 
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The first section of this study tested the agreement between the devices, and after that, the 

evaluation of the influence of these differences on the correlations with VO2max and non-

exercise models on VO2max was possible. At baseline, the null hypothesis was that there are no 

differences between the devices and the assessments of fat% are equivalent to each other. 

Therefore, the influence of the different assessments is the same on the correlations with VO2max 

and non-exercise models as well. This hypothesis was tested in this thesis. To the knowledge 

of the author, there are no previous studies that have particularly focused on the influence of 

different body composition assessments on the non-exercise estimation of VO2max and 

apparently only a few studies are taking advantage of the equivalence testing and the use of the 

mean absolute percentage error (MAPE) in the analysis of agreement between body 

composition assessment methods. 

Disclosure of the conflicts of interest. Huawei Technologies Oy (Finland) Co., Ltd. partly 

supported financially the data collection. As in this thesis, Huawei’s device was evaluated, it is 

important to declare that Huawei Technologies Oy Co., Ltd. did not take part in the analysis, 

data collection, or the resulting conclusions in any way regarding this thesis. There are no other 

conflicts of interest to declare.  

As I was involved in the whole research project, it has provided me with better insight into 

research and useful learning opportunities. I consider myself lucky that I was hired to conduct 

the measurements of this research in Jyväskylä and partly organise them. I wish to express my 

deepest gratitude to my research project supervisor prof. Sulin Cheng and thesis supervisor 

prof. Ina Tarkka, as well as the project team including Petri Wiklund PhD., Moritz Schumann 

PhD., Na Wu MSc., and Chris Chen BSc. for the invaluable help and support during this 

process. I also wish special thanks to Yanxiang Yang MSc., Katja Waller PhD., Heikki Peltonen 

PhD., and other staff members of sports laboratory of University of Jyväskylä and KIHU, and 

all others who have taught, supported or assisted me during this project and process. 
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2 BODY COMPOSITION 

 

2.1 Body composition assessment 

As widely known, there are many methodologies developed for measuring or estimating body 

composition and it is not straightforward to select the most appropriate one for a given purpose. 

Various factors, such as validity and reliability of measurement, availability, and costs of the 

measurement technique, safety, and subject cooperability, should be considered before 

selecting the body composition assessment method (Fosbøl & Zerahn 2015). Besides, the 

methods for body composition assessment are not always accurate for non-reference groups, 

i.e. there have been differences observed between methods in different age, ethnicity, sex, 

health status, etc. (Fosbøl & Zerahn 2015). This aspect, along with individual variation in the 

estimation (Altman 1990), needs to keep in mind when considering the method for assessment 

as methods can provide sufficiently accurate results for larger groups of subjects but not at the 

individual level (Fosbøl & Zerahn 2015).  

Body composition can be quantified at several levels, such as atomic, molecular, cellular, and 

tissue (Roche 1996).  According to Roche (1996) and Duren et al. (2008), it can be measured 

or estimated “at the atomic level with carbon, calcium, potassium, and hydrogen; at the 

molecular level by amounts of water, protein, and fat; at the cellular level with extracellular 

fluid and body cell mass; and at the tissue level for amounts and distributions of adipose, 

skeletal, and muscle tissues”. Accurate assessment from the atomic, molecular and cellular 

levels can be conducted with direct body composition methods such as neutron activation, 

isotope dilution, and total body counting (Roche 1996; Duren et al. 2008). For understanding 

the body composition assessment methods at the tissue level, it is necessary to be introduced to 

the multi-compartment models of body composition. A summary of the advantages and 

disadvantages of common body composition assessment methods are presented in TABLE 1. 

Indirect estimation is based on assumptions regarding the physical or chemical properties of the 

components that are not directly measured (Fosbøl & Zerahn 2015). These assumptions are 

based on the known average densities of body compartments measured by direct methods 
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(Fosbøl & Zerahn 2015). This is the reason the estimate of body composition can be inaccurate, 

especially at the individual level. The body composition assessment can be improved by using 

multicompartment models, where methods are combined to minimise the influence of FFM-

assumptions (Baumgartner et al. 1991; Wang et al. 1998; Fosbøl & Zerahn 2015). 

Currently, the most applied model in studies of body composition is a two-compartment model 

that divides body mass in FM and FFM, where FFM comprises water, protein, carbohydrates, 

and mineral (Fosbøl & Zerahn 2015). Adipose tissue does not equal to FM but consists of 

adipocytes, nerves, blood vessels, and extracellular fluid (Shen et al. 2005). Analogously, FM 

includes fat mass in adipose tissue and other tissues such as muscle and liver (Shen et al. 2005). 

FFM includes bone, skeletal muscle, organs, and connective tissue whereas lean body mass 

(LBM) is simply calculated as total BM minus FM and bone (Prado & Heymsfield 2014). It 

comprises total body water (TBW), total body protein, carbohydrates, non-fat lipids, and soft 

tissue mineral. The two-compartment models, such as BIA, cannot itself differentiate between 

FM, bone mass, and LBM (Dengel, Raymond & Bosch 2017, 27-28). However, the three-

compartment model, such as dual-energy x-ray absorptiometry (DXA), can differentiate 

between bone mass and LBM (Dengel, Raymond & Bosch 2017, 27-28). 

The accuracy of the two-compartment model, that assumes constant hydration status, can be 

improved by measuring TBW. The assumption of stable hydration status has limited validity as 

hydration varies with age (Lohman, 1986; Hewitt et al. 1993), gender, nutritional status (Waki 

et al. 1991) and diseases (Fosbøl & Zerahn 2015). A four-compartment model divides body 

composition in and assumes constant densities for four compartments, FM, water, residuals, 

and bone mineral at body temperature (Fosbøl & Zerahn 2015). A five-compartment model, 

further, considers the mineral content of soft tissue, i.e. soluble minerals and electrolytes in both 

intracellular and extracellular compartments of soft tissue, and a six-compartment model 

includes also glycogen to the equation (Fosbøl & Zerahn 2015).  
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TABLE 1. Summary of the advantages and disadvantages of common body composition assessment methods (applied from Dengel, Raymond & 

Bosch 2017, 27-37). 

Compartments Method Advantages Disadvantages 

2  

(FM & FFM) 

BMI 

Circumferences, 

skinfold callipers 

BIA 

 

 

 

Hydro-

densitometry  

 

Air displacement 

plethysmography 

 

Dilution with 

isotopes 

Simple, free, non-invasive, no assessor training needed 

Simple, inexpensive, portable, minimal assessor 

training needed 

Portable, simple, non-invasive, reproducible, relatively 

inexpensive, minimal investigator skills needed, 

requires little patient cooperation, can be considered 

reference field method after isotope dilution 

Valid and reliable (body density, FM, fat%) 

 

 

Precise and accurate, non-invasive, comfortable for 

patient, quick, safe, automated, suitable for various 

subjects (e.g. children, elderly) 

Precise and accurate 

Too inaccurate at the individual level 

Too inaccurate, assumptions, interobserver error 

 

Assumptions, sensitive to hydration status, PA, body 

temperature, and menstrual cycle. No regional estimates, 

validity is reference group-dependent 

 

Assumptions, cost, patient burden, laboratory method, no 

regional estimates, investigator expertise needed, 

laboratory method 

Assumptions, cost, no regional estimates, lower validity 

compared to hydro-densitometry, laboratory method 

 

Cost, laboratory method 
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3  

(FM, lean soft tissue, 

bone) 

DXA 

 

 

 

Ultrasound 

Cost and time-efficient, low radiation, safe, non-

invasive, precise and accurate 

 

 

Non-invasive, quick, accurate and precise, capable of 

assessing total body and regional SAT and VAT, no 

radiation 

 

Cost, measurement differences between and within 

manufacturers and software versions, sensitive to 

hydration status and tissue depth, investigator expertise 

needed, laboratory method 

Cost, investigator expertise needed, no standard 

measurement procedures, inherent artefacts may be 

present on the image produced 

4  

(FM, bone, muscle, 

other) 

CT 

 

 

MRI 

Non-invasive, capable of assessing total and regional 

body composition, and quantifying SAT, AT, LM, and 

bone 

Non-invasive, image resolution, no radiation, capable 

of assessing total body and regional AT, LM, and bone, 

automatic and manual segmentation of tissues 

 

Cost, accessibility, scan time, investigator expertise 

needed, high ionising radiation, laboratory method 

 

Cost, accessibility, scan time, investigator expertise 

needed, laboratory method 

4-6  

(FM, water, protein, 

other) 

Multi-

compartment 

models 

Precise and accurate Cost, laboratory setting, use of multiple methods of body 

composition analysis, time-consuming, little further 

advantage compared to 3-compartment models 

PA= physical activity, FM= body fat mass, Fat%= Body fat percent, FFM= fat-free mass, SAT= subcutaneous adipose tissue, VAT= visceral adipose tissue, AT= adipose tissue, 

LM= lean muscle mass.
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2.2 Validity and reliability of the body composition assessment 

The accuracy and reproducibility of methods might be often interpreted higher than they are 

because of additional causes of measurement error have not been considered when reporting or 

interpreting results (Nana et al. 2015). Reliability of measurement, e.g. DXA, is affected by 

technical diversity such as technical inconsistencies, changes between equipment, software or 

mode of analysis, subject positioning, clothing, preparation, technician-related errors, and 

biological variation such as nourishment, hydration, the effect of previous physical activity,. 

(Nana et al. 2015).  

The validity and reliability depend on which analytical methods are used to test differences, 

agreement, and equivalence between assessment methods. More appropriate analytical methods 

are needed in the assessment of the measurement properties or methods of fitness assessment 

and physical activity (Staudenmayer, Zhu & Catellier 2012; Hopkins et al. 2009). Likewise, 

this concerns the indirect methods of body composition. Although Dixon et al. (2018) are 

discussing fitness- and energy expenditure assessment, precision is particularly important for 

answering to new research problems as studies in, e.g. fitness assessment, but also body 

composition, depend on the valid and reliable measures for accurate outcomes (Dixon et al. 

2018). The lack of precision, validity, and reliability, concurrently, limits statistical power and 

truth of results (Dixon et al. 2018). The needs for cost savings and accurate field measurements 

by developing valid alternatives, such as indirect body composition assessment methods, are 

also important aims of the research (Dixon et al. 2018).  

Accordingly, to test the agreement between two methods, the common analysis method has 

been the Bland Altman (B&A) analysis which enables error and bias to be visualised across the 

range of scores (Zaki et al. 2012). However, some note that the B&A method does not enable 

the degree of agreement to be directly quantified whereas tests of mean differences are routinely 

used to test systematic differences at the group level, but not equivalence, between the methods 

(Dixon et al. 2018). As the sample size determines the result of tests of mean differences, there 

is a risk of concluding erroneously tested methods as valid or not valid. Thus, despite the tests 
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of mean differences are common in measurement agreement research, it does not make them 

correct (Dixon et al. 2018). Moreover, systematic differences do not detect errors at the 

individual level. Therefore, it is very informative to report the mean absolute percentage error 

(MAPE) or the root mean square error (RMSE) (Welk et al. 2019). MAPE presents the error as 

the average of the unsigned percent errors. It uses the absolute value of the difference before 

dividing by the criterion and therefore avoids the cancellation of under- and overestimation 

errors (Welk et al. 2019). 

2.2.1 Dual-energy x-ray absorptiometry 

The criterion methods of body composition measure the density of tissues and bones or describe 

amounts and distributions of skeletal muscle, and adipose tissues via x-ray or magnetic imaging 

techniques. Those methods include densitometry, computed x-ray tomography (CT), magnetic 

resonance imaging (MRI), and dual-energy x-ray absorptiometry (DXA) (Roche 1996; Duren 

et al. 2008).  

DXA is a popular method in the assessment of body composition and it is based on 

discriminating three compartments; quantifying fat, lean, and bone tissues (Duren et al. 2008; 

Fosbøl & Zerahn 2015). Its measurement is fast, it can assess regional body composition, uses 

very low ionising radiation (~0.5 μSv), and it is non-intrusive (Nana et al. 2015). On the other 

hand, the equipment is expensive and non-portable, a trained technician is required, scanning 

bed is too small for larger or taller individuals, body composition estimation algorithms are 

developed for normal population or some specific groups, and algorithms might differ between 

device models or software versions (Nana et al. 2015). DXA technique is based on low-dose x-

rays of two different energies which it passes through the body (Earthman 2015). As a result of 

it, an image is created as the photon detector measures the differential attenuation of the low 

and high x-ray energy by the soft tissue and bone (Earthman 2015).  
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2.2.2 Bioelectrical impedance  

Indirect methods, including anthropometry and bioelectrical impedance analysis (BIA), provide 

estimates or indices of body composition based on results from direct or criterion methods 

(Roche 1996; Duren et al. 2008). The measurement technique of BIA is based on small 

electrical current with one or multiple frequencies which are conducted through the body via 

electrodes to measure electric impedance, resistance and reactance of the body tissues (Forbes 

1994; Lukaski et al. 1985). The advantages of BIA are safety, observer-independency, low 

costs, and convenience (Fosbøl & Zerahn 2015). Today, there is a wide range of different BIA 

devices available. The most common commercial devices are bipolar (two-electrodes), which 

are conducting the small electrical current leg-to-leg or hand-to-hand. The traditional tetrapolar 

(four-electrodes) and more recently developed octopolar (eight-electrodes) BIA devices 

measure the impedance throughout the whole body, and, in theory, should be the most accurate 

of the BIA techniques (Carrion et al. 2019).  

BIA technology is estimating TBW and uses equations to estimate body composition based on 

biological relationships for a specific population and reference data (Duren et al. 2008). 

Therefore, the mentioned equations are useful only for individuals close to the reference 

population in body size and shape (Duren et al. 2008). According to Fosbøl and Zerahn (2015), 

results from the BIA equation in each population should be cross-validated in a random sub-

sample against estimates from a criterion method due to the mentioned fact (Fosbøl & Zerahn 

2015). It is necessary to select a suitable BIA equation for a given sub-group because the 

relation between the ratio of the length of the cylinder (L2) and the resistance (R) (measure or 

BIA) and body composition varies with age, ethnicity, hydration, health status, etc. (Buchholz 

et al. 2004; Fosbøl & Zerahn 2015). 

The BIA uses TBW and isotope-dilution in its estimations of body composition as water is the 

most abundant molecule in the body (Duren et al. 2008) and it has a stable relationship with 

FFM (Siri 1961; Chumlea et al. 2002; Chumlea et al. 2007). BIA technology utilises this 

relationship and uses TBW and isotope dilution as reference for FFM and body composition 
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estimation (Siri 1961; Chumlea et al. 2002; Chumlea et al. 2007). The average proportion of 

TBW in FFM is 73 % and about 15-30 % of TBW is in adipose tissue as extracellular fluid and 

it increases with adiposity (Siri 1961; Chumlea et al. 2002; Chumlea et al. 2007). 

The agreement of BIA compared to four-compartment methods is moderate. In estimating fat%, 

the bias of BIA has been -10-5% (LOA ±8%) in a healthy population. The mean bias in FFM,, 

has been 1.7-6.9 kg (Fuller et al. 1992; Wang et al. 1998; Jebb et al. 2000; Chouinard et al. 

2007; Moon et al. 2013). In various populations, limited accuracy at the individual level in 

longitudinal changes in body composition has been observed, e.g. in obese adults (Evans et al. 

1999; Minderico et al. 2008; Johnstone et al. 2014), athletes (Matias et al.  2012) and elderly 

healthy subjects (Moon et al. 2013). Recent studies have indicated underestimation in FM and 

fat% and overestimation in FFM by single- and multi-frequency BIA compared to DXA 

(Volgyi et al. 2008; Sillanpää et al. 2014; McLester et al. 2018; Moore et al. 2019) but not e.g. 

Ling et al. (2011). It has been stated that laboratory-based bioelectrical impedance spectroscopy 

might be a more accurate method for body composition than DXA when compared to a five-

compartment model and that the assessment of TBW increases accuracy (Nickerson & Tinsley 

2018). It has been, consequently, encouraged to use the two-compartment models with 

estimations of TBW over DXA as a reference method (Nickerson & Tinsley 2018).  

2.3 Associations of adiposity with cardiometabolic health 

Adiposity has been widely known to be associated with mortality and many causes of 

morbidity. The global trend in the prevalence of obesity is especially alarming. There has been 

a steady increase in the prevalence of high abdominal circumference in the general population 

from 10 to 20% in the 1960s to 40-60% in the year 2000 (Okosun et al. 2004). 

In adults, BMI levels above 25 are associated with an increased risk of morbidity and mortality 

with BMI levels of 30 and greater indicating obesity (WHO 1998, 7-16; Chumlea & Guo 2000). 

The high abdominal circumference is linked with increased risk for morbidity, specifically, type 

2 diabetes and the metabolic syndrome and mortality (Pouliot et al. 1994; Despres et al. 1991; 
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Nicklas et al. 2004). Central adiposity has also been associated with dementia in a large 

longitudinal study (Whitmer et al. 2008). Most men with the abdomen-to-hip ratio greater than 

1.0 and women with a ratio greater than 0.85 are at increased risk for cardiovascular disease, 

diabetes, and cancers (Seidell et al. 1987; Fujimoto et al. 1991). 

Abdominal adiposity includes both visceral and subcutaneous areas of adipose tissue and they 

can only be divided from each other by more sophisticated assessment methods, e.g. CT or 

MRI. Regional accumulation of abdominal subcutaneous and visceral adipose tissue are the 

major contributors to cardio-metabolic dysfunction (Bjorntorp et al. 1990). They are important 

clinical targets for reducing the risk of metabolic diseases and can be primarily affected by 

physical activity (de Lannoy & Ross 2019, 245).  

Especially visceral adipose tissue has been linked to a higher risk for type 2 diabetes (Neeland 

et al. 2012), hypertension (Chandra et al. 2014), cardiovascular disease, dementia, and mortality 

(Katzmarzyk, Mire & Bouchard 2012; Neeland et al. 2015). Additionally, visceral adipose 

tissue seems to be associated with higher intrahepatic fat (i.e. liver fat) and insulin resistance, 

although it was found that only the liver fat explained the variation in serum insulin 

concentrations (Westerbacka et al. 2004). Thus, visceral adipose tissue seems to be a more 

significant determinant of cardiometabolic health than total body fat or subcutaneous adipose 

tissue. 
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3 CARDIORESPIRATORY FITNESS  

 

Aerobic capacity (VO2max) is defined as the ability of the cardiorespiratory system to supply 

oxygen for the working muscle tissues and the ability of the muscle tissues to utilise the oxygen 

as an essential part of energy production (McArdle et al. 2015, 249-453). Aerobic capacity is 

affected by physiological systems such as respiratory, circulatory, energy metabolic, 

endocrinologic and nervous regulatory systems (McArdle et al. 2015, 249-453). The 

determinants of VO2max are stroke volume (SV), muscle tissue mass, haemoglobin mass, blood 

flow to the active muscles, arteriovenous oxygen difference (a-v O2-diff) and the efficiency of 

oxygen utilisation by the tissues (Joyner & Coyle 2008, 35-44). A poor condition of the 

cardiorespiratory system, aerobic fitness, and low physical activity are associated with mortality 

(Myers et al. 2002; Sui et al. 2007) and many types of morbidity (Booth et al. 2012).  

PA is the primary modifiable determinant of VO2max. Increasing the PA leads eventually to 

improvements in oxygen delivery and uptake of the exercising muscles (de Lannoy & Ross 

2019, 230-231). Thus, according to de Lannoy and Ross (2019), VO2max can be considered as 

an alternative measure of the amount of PA and an objective measure of the effect of PA in the 

long-term (de Lannoy & Ross 2019, 230-231). The association between PA and VO2max is, 

however, only moderate (Williams 2001; Myers et al. 2004) which might be related to 

subjective questionnaires of PA their poor correlation with direct measures of PA (Prince et al. 

2008). VO2max is affected by the quantity and quality of PA, and it can be improved by 

endurance training (Jones & Carter 2000; Milanovic et al. 2015). Although aerobic capacity is 

a characteristic that can be improved, according to evidence, the improvements are rather 

intensity-dependent than simply dose-dependent (Gormley et al. 2008).  

The aerobic fitness of an individual is also determined by body composition. Body mass and 

body fat greatly determines the relative VO2max (ml·kg-1·min-1) whereas the amount of activated 

muscle tissue, especially lower body muscle (r=0.95; p<0.001), determines the absolute VO2max 
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(L·min-1) (Sanada et al. 2005). Also, aerobic fitness is a highly heritable characteristic 

(Bouchard et al. 1999; Kujala 2016; Joyner 2017).  

3.1 Direct test of maximal oxygen consumption 

For measurement of aerobic capacity, generally, the direct test of VO2max has been used, and it 

has been proved to be a valid measure of assessing aerobic capacity and endurance performance 

(Keskinen et al. 2007, 78-117). The measurement of VO2max is accurate in controlled conditions, 

and different device manufacturers report 1-2% accuracies of their direct gas analysers. It is 

also known that the test design, and the length of the test, affect VO2max results due to sport 

specificity and fatigue accumulation (Keskinen, Häkkinen & Kallinen 2018, 80-100). It has 

been stated, understandably, that the criteria used to determine VO2max must be the same 

between tests (Howley, Bassett & Welch 1995). The coefficient of variation for VO2max 

measurements has been considered around 4% (Katch et al. 1982). 

VO2max can be determined by progressively increasing the level of the aerobic demand for 

energy production until the individual reaches the level of exhaustion or by increasing the speed 

of a treadmill or the resistance of a bicycle ergometer progressively until the exhaustion when 

the body's ability to utilise oxygen reaches its peak value (Keskinen 2016, 110-113). VO2max 

means the highest possible measured oxygen consumption at the maximal load, where the 

performance continues beyond total exhaustion.  The measurement of maximal oxygen 

consumption results the so-called absolute VO2max, i.e. how much oxygen the body has 

consumed in L·min-1 and often the result of the test is also calculated as relative VO2max, when 

the result is expressed in relation to the individual's weight, ml·kg-1·min-1 (Kenney et al. 2012, 

249). The oxygen consumption and the exhalation of the carbon dioxide are measured by the 

respiratory gas analyser (Keskinen 2007, 78-117). 

According to Shvartz and Reibold (1990), the average values of men in absolute VO2max in the 

North American and European population at age 18 is 3.4 L·min-1 and at 30 is 3.2 L·min-1. 

Correspondingly, women’s average values at age 18 and 30 are 2.2 and 1.8 L·min-1. In the 
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relative VO2max, gender differences are less pronounced. Men have, on average, values of 50 

and 48 ml·kg-1·min-1 at age 18 and 30. Similarly, women have values of 44 and 41 ml·kg-1·min-

1 at the same age (Shvartz & Reibold 1990). 

3.2 Indirect assessment of maximal oxygen consumption 

Indirect VO2max assessment methods are also sufficiently accurate and safe for many purposes 

for normal populations (Keskinen et al. 2007, 78-117; Suni & Vasankari 2011, 32-35). Sub-

maximal VO2 tests, evaluate the individual absolute or relative VO2max, but the difference 

compared to the direct method is that the result will be estimated according to an equation or 

an algorithm (Suni & Vasankari 2011, 32-35). Many indirect methods are suitable for 

evaluating the change in aerobic fitness when the used protocol and procedures are the same 

between tests but there should not be a comparison between the results of different test protocols 

(Suni & Vasankari 2011, 32-35). The most accurate and reproducible methods of indirect 

assessment are those based on maximum tests. These tests achieve oxygen consumption as close 

as possible to individuals own maximal performance (e.g. Ross & Jackson 1991). In the sub-

maximal tests carried out on bicycle ergometers, the VO2max has been estimated to be between 

7% and 27% of the actual VO2max (Margaria et al. 1965; Davies 1968; Fox 1973; Terry 1977; 

Greive et al. 1995). 
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3.3 Predicting maximal oxygen consumption 

Direct and indirect VO2max measurements are time-consuming, require expensive equipment, 

and motivated test participants. Therefore, it has been considerable interest of many researchers 

in finding more convenient ways of predicting VO2max based on prediction equations derived 

from exercise- and non-exercise variables (Stahl et al. 2006; Rexhepi & Brestovci 2014). 

Sanada et al. (2007) found in young Japanese men that the use of thigh muscle mass (r=0.55) 

and cardiac dimensions (r=0.72-0.74) is a valid method to predict absolute VO2max. Their model 

reached R² of 83% in cross-validation (p<0.01) and the standard error of estimate (SEE) was 

0,39 L·min-1 (Sanada et al. 2007). Their prediction was not significantly different from the 

measured VO2max in the validation group (Sanada et al. 2007).  

Stahn et al. (2006), on the other hand, concluded that using BIA might be an accurate, rapid, 

and convenient method for predicting absolute VO2max in young and fit men and women. They 

created a predictive model including impedance index (H2/Z), age, gender, and self-reported 

physical activity which accounted for 88% of the variance in VO2max (SEE=258 ml·min-1) 

(Stahn et al. 2006). Afterwards, Moon et al. (2011) validated Stahl et al. (2006) predicting 

equation. They stated that using the equation to prescribe exercise, will yield underestimated 

exercise intensities and that the predictive equations are highly specific to the sample where 

they derive from because the validation group differed significantly from the sample of the 

study of Stahl et al. (2006) (Moon et al. 2011). Same has been stated on specificity in previous 

studies on prediction equations of cardiorespiratory fitness (Malek et al. 2004). 

Rexhepi and Brestovci (2014) studied active football players aged 16–35 years. Their predictive 

regression equation could explain 26% of the variance in VO2max (L·min-1) and was no different 

from the actual VO2max (t=-0.28, p=0.78). The model included age, body mass, and resting heart 

rate as independent variables (Rexhepi & Brestovci 2014). Wier et al. (2006) compared 

regression models of waist girth (r=0.81, SEE=4.80), fat% (r=0.82, SEE=4.72), and BMI 

(r=0.80, SEE=4.90) to predict VO2max (ml·kg-1·min-1). With these variables, they included 

gender, age, and PA into the model and concluded them accurate in estimating VO2max but not 
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in individuals at the extremes of fitness (Wier et al. 2006). Previous to that, e.g. Jackson et al. 

(1990) also predicted VO2peak using fat%, gender, age, and PA (r=0.81, SEE=5.35) as well as 

with BMI, gender, age, and PA (r=0.78, SEE=5.70) (Jackson et al. 1990). 

It has been also found that self-reported PA along with age, gender, BMI and resting HR, are 

good predictors of maximal energy expenditure measured by maximal or submaximal exercise 

test (r2=0.58-0.65, SEE=5.08-6.90) (Jurca et al. 2005). The best non-exercise equations have 

also utilised objectively assessed total-, moderate- and vigorous PA, perceived functional 

ability, and step counts (George et al. 1997; Bradshaw et al. 2005; Cao et al. 2010a; Cao et al. 

2010b). Similarly, the total energy expenditure (TEE) measured by doubly labelled water 

method (DLW) can be predicted by accelerometer-derived PA counts and HR relatively well 

(Plasqui & Westerterp 2007; Zhusheng et al. 2012). In conclusion, maximal or total energy 

expenditure can be estimated indirectly relatively well in a specific reference population. 
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4 BODY COMPOSITION AND MAXIMAL OXYGEN CONSUMPTION 

 

Maximal oxygen consumption is associated with body composition. Research has found both 

positive and negative associations between cardiorespiratory fitness and body composition. 

Firstly, it is necessary to differentiate absolute VO2max (L·min-1) and VO2max relative to BM 

(ml·kg-1·min-1) because associations of body composition with both have been studied.  

Correlation between BMI and VO2max (ml·kg-1·min-1) in men and women is from weak to 

moderate (r=-0.32 to -0.41) (Jackson et al. 1990; Wier et al. 2006; Pribis et al. 2010; Mondal 

and Mishra 2017). Besides that, some studies have also found very high correlations, e.g. in 

young healthy Indian males (r=-0.88, p<0.05) (Prabha et al. 2014). Absolute VO2max does not 

seem to correlate with BMI or correlates weakly (Maciejczyk et al. 2014). 

The association between FFM and relative VO2max has been weak in both genders (r=0.37, 

p<0.01) (Mondal & Mishra 2017). Between absolute VO2max and FFM or skeletal muscle mass, 

very strong correlations have been observed in young adult males (r=0.78-0.85) (Buskirk & 

Taylor 1957; Sanada et al. 2007). However, Maciejczyk et al. (2014) concluded only a moderate 

correlation between these variables in college-aged men (r=0.38, p<0.05) (Maciejczyk et al. 

2014) 

Buskirk and Taylor (1957) concluded long-ago that as the inverse relationship between fat% 

and VO2max relative to BM is evident, there is no significant difference in absolute VO2max in 

groups of different body fat. They also proved in 1957 that excess fat itself does not impact the 

capacity of the cardiorespiratory system to deliver oxygen to muscles under maximal 

performance conditions (Buskirk & Taylor 1957). Nevertheless, excess body weight and fat 

mass are still related to decreased running performance in distance e.g. in a 12-minute-running 

test (Mattila et al. 2007). Interestingly, concerning the above, Farrell et al. (1985) found that in 

obese women, absolute VO2max (L·min-1) and the VO2max relative to FFM (ml·FFM-1·min-1) on 

each incline of the submaximal treadmill test was higher than in lean counterparts (p<0.05).  
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The VO2max relative to BM, however, was significantly lower in obese women due to their 

higher body weight (p<0.05) (Farrell et al. 1985).  

Indeed, the inverse correlation between fat% and VO2max (ml·kg-1·min-1) is strong in adults (r=-

0.65--0.93) (Jackson et al. 1990; Wier et al. 2006; Sharma et al. 2016; Mondal & Mishra 2017) 

but moderate inverse correlations have been concluded as well (Amani et al. 2010; Pribis et al. 

2010). However, one study did not find a relationship between fat% and VO2max (ml·kg-1·min-

1) in young female athletes (Shete et al. 2014). Goran et al. (2000), similarly, found a negative 

(-3.7%, p<0.05) difference in absolute VO2max after weight loss in obese women and a 

significant increase in VO2max relative to BM (+15%, p<0.05) whereas the change in VO2max 

relative to FFM was not significant (Goran et al. 2000). They (2000) stated that the VO2max 

relative to FFM could be a valid indicator for comparing VO2max in adults of different body size 

and body fat composition as the outcome does not vary with the change in body composition 

(Goran et al. 2000).  
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5 RESEARCH QUESTIONS 

 

The objective of this thesis is to assess the influence of estimations of fat% on the non-exercise 

estimation of VO2max. Specifically, the level of agreement and equivalence of the measured fat% 

between DXA (GE Lunar Prodigy Advance, Madison, WI, USA with software version 9.3.), 

InBody 720 (Biospace Co., Ltd, Korea), and Huawei AH100 (Huawei Technologies Co., Ltd.) 

are tested. Secondly, the associations of the fat% measurements with VO2max are evaluated and 

prediction models created. 

The research questions:  

1. Does the measured fat% by different devices provide a similar estimate?  

 

H0: There are no differences between the devices. The level of agreement is determined 

by 95% limits of agreement (±1.96 SD). The criterion for equivalence is set to ±10%. 

Individual-level error is determined by the Mean Absolute Percentage Error. 

 

2. Are the non-exercise estimations of VO2max different from each other created by the 

stepwise backward elimination method? The multiple linear regression models are 

mainly based on estimations of fat% of the different body composition assessment 

devices. 

H0: The Pearson correlation coefficients with VO2max are similar between the three 

different fat% assessments. The models consist of the same independent variables 

chosen according to the stepwise backward elimination method and provide similar non-

exercise estimates of VO2max. 
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6 METHODS 

 

6.1 Study design and subjects 

The present study was a cross-sectional and part of a validation research project of body 

composition assessment-, wearable fitness- and wellness -devices. It was approved by the 

Ethical Review Board of the University of Jyväskylä and Shanghai Jiao Tong University Bio-

X Ethics Board. The measurements were conducted partly at sports laboratory of the University 

of Jyväskylä, Research Institute for Olympic Sports (KIHU), and partly at sports laboratory of 

Shanghai Jiao Tong University during winter 2018-2019, from November to April. Only 

relatively healthy male and female subjects were recruited for the study, with varying age, levels 

of physical activity, aerobic fitness, and body composition. The inclusion and exclusion criteria 

are presented in TABLE 2.  

TABLE 2. The inclusion and exclusion criteria for participation.  

Inclusion criteria 

Age 20 – 45 (in *SJTU, 18 – 45) 

Ability to participate in high-intensity exercise and the treadmill running test  

Ability to participate in body composition measurements 

Exclusion criteria 

BMI > 38 

Cardio-metabolic diseases, high blood pressure, joint- or skeletal muscle problems 

Cardio-metabolic symptoms such as arrhythmias, palpitations, dizziness, chest pain, 

dyspnoea, etc. 

Acute illness or infections 

Pregnancy 

Issues with bones, joints or ligaments 

* SJTU = Shanghai Jiao Tong University 
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Recruitment was conducted from multiple sources as a convenience sample. Email lists of the 

University of Jyväskylä, JAMK University of Applied Sciences, and GRADIA Jyväskylä 

Educational Consortium were used as well as social media, flyers, word of mouth, the local 

newspaper, and website of the city of Jyväskylä were used to ensure enough quantity and variety 

in subjects. In Shanghai, the recruitment was conducted via word of mouth and advertisement 

in Shanghai Jiao Tong University and the local community. 

Total group sizes and participation in measurements are presented in TABLE 3. The total 

number of subjects included in the analyses was n=146 from Jyväskylä and n=138 from 

Shanghai. Prior to any measurements, subjects signed a written informed consent form. The 

study was divided into Section 1 and Section 2. In Section 1, the aim was to determine the level 

of agreement and equivalence in fat% measurement between the three devices. Section 1 

included three groups consisting of subjects who completed both, DXA (GE Lunar Prodigy)- 

and Huawei AH100-, DXA (GE Lunar Prodigy)- and InBody 720-, and Huawei AH100- and 

InBody 720 -body composition analyses (TABLE 3). The same study subjects are in the three 

groups. These three groups were used in the analysis. In Section 2, the objective was to 

determine predictive multiple linear regression equations for VO2max for each body composition 

assessment device. Section 2 included subjects who completed both VO2max- and DXA (GE 

Lunar Prodigy) -measurement, VO2max- and InBody 720 -measurement, as well as VO2max- and 

Huawei AH100 -measurement. The characteristics of the subjects of Section 1 and Section 2 of 

the study are presented in TABLE 4 and APPENDIX 2. 
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TABLE 3. The description of which measurements were done in the study groups, the group 

sizes, and a description of which ethnical groups are represented in the study groups. 

Section 1.  

Agreement in fat%  

 Section 2.  

Multiple linear regression models 

for VO2max 

 

Measurements n Population Measurements 

  

n Population 

GE Lunar Prodigy 

InBody 720 

146 

M 74 

F 72 

Finnish Direct VO2max test 

GE Lunar Prodigy 

140 

M 69 

F 71 

Finnish 

GE Lunar Prodigy 

Huawei AH100 

95 

M 50 

F 45 

Finnish 

 

Direct VO2max test 

InBody 720 

278 

M 164 

F 114 

Finnish and 

Chinese 

InBody 720 

Huawei AH100 

130 

M 73 

F 53 

Finnish and 

Chinese 

Direct VO2max test 

Huawei AH100 

125 

M 71 

F 54 

Finnish and 

Chinese 

M= male, F= female. 

6.2 Measurements and protocols 

The measurements consisted of two laboratory visits and the first visit included a risk 

assessment, basic information collection by a questionnaire, and a body composition 

assessment. The second visit included a direct VO2max test on a treadmill.  

For the first visit, subjects were instructed to arrive in a fasted state, and they were allowed only 

to consume water, but not caffeine, alcohol, or smoking. For the second visit, subjects were 

instructed to avoid strenuous physical activity two days before the VO2max test, and they were 

instructed to hydrate and eat properly 1-2 hours before the test. Additionally, the researchers 

ensured that the subjects were symptomless of any infection or illness in the last seven days 

prior to the VO2max test or had any other contraindications regarding the measurements.  
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6.2.1 Body composition assessment 

Body composition measurements were performed after overnight fasting (12 h). Measurement 

was done in lightweight clothing and all metal items were removed from the subjects to ensure 

the accuracy of the measurements. Written instructions were given to subjects before 

measurement.  The instructions guided the subjects for the overnight fasting, hydration and 

encouraged avoidance of alcohol and caffeine on the previous and the measurement day and 

avoidance of intense exercise in 24 h before the measurement. Menstrual cycle was not 

controlled for women. Height was determined using a fixed wall-scale measuring device to the 

nearest 0.1 cm. Weight was determined within 0.1 kg for each subject using an electronic scale 

(InBody 720, Biospace Co., Ltd, Korea). BMI was calculated as weight (kg) per height (m)2. 

Dual-energy X-ray absorptiometry (DXA) (GE Lunar Prodigy Advance, Madison, WI, USA 

with software version 9.3.) can measure whole-body FM, fat%, FFM, LBM, skeletal mineral 

content, as well as other variables (FIGURE 1). DXA quantifies the amount of bone and soft 

tissue by using the differences in the absorption of high energy and low energy X-ray photons 

of the body tissues. It uses algorithms to determine three compartments of the body 

composition: the amount of bone, lean, and fat mass. The K-edge filter of DXA separates the 

spectrum into two energy peaks, low 38 and high 70 keV, and by this technique, differentiates 

bone and soft tissues from each other. 

  

FIGURE 1. GE Lunar Prodigy Advance DXA (adapted from Absolute Medical). 
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DXA measurement was done only at the University of Jyväskylä. The Prodigy software 

automatically set the Finland Total Body Composition Reference Population (v113) for the 

measurements. The subjects were positioned in a supine position, arms at the side, on the centre 

of the table for each scan and four positioning aids were placed for separating arms from the 

body and two positioning straps were used to keep legs in a consistent position. The researcher 

assured the proper centring of the subject. In tall participants who exceeded the range of the 

device, exceeding feet area was left out of measurement. Participants were scanned using the 

default scan mode automatically selected by the software. Quality control procedures 

recommended by the manufacturer were conducted by the University of Jyväskylä prior to each 

day and on a weekly basis. Data were electronically imported to Excel using the Prodigy 

software. 

InBody 720 (Biospace Co., Ltd, Korea with Lookin'Body software) (FIGURE 2) is a multi-

frequency bioelectrical impedance plethysmograph body composition, and it emits a multitude 

of frequencies including 1kHz, 5kHz, 50kHz, 250kHz, 500kHz, and 1MHz. It uses an 8-point 

tactile electrodes method (FIGURE 3) and BIA technique, measuring impedance at six and 

reactance at three frequencies. TBW is calculated first with a measured impedance value and 

the value of FFM using the TBW is calculable. FM is then determined by deducting the FFM 

from the measured weight. The multi-frequency technology can also separate the intracellular 

water from the extracellular water. During the measurement, the researcher assured the proper 

positioning of the subject on the device. Data were electronically imported to Excel using 

Lookin’Body software. Quality control procedures recommended by the manufacturer were 

conducted by the University of Jyväskylä, and Exercise, Health, and Technology centre of 

Shanghai Jiao Tong University. The similar device was used in both measurement centres 

(InBody 720).  
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Huawei AH100 (Smart Scale, Huawei Technologies Co., Ltd. with Huawei Body Fat Scale 

mobile application) (FIGURE 2) is a single-frequency bioelectrical impedance body 

composition analyser, and it uses a 2-point tactile electrode method (FIGURE 3). In addition to 

weight, AH100 can estimate fat%, protein mass, visceral fat, muscle mass, TBW, and bone 

mass using the single-frequency method. Data was automatically synchronised from the Smart 

Scale to the mobile application and from the application manually entered to Excel. The similar 

device was used in both measurement sites (Huawei AH100). 

 

FIGURE 2. The used BIA devices in this study. On the left InBody 720 (adapted from 

InBody) and on the right Huawei AH100 Smart Scale (adapted from Huawei).  

 
FIGURE 3. Four (two-point)- and eight (four-point)-electrode measurement methods. Huawei 

AH100 measures foot-to-foot by four electrodes and InBody 720 feet-to-hands by eight 

electrodes (adapted from Huawei). 
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6.2.2 Direct maximal oxygen consumption test 

The direct maximal oxygen consumption test was performed on a treadmill. The test started 

from a speed of four kilometres per hour and continued until volitional exhaustion of maximal 

performance. Increments of the test were four minutes long, including the collection of lactate 

sample from the subject’s fingertip. Oxygen consumption was measured breath-by-breath 

throughout the test using a portable gas analyser Oxycon Mobile, Jaeger (Germany) in 

Jyväskylä and K4b2, COSMED (Italy) in Shanghai. 

The test protocol proceeded as it started with 5 minutes of data collection at rest (sitting), 

followed by the test, starting from speed 4 km/h and increased by 1 km/h on each increment, 

continuing thereafter until maximum. The gradient of the treadmill maintained at 1% 

throughout the test. Blood lactate was measured at baseline and the end of each increment. After 

the end of the test, the recovery data of 5 minutes was collected. The VO2max was determined 

as the best 60-second average of VO2. 

6.3 Analysis 

Statistical analysis of data was conducted by Statistical Package for the Social Sciences (SPSS 

version 24.0; IBM Inc., Chicago, IL) and MedCalc Statistical Software version 19.0.3 

(MedCalc Software bvba, Ostend, Belgium). Normality of distribution for the variables was 

determined by the Kolmogorov-Smirnov (n>50) test, analysis of histograms, Q-Q -plots as well 

as outliers. Significance was set at p<0.05. 

6.3.1 Section 1. Agreement in body fat percentage between devices 

Paired samples t-test was conducted to assess the difference in fat% measurements between 

Huawei AH100 and GE Lunar Prodigy, InBody 720 and GE Lunar Prodigy as well as Huawei 

AH100 and InBody 720. Non-parametric Related samples Wilcoxon Signed-Ranks test was 
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conducted between Huawei AH100 and InBody 720 where assumptions of the parametric 

testing were not fulfilled in females (normality of distribution). Associations and linearity 

between the devices were defined as Pearson correlation (r) and Spearman’s rank correlation 

(rs) coefficients. Spearman’s rank correlation was used for the analysis between Huawei AH100 

and InBody 720. All the subjects completing the measurements were included in the analysis. 

Bland Altman method (B&A) was used to examine the difference and agreement between the 

body composition assessment devices with 95% limits of agreement (±1.96 SD) (APPENDIX 

1), to estimate the error at the group level, and visualise proportional errors. Differences were 

approximately normally distributed allowing B&A analysis. The mean absolute percent error 

(MAPE) was calculated to estimate the expected error at the individual level. Equivalence 

between devices was evaluated with a ±10% equivalence interval of the mean of the reference 

method GE Lunar Prodigy DXA, using the confidence interval method at the level of p<0.05. 

The equivalence interval was set to be constant throughout all analyses due to the interval is 

narrower in males because of lower mean fat%. Therefore, the equivalence interval derived 

from the total sample average (n=146, DXA mean= 23.91, ±10% EqInt= ± 2.4).  

Equivalence testing was employed to test the null hypothesis that there was no equivalence 

between the reference (DXA) and surrogate assessments of fat%. As described by Dixon et al. 

(2018), a 90% Confidence Interval needs to be calculated for the difference in means. If a 

calculated mean difference 90% CI falls entirely within the equivalence interval, the null 

hypothesis will be rejected and it will be concluded that the two observed assessments of body 

composition are statistically equivalent (Dixon et al. 2018). 

The MAPE was calculated using the comparison of multiple methods in MedCalc software, GE 

Lunar Prodigy as the reference method. In comparison between Huawei AH100 and InBody 

720, InBody 720 was used as the reference. MAPE presents the error as the average of the 

unsigned percent errors (Welk et al. 2019). In addition to B&A plots, fat% tertile-differences 

determined by Paired samples T-test between devices are presented in histograms (FIGURE 4 

and 5) to illustrate the proportional errors in low, middle-range, and high scores of fat%. The 
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tertile-group cut-offs were defined from the total sample measured by GE Lunar Prodigy 

(n=146) and were defined for males (n=74) and females (n=72) separately. 

6.3.2 Section 2. Prediction models of maximal oxygen consumption 

Independent samples T- or Mann-Whitney U -test was used to assess differences in descriptive 

variables between genders. Associations between VO2max and independent variables were 

determined as Pearson correlation and Spearman’s rank correlation coefficients. Mann-

Whitney U test and Spearman’s rank correlation was used if the assumptions of the related 

parametric test were not met. All the subjects completing the measurements were included in 

the analysis. For each body composition assessment device separately, linear multiple 

regression models predicting VO2max were created using fat% and LBM of the device. The 

mentioned or the other variables included in the model if they statistically contributed to the 

model at the alfa-level of < 0.05. The selection process was done according to the step-by-step 

backward elimination method. The validation of the models is outside of the scope of this study. 
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7 RESULTS 

 

7.1 Section 1. Agreement in body fat percentage between devices 

The characteristics of the subjects are presented in TABLE 4. Men was significantly heavier 

(MD 12.0, t=8.0, p<0.001), had higher LBM (MD 16.0, t=15.7, p<0.001), and BMI (MD 0.9, 

t=2.1, p=0.036) compared to women. Females had significantly higher fat% (GE Lunar Prodigy 

DXA: MD 10.2, t=8.2, p<0.001) whereas the age did not differ between males and females 

(p=0.241). The correlations in fat% between the different body composition assessment devices 

are presented in TABLE 5. Assessments of fat% between Huawei AH100 and GE Lunar 

Prodigy were strongly correlated in females but moderately in males. Between InBody 720 and 

GE Lunar Prodigy, the correlation was very strong in both genders. Huawei AH100 and InBody 

720 were also highly correlated in females and moderately in males. Comparison of differences, 

equivalence, and correlations in fat% between GE Lunar Prodigy, InBody 720, and Huawei 

AH100 are presented in TABLE 5 and the B&A analysis of agreement is illustrated in 

APPENDIX 1.  

The mean bias in fat% was 2.5% (95% LOA -8.7-13.6) between Huawei AH100 and GE Lunar 

Prodigy, -3.8% (95% LOA -10.3-2.7) between InBody 720 and GE Lunar Prodigy, and 4.6% 

(95% LOA -6.7-15.9) between Huawei AH100 and InBody 720. Systematic differences, 

therefore, indicate that Huawei AH100 estimates the highest values and InBody 720 the lowest 

values in comparison of these devices. Agreement at the individual level (MAPE) ranged from 

13.53 to 19.83% when GE Lunar Prodigy was used as the reference. In males, Huawei AH100 

had lower MAPE than InBody 720, and in females vice versa. The MAPE of Huawei AH100 

to InBody 720 ranged from 23.24 to 28.39%. No equivalence was found between the devices 

(TABLE 5). 
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TABLE 4. Characteristics of subjects in Section 1 of the study.  

 Total  Males  Females  

 Mean±SD 

(n = 146) 

Range Mean±SD 

(n = 74) 

Range Mean±SD 

(n = 72) 

Range 

Age  31.5±7.1 20.4-45.1 32.2±6.7 22.6-44.8   30.8±7.4 20.4-45.1 

Weight (kg) 72.0±10.9 49.9-101.1 77.9±9.7 55.0-101.1 65.8±8.4 49.9-85.2 

BMI  23.9±2.7 17.0-31.5 24.4±2.5 17.0-30.0 23.5±2.8 18.1-31.5 

LBMLP (kg) 52.6±10.1 34.5-78.0 60.5±70.8 45.0-78.0 44.4±51.2 34.5-61.0 

Fat%720 20.1±7.4 3.0-41.6 16.0±4.9 4.6-26.6 24.3±7.3 3.0-41.6 

Fat%LP  23.9±9.0 5.5-45.7 18.9±7.1 5.5-35.6 29.1±7.8 9.8-45.7 

Fat%AH100* 24.9 ±7.2 5.7-39.6 20.7 ±4.4 7.4-33.8 30.3 ±6.3 5.7-39.6 

* Fat% AH100 total n=130, males n=74, females n=57. SD= standard deviation, BMI= body mass index, LBM= lean 

body mass, Fat%= body fat percentage, LP= GE Lunar Prodigy, 720= InBody 720, AH100= Huawei AH100.  

Significant proportional errors were found between all the devices. Males and females 

combined, Huawei AH100 (intercept 11.87, p<0.001, slope -0.37, p<0.001) and InBody 720 

(intercept 0.60, p=0.395, slope -0.20, p<0.001) were found to have significant negative slopes 

in comparison to GE Lunar Prodigy. The error by Huawei AH100 to InBody 720 was rather 

systematic than proportional (intercept 5.40, p=0.004, slope -0.04 p=0.634).  

In males, Huawei AH100 (intercept 20.15, p<0.001, slope -0.86, p<0.001) and InBody 720 

(intercept 3.85, p<0.001, slope -0.38, p<0.001) had negative slopes compared to GE Lunar 

Prodigy. Compared to InBody 720, there was a significant negative proportional bias by 

Huawei AH100 (intercept 9.37, p=0.001, slope -0.29, p=0.046). In females, finally, the only 

proportional bias was found between Huawei AH100 and GE Lunar Prodigy (intercept 18.73, 

p<0.001, slope -0.54, p<0.001) whereas InBody 720 underestimated fat% systematically 

(intercept -2.75, p=0.038, slope -0.08, p=0.110). Huawei AH100 overestimated systematically 

compared to InBody 720 (intercept 8.42, p=0.057, slope -0.11, p=0.462). 
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TABLE 5. Comparison of differences, equivalence and correlations in fat% between the different body composition assessment devices. 

* Equivalence was evaluated by 90% CI and equivalence interval of ±2.4 was used as the criterion: no equivalence was found. LOA= limits of agreement, CI= confidence 

interval, MAPE = mean absolute percentage error to reference, p= significance, r= Pearson’s correlation coefficient, rs= Spearman’s rank correlation coefficient, z= Wilcoxon 

Signed-Ranks test Z.

 Mean Difference 

(MD, p) 

t 95% LOA 90% CI* MAPE (%) MAPE 

(fat%) 

 
Correlation (r, p) 

Comparison between Huawei AH100 and GE Lunar Prodigy DXA 

Total (n = 95) 2.46, <0.001 4.22 -8.7 – 13.6 1.49 – 3.43 15.37 3.67  
 

0.79, <0.001 

Males (n = 50) 2.78, 0.001 3.39 -8.8 – 14.2 1.41 – 4.16 13.53 2.54  
 

 
0.59, <0.001 

Females (n = 45) 2.09, 0.015 2.52 -8.8 – 13.0 0.70 – 3.49 19.83 5.87  
 

0.70, <0.001 

Comparison between InBody 720 and GE Lunar Prodigy DXA 

Total (n = 146) -3.80, <0.001 -13.75 -10.3 – 2.7 -4.26 – -3.34 16.75 4.00  
 

0.94, <0.001 

Males (n = 74) -2.86, <0.001 -7.16 -9.6 – 3.9  -3.52 – -2.19 17.08 3.23  
 

0.90, <0.001 

Females (n = 72) -4.78, <0.001 -13.67 -10.6 – 1.0 -5.36 – -4.19 16.62 4.84  
 

0.93, <0.001 

Comparison between Huawei AH100 and InBody 720 

Total (n = 130) 4.57, <0.001 8.98 -6.7 – 15.9 3.73 – 5.41 25.69  5.22  
 

0.68, <0.001 

Males (n = 73) 4.02, <0.001 6.64 -6.1 – 14.1  
 

3.01 – 5.03 28.39 4.71   0.47, <0.001 

Females (n = 53) 5.28, <0.001 z = 5.45 -7.5 – 18.0 3.83 – 6.72 23.24 5.83 
 

0.60 (rs), <0.001 
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The fat% tertile differences between devices are presented in histograms (FIGURE 4 and 5). It 

seems that in lean subjects, Huawei AH100 overestimates fat% and in fatter individuals, it 

underestimates it in both genders. In the middle range of fat%, the overestimation is small but 

significant. InBody 720, in females, systematically underestimates fat% compared to GE Lunar 

Prodigy although the bias seems to increase towards the higher scores of FM. In males, it seems 

to agree well in lean individuals but likewise, increasingly underestimates in the 2nd and the 3rd 

tertiles of fat%. 
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FIGURE 4. Differences in body fat percentage between GE Lunar Prodigy DXA and Huawei 

AH100 in low, middle, and high tertiles of fat%. Paired samples T-test was used to assess 

differences between the devices. 
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FIGURE 5. Differences in body fat percentage between GE Lunar Prodigy DXA and InBody 

720 in low, middle, and high tertiles of fat%. Paired samples T-test was used to assess 

differences between the devices. 
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7.2 Section 2: Prediction models of maximal oxygen consumption 

Characteristics of subjects and differences between genders are presented in APPENDIX 2. No 

difference in age between males and females were found whereas males had significantly higher 

VO2max (MD 6.96, p<0.001) and LBM (MD 15.68, p<0.001) compared to females. Males had 

also scarcely but significantly higher BMI in the largest group (n=278, MD 0.75, p=0.024). In 

groups n=140 and n=125, the difference in BMI was non-significant. Females had a higher fat% 

(MD 10.28, p<0.01). Associations in fat%, LBM, BMI, age, and gender with VO2max are 

presented in TABLE 6. Body fat percent highly correlated with VO2max and was therefore 

considered as being the major contributor to the linear multiple regression models. Age, gender 

(male), BMI, and LBM were also significantly correlated with VO2max. To remark, age did not 

correlate with VO2max in the group n=140. 

TABLE 6. Pearson’s correlation coefficients of VO2max with fat%, LBM, BMI, age, and gender. 

 Fat% LBM BMI Age Gender (male) 

VO2max and InBody 720 

(n= 278) r  

p 

-0.62  

<0.001 

0.26 

<0.001 

-0.26 

<0.001 

-0.27 

<0.001 

0.38 

<0.001  

VO2max and GE Lunar Prodigy DXA 

(n= 140) r 

p  

-0.81  

<0.001 

0.57 

<0.001 

-0.22 

0.008 

-0.15 

0.078 

0.54 

<0.001 

VO2max and Huawei AH100 

(n= 125) r 

p 

-0.60  

<0.001 

0.31 

0.001 

-0.33 

<0.001 

-0.33 

<0.001 

0.51 

<0.001 

BMI= body mass index, Fat%= body fat percentage, LBM= lean body mass, p= significance, r = Pearson’s 

correlation coefficient. 

For the linear multiple regression models, the predicting variables were fat% and LBM of the 

different devices, as well as age, BMI, and gender. It was found that fat% assessed by different 

devices was the major contributor (p<0.001) in the models. The lower the fat% was the higher 
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the VO2max was. TABLE 7 represents the influence of the independent predictors on VO2max. In 

addition to fat%, age contributed significantly to all the prediction models whereas BMI to two 

of the models, and LBM and gender to only one model. The R² value of the models ranged from 

40 to 71% and SEE from 3.72 to 5.94 ml·kg-1·min-1. The models are used, e.g. model 1: 

VO2max= 53.57 + (fat%GE Lunar Prodigy) * -66.34 + (BMI) * 0.50 + (age) * -0.18. The linear 

relationships between predicted and measured VO2max are presented in APPENDIX 3.  

TABLE 7. The final multiple linear regression models of the relationships of VO2max and the 

predictors. 

 Beta 95 % CI β t p 

Model 1 (DXA GE Prodigy) 

(Constant) 53.57 47.65 – 59.48  17.92 <0.001 

Fat% DXA -66.34 -74.03 – -58.66 -0.89 -17.08 <0.001 

BMI 0.50 0.23 – 0.78 0.19 3.57 <0.001 

Age -0.18 -0.28 – -0.09 -0.19 -3.92 <0.001 

R= 0.84, R²= 0.71, Adjusted R²= 0.70 – F (3,136) = 109.29, p<0.001, SEE= 3.72 

Model 2 (InBody 720) 

(Constant) 62.95 56.79 – 69.10  20.13 <0.001 

Fat% InBody -0.99 -1.20 – -0.77 -0.96 -9.12 <0.001 

LBM InBody (kg) -0.32 -0.49 – -0.15 -0.41 -3.78 <0.001 

BMI 1.03 0.47 – 1.59 0.37 3.62 <0.001 

Age -0.23 -0.31 – -0.14 -0.24 -5.26 <0.001 

R= 0.67, R²= 0.45, Adjusted R²= 0.45 – F (4,273) = 56.60, p<0.001, SEE= 5.69 

Model 3 (Huawei AH100) 

(Constant) 58.16 51.15 – 65.16  16.43 <0.001 

Fat% Huawei -0.40 -0.63 – -0.18 -0.39 -3.53 0.001 

Age -0.18 -0.32 – -0.05 -0.20 -2.65 0.009 

Gender (male) 3.25 0.09 – 6.40 0.21 2.03 0.044 

R= 0.64, R²= 0.40, Adjusted R²= 0.39 – F (3,121) = 27.23, p<0.001, SEE= 5.94 

R= correlation coefficient, R²= coefficient of determination of the estimated model, Adjusted R²= coefficient of 

determination adjusted by the number of predictors and the sample size, SEE= standard error of the estimate, β= 

standardised regression coefficient, Beta= unstandardised regression coefficient, CI= confidence interval. 
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8 DISCUSSION 

 

The objective of this thesis was to assess the influence of different device-based estimations of 

fat% on the non-exercise estimation of VO2max. The level of agreement and equivalence of the 

measured fat% was evaluated between GE Lunar Prodigy DXA, InBody 720, and Huawei 

AH100. Correlations of Lunar Prodigy, 720, and AH100 with VO2max were observed as well 

and predicting models on VO2max were created and their uniformity was evaluated. It was found 

that Huawei AH100 estimated the fat% highest and InBody 720 the lowest among the three 

devices. Overall, the agreement between the devices was relatively good or acceptable but there 

are some challenges for interpretation.  

The bias of Huawei AH100 to GE Lunar Prodigy was relatively small in the middle scores of 

fat% but it seemed to overestimate at low scores and underestimate at high scores of fat%, 

therefore introducing a challenge for reliable interpretation if monitoring change in fat mass. 

InBody 720, on the other hand, seemed to underestimate fat% and the underestimation 

increased simultaneously with the increase in fat% although in low-fat individuals it appeared 

to agree well with GE Lunar Prodigy. The slope was not significant in females although the 

same trend was observed, see FIGURE 5. The bias of Huawei AH100 to InBody 720 was 

systematic overall, but the B&A analysis revealed a significant slope in males or lower-fat 

individuals, although the linear relationship in the scatter plot was very weak (APPENDIX 1). 

The equivalence testing showed no equivalence between the devices within the ±10% interval 

(TABLE 5). Huawei AH100 reached an equivalence interval of ±14.3% to GE Lunar Prodigy, 

InBody 720 ±17.75% to GE Lunar Prodigy, and Huawei AH100 ±22.5% to InBody 720. 

Despite the smallest equivalence interval between Huawei AH100 and GE Lunar Prodigy, the 

narrowest 95% LOA was observed between InBody 720 and GE Lunar Prodigy (-10.3 – 2.7) 

indicating that InBody 720 underestimated fat% consistently and with less variation in the 

estimation than Huawei AH100.  Inversely, Huawei AH100 estimated fat% closer to the 

estimation of GE Lunar Prodigy but with more variation in the estimation than InBody 720 

(APPENDIX 1).  
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The individual-level agreement (MAPE) with GE Lunar Prodigy was the lowest in Huawei 

AH100 (15.37%) (TABLE 5). InBody 720 agreed better in individuals higher in FM (i.e. 

females) (InBody 720 16.62% vs. Huawei AH100 19.83%), and Huawei AH100 agreed better 

in individuals lower in FM (i.e. males) (Huawei AH100 13.53% vs. InBody 720 17.08%). This 

seems to be conflicting as the agreement of InBody 720 appears to be better in lower scores of 

fat% than Huawei AH100 in relation to GE Lunar Prodigy. In TABLE 5, the MAPE has been 

converted in fat% instead of percent of the mean and the differences appeared not very notable. 

Nevertheless, it can be argued that the average of the unsigned percentage errors compared to 

GE Lunar Prodigy DXA was better in Huawei AH100 because its estimations were closer to 

the average of GE Lunar Prodigy whereas InBody 720 underestimated nearly systematically 

throughout all scores of fat%.  

The second research question concentrated on the similarity of the different non-exercise 

estimations of VO2max. The models were created using the stepwise backward elimination 

method and therefore the models were as accurate as possible for each device (GE Lunar 

Prodigy, InBody 720 & Huawei AH100). It should be noted that the validity of the fat% 

assessments cannot be evaluated by these models as they include different predictors and derive 

from different groups of subjects.  

Nevertheless, the major finding was that the correlations to VO2max were different between the 

different fat% assessment methods and the created models considerably differed from each 

other by the variables included, and the different estimates of fat% seemed to influence the 

models. Assessed fat% was negatively associated with VO2max and it was the major contributor 

in all created models which explained the variation in VO2max by 71, 45, and 40%. It was 

observed that the less the estimation of fat% acquired with the device correlated with VO2max, 

the less predictive power the model had on VO2max. Indeed, the created model based on 

variables estimated by GE Lunar Prodigy DXA reached the highest R2, smallest SEE, and the 

assessed fat% and FFM highest correlations with VO2max.  
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8.1 Previous research 

8.1.1 Body fat assessment 

The differences in linear relationships and R2‘s might also be linked with the validity of the 

estimations of the body composition assessment devices. In this study, DXA was assumed to 

provide the reference estimates for FM and FFM although this can be criticised. Similar to this 

study, Burns, Fu, and Constantino (2019) used the B&A method, equivalence testing, and 

MAPE in evaluating agreement and equivalence in estimates of fat% between Hologic 

Discovery W DXA and other commonly used body composition assessment methods. They 

found in college-aged subjects, that BodPod (COSMED, Concord, CA, USA), Valhalla BIA 

(Valhalla Scientific Model 1990B; Clinton Twp., MI, USA), hydrostatic weighing, and the 

skinfolds thickness method were equivalent within ±10% interval with DXA in fat%. On the 

other hand, Tanita BIA (foot-to-foot, BF-556, Arlington Heights, IL, USA), Omron BIA (hand-

to-hand, HBF-306, Lake Forest, IL, USA), and near-infrared reactance were not equivalent with 

DXA and all the methods overestimated fat% compared to DXA. MAPE, however, was lowest 

in skinfolds thickness (11.7%), hydrostatic weighting (13.4%), and BodPod (14.5%) whereas 

the others were between 17.0 and 21.9% (Burns, Fu and Constantino 2019). This thesis 

complements the previous findings on BIA devices, and no equivalence was found between 

InBody 720, Huawei AH100, and GE Lunar Prodigy DXA within ±10% interval. However, a 

different DXA model was used as a reference. InBody 720 and Huawei AH100 had slightly 

smaller MAPE’s to DXA compared to the BIA devices used in the study by Burns, Fu and 

Constantino (2019), except in females Huawei had MAPE of 19.8%. 

While DXA as a three-compartment criterion method has been used as the reference commonly 

in research, the most recent studies have concluded a two-compartment laboratory-based single-

frequency BIA even more accurate method in estimating FM and FFM (Nickerson & Tinsley 

2018). Indeed, when compared to the five-compartment model, the systematic error by GE 

Lunar Prodigy DXA has been from +3.7 to +4.1% (LOA ±5.9 to ±6.4%) and larger than the 

bias of laboratory-based two-compartment models (Moon et al. 2009; Nickerson & Tinsley 

2018). When compared to four-compartment models, i.e. CT and MRI, the mean bias for fat% 



 

40 

 

has ranged from -3.8% to +2.8% (LOA ±3% to ±10%) (Prior et al. 1997; Clasey et al. 1999; 

Wang et al. 2010; Fosbøl and Zerahn 2015). Finally, when monitoring change in fat% and FFM 

compared to a four-component model after a strength training program, there has been a mean 

bias by DXA (DPX-L, Lunar Corp.) of approximately -0.2% and 0.2 kg with relatively large 

errors (LOA ±3.8% and ±3.1 kg) compared to 4-compartment and 3-compartment (Siri, HW + 

deuterium dilution) (LOA ±0.69% and ±0.53 kg) (Van Marken Lichtenbelt et al. 2004). Similar 

findings have been found in a weight-loss setting in athletes where changes of 0.8% and -0.5 

kg for fat% and FFM was reported by DXA (Hologic QDR-4500A) (LOA -3.7-5.3% and -3.7-

2.7 kg) (Santos et al. 2010). Similar studies and systematic literature reviews on the reliability 

in detecting changes in body composition should be encouraged in future validation studies, 

especially for field measurements and BIA devices. 

There have been many validation studies, e.g. on the agreement between InBody devices and 

DXA (GE Lunar Prodigy). Sillanpää et al. (2014) validated segmental multi-frequency BIA 

(InBody 720) against DXA in a large group of Finnish women and men aged 18-88. They found 

very similar differences between InBody and DXA compared to this study although no 

proportional bias was found (women MD 4.7%, LOA -0.9-10.3; men MD 3.1%, LOA -3.7-9.9). 

In another study by Volgyi et al. (2008), it was also detected that InBody 720 overestimated 

FFM and underestimated FM and fat% in normal weight and obese Finnish population 

compared to GE Lunar Prodigy. In obese women, however, the estimates of FFM and FM were 

similar between the two devices (Volgyi et al. 2008). 

Further, McLester et al. (2018) support the findings of the previous research demonstrating that 

InBody multi-frequency BIA analysers, regardless of the model (InBody 230, InBody 720, and 

InBody 770), have a small individual error, but a tendency to produce large systematic bias 

(McLester et al. 2018). As discussed above, a similar trend was found in this study except for 

an increasing bias towards higher scores of fat%. McLester et al. (2018) also found that the 

agreement of InBody devices was found to be reliable between measurements compared to 

DXA (GE Lunar iDXA). However, the underestimation was systematic in fat% by InBody 

devices: -3.1--3.5 fat% in males (LOA -9.4-3.3) and -2.7--3.3 fat% in females (LOA -8.4-2.4). 

Positive proportional bias was found in the measurement of InBody 770 in females. FFM was 

overestimated by 5.7-6.0 kg in males (LOA 0.0-11.3) and by 4.5-4.8 kg in females (LOA 0.7-
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8.4) compared to DXA, and in males, significant positive proportional bias was observed in all 

three devices (McLester et al. 2018).  

Before, the validity of InBody 720 compared to Hologic QDR-4500 DXA has been studied 

(Ling et al. 2011). In middle-aged men and women with 15.9-24.7% prevalence of 

comorbidities, they found increased underestimation in LBM and overestimation in FM along 

with the increase in scores of BMI. The B&A analysis did not indicate the same trend 

completely. Instead, the small underestimation bias in LBM was rather systematic (female -0.8 

kg, male -1.5 kg) than proportional. Whereas in this study, an increased underestimation 

towards higher scores of fat% was found, Ling et al. (2011) found an overestimation bias 

(female 1.2%, male 2.6%) with higher overestimation towards the higher scores of fat% (Ling 

et al. 2011). Probably the differences in findings with this thesis are related to the different 

DXA device used and the different study population. Accordingly, the findings of the validation 

studies are very dependent on the reference method and the specific study populations. 

The direct segmental 8-point multi-frequency BIA has been superior to other BIA devices, i.e. 

4- and 8-point single-frequency BIA devices. The difference seems to be related to the ability 

of the multi-frequency BIA to measure segmental impedances of the body tissues and 

subsequently estimating TBW more accurately than single-frequency BIA (Demura, Sato & 

Kitabayashi 2004). For instance, in the study by Volgyi et al. (2008), Tanita (BC 418 MA) 8-

point single-frequency BIA failed to detect differences in FFM and FM between individuals of 

low and high physical activity unlike DXA (GE Lunar Prodigy) and InBody 720 (Volgyi et al. 

2008). This may be related to the mentioned fact about the inability of single-frequency BIA to 

estimate segmental impedances and TBW accurately (Demura, Sato & Kitabayashi 2004) or 

the algorithms the device is using in its estimation (Volgyi et al. 2008). According to Moore et 

al. (2019), a laboratory-based single-frequency BIA (RJL Systems, Quantum V) 

underestimated FM by -2.2 kg (LOA ±5.3) compared to DXA (GE Lunar Prodigy) in a wide 

range of American adults.  The bias was systematic across the scores of FM, except in regional 

estimates. Simultaneously in lean soft tissue mass, the bias was relatively small and systematic 

(1.2 kg, LOA ±5.2) although the proportional bias, similarly to FM, was significant in regional 

estimates of lean soft tissue (Moore et al. 2019).  
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Unfortunately, the agreement of Huawei AH100 body composition analyser to other methods 

have not been studied previously. It was found that Huawei AH100 rather overestimated than 

underestimated the amount of FM and there was a significant negative proportional bias 

between Huawei and DXA in fat%. More research and systematic literature reviews are needed 

on the validity of newly developed single- or multi-frequency BIA body scales. In conclusion, 

the systematic bias and the proportional bias of the bioelectric impedance devices in estimating 

fat%, FM, and FFM should be taken into consideration when interpreting the results of 

validation studies (McLester et al. 2018).  

8.1.2 Non-exercise prediction of VO2max 

Probably the most famous non-exercise model using fat% is created by Jackson et al. (1990).  

In previously created prediction models using fat%, the assessment has been done mainly by 

skinfold thickness method (Wang et al. 2019). In that sense, this thesis is very innovative 

utilising three different body composition assessment methods. Previously created models have 

used variables such as fat%, smoking status, height, weight, waist circumference, resting HR, 

gender, BMI, PA, and age (Wang et al. 2019).  

The previous studies have found conflicting results on the accuracy of the non-exercise 

prediction models on VO2max relative to body weight (Wang et al. 2019) and only three studies 

have reached lower SEE than the model 1 of this study (SEE 3.72) (George et al. 1997; 

Bradshaw et al. 2005; Cao et al. 2010a). Fifteen of the studies evaluated by Wang et al. (2019), 

however, have found a lower SEE than the model 3 (SEE 5.94) (Jackson et al. 1990; Ainsworth 

et al. 1992; Heil et al. 1995; Whaley et al. 1995; Matthews et al. 1999; Jurca et al. 2005; Wier 

et al. 2006; Cao et al. 2009; Cao et al. 2010b; Nes et al. 2011; Shembre & Riebe 2011; Jackson 

et al. 2012). The coefficients of determination of the created models have ranged from 0.46 to 

0.86 (Wang et al. 2019). 

In the cross-validation studies, the correlation coefficients have been ranging from 0.24 to 0.91 

demonstrating that non-exercise models can relatively well estimate CRF in other groups than 

the reference, but the fit must be verified before utilising the models (Wang et al. 2019). The 
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best models have used gender, age, objectively assessed PA, moderate- and vigorous PA, 

perceived functional ability, step counts, waist circumference, and BMI in their estimations 

(George et al. 1997; Bradshaw et al. 2005; Cao et al. 2010a; Cao et al. 2010b). This study, along 

with others, proves that using estimated fat% can yield in reliable non-exercise estimations on 

VO2max (Jackson et al. 1990; Heil et al. 1995; Whaley et al. 1995; Wier et al. 2006; Jackson et 

al. 2012), and it very important which method is used to assess body composition (TABLE 6 

& 7). 

8.2 Strength and limitations 

This thesis examines an up-to-date topic as new commercial single- and multi-frequency BIA 

body composition assessment devices are constantly increasing. The strength of this study is a 

comprehensive analysis of agreement between the body composition assessment devices in 

fat%. Furthermore, the maximal direct VO2max test, DXA as the reference method in body 

composition assessment, and relatively diverse study sample were used in this study. To the 

knowledge of the author, there are no previous studies on the influence of different body 

composition estimations on the non-exercise estimation of VO2max and only a few studies are 

taking advantage of the equivalence testing and the use of MAPE in the analysis of agreement 

between methods. 

There are also many limitations to this study. Perhaps the most problematic question relates to 

the fact that the body composition assessment methods and prediction models of VO2max are 

not always accurate for non-reference groups as the estimations are based on certain 

assumptions and algorithms from the reference population, i.e. there are differences observed 

in accuracy in different groups of age, ethnicity, sex, health status, etc. (Fosbøl & Zerahn 2015). 

This can lead to misinterpretations that a certain method is not accurate whereas in the reference 

population it would be completely valid and vice versa.  

The specificity of the prediction models to the reference population is a critical factor in the 

utilisation of them in practice (Moon et al. 2011; Malek et al. 2004). The same issue limits the 

validity and usage of the created prediction equations of this thesis. Specifically, the model 1 
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presented in TABLE 7, derives from a group of healthy Finnish men and women aged 20-45 

and the model 2 and the model 3 from healthy Finnish and Chinese men and women aged 18-

54. Thus, in addition to the validity of the body composition assessment devices, the 

differences, age-range and ethnic diversity of the study groups of the models 2 and 3 could have 

affected to the correlations with VO2max as well as the linear relationships and r2‘s of these 

prediction models. This should be noted when evaluating the validity of these equations and the 

results of this study. Besides, the measurements were not done in the same place or with the 

same equipment. Additionally, technical and environmental factors might have affected the 

results as well. 

The prediction models were not cross-validated, and the predicting accuracy of the equations is 

yet to be confirmed. It seems that the predictive equation using GE Lunar Prodigy DXA as body 

composition assessment method (Model 1), can be a potentially accurate non-exercise method 

to assess VO2max in relatively healthy Finnish working-aged adults or a similar population. The 

validity of the prediction models using InBody 720 and Huawei AH100 (Models 2 & 3) are 

more questionable as the study groups comprised both Finnish and Chinese subjects. 

Although the study sample consisted of young and old working-age adults and from low- to 

high-fit individuals, the models created in this thesis may not be generalisable to some specific 

populations such as very low- and high-fit individuals, children and old people, and other 

specific groups not similar to our study sample. Many studies have reported overestimation of 

the prediction in the low-fit subjects and conversely, underestimation in the high-fit individuals 

(e.g. Nes et al. 2011; Jurca et al. 2005) and a similar trend was observed in the predictions of 

this study (APPENDIX 3). Especially, the model 2 and 3 seem to yield more overestimations 

than underestimations in the low scores of VO2max and vice versa in the high scores of VO2max. 

Model 1, on the other hand, seemed to yield relatively accurate predictions even at the extremes 

of fitness.  

Up to the present time, probably the most sophisticated non-exercise prediction models for CRF 

have been created by the longitudinal prediction model method by Jackson et al. (2012). Unlike 

linear prediction models, this method can account for the non-linear relationship between age 
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and CRF resulting in unbiased predictions in the older population (Jackson et al. 2012). They 

could predict VO2max by SEE of 4.9-5.4 ml·kg-1·min-1 using fat%, age, waist circumference, 

resting HR, PA, and smoking status. Although in this study, SEE of even 3.7 ml·kg-1·min-1 was 

reached, it does not account for the non-linear relationships and might be biased towards the 

extremes of age and fitness. 

Criticism can also be placed on the ability of the prediction equations to distinguish between 

individuals that have lower cardiorespiratory fitness but simultaneously low fat% and vice versa 

as we found them to be inversely related to each other and the relationship may not be linear. 

The models of this study or probably any non-exercise model cannot detect such differences 

between individuals. It is, therefore, possible that accurately assessed PA and physiological 

variables as predictors can increase the validity but will also add complexity to the models. 

Overall, the sample and groups sizes were large in this study, and the validation of the body fat 

assessment methods is likely to illustrate the true errors, i.e. the Section 1 of the study can be 

stated valid internally and externally. Speaking of Section 2 of the study, the created non-

exercise models may not be generalisable to larger or different populations. Thus, they should 

be interpreted as not utilisable until further cross-validation. 

8.3 Ethical issues 

The study protocol was approved by the Ethical Review Board of the University of Jyväskylä 

as well as the Shanghai Jiao Tong University Bio-X Ethics Board. TRIPOD (Collins et al. 2015) 

and GRRAS (Kottner et al. 2011) checklists were followed as well for the transparency of 

reporting. 

The used data was not pseudonymised or anonymised for the analysis. However, research 

subjects cannot be identified from the results or publications. In this study, other data security 

procedures were done, such as internal actions of the controller and the processor to prevent 

unauthorised access to personal data and data secured working environments or IT-systems was 
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used. Besides, all the direct identifiers of the subjects were removed in the analysis phase. We 

followed the EU General Data Protection Regulations in Jyväskylä. 

In reward of participation at Jyväskylä, a movie ticket was given to the subjects after the 

measurements whether they completed the measurements or not. Given the small monetary 

value of the reward, it is seen as an acceptable way to motivate subjects to participate in 

measurements of very small health-risk, i.e. dual-energy x-ray absorptiometry and direct 

VO2max test. Furthermore, this may have enlarged the study sample to individuals that were not 

otherwise motivated to participate, reducing the selection bias to some extent. 

In addition, the risk assessment was done to ensure eligibility of subjects for participation and 

the subjects were insured against accidents, damages, and injuries during the measurements. 

The sources of funding of the data collection were the University of Jyväskylä, Shanghai Jiao 

Tong University, and Huawei Technologies Oy (Finland) Co., Ltd. As in this thesis, Huawei’s 

device was evaluated, it is important to declare that Huawei Technologies Oy did not participate 

in the analysis, the data collection, or in interpretations in any way regarding this thesis. The 

Faculty of Sport and Health Sciences had signed an agreement with Huawei. The results of this 

study are owned by the University of Jyväskylä and they are open to the public. 

8.4 Future studies 

As the supply of commercial body composition assessment devices to the public is increasing, 

it raises a concern of the accuracy of their measurements. Consequently, it would be important 

to assess the validity and reliability of these new devices as well as their predictive potential on 

clinical indicators, such as cardiorespiratory fitness. If the agreement of estimate with the 

measured value is not satisfactory, the measurement might mislead the customers. 

Contrariwise, if the estimate is accurate, the validity serves as a potential competitive advantage 

against competitors of the manufacturer or the service provider. Furthermore, the more valid 

the measurement is the more potential the device has predicting another valuable health 

indicator.  
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Secondly, research should focus on the reliability of the estimations in the follow-up. As was 

discussed of both sections of this study, the concerning issue was the inaccuracy at the low and 

high scores of the estimated variable, whether fat% or VO2max. It is not practically useful to 

create predictions if we cannot monitor change accurately. One very good approach is suggested 

by Jackson et al. (2012) utilising longitudinal algorithms instead of cross-sectional linear 

regression models.  

As described very recently (2019), the cross-validation of prediction equations in multiple 

populations including ethnic groups and with morbidities should be encouraged (Wang et al. 

2019). In this study, although the study groups included two ethnic groups, it is not reasonable 

to conclude any findings on the effect of that until further cross-validation. Furthermore, Wang 

et al. (2019) recommended additional studies on the associations between predicted 

cardiorespiratory fitness and different morbidities for further validation of non-exercise models 

in clinical settings (Wang et al. 2019). It is also acknowledged that self-reported PA in the 

prediction of VO2max has limitations and therefore objective methods of PA in the models should 

be utilised more for better outcomes and estimates (Wang et al. 2019). 
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8.5 Conclusions 

In this study, by comprehensively evaluating the agreement and equivalence between GE Lunar 

Prodigy DXA, InBody 720, and Huawei AH100, it was found that the estimations of fat% 

differed from each other at the group- and individual-level. Due to the lack of statistical 

equivalence, it would be recommended to interpret the estimations of BIA devices with caution. 

The second important finding was that the estimations of fat% and LBM of different body 

composition assessment devices as well as age, BMI, and gender correlated differently with the 

directly assessed VO2max in the different study groups. Accordingly, the included predictors and 

the R2’s of the created prediction equations were notably affected and the prediction models 

were very different from each other. 

The majority of the studies that have predicted maximal energy expenditure have included PA 

along with other predictors and much fewer studies have exploited the assessment of fat% 

(Wang et al. 2019). In this study, it was found that even by using only fat% assessment of GE 

Lunar Prodigy DXA, BMI, and age, it is possible to predict VO2max with low error, although it 

is acknowledged that some limitations are evident. It can be stated from these results that 

accurately estimated body composition may lead to better predictions on VO2max. 
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APPENDICES 

APPENDIX 1. Bland Altman analysis of agreement in fat% between devices. 
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APPENDIX 2. Descriptive characteristics of subjects in section 2 of the study. 

 

TABLE 1. Descriptive characteristics and differences between genders in age, BMI, lean 

body mass, body fat percent, and VO2max in a group where measurements of InBody 720 and 

VO2max were conducted (n=278).  

 Total (n=278) Male (n=164) Female (n=114) Difference 

 Mean 

(range) 

SD Mean 

(range) 

SD Mean 

(range) 

SD MD (t) 
p-valuea 

Age 29.22  

(18.0-54.0) 

8.23 28.46  

(18.0-54.0) 

7.89 30.30  

(18.0-53.0) 

8.62 1.84 

(1.81) 
0.071 

BMI 23.39  

(16.5-32.7) 

2.73 23.70  

(16.5-32.7) 

2.80 22.95  

(18.1-31.5) 

2.56 -0.75     

(-2.27) 
0.024 

LBM InBody 52.53  

(29.8-78.2) 

9.81 58.13  

(39.9-78.2) 

7.78 44.47  

(29.8-63.8) 

6.11 -13.66   

(-16.38) 
<0.001 

Fat% InBody  20.53    

(3.0-41.6) 

7.45 17.04    

(4.6-34.1) 

5.70 25.56    

(3.0-41.6) 

6.79 8.52 

(10.98) 
<0.001 

VO2max            L-

1·min-1
 

3.04      

(1.2-4.8) 

0.68 3.39      

(2.0-4.8) 

0.58 2.54      

(1.2-4.1) 

0.48 -0.85     

(-13.28) 
<0.001 

VO2max   ml·kg-

1·min-1
 

43.50  

(25.1-65.5) 

7.64 45.91  

(25.4-65.5) 

7.42 40.04  

(25.1-59.3) 

6.59 -5.87     

(-6.79) 
<0.001 

a Differences between genders was tested by the Independent samples T-test. 
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TABLE 2. Descriptive characteristics and differences between genders in age, BMI, lean body 

mass, body fat percent, and VO2max in a group where measurements of GE Lunar Prodigy DXA 

and VO2max were conducted (n=140). 

 

Total (n=140) Male (n=69) Female (n=71) Difference 

Mean 

(range) 

SD Mean 

(range) 

SD Mean 

(range) 

SD MD (t) 
p-valuea 

Age 31.49  

(20.4-45.1) 

7.07 32.20   

(22.6-44.8) 

6.61 30.80   

(20.4-45.1) 

7.47 -1.41     

(-1.18) 
0.240 

BMI 23.85  

(17.0-31.5) 

2.61 24.25   

(17.0-29.9) 

2.38 23.45   

(18.1-31.5) 

2.77 -0.80     

(-1.82) 
0.070 

LBM DXA 52.28  

(34.5-78.0) 

9.91 60.23   

(45.0-78.0) 

6.91 44.55   

(34.5-61.0) 

5.07 -15.68   

(-15.26) 
<0.001 

Fat% DXA 23.91    

(5.5-45.7) 

9.07 18.69     

(5.5-35.6) 

7.08 28.98     

(9.8-45.7) 

7.87 10.28 

(8.12) 
<0.001 

VO2max                  L-

1·min-1
 

3.14      

(1.6-4.7) 

0.68 3.64       

(2.7-4.7) 

0.50 2.65       

(1.6-4.1) 

0.43 -0.99     

(-12.56) 
<0.001 

VO2max  

ml·kg-1·min-1 

43.94 

(28.2-63.0) 

6.79 47.47 

(34.6-63.0) 

5.46 40.51 

(28.2-59.3) 

6.20 -6.96  

(-7.04) 
<0.001 

a Differences between genders was tested by the Independent samples T-test. 
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TABLE 3. Descriptive characteristics and differences between genders in age, BMI, lean body 

mass, body fat percent, and VO2max in a group where measurements of Huawei AH100 and 

VO2max were conducted (n=125). 

 Total (n=125) Male (n= 71) Female (n= 54) Difference 

 Mean 

(range) 

SD Mean 

(range) 

SD Mean 

(range) 

SD MD (t) p-valuea 

Age 30.68  

(18.0-54.0) 

8.25 30.12  

(18.0-54.0) 

8.56 31.42  

(19.0-45.0) 

7.83 1.30 

 
0.315u 

      U(123)=1715.5, Z=-1.0 u 

BMI 23.85  

(17.0-29.9) 

2.66 24.02  

(17.0-29.9) 

2.63 23.64  

(18.1-29.6)  

2.72 -0.38     

(-0.79) 

0.431 

SMM Huawei 50.53  

(36.0-69.0) 

8.77 56.91  

(41.5-69.0) 

5.49 42.15  

(36.0-56.1) 

3.80 -14.75  
<0.001u 

      U(123)=72.0, Z=-9.2 u 

Fat% Huawei  24.92    

(5.0-39.6) 

7.25 20.34    

(5.0-33.8) 

4.74 30.94  

(14.5-39.6) 

5.32 10.60  
<0.001u 

      U(123)=248.5, Z=-8.3 u 

VO2max            L-

1·min-1 

3.15      

(1.6-4.6)

  

0.67 3.55      

(2.3-4.6) 

0.51 2.62      

(1.6-4.1) 

0.46 -0.94  

<0.001u 

      U(123)=311.0, Z=-8.0 u 

VO2max      

ml·kg-1·min-1
 

44.35  

(28.2-63.7) 

7.59 47.70  

(33.3-63.7) 

6.41 39.95  

(28.2-59.3) 

6.77 -7.75     

(-6.54) 
<0.001 

a Differences between genders was tested by the Independent samples T or Mann-Whitney U(u) test. 
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APPENDIX 3. Linear relationships between measured and predicted VO2max. 

 

Model 1. VO2max= 53.57 + (fat%GE Lunar Prodigy) * -66.34 + (BMI) * 0.50 + (age) * -0.18. 
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Model 2. VO2max= 62.95 + (fat%InBody 720) * -0.99 + (LBMInBody 720) * -0.32 + (BMI) * 1.03 + 

(age) * -0.23. 
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Model 3. VO2max= 58.16 + (fat%Huawei AH100) * -0.40 + (age) * -0.18 + [gender (male=1, 

female=0)] * 3.25. 

 

 


