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ABSTRACT

Zhou, Dongdong
Automatic sleep stage classification based on single-channel EEG
Jyväskylä: University of Jyväskylä, 2023, 66 p. (+included articles)
(JYU Dissertations
ISSN 2489-9003; 610)
ISBN 978-951-39-9303-0 (PDF)

Sleep issues are on the rise and have a negative impact on global population
health, particularly during the COVID-19 outbreak. The most crucial stage is to
correctly assess sleep quality and diagnose sleep disorders by categorizing the
stages of sleep (also called sleep scoring). The most common tool for sleep scor-
ing is the polysomnography (PSG) recording. However, this manual procedure
is time-consuming and heavily reliant on clinic expertise. As a result, it is essen-
tial to develop automatic sleep stage classification methods to fulfill the growing
unmet demands for sleep research. In this thesis, we focus on developing deep
learning-based (DL-b) methods and solutions for the class imbalance problem
(CIP) and model interpretability in automatic sleep scoring using single-channel
EEG.

In Article I, we present an efficient one-dimensional Conventional Neural
Network (1D-CNN) based model, namely SingleChannelNet (SCNet), for auto-
matic sleep scoring with raw single-channel EEG. In Article II, we further seek to
accelerate the training speed with the spectrogram input. In addition, our pro-
posed LightSleepNet (LSNet) could achieve promising performance while requir-
ing far fewer model parameters. To alleviate the CIP, we propose different bal-
ancing methods to balance the dataset samples and network connection with the
Gaussian white noise addition (GWN), Generative adversarial network (GAN)
and class weight redesign methods in Articles III and IV, respectively. In Article V,
we provide an interpretable sleep stage classification scheme based on layer-wise
relevance propagation (LRP), which can visually demonstrate the contribution of
specific EEG patterns in each sleep stage to the final model prediction.

To conclude, this thesis proposes two DL-b methods for automatic sleep
stage classification, which could obtain remarkable performance on public PSG
datasets. In addition, we systematically analyze and present efficient solutions
to the CIP and model interpretability in automatic sleep scoring. Ultimately, we
expect this thesis to promote the practical application of DL-b automatic sleep
scorning methods in the future.

Keywords: Sleep stage classification, single-channel EEG, deep neural network,
class imbalance problem, model interpretability



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Zhou, Dongdong
Automaattinen univaiheen luokittelu yksikanavaisen EEG:n perusteella
Jyväskylä: University of Jyväskylä, 2023, 66 s. (+artikkelit)
(JYU Dissertations
ISSN 2489-9003; 610)
ISBN 978-951-39-9303-0 (PDF)

Uniongelmat lisääntyvät ja niillä on kielteinen vaikutus maailman väestön ter-
veyteen, kuten COVID-19-pandemia osoitti. Uniongelmien analysoimisessa tär-
kein vaihe on arvioida oikein unen laatua ja diagnosoida unihäiriöt luokittele-
malla unen vaiheet (kutsutaan myös unipisteytykseksi). Yleisin unen pisteytyk-
sen työkalu on polysomnografiatallennus. Tämä toimenpide on kuitenkin aikaa
vievä ja on tehtävä asiantuntevalla klinikalla. Tästä syystä tarvitaan automaattisia
univaiheen luokittelumenetelmiä, jotka täyttävät unitutkimuksen kasvavat vaa-
timukset. Tässä väitöskirjassa keskitymme kehittämään syväoppimiseen perus-
tuvia menetelmiä ja etsimään ratkaisuja luokkaepätasapaino-ongelmaan ja mal-
lin tulkittavuuteen automaattisessa unen pisteytyksessä käyttäen yksikanavaista
EEG:tä.

Artikkelissa I esittelemme tehokkaan yksiulotteisen konvoluutiohermoverk-
kopohjaisen mallin SingleChannelNet (SCNet). Se perustuu automaattiseen unen
pisteytykseen yksikanavaisella EEG:llä. Artikkelissa II pyrimme parantamaan mal-
lin optimointinopeutta spektrogrammin syötteen avulla. Ehdottamallamme mal-
lilla LightSleepNet (LSNet) on lupaava suorituskyky ja se vaatii merkittävästi vä-
hemmän malliparametreja. Luokkaepätasapaino-ongelman lieventämiseksi eh-
dotamme artikkeleissa III ja IV erilaisia menetelmiä tietojoukkonäytteiden tasa-
painottamiseksi Gaussin valkoisen kohinan lisäyksen, generatiivisen adversari-
aalisen verkon ja verkkoyhteyden avulla käyttäen luokkapainotuksen uudelleen-
suunnittelumenetelmiä. Artikkelissa V tarjoamme tulkittavan relevanssin ker-
roksittaiseen etenemiseen perustuvan univaiheen luokittelukaavion, joka voi vi-
suaalisesti osoittaa kunkin univaiheen tiettyjen EEG-kuvioiden vaikutuksen lo-
pulliseen mallin ennusteeseen.

Johtopäätöksenä tässä opinnäytetyössä ehdotetaan automaattiseen univai-
heen luokitteluun kahta menetelmää, jotka voisivat saavuttaa huomattavan suo-
rituskyvyn julkisissa polysomnografia-aineistoissa. Lisäksi analysoimme ja esit-
telemme systemaattisesti tehokkaita ratkaisuja luokkaepätasapaino-ongelmaan
ja mallin tulkittavuuteen automaattisessa unipisteytyksessä. Odotamme tämän
opinnäytetyön edistävän automaattisten unihalvausmenetelmien käytännön so-
veltamista tulevaisuudessa.

Avainsanat: Univaiheen luokittelu, yksikanavainen EEG, syvä hermoverkko,
luokkaepätasapaino-ongelma, mallin tulkittavuus
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1 INTRODUCTION

This chapter begins by introducing the background and motivation for this thesis.
After that, it gives a summary of the entire study before finally describing the
thesis structure.

1.1 Research background

Sleep is a spontaneously recurring physiologic state that occupies around one-
third of human life (Mesarwi et al., 2013; Kay and Dzierzewski, 2015; Oikonomou
and Prober, 2017). Sufficient and high-quality sleep contributes to better brain
function (Luyster et al., 2012). Additionally, there is also compelling proof that
sleep aids in the development of long-term memory (Sawangjit et al., 2022). Un-
fortunately, there are numerous sleep-related diseases that affect millions of indi-
viduals worldwide. For instance, approximately 10-30% of the population world-
wide exhibit insomnia symptoms (Wafford and Ebert, 2008; Bhaskar et al., 2016).
Moreover, the prevalence of insomnia shows a noticeably incremental trend with
the continued outbreaks of the COVID-19 pandemic (Morin et al., 2022). Addi-
tionally, abnormal sleep patterns can serve as a warning sign for several neurode-
generative illnesses (e.g., Parkinson’s and Alzheimer’s diseases) (Iranzo et al.,
2006). Accurate sleep stage classification, also known as sleep scoring, is the first
phase used in clinics and is crucial for determining sleep disorders and gauging
the quality of one’s sleep. (Sousa et al., 2015; Zhang and Wu, 2017, 2021).

Polysomnography (PSG) recordings are considered the golden tool for eval-
uating sleep quality and disorders (de Souza et al., 2003; Cook et al., 2017; Derbin
et al., 2022). We illustrate an example of the PSG recording in Figure 1. As can be
seen, PSG data typically include multi-channel signals, such as electroencephalo-
gram (EEG) for recording the brain activities, electromyogram (EMG) for collect-
ing muscle activation, electrocardiogram (ECG) for acquiring the heart electrical
activities, electrooculogram (EOG) for measuring eye movements as well as other
bio-signals for monitoring additional physiological information. The acquisition
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FIGURE 1 An illustration of PSG recordings.

��� ��� ��� ��� ����
����


�

	�

	�

	�


��

FIGURE 2 A healthy adult’s hypnogram labeled by sleep experts.

of overnight PSG recordings is generally carried out in a specialized hospital or
sleep laboratory. Typical overnight sleep structure can be characterized by five or
six sleep stages, depending on different standards. The gathered PSG recordings
are first segmented into different 30-second epochs, and with the Rechtschaffen
and Kales (R&K) manual (Rechtschaffen, 1969), each 30-second epoch is labeled
with Wake (W), Non-rapid eye movement (Non-REM: N1, N2, N3 and N4), and
Rapid eye movement (REM). To abolish the stage ’movement time’, the Ameri-
can Academy of Sleep Medicine (AASM) rule (Berry et al., 2012) merges stages
N3 and N4 into stage N3. In this thesis, we adopt the five sleep stages scheme (i.e.,
W, N1, N2, N3, and REM). Sleep specialists will finally review the sleep scoring
results to identify any potential patient sleep issues. In Figure 2, we demonstrate
a typical whole-night sleep architecture of a healthy adult. The handmade label-
ing process takes a lot of time and is prone to human mistake (Phan et al., 2018b).
Eight hours of whole-night PSG recording would take an experienced sleep spe-
cialist roughly two to four hours to annotate (Hassan and Bhuiyan, 2016) and the
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overall agreement is around 80% (AASM: 82.0% and R&K: 80.6%) (Danker-hopfe
et al., 2009). Consequently, a reliable and automatic tool is urgently needed to
help lighten the workload of sleep physicians.

1.2 Research motivation

So far many methods have been proposed to accomplish automated sleep scroing
assignments. In terms of the applied computational algorithms, we can catego-
rize these methods into two groups: approaches based on conventional machine
learning (ML-b) and deep learning (DL-b). The ML-b methods primarily con-
centrate on developing feature extraction approaches from the PSG recordings
to identify the differentiable patterns of distinct sleep stages (Zhu et al., 2014;
Karimzadeh et al., 2017; Satapathy et al., 2021; Fatimah et al., 2022). These pre-
extracted temporal (Redmond and Heneghan, 2006; Šušmáková and Krakovská,
2008; Koley and Dey, 2012) or frequential (Sharma et al., 2018; Kouchaki et al.,
2014; Tsinalis et al., 2016) features are subsequently loaded into traditional ma-
chine learning models to forecast sleep stages. However, each person’s sleep
structure varies physiologically depending on age, health, gender and other in-
herent factors. Model performance may vary depending on the types and quan-
tity of features, and there is no standard rule about feature extraction and selec-
tion. Therefore, the capacity of manual preprocessing and feature extractions will
always be constrained.

Deep neural networks (DNNs) have recently been successfully employed
in a number of domains, including: computer vision (CV) (Simonyan and Zisser-
man, 2014; Krizhevsky et al., 2017; Esser et al., 2021), natural language processing
(NLP) (Sutskever et al., 2014; Yang et al., 2016; Zhang et al., 2022b), robotics (Bai
et al., 2018; Paolanti et al., 2019; Ding et al., 2022), biomedical and health infor-
matics (Xu et al., 2018; Yan et al., 2021b; Zhou et al., 2022a), Etc. The DL-b method
could effectively avoid the necessity for manual feature extraction with its excel-
lent automatic feature learning ability. With regards to the signal modality, pre-
vious DL-b sleep scoring studies could be divided into multi-channel (Chambon
et al., 2018; Zhang et al., 2019; Yan et al., 2021a) versus single-channel schemes
(Supratak et al., 2017; Zhou et al., 2021; Goshtasbi et al., 2022) depending on the
inputting channels. Although the multi-channel strategy could provide more in-
formational references for sleep scoring, higher computational and acquisition
costs can be expected. Given the home sleep monitoring environment, we can
imagine the inconvenience and discomfort caused by multi-channel electrodes to
the consumers. In contrast, the single-channel EEG scheme is considered a good
alternative for practical real-time applications (e.g., portable sleep monitoring de-
vices). Considering the enormous size (ups to millions of model parameters) of
applied DNNs, the implementation of DL-b methods is also hampered by high
costs in several areas,processing speed, storage capacity, network throughput, en-
ergy use, and hardware complexity (Zhou et al., 2021). In addition, most existing
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PSG datasets experience an intrinsic class imbalance problem (CIP), where the
amount of each sleep stage is wildly unbalanced due to the particular sleep struc-
ture. The DL-b models are skewed towards the majority sleep stages (i.e., with a
high percentage) and the minority class suffers discrimination in recognition ac-
curacy. Last but not least, Sleep experts were skeptical of DL-b models because of
their unconvincing interpretability and black-box nature for the automatic sleep
stage classification in real-world settings. Establishing trust among practitioners
and properly articulating how the deep model makes decisions is a crucial and
necessary step.

Here, we conclude four main crucial issues in the realm of automatical sleep
scoring:

1. How to construct a trustworthy single-channel EEG model for automated
sleep scoring without utilizing hand-crafted features?

2. How to expedite the training speed and build a compact yet efficient DL-b
model for automated sleep scoring?

3. How to balance the dataset samples and the relationship between the ap-
plied DL-b model and the imbalanced dataset? How to improve the minor-
ity class identification accuracy without sacrificing the overall accuracy?

4. How to enhance the model explanation of the automatic sleep scoring model?
Can the specific EEG patterns of each sleep stage be detected by the DL-b
model for making the final decision? Is it consistent with the sleep scoring
manuals?

This thesis seeks to investigate practical approaches to the four challenges men-
tioned above.

1.3 Introductory overview

This thesis explores the single-channel EEG-based automatic sleep scoring meth-
ods. The thesis addressed the four questions mentioned above in the automatic
sleep scoring task. In each included article, the detailed object and solution are as
follows:

Article I In order to use as few channel signals as possible, we introduce a one-
demential convolutional neural network (1D-CNN) based model, named Sin-
gleChannelNet (SCNet) for automatic sleep scoring using raw single-channel EEG.
This paper employs the many-to-one scheme, which imitates the manual sleep
stage classification procedure conducted by sleep physicians. We then estab-
lish a multi-convolution (MC) block, which is composed of distinct sizes of fil-
ters, to learn different scale feature representations from long-time series input.
Similarly, we combine the max-pooling and average-pooling layers as the max-
average (M-Apooling) layer to replace the max-pooling for further enhancing the
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feature extraction capacity of the proposed SCNet. We validate our model’s effi-
ciency and the many-to-one scheme’s superiority on three public PSG datasets.

Article II To accelerate the training speed, we first adopt the short-time Fourier
transform (STFT) to obtain the spectrograms from raw EEG signals, which are
also considered higher-level feature representations of the source signals. We
then present a lightweight two-dimensional CNN (2-D CNN) framework, Light-
SleepNet (LSNet), with far fewer model parameters to accommodate the spec-
trograms input. The training speed of our LSNet with the spectrograms input is
verified by comparing it to the baseline model with time series input. Besides,
we compare the model performance and the number of model parameters with
other state-of-the-art methods using the same datasets.

Articles III and IV These two papers in this thesis seek the answers for the
CIP in automatic sleep scoring tasks. In Article III, we propose two balancing
methods, signal-driven and image-driven, to balance the dataset samples. To be
specific, we expand the number of sleep N1 samples in the training set, which is
regarded as the representative of the minority class. The signal-driven method
adds the Gaussian white noise to the raw EEG signal of N1. The noisy EEG sig-
nal is then converted to the time-frequency image employing short time Fourier
transform (STFT). While for the image-driven approach, we first transform the
raw EEG signal of N1 to the time-frequency image and then add similar intensi-
ties of Gaussian white noise to the time-frequency image. In Article IV, we first
introduce the class imbalance factor to statistically assess the severity of CIP. Then
two novel balancing methods are presented. The first one is to generate new
epochs of N1 from raw EGG signals through a proposed generative adversarial
network (GAN) model and add different intensities of Gaussian white noise (i.e.,
10, 5, 2, and 1 dB). Then, the efficiency of different times noise addition is in-
vestigated. Another approach is maintaining the current data distribution while
balancing the network connection between the applied DL-b model and the un-
balanced dataset. The class distribution and brain-inspired principle are used to
allocate the class weight of each sleep stage.

Article V This paper proposes a new interpretable sleep stage classification sys-
tem based on layer-wise relevance propagation (LRP). The first step is acquiring
the time-frequency images carrying the EEG patterns information through the
STFT method, allowing us to present the EEG patterns of different sleep stages
visually. Next, the time-frequency images are utilized as the trained model in-
put, and the DL-b model estimates the corresponding input. Finally, the LRP de-
termines which crucial pixels (corresponding to frequency features) in the time-
frequency image input are most relevant for the final layer. We seek to validate
whether the proposed model can correctly identify specific EEG patterns in each
stage when making the final decision.
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1.4 Thesis structure

The following are brief descriptions of the rest of this thesis. Chapter 2 first de-
scribes four public PSG datasets employed in this thesis and then analyzes related
research and theoretical basis. Chapter 3 summarizes the objective, method, re-
sult, discussion, and author contributions of five articles included in this thesis.
Chapter 4 concludes the whole research work and discusses our work’s limita-
tions and potential future directions.



2 MATERIALS AND RELATED WORK

This chapter first introduces four open-access PSG datasets used in this disserta-
tion. The related work and theoretical analysis are then provided. Given this, the
novelties and contributions of this dissertation are finally discussed.

2.1 Experimental PSG datasets

There are four public PSG datasets employed in this thesis:

– Sleep Heart Health Study (SHHS) (Quan et al., 1997; Zhang et al., 2018),
– Cleveland Children’s Sleep and Health Study (CCSHS) (Rosen et al., 2003;

Zhang et al., 2018),
– Sleep-EDF-2013 (Sleep-EDF-V1), (Kemp et al., 2000) and
– Sleep-EDF-2018 (Sleep-EDF) (Kemp et al., 2000).

Thereinto, we adopt the CCSHS, Sleep-EDF-V1 and Sleep-EDF datasets in Articles
I, III, IV, and V and the SHHS, Sleep-EDF-V1 and Sleep-EDF datasets in Article II.
The detailed description is shown as follows:

SHHS The SHHS is a multi-center cohort research conducted by the National
Heart Lung & Blood Institute to identify the effects of irregular breathing dur-
ing sleep on the cardiovascular system and other factors. This study examines
whether breathing during sleep is linked to an increased risk of high blood pres-
sure, coronary heart disease, stroke, and all-cause death. There are two subsets
in the SHHS dataset: initial SHHS (SHHS1) and second SHHS (SHHS2). We em-
ploy 100 subjects (over 40 years old) from the subset SHHS1 in Article II as the
sampling rate (125 Hz) is the same for all recordings. There are two EEG chan-
nels (C4/A1 and C3/A2), two EGO channels, one ECG and EMG channel, two
inductance plethysmography channels, one position sensor, one light sensor, one
pulse oximeter, and an airflow sensor included in the SHHS1 dataset. Our study
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adopts the single-channel EEG, C4/A1, in accordance with the AASM manual’s
guidance. (Data link: https://sleepdata.org/datasets/shhs).

CCSHS The CCSHS, which includes 515 kids aged 16 to 19 years, is one of
the biggest population-based pediatric cohorts examined utilizing objective sleep
studies. The CCSHS dataset mainly comprises two EEG channels (C3/A2 and
C4/A1, sampled at 128 Hz), two EOC channels (sampled at 128 Hz), two ECG,
and three EMG channels with a sampling rate of 256 Hz. Similarly, the single-
channel EEG C4/A1 is employed in our study. (Data link: https://sleepdata.
org/datasets/ccshs).

Sleep-EDF-V1 and Sleep-EDF There are two versions of the Sleep-EDF dataset,
including two subsets (sleep-cassette (SC) and sleep-telemetry (ST)). We select
the subset SC following the studies by Supratak et al. (2017) and Phan et al.
(2018b). The first version was launched in 2013 (Sleep-EDF-V1), which comprises
39 overnight PSG records from 20 participants in the SC cohort, whose ages range
from 25 to 34. The Sleep-EDF is an expanded edition released in 2018. The num-
ber of participants in the SC subgroup has grown to 78 (aged 25-101 years old),
including 153 whole-night sleep recordings. The Fpz-Cz EEG sampled at 100
Hz is utilized in our study. (Data link: https://www.physionet.org/content/
sleep-edfx/1.0.0/).

To validate the model generation of the proposed models in this research,
we employ four PSG datasets with various age distributions and data properties.

2.2 Machine learning-based (ML-b) sleep stage classification

2.2.1 Overall procedure of the ML-b methods

The traditional ML-b methods generally contain four key steps:

1. Data preprocessing,
2. Feature extraction and optional selection,
3. Model selection, and
4. Classification.

An overview of the methods is shown in Figure 3. The PSG recordings frequently
involve artifacts from several sources, notably EEG signals. Electrode shedding,
perspiration, electrical interference (50 or 60 Hz), and additional electrophysio-
logical signals, including eye activity, muscle movement, and heart impulses, are
common sources of artifacts (Radüntz et al., 2015).

In Step 1, preprocessing is crucial to obtain cleaner sleep signals for sub-
sequent analysis. For instance, the Butterworth notch filter is usually used to
alleviate the influence of power line interference (Allen, 2009; Ţarălungă et al.,

https://sleepdata.org/datasets/shhs
https://sleepdata.org/datasets/ccshs
https://sleepdata.org/datasets/ccshs
https://www.physionet.org/content/sleep-edfx/1.0.0/
https://www.physionet.org/content/sleep-edfx/1.0.0/
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FIGURE 3 The general schematic overview of the conventional machine learning-based
sleep stage classification methods.

2014). Additionaly, the independent component analysis (ICA) technique could
be applied to eliminate blink artifacts and the eye movement from EEG record-
ings (Jung et al., 1997; Mennes et al., 2010; Cong et al., 2015). In order to reduce
individual variation and hasten algorithm convergence, signal normalization and
feature standardization should also be taken into account.

Step 2 involves feature extraction and selection. Typically, these previously
extracted traits can be categorized into three categories: time, frequency, and
time-frequency domain features. The widely used time domain characteristics
are mean, median, standard deviation, skewness, kurtosis, and percentile to high-
light variations in the amplitude distribution and morphological characteristics
of signals (Yan et al., 2019). Commonly-used techniques for frequency domain
features extraction are fast Fourier transform (FFT) (Duhamel and Vetterli, 1990;
Patanaik et al., 2018), discrete wavelet transform (DWT) (Shensa et al., 1992; Al-
ickovic and Subasi, 2018), Etc. The different EEG patterns in sleep stages, such
as Delta (<4 Hz), Theta (4-7.99 Hz), Alpha (8-13 Hz), and Beta (>13 Hz), could
be visually demonstrated with frequency domain features. Regarding the time-
frequency domain features, they can simultaneously offer information in both
time and frequency domains, which are appropriate for nonstationary electro-
physiological signal analysis. The most popular time-frequency analysis meth-
ods are the wavelet transform, the short-time Fourier transform (STFT), and the
Hilbert-Huang transform (HHT) (Boostani et al., 2017). The feature selection is
optional, which is mainly for determining the importance of different features to
the classification performance.

Step 3 is the selection of classifiers, which can be categorized into unsu-
pervised and supervised ones. Unsupervised classifiers (e.g., k-means clustering
(Güneş et al., 2010; Shuyuan et al., 2015)) develop classification algorithms using
unlabeled sleep recordings, which could significantly reduce the time and ex-
pense required to prepare labels for enormous volumes of sleep data. However,
the classification performance is generally limited by the unsupervised training
algorithm. By contrast, automated sleep scoring tends to use supervised classi-
fiers more typically. The widely employed supervised classifiers are support vec-
tor machine (SVM) (Zhu et al., 2014; Lajnef et al., 2015; Sharma et al., 2018), ran-
dom forest (RF) (Fraiwan et al., 2012; Xiao et al., 2013; Memar and Faradji, 2017),
K-nearest neighbor (KNN) (Phan et al., 2013; Kayikcioglu et al., 2015; Boostani
et al., 2017), Etc. These hand-crafted features acquired in the third step are acted
as the input of classical classifiers to classify different sleep stages.
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In Step 4, different sleep stages can be classified as

– four sleep stages: W, light sleep (N1, N2), deep sleep (N3, N4), and REM, or
– five sleep stages: W, N1, N2, N3, and REM, or
– six sleep stages: W, N1, N2, N3, N4, and REM.

In this thesis, we employ the five sleep stages scheme.

2.2.2 Performance metrics

Precision (PR), recall (RE), F1 score (F1), Overall accuracy (ACC), and Cohen’s
kappa coefficient (K) are commonly used performance evaluation metrics, they
are defined as follows:

ACC =
TP + TN

TP + FN + TN + FP
, (1)

PR =
TP

TP + FP
, (2)

RE =
TP

TP + FN
, (3)

F1 = 2 · RE · PR
RE + PR

, (4)

K =

∑c
i=1 xii
N − ∑c

i=1

(
∑c

j=1 xij,∑c
j=1 xji

)

N2

1− ∑c
i=1

(
∑c

j=1 xij ∑c
j=1 xji

)

N2

, (5)

where TP, TN, FN, and FP represent true positives, true negatives, false nega-
tives, and false positives, respectively. N is the total numbers, c refers to the
number of classes (c = 5 in here). The confusion matrix’s diagonal value is de-
noted by xii (1 ≤ i ≤ 5). The model’s ACC is expressed as a percentage of all
correctly predicted outcomes. The proportion of successfully predicted positives
to all positives is defined by PR. The ratio of true positives to all predictions in the
actual class is known as RE. The weighted average of RE and PR is represented
by F1. K represents the degree of agreement between actual and predicted labels.

2.3 Deep learning-based (DL-b) sleep stage classification

Although ML-b methods for automatic sleep scoring have considerably devel-
oped, the complicated procedure is the prevalent defect. In addition, the model
generalization of ML-b methods is restricted due to the different properties of
PSG datasets. The DL-b methods could efficiently avoid manual features and
independently learn feature presentation from the model input. Regarding the
channel number of the model input, these DL-b approaches could be categorized
into multi-channel (Andreotti et al., 2018; Chambon et al., 2018; SM et al., 2019;
Zhang et al., 2022a; Efe and Ozsen, 2023) and single-channel schemes (Malafeev
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FIGURE 4 An illustration of a CNN model including three key components: convolu-
tional layers, pooling layers, and fully connected layers.

et al., 2018; Humayun et al., 2019; Xu et al., 2022; Fu et al., 2021; Goshtasbi et al.,
2022).

Chambon et al. (2018) proposed a two-dimensional CNN (2D-CNN) for au-
tomatic sleep scoring with multiple PSG signals, which achieved an accuracy of
80% on the MASS dataset (O’reilly et al., 2014). Zhang et al. (2019) provided a
DL-b method combining the CNN and Long Short-Term Memory (LSTM) using
multi-modal PSG data, the accuracy was 87% on the SHHS dataset. A prospective
CNN-based method was introduced by Sors et al. (2018) using raw single-channel
EEG. Although the architecture attained a high accuracy of 87%, the model has 12
convolutional layers, which increases its complexity. Besides, a multiple-input-
one-output (also called many-to-one) scheme was investigated by Chambon et al.
(2018), which imitated how sleep technologists do manual sleep scoring.

In addition to classification performance, model complexity is another as-
pect to consider. The model parameters quantities in Sors et al. (2018), Zhang
et al. (2019), Supratak and Guo (2020); Supratak et al. (2017) and Mousavi et al.
(2019) are around 2.2 million (m), 1.3 m, 1.3 m, 21 m, and 2.6 m, respectively.
A simple yet efficient model using single-channel EEG is an optimal choice for
a real-world application. Article I aims to build a reliable single-channel EEG
framework for automated sleep stage classification without any preprocessing.
Article II concentrates on developing a rapid and effective sleep scoring model
with greatly reduced model parameters.

This thesis focuses on the application and development of CNN, LSTM, and
the combination of CNN and LSTM based on single-channel EEG and many-to-
one schemes in automatic sleep scoring. The proposed models in Articles I, II,
III, and V are CNN-based. The presented framework in Article IV is CNN-LSTM
based. Next, we will introduce the theoretical basis of CNN and LSTM.

2.3.1 Convolutional neural network (CNN)

In Figure 4, we present an illustration of a CNN model, which contains an in-
put layer, multiple hidden layers, and an output layer (LeCun et al., 2015). The
hidden layers generally comprise several convolutional, pooling, and fully con-
nected layers. The convolutional layer extracts high-level feature presentations
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from its input through the convolution operation. We can also determine the
convolutional kernel’s size and number to control the receptive field of convo-
lution operation and the capacity of layer output, respectively. The convolution
calculation is described as follows:

X(l) = f l(X(l−1) ∗W(l) + b(l)
)
, (6)

where X(l−1) and X(l) are respectively the input and output of layer l, W(l) and
b(l) denote the weight matrix and bias, respectively, ∗ refers the convolution cal-
culation and f (l) stands for the activation function for adding the nonlineariza-
tion to convolution results. The activation function could improve the extraction
capacity of high-level feature presentations by enhancing the model nonlinearity.
The two most commonly used activation functions in the CNN are rectified lin-
ear unit (ReLU) (Nair and Hinton, 2010) and tanh (Lau and Lim, 2018). The ReLU
and tanh functions are defined as follows:

ReLU(x) = max(0, x), (7)
tanh(x) =

(
ex − e−x) /

(
ex + e−x) . (8)

The feature maps obtained from the convolutional layer are down-sampled
in space and orientation through the pooling layer. Each neuron in the pooling
layer only accepts a few spatially adjacent elements of the same input feature
map as input parameters and can map the input feature map to a specific position
by taking the minimum, maximum, or average value. The average-pooling and
max-pooling are two popular pooling methods in CNNs.

The output layer determines the final categorization using the softmax as
the activation function, and the softmax is described as follows:

f (xi) = exi
/ N

∑
j=1

exj , i = 1, . . . , N, (9)

where N is the class number. The probability of different classes can be calculated
using the softmax function, with the class with the highest probability serving as
the expected outcome.

In this thesis, we apply the 1D-CNN for the EEG time series input and 2D-
CNN for the spectrogram and time-frequency image input.

2.3.2 Long Short-Term Memory neural network (LSTM)

Informally, the recurrent neural network (RNN) is a type of neural network that
links all of the nodes in a chain while recursing in the direction of the sequence’s
progression(Dupond, 2019). This mechanism can allow the RNN to use previ-
ous events to infer subsequent events. However, conventional RNN struggles
with Long-term dependencies and confronts the issue of vanishing and explod-
ing gradients. The most well-known RNN variation, the LSTM, was presented
by Hochreiter and Schmidhuber (1997) to cope with the problem of Long-term
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FIGURE 5 An illustration of the LSTM unit.

dependencies and vanishing and exploding gradients. During the learning pro-
cess, LSTM can add useful information and discard irrelevant information (Zuo
et al., 2022). Figure 5 illustrates the LSTM unit’s fundamental architecture.

The LSTM unit can remove or add information to the cell state through three
carefully designed gates (i.e., the input, forget and output gates). A gate is a
is a mechanism for selectively permitting information to flow through, which
comprises a pointwise multiplication operation and a sigmoid neural network
layer. The sigmoid layer produces a number between 0 and 1 that indicates how
much of each part can get through. A value of 0 denotes complete rejection and
1 complete acceptance. The definition of the sigmoid function is described as
follows:

σ(x) = 1/(1 + e−x). (10)

The forget gate is used in the LSTM’s initial step to select which data should
be removed from the cell state. The forget gate will receive the information of
ht−1 and input xt and output a value between 0 and 1 for cell state ct−1, which is
defined as follows:

ft = σ(W f · [ht−1, xt] + b f ). (11)

The second stage is to determine what new information is added to the cell
state. The input gate determines what values to update through a sigmoid layer,
which is described as follows:

it = σ(Wi · [ht−1, xt] + bi), (12)

and a new candidate cell state C̃t is created with a tanh layer, which is defined as
follows:

C̃t = tanh(WC · [ht−1, xt] + bC). (13)

The third stage involves updating the old cell state Ct−1 to the new cell state
Ct, which is shown as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t. (14)

The final stage is determining what value to the output, which depends on
the cell status Ct. The output layer selects which portion of the cell state to output
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using the sigmoid layer, which is defined as follows:

ot = σ(Wo[ht−1, xt] + bo). (15)

The output of the LSTM unit can be acquired as follows:

ht = ot ∗ tanh (Ct) . (16)

2.4 Class imbalance problem (CIP) in automatic sleep stage classi-
fication

It is conceivable in the area of computer vision (CV) to ensure that some image
datasets (e.g., CIFAR-10 database) include an equal quantity of each category.
The sleep PSG database, however, suffers from significant CIP with an imbal-
anced class distribution due to the differences in sleep patterns between indi-
viduals’ ages, genders, and physical conditions (Krishnan and Collop, 2006; Ed-
wards et al., 2010). That is to say, certain sleep stages make up the majority, but
other sleep stages fall into the minority. The proportion of each sleep stage in a
regular night’s sleep, excluding stage W, is shown in Figure 6. We can observe
that the percentage of each stage is drastically unequal, and the class distribution
is imbalanced. Specifically, stage W has the lowest proportion, barely a tenth of
stage N2’s proportion (i.e., 45%). Stages N3 and REM share the same percentage,
which is 25%.

2.4.1 The definition of CIP in PSG datasets

To quantificationally evaluate the severity of class imbalance in PSG datasets, we
first introduce a class imbalance factor in Articles III and IV, which is defined as

5%

45%

25%

25%

Proportion of each sleep stage

Stage N1

Stage N2

Stage N3

Stage REM

FIGURE 6 The proportion of each sleep stage in a regular night’s sleep excluding
stage W.
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follows:

CIF =
N

2 · c ·min{Ni}
i ∈ {1, 2, . . . , c}, (17)

where N is the total numbers, c denotes the number of the sleep class, and Ni
refers to each sleep stage quantity. A value of CIF = 0.5 indicates that the PSG
dataset could be considered balanced. A value of CIF > 0.5 in (17) implies that
the PSG dataset experiences the CIP. Additionally, a greater CIF suggests that
the PSG dataset is more imbalanced. The CIF of the CCSHS, Sleep-EDF-V1, and
Sleep-EDF datasets are 3.6, 1.6, and 1.5, respectively, in which the CCSHS is the
most imbalanced PSG dataset. The prediction model faces crucial challenges due
to CIP since most machine learning or deep learning algorithms for classifica-
tion were developed with the presumption that each group would have an equal
amount of samples. Each class has an equal loss weight, which might result in
prejudice towards the minority class and inadequate model training.

2.4.2 Balance the dataset samples

The most direct approach to tackle the CIP is to expand the proportion of the mi-
nority sleep stage to balance the dataset samples in the training set. Only a few re-
search on sleep staging models have provided approaches to overcome CIP thus
far. There are two methods to increase the percentage of the under-represented
class: the under-sampling and the over-sampling. The under-sampling method
discards large amounts of samples from the majority class that is not necessary
to introduce new data. However, the assessment model may experience under-
fitting with a reduction in training samples. Tsinalis et al. (2016) introduced a
class-balanced random sampling method to prevent biased performance on the
majority sleep stages and substantially increase the stage N1 classification per-
formance. Nevertheless, the overall accuracy, 78%, was not good enough. The
class-balanced random sample lessened the significance of majority classes pro-
viding the principal contribution to classification performance, which is a signif-
icant factor.

By contrast, the over-sampling strategy directly increases the minority class
quantity. The most used and easiest way is to randomly replicate samples from
minority classes, which has been validated by Supratak et al. (2017) and Fan et al.
(2020). The primary flaw is that simply repeating can not introduce new variabil-
ities in the training process. In addition, The synthetic minority oversampling
(SMOTE) approach allows us to create new samples for the minority class as
well (Chawla et al., 2002). Fan et al. (2020) examined the effectiveness of five
data argumentation (DA) methods for sleep EEG data, involving repeating mi-
nority classes, morphological change, signal segmentation and recombination,
dataset-to-dataset transfer, and generative adversarial network (GAN). The mor-
phological change of EEG signals was achieved by horizontal movements. The
signal segmentation and recombination method first segments the 30 seconds of
sleep epochs into smaller chunks. After that, random segment selection and re-
combination from the same class create new sleep epochs. The dataset-to-dataset
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transfer approach is transferring learning (Pan and Yang, 2010), which is capable
of transferring sleep signals across datasets. The original architecture of GAN is
demonstrated in Figure 7, which comprises two opposing networks (generator
(G) and discriminator (D)) (Goodfellow et al., 2020). The purpose of G is to con-
vert z, the noise variable, into G(z), the produced sample that learns pdata, the
distribution of the real data x. The D is responsible for distinguishing whether a
sample is real or artificial. G and D are optimized by function V(D, G) as follows:

minmax
G

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))], (18)

where D(x) refers to the probability of x sampled from the real samples pdata.
G(z) presents the fake signals created by the G. The overall performance is en-
hanced by the proposed five DA method. However, stage N1 accuracy indicated
a slight decline. Sun et al. (2019) proposed a noise addition ranging from 8 to 14
dB method for EEG signals, the use of white noise’s signal-to-noise ratio (SNR)
might be expanded to study the effectiveness of various noise levels. In addition,
the percentage of each group is targeted to be the same as in previous studies
(e.g., Supratak et al., 2017; Sun et al., 2019; Fan et al., 2020). However, doing so
drastically damages the fundamental sleep architecture. In Articles III, IV, we only
increase the number of stage N1, as N1 is the representative of minority groups
and is the most challenging to classify.

2.4.3 Balance the network connection

The CIP is imbalanced in the class distribution and network connection. Apart
from balancing the dataset samples, how to balance the network connection be-
tween the trained model and the imbalanced PSG dataset is an alternative. It is
more practically meaningful to boost performance without altering the distribu-
tion of classes, which can keep the overnight sleep structure intact. Each class’s
weight is equal by default for most DL-b methods. As a result, the dominating
weight updating belongs to the majority class and has a longer gradient compo-
nent. Additionally, the trained model unfairly influences how well the minority
classes perform. For instance, the stage N1 accuracy is only around 50% (Li et al.,
2017; Phan et al., 2018a; Seo et al., 2020), which is the most misclassified sleep
stage.

The most straightforward way to eliminate the discrimination is to reassign
the class weight of each sleep stage. The minority class can be set by a larger class
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weight, while the majority class can be assigned to a smaller class weight. Wang
and Wu (2018) determined the class weight lying on the ratio of the numbers of
the majority class and each class, which is calculated as follows:

wl =
max{Nl}L

l=1
Nl

, (19)

where Nl is the number of class l samples, and L is the class number. While in
Kwon et al. (2021), the values of each class weight (wl) depend on the ratio of the
numbers of the whole class and each class, which is defined as follows:

wl =
∑L

i=1 Nl
Nl

. (20)

Zhou et al. (2020) introduced a balance coefficient pi adjusting by the grid
search method was introduced to modify the class weight calculation as follows:

wl = pi ∑L
i=1 Nl
Nl

. (21)

In Zhu et al. (2020), the number of samples did not entirely determine the
class weights in each class. The class weight of majority (W), intermediate (N2,
N3, and REM), and minority categories (N1) were set to 4, 2, and 1, respectively.
Wang et al. (2022) proposed a more complicated strategy. The value of class
weight was normalized to 1-5 as follows:

wl = min
[

5, max
(

1, ln
(

1
p(class)

))]
, (22)

where p(class) is the percentage of a particular class label to the entire label. In
Article IV, we evaluate three class weight redistribution strategies to balance the
network connection. The first is the approach used by Kwon et al. (2021), and the
second is to obtain the natural logarithm of the class weight in the first method.
The third is to set the class weight referring to the neuroscience principles (Zeng
et al., 2017). More details can be found in Article IV.

2.5 Model interpretability in sleep stage classification

While deep learning (DL) is commonly employed in research on automatic sleep
staging, most of these research do not provide the underlying mechanisms of
their classifiers. It is still unknown how the DL-b methods make the right deci-
sion for sleep scoring, and their black-box nature hampers the deployment of DL-
b models in clinical settings. The model explainability is one of the most crucial
issues in automatic sleep stage classification that should be urgently addressed.
The t-distributed stochastic neighbor embedding (t-SNE) method (Van der Maaten
and Hinton, 2008) has been used successfully to visualize the output of the model
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layer in many automatic sleep scoring studies (e.g., Jiang et al., 2019; Yang et al.,
2021; Yan et al., 2021b; Zhao et al., 2021; He et al., 2022; Decat et al., 2022).

We will introduce the basics of the t-SNE approach in Section 2.5.1. The t-
SNE technique is capable of converting high-dimensional data into two-dimensional
data to provide feature visualization of each layer, which can relate the classifi-
cation results of each sleep stage in each model layer. However, the characteris-
tics learned by each layer of the applied model were not shown using the t-SNE
method. Ellis et al. (2021) presented an ablation method presented to determine
the significance of each modality signal to the applied CNN-based model. The
significance of each modality can be evaluated by performance comparison be-
fore and after the ablation of each modality.

Nevertheless, the ablation strategy cannot effectively adapt to the single-
channel EEG-based automatic sleep scoring models. Additionally, it is yet un-
clear what properties the model picks up from the input and whether or not these
qualities are connected to different stages of sleep. A potential strategy, namely
layer-wise relevance propagation (LRP) (Bach et al., 2015), is potentially applied
to explain the DL-b method in automatic sleep scoring, which is also capable of
the single-channel EEG-based scheme. In addition, the LRP-based method can
determine whether the applied model can correctly identify specific EEG signals
in each sleep state for making the correct decision. The basic theory of the LRP
method is illustrated in Section 2.5.2. In Article V, we present an interpretable
sleep scoring based on the LRP approach with single-channel EEG.

2.5.1 The t-distributed stochastic neighbor embedding (t-SNE)

The t-SNE method is an improved variation of Stochastic Neighbor Embedding
(SNE) (Hinton and Roweis, 2002), which visualizes high-dimensional data by as-
signing a position to each datapoint on a two or three-dimensional map (Van der
Maaten and Hinton, 2008). The SNE uses conditional probability (pj|i) to describe
the similarity between two data. Assuming that there are two points in a high-
dimensional space, then the variance is constructed as a Gaussian distribution
(σi) centered on the point xi. For neighboring data points, pj|i is relatively higher
than widely dispersed data points. The pj|i is given as follows:

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i
)

∑k ̸=i exp
(
−∥xi − xk∥2/2σ2

i
) . (23)

Then in the low-dimensional space, such conditional probability can also
be used to define the distance between yi and yj. The σi is set to 1/

√
2, then the

conditional probability can be expressed as follows:

qj|i =
exp

(
−∥yi − yj∥2)

∑k ̸=i exp (−∥yi − yk∥2)
. (24)

The SNE employs a gradient descent method to minimize the total of Kullback-
Leibler (KL) divergences across all datapoints, the cost function C is defined as
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follows:
C = ∑

i
KL(Pi||Qi) = ∑

i
∑

j
pj|i log

pj|i
qj|i

. (25)

In t-SNE, the heavy-tailed distribution in the low-dimensional map is rep-
resented by a Student t-distribution with one degree of freedom. The joint prob-
abilities can be defined as follows:

qij =

(
1 + ∥yi − yj∥2)−1

∑k ̸=I (1 + ∥yk − yl∥2)
−1 . (26)

The t-SNE method can efficiently solve the crowding problem in SNE, which
is caused by the difference between the high-dimensional spatial distance distri-
bution and the low-dimensional spatial distance distribution. More details can
be found in Van der Maaten and Hinton (2008).

2.5.2 The Layer-wise relevance propagation

The LRP method is presented to analyze how each pixel of the input image x
contributed to the prediction f (x) (Bach et al., 2015). We illustrate the diagram of
the LRP approach in Figure 8. The LRP method presupposes that a sum of terms
of the various input dimensions xd could describe the prediction f (x):

f (x) = R f = ∑
d

Rd(x), (27)

where R f represents the relevance of prediction f (x) and Rd(x) refers to the rel-
evance that results for the pixel xd of input image x. It should be noted that the
total importance of all nodes in each layer should be equal:

∑
d

R(1)
d = . . . = ∑

i
R(l−1)

i = ∑
j

R(l)
j = . . . = R f . (28)

The relevance may be viewed as information flowing over the network con-
nection, with the flow direction being from the output node to the input node.
According to the concept of backpropagation, we may deconstruct the relevance
along the sub-paths between nodes, as shown in Figure 8. Here, assuming that
i stands for the sequence number of the lower layer neuron and j for the higher
layer neuron:

R(l−1,l)
i←j = factor(l−1,l)

ij · R(l)
j , (29)

where the distribution factor, factorij, fits into the range of 0 to 1, is given by:

∑
i

factor(l−1,l)
ij = 1. (30)

For each higher layer neuron, z(l)j = W(l)
j a(l−1) is the input and a(l − 1)

represents the lower layer neuron’s activation output vector. The relevance dis-
tribution factor between the lower layer neuron i and higher layer neuron j can
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FIGURE 8 The diagram of the layer-wise relevance propagation method.

be expressed by each component z(l)ij of z(l)j . To fulfill the restriction of (30), it is

split as follows by the normalization factor z(l)j :

factorij =
z(l)ij

z(l)j

=
w(l)

ij a(l−1)
i

∑i w(l)
ij a(l−1)

i

. (31)

Eq. (29) can be therefore rewritten by

R(l−1,l)
i←j =

w(l)
ij a(l−1)

i

∑i w(l)
ij a(l−1)

i

· R(l)
j . (32)

For each input pixel xd, the resultant relevance Rd(x) may be converted to
color space and then shown using a conventional heat mapping. In Article V, we
first get the time-frequency image using the STFT method, and the frequency at
every time point is represented by each pixel of the input time-frequency image.
With the heat mapping, we can accurately determine if the EEG patterns related
to a given sleep stage can be detected and are necessary for the applied model to
distinguish this particular sleep stage.



3 SUMMARIES OF INCLUDED ARTICLES AND
AUTHOR CONTRIBUTIONS

This chapter provides an overview of each article, including the objective, meth-
ods, results, conclusion, and discussion. The author contributions to the per arti-
cle are also explicated.

3.1 Article I: SingleChannelNet: A model for automatic sleep stage
classification with raw single-channel EEG

Dongdong Zhou, Jian Wang, Guoqiang Hu, Jiacheng Zhang, Fan Li, Rui Yan,
Lauri Kettunen, Zheng Chang, Qi Xu, and Fengyu Cong. (2022). SingleChan-
nelNet: A model for automatic sleep stage classification with raw single-channel
EEG. Biomedical Signal Processing and Control, 75, 103592.

Objective

Manual sleep stage classification is tedious and time-consuming for sleep techni-
cians (Phan et al., 2018b; Seo et al., 2020). Recently, many automatic sleep scor-
ing methods have been successfully proposed, including the traditional machine
learning-based and deep learning-based approaches. In general, the performance
of machine learning-based methods is heavily reliant on the selection of hand-
made features, which is limited by poor generalization ability. By contrast, the
deep learning-based approaches could efficiently learn features from the model
input to avoid using the pre-extract features. In addition, the multi-channel sig-
nals strategy increases the computational cost and hinders the practical applica-
tion due to the complicated data acquisition scheme. We propose an automated
sleep scoring method based on single-channel EEG without employing feature
extraction to fill these gaps.
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FIGURE 9 Illustration of 90s epochs and labels used in this paper. n denotes the number
of 30s epochs for a subject, Zm is comprised of Xm−1, Xm and Xm+1, 2 ≤ m ≤
n− 1.

M-Apooling1D

X
m-1 X

m
X

m+1. . . . . .

Conv1D(128,128@2)

BatchNormalization

M-Apooling1D(3, 2)

MC Block1

BatchNormalization

M-Apooling1D(3, 2)

Dropout(0.1)

MC Block2

BatchNormalization

M-Apooling1D(3, 2)

Dropout(0.1)

GlogalAveragePooling1D

Dropout(0.5)

Dense(5, softmax)

Max-pooling1D(3, 2)

Average-pooling1D(3, 2)

Input
Output

M-Apooling1D

Input

Conv1D(32, 1@1)

Conv1D(48, 1@1)

Conv1D(64, 1@1)

Conv1D(16, 1@1)

M-Apooling1D(3, 1) Conv1D(32, 1@1)

Conv1D(64, 3@1)

Conv1D(96, 16@1)

Conv1D(48, 64@1)

Output

MC Block

90s EEG epoch

Sleep Stage

Convolution

Block

FIGURE 10 The overall architecture of the proposed SingleChannelNet (SCNet).

Methods

We adopt three public PSG datasets (CCSHS, Sleep-EDF-V1, Sleep-EDF, described
in Section 2.1) in this study to evaluate the performance of the proposed Sin-
gleChannelNet.

In order to replicate how sleep clinicians perform manual sleep scoring
(Chambon et al., 2018), we reconstruct a 90-second epoch as the contextual in-
put. This many-to-one scheme is illustrated in Figure 9. Additionally, we only
adopt 30-minute samples of stage W before and after other sleep stages, and other
recordings of stage W are eliminated (Supratak et al., 2017; Qu et al., 2020). In-
spired by the inception module (Szegedy et al., 2015), we design a multi-convolution
(MC) block containing three different sizes of filters (i.e., small size: 3, medium
size: 16 and big size: 64, Figure 10) for leaning multi-scale feature presenta-
tions from long time series input. Similarly, we concatenate the max-pooling
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and average-pooling layers as the M-Apooling to further enhance the feature
extraction capacity of the proposed SCNet model. In addition, we replace the
traditional fully connected layer with the Global Average Pooling (GAP) layer
without introducing trainable parameters (Lin et al., 2013).

Results

Regarding the model performance, ACC and K achieved by the proposed SCNet
are as follows:

– CCSHS: ACC = 90.2%, K = 86.5%,
– Sleep-EDF: ACC = 86.1%, K = 80.5%,
– Sleep-EDF-V1: ACC = 91.0%, K = 87.8%.

We also make a performance comparison between the one-to-one (30-second in-
put) and many-to-one (90-second input) schemes on CCSHS and Sleep-EDF datasets.
Utilizing the many-to-one strategy, ACC could be improved by 1.1% and 4.1%
on the CCSHS, and Sleep-EDF datasets, respectively. Likewise, K (Cohen, 1960)
could be enhanced by 1.5% and 5.7%. Comparing with other state-of-the-art
methods using the same dataset (Li et al., 2017; Phan et al., 2018a; Nakamura
et al., 2019; Phan et al., 2019; Mousavi et al., 2019; Supratak and Guo, 2020), our
model could obtain better performance.

Conclusion and discussion

In this work, we propose an effective CNN-based model, SCNet, for automatic
sleep stage classification with raw single-channel EEG, combining feature extrac-
tion and classification abilities. The proposed SCNet could achieve promising
performance on three PSG datasets with different characters, which shows ro-
bust model generalization. Furthermore, the single-channel strategy is suitable
for portable household sleep monitoring devices with lower time delays and a
more comfortable customer experience. However, ACC of stage W is much lower
than that of sleep stages, mainly due to the class imbalance problem. This issue
needs to be further explored.

Author contributions in Article I

Dongdong Zhou: Conceptualization, Methodology, Software, Writing original
draft. Jian Wang: Writing – review & editing. Guoqiang Hu: Writing – review &
editing. Jiacheng Zhang: Writing – review & editing. Fan Li: Review & editing.
Rui Yan: Review & editing. Lauri Kettunen: Supervision. Qu Xi: Review &
editing, Supervision. Fengyu Cong: Supervision.
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3.2 Article II: LightSleepNet: A Lightweight Deep Model for Rapid
Sleep Stage Classification with Spectrograms

Dongdong Zhou, Qi Xu, Jian Wang, Jiacheng Zhang, Guoqiang Hu, Lauri Ket-
tunen, Zheng Chang, and Fengyu Cong. (2021). LightSleepNet: A Lightweight
Deep Model for Rapid Sleep Stage Classification with Spectrograms. 43rd An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC 2021) (pp.43-46), IEEE.

Objective

The exceptional success that deep learning has made in classifying sleep stages
is starting to open the door for possible real-world applications (Sun et al., 2020;
Eldele et al., 2021; Sekkal et al., 2022; You et al., 2022). However, numerous deep
neural network-based methods have overly complicated architectures with mil-
lions of model parameters resulting in potentially problematic overfitting and a
great demand on computational resources. Therefore, a simple contact model
would be required in future real-life implementation. In Article I, we also observe
that training the lengthy series input is not sufficiently efficient with the CNN-
based model. How to enhance the training efficiency is another factor worthy of
being considered.

Methods

PSG datasets SHHS-100, Sleep-EDF, and Sleep-EDF-V1 are employed in this study.
More details can be found in Section 2.1. We randomly chose 100 subjects (i.e.,
SHHS-100) from the subset (SHHS1) with the criteria: the Respiratory Distur-
bance Index 3 Percent (RDI3P) was less than 15, and there were no reports of
high pressure. Small-scale SHHS-100 aims to validate the few-shot learning abil-
ity of the proposed lightweight model (LightSleepNet, LSNet) for sleep scoring
sleep assessments. The LSNet is a simplified version (2D CNN) of the proposed
SCNet in Article I, which is designed for two-dimensional input (shown in Fig-
ure 11). The filter sizes are 1× 1, 3× 3, 7× 7 in LSNet. We transfer the raw EEG
signal into spectrograms to accelerate the training speed through the short-time
Fourier transform (STFT). The size of the spectrogram input is F× T, where F =
61, T = 89. To demonstrate the efficiency of the spectrogram input, we construct a
baseline model whose structure and training setup are consistent with the LSNet
except for the filter size. The filter size of N × N in LSNet is replaced by the filer
size of N in the baseline model, and the input of the baseline model is long-time
series EEG.
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FIGURE 11 The overall architecture of proposed LightSleepNet (LSNet) model.
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Results

We first compare the number of model parameters and the computational cost
for each training epoch between the LSNet and baseline model. As demonstrated
in Figure 12, we can see that the baseline model has around 0.14 million (m) pa-
rameters with an iteration time cost of 224 seconds. Regarding the LSNet, even
though LSNet contains more parameters (roughly 0.21 m), the time consump-
tion of each training epoch is only 35 seconds, which is less than a sixth of the
baseline model. Furthermore, we compare the model performance and the num-
ber of model parameters with other state-of-the-art methods on the same dataset.
There are around 2.2 m, 1.3 m, 1.3 m, 21 m, and 2.6 m model parameters in Sors
et al. (2018), Zhang et al. (2019), Supratak and Guo (2020), Supratak et al. (2017)
and Mousavi et al. (2019), respectively. In contrast, our proposed LSNet is much
simpler. The number of model parameters is at least six times smaller than men-
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tioned studies. Additionally, our LSNet could attain comparable (near or better)
performance on three datasets (SHHS100: 86.7%-81.3%, Sleep-EDF: 83.7%-77.5%,
Sleep-EDF-V1: 88.3%-84.5%). The goal of decreasing the model parameters is
achieved without sacrificing model performance.

Conclusion and discussion

This work presents LSNet, a simple yet powerful CNN-based model for quick
and accurate sleep stage classification. We verify the efficiency of spectrogram in-
puts, which could speed up the computational training cost immensely. More im-
portantly, the lightweight characteristic enables the proposed LSNet’s potential
practical application in real life. In addition, more energy-efficient brain-inspired
models, such as spiking neural networks (Yu et al., 2018; Xu et al., 2020, 2021),
could be investigated in the future.

Author contributions in Article II

Dongdong Zhou: Conceptualization, Methodology, Software, Writing original
draft. Qu Xi: Writing – review & editing, Supervision. Jian Wang: Writing –
review & editing. Guoqiang Hu: Writing – review & editing. Jiacheng Zhang:
Writing – review & editing. Lauri Kettunen: Writing – review & editing, Super-
vision. Fengyu Cong: Writing – review & editing, Supervision.

3.3 Article III: Convolutional Neural Network Based Sleep Stage
Classification with Class Imbalance

Qi Xu, Dongdong Zhou, Jian Wang, Jiangrong Shen, Lauri Kettunen, and Fengyu
Cong. (2022). Convolutional Neural Network Based Sleep Stage Classification
with Class Imbalance. 2022 International Joint Conference on Neural Networks,
(IJCNN 2022) (pp.1-6), IEEE.

Objective

Due to unique sleep patterns, the quantity of each sleep stage in most of the avail-
able PSG datasets is significantly uneven (i.e., class imbalance problem, CIP). The
prediction model faces critical challenges due to CIP since most machine learning
or deep learning algorithms for classification were developed with the presump-
tion that there would be an equal number of samples in each class. Herein, stage
N1, as a presentative of the minority class, generally accounts for 2-5% (Altevogt
and Colten, 2006; Fan et al., 2020; Zhou et al., 2022b). Besides, the recognition ac-
curacy of N1 is always the lowest among the five sleep stages. The performance
of the minority category suffers discrimination from the applied model. Addi-
tionally, the minority class’s poor accuracy serves as a restriction on the overall
accuracy.
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Methods

The most direct approach is to increase the number of the minority class. In Dong
et al. (2017), Sun et al. (2019), and Fan et al. (2020), the percentage of each group is
set to be the same. By doing this, the initial sleep structure is severely damaged.
This study only raises the stage N1 quantity in the training set. We first introduce
a class imbalance factor (CIF) to define the severity of the CIP in PSG datasets
quantitatively.

We propose two balancing methods, signal-driven and image-driven, to bal-
ance the dataset samples, which is shown in Figure 13. Unlike duplicating sam-
ples from the minority class (Supratak et al., 2017), we generate new samples of
N1 by adding different intensities of Gaussian white noise (GWN). Three intensi-
ties are defined in two balancing methods: signal-driven (low: 10 dB, moderate:
5 dB, and high: 1 dB) and image-driven (the mean (M) is 0, the variances (V)
are 0.05, 0.1, 0.2 respectively). The signal-driven method initially adds the Gaus-
sian white noise to the raw EEG signal and then converts the noisy EEG signal
to the time-frequency image with STFT. While in the picture-driven method, the
raw EEG signal is first converted to the time-frequency image, to which Gaus-
sian white noise is then added. We validate the efficiency of the proposed two
balancing methods on the CCSHS, Sleep-EDF, and Sleep-EDF-V1 datasets.

Results

We first compare the performance between the baseline model without and with
the proposed balancing methods. A 1 dB Gaussian white addition could achieve
the most notable ACC and K improvement for the signal-driven method in three
datasets:

– Sleep-EDF-V1: ACC +0.8%, K +1.2%.
– Sleep-EDF: ACC +0.2%, K +0.3%.
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– CCSHS: ACC +0.5%, K +0.5%.

The accuracies of the N1 stage are improved as follows:

– Sleep-EDF-V1: (38.9 + 3.8)% with 5 dB,
– Sleep-EDF: (24.6 + 1.5)% with 10 dB,
– CCSHS: (22.9 + 4.4)% with 1 dB.

On the Sleep-EDF-V1 and Sleep-EDF datasets, ACC improvement is the same
for the low and moderate intensities (V = 0.05 and 0.1) of the image-driven DA.
However, on the Sleep-EDF and CCSHS datasets, only the high intensity (V =
0.2) experiences a mild increase (1.3% and 0.1%) of N1 accuracy. Compared to
other state-of-the-art approaches utilizing the same dataset (Phan et al., 2018a;
Fan et al., 2020; Zhou et al., 2021; Phan et al., 2021), our proposed baseline model
can also achieve overall performance.

Conclusion and discussion

The PSG datasets’ inherent CIP has significantly hampered the use of automatic
sleep scoring algorithms in real-world settings. This research investigates possi-
ble CIP solutions for automatic sleep scoring methods. In order to measure the
degree of imbalance in three widely used PSG datasets, we first define the CIF.
Although there are no discernible differences between the two proposed balanc-
ing methods in terms of model performance improvement, different intensities
could enhance the overall and N1 stage categorization rates.

Author contributions in Article III

Qu Xi: Conceptualization, Methodology, Software, Writing original draft. Dong-
dong Zhou: Conceptualization, Methodology, Software, Writing original draft,
Co-first author. Jian Wang: Writing – review & editing. Jiangrong Shen: Writing
– review & editing. Lauri Kettunen: Writing – review & editing, Supervision.
Fengyu Cong: Writing – review & editing, Supervision.

3.4 Article IV : Alleviating Class Imbalance Problem in Automatic
Sleep Stage Classification

Dongdong Zhou, Qi Xu, Jian Wang, Hongming Xu, Lauri Kettunen, Zheng Chang,
and Fengyu Cong. (2022). Alleviating Class Imbalance Problem in Automatic
Sleep Stage Classification. IEEE Transactions on Instrumentation and Measure-
ment, 75, 1-12.

Objective

In Article III, we investigate two different methods for adding gaussian white
noise to the time-frequency image to raise the stage N1 numbers. However,
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FIGURE 14 The framework of the GAN model. Demonstrate the structure: (a) Genera-
tor, (b) Discriminator.

other data augmentation methods (DA), such as generative adversarial network
(GAN), and different GWN addition methods, have not been investigated. How
to balance the deep neural network is another factor worth considering in addi-
tion to balancing the samples.

Methods

In this study, we first propose a GAN model to create fictitious signals of stage
N1 (see Figure 14). The discriminator is intended to distinguish fake signals cre-
ated by the generator. We further explore the effectiveness of different intensities
and times GWN in addition to the raw EEG signal. This balancing method can
be performed on raw EEG data while maintaining EEG characteristics. We add
four intensities (1, 2, 5, and 10 dB) GWN to the raw EGG signal to boost the
N1 numbers in the training set. In terms of the amplitude, we illustrate this DA
method using various intensities and the DA with the GAN model in Figure 15.
The efficiency of different times GWN addition is then evaluated. When the ideal
intensity x dB has been determined, the intensities of GWN addition are specified
as follows:

– three times: x− 0.2, x, x + 0.2 (dB),
– five times: x− 0.2, x− 0.1, x, x + 0.1, x + 0.2 (dB).

Finally, we seek to balance the relationship between the imbalanced dataset and
the trained model without modifying the data distribution. The class weight
(CW) is rearranged based on the ratio of the numbers of all samples to each class
and the brain-inspired rule (Zeng et al., 2017). The Wi, Wj using CW (Ratio), CW
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(Log_R) methods are defined as follows:

Wi =
N
Ni

i ∈ {1, 2, . . . , 5}, (33)

Wj = ln
N
Nj

j ∈ {1, 2, . . . , 5}, (34)

where N, Ni and Nj represent the numbers of all classes, class i and j sam-
ples, respectively. Considering how neurons are distributed in the human brain’s
information-processing processes (Heeger and Ress, 2002; Zeng et al., 2017), we
put the weight of the N1 stage at 8.5 and the weight of the remaining stages at
1.5 (CW(E_I)). We build a CNN-LSTM model as a Baseline model to validate the
performance of proposed balancing methods on CCSHS, Sleep-EDF, and Sleep-
EDF-V1 datasets.

Results

The proposed GAN model can increase overall accuracy compared to the Baseline
model. However, it exhibits a slight decline in N1 accuracy on the experimental
datasets. On three datasets, the GWN approaches have improved ACC, K, and
N1 accuracy to varying degrees. In particular, the enhancement of N1 accuracy is
as follows:

– CCSHS: 9.7% with Baseline + GWN (1 dB),
– Sleep-EDF: 16.2% with Baseline + GWN (10 dB),
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– Sleep-EDF-V1: 12.0% with Baseline + GWN (1 dB).

Besides, more N1 stage samples (three and five times GWN addition) could not
concurrently produce superior overall and N1 accuracy than the Baseline + GWN
(1 dB). All CW methods result in a significant increase in the N1 accuracy, with
values on the CCSHS dataset of 52.0% for CW (Ration), 28.3% for CW (Log_R),
and 44.7% for CW (E_I). However, ACC and K marginally decline in place. In
comparison, ACC and K only slightly improve on the Sleep-EDF and Sleep-EDF-
V1 datasets, except for the CW (Log_R) and CW (E_I) approaches on the Sleep-
EDF dataset. In addition, N1 accuracy improvements are not as significant as
those on the CCSHS dataset.

Conclusion and discussion

In this study, we introduce two balancing methods to alleviate the CIP in au-
tomatic sleep scoring tasks. One method is to balance the dataset samples by
increasing the number of the minority class (i.e., N1). Another solution is to re-
design the class weight to balance the network connection. According to the ob-
tained results, the proposed approaches could enhance biased performance. This
work provides new avenues for further addressing the automatic sleep scoring
class imbalance problem.

Author contributions in Article IV

Dongdong Zhou: Conceptualization, Methodology, Software, Writing original
draft. Qu Xi: Writing – review & editing, Supervision. Jian Wang: Writing –
review & editing. Hongming Xu: Writing – review & editing. Lauri Kettunen:
Writing – review & editing, Supervision. Zheng Chang: Writing – review & edit-
ing, Supervision. Fengyu Cong: Writing – review & editing, Supervision.

3.5 Article V : Interpretable Sleep Stage Classification Based on Layer-
wise Relevance Propagation

Dongdong Zhou, Qi Xu, Jiacheng Zhang, Lei Wu, Lauri Kettunen, Zheng Chang,
Hongming Xu, and Fengyu Cong. Interpretable Sleep Stage Classification Based
on Layer-wise Relevance Propagation. Under review.

Objective

Recently, numerous deep learning-based (DL-b) methods for automatic sleep scor-
ing objectives have been successfully established and have made substantial de-
velopment (Korkalainen et al., 2020; Jia et al., 2021; Guillot and Thorey, 2021;
Zarei et al., 2022). However, it is still a long way from practical clinical applica-
tion. One of the most crucial factors is the inadequate model explanation of the
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FIGURE 17 The structure of the proposed MSSENet: a) an overall of the proposed
framework; b) the M-Apooling, which combines the Max-pooling and
Average-pooling; c) the structure of MC Block, which includes different fil-
ter sizes; d) the SE Block with the shortcut connection strategy.

DL-b methods, and the DL-b methods’ application in real life is met with skep-
ticism by sleep specialists. Establishing trust among practitioners and properly
articulating how the deep model makes choices is a crucial step. The t-distributed
stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008) is a
widely used tool for data exploration and model visualization in the automatic
sleep scoring (e.g., Van Leeuwen et al., 2019; Yang et al., 2021; Huang et al., 2022),
however, the characteristics learned by each layer of the applied model were not
depicted. The ablation method is another popular method to validate the impor-
tance of each modality to the model decision (e.g., Jia et al., 2020; Neng et al., 2021;
Ellis et al., 2021). Nevertheless, the ablation strategy cannot effectively adapt to
the single-channel EEG-based automatic sleep scoring models. It is also unclear
what features the model picks up from the input and whether learned features
are associated with sleep stages.
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FIGURE 18 The explainability results for each sleep stage implementing the LRP
method.

Methods

We propose an explainable scheme to investigate the internal relationship be-
tween the applied model’s input and prediction, shown in Figure 16. We first
get time-frequency images with information on the EEG patterns to attain the
model input using the STFT. We also present a novel CNN-based model for auto-
matic sleep scoring that assembles with Multi-Scale CNN (MSCNN) and Resid-
ual Squeeze-and-Excitation block (R-SE) (see Figure 17). Finally, layer-wise rel-
evance propagation (LRP), a conservative relevance redistribution approach, is
used to recognize effective pixels (corresponding to frequency patterns) in the
time-frequency image input that contribute the most to the final layer and benefit
most from it. We seek to see whether the proposed model can correctly identify
specific EEG patterns in each sleep stage while making a final decision.

Results

We first conduct the ablation study to validate the efficiency of each module
(MSCNN and R-SE blocks) on three experimental datasets (CCSHS, Sleep-EDF,
and Sleep-EDF-V1). Although MSCNN + R-SE is unable to enhance the perfor-
mance on the Sleep-EDF dataset compared to MSCNN alone, with the addition
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of R-SE block, ACC is improved by 0.7% on Sleep-EDF-V1 and 0.3% on CCSHS.
Likewise, the proposed MSSENet improves K on the Sleep-EDF-V1 and CCSHS
datasets by 0.9% and 0.5%, respectively.

In Figure 18, we show the explainability results for each sleep stage using
the LRP approach. Part (a) depicts the raw EEG signals of five sleep phases,
whereas part (b) depicts the corresponding time-frequency images generated by
the short-time Fourier Transform, which comprises the EEG pattern information.
The part (c) depicts the heat mapping of each sleep state using the LRP. We can
see that stage W’s heat mapping has a high importance in a high-frequency band
(i.e., Beta waves), which is compatible with stage W’s major EEG patterns. The
slowest EEG rhythms (i.e., Delta waves), indicative of profound sleep in stage
N3, also play a significant role in stage W prediction. The LRP-based results are
in accordance with the recommendations for the sleep score manual.

Conclusion and discussion

In Article V, we provide a new, understandable solution for automatic sleep scor-
ing. This solution is assembled in our proposed MSSENet model. Our MSSENet
could outperform other state-of-the-art methods using the same PSG dataset.
Furthermore, the model prediction could be visually interpreted using the LRP-
based heat mapping in Figure 18. The EEG patterns (Delta, Theta, Alpha, and
Beta waves) of different sleep stages exhibit great relevance to the correct predic-
tion, which aligns with the sleep scoring standard.

Author contributions in Article V

Dongdong Zhou: Conceptualization, Methodology, Software, Writing original
draft. Qu Xi: Writing – review & editing, Supervision. Jiacheng Zhang: Writing
– review & editing. Lei Wu: Writing – review & editing. Lauri Kettunen: Writ-
ing – review & editing, Supervision. Zheng Chang: Writing – review & editing,
Supervision. Hongming Xu: Writing – review & editing. Fengyu Cong: Writing
– review & editing, Supervision.



4 CONCLUSION AND DISCUSSION

The overview of this thesis is presented in this chapter initially. The limitations
of all studies are then covered. Finally, several prospective research directions are
discussed.

4.1 Summary of the thesis

This dissertation focuses on deep learning-based algorithms for automatic sleep
stage classification using single-channel EEG. Articles I and II propose two novel
CNN-based sleep scoring frameworks (SCNet and LSNet) based on raw EEG sig-
nals and spectrograms, respectively. Articles III and IV aim to investigate the
solutions for the class imbalance problem in automatic sleep scoring tasks. Ar-
ticle V presents an interpretable sleep stage classification system with layer-wise
relevance propagation for the model explanation.

Specifically, Article I develops an end-to-end 1D-CNN-based model (SC-
Net) that combines the capability of multi-scale feature learning and classifica-
tion. We then construct a contextual epoch employing the many-to-one scheme
as the model input. The proposed SCNet with raw single-channel EEG could
achieve promising performance on public PSG datasets. In Article II, we first
obtain spectrograms from raw EEG signals using the STFT method. The spec-
trograms are then fed into a lightweight yet effective 2D-CNN-based framework
(LSNet). Our LSNet model could realize rapid sleep scoring with spectrograms
and attain comparable performance compared with other state-of-the-art meth-
ods with much fewer model parameters. To tackle the class imbalance problem,
Article III presents two balancing methods to increase the minority class quan-
tity based on the time-frequency images of raw EEG signals. While in Article IV,
we introduce the data augmentation method with different intensities and times
GWN and a GAN model. In addition, we explore the solution to balancing the
network connection while unchanging the dataset samples. Proposed balancing
methods in Articles III and IV can enhance the overall and N1 accuracies to differ-
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ent extents. We provide an LRP-based explainable model with CNNs (MSSENet)
to demonstrate the contribution of specific EEG patterns in each sleep stage to the
model prediction visually in Article V. The MSSENet model could gain promis-
ing performance on three PSG datasets, and the LRP-based results show that EEG
patterns of certain sleep stages (i.e., Delta, Theta, Alpha, and Beta waves) indi-
cate strong relevance to the correct prediction, which is compatible with the sleep
scoring criteria.

In conclusion, this thesis systematically investigates DL-b methods for auto-
matic sleep stage classification and solutions for the CIP and model explanation
in automatic sleep scoring with single-channel EEG. In a larger sense, we expect
sleep monitoring in clinical or daily care to be made more accessible by the pro-
posed methods in this thesis.

4.2 Research limitations and future directions

Despite the fact that our results are favorable, there are still several limitations in
this study. The first one is the restriction of the datasets employed. In this disser-
tation, we validate our proposed methods on four public PSG datasets with dif-
ferent age groups. However, the different data attributes may influence the pro-
posed approaches’ efficiency. Subjects from these datasets are primarily healthy
individuals. The performance of the proposed models should be further vali-
dated on patients with sleep disorders to enhance the model generalization abil-
ity. In addition, larger and more high-quality clinic PSG datasets are required for
potential clinic use of presented models.

Secondly, we only investigate the performance of single-channel EEG. Al-
though the single-channel EEG scheme can effectively reduce the computational
cost and simplify the data acquisition procedure, the beneficial contribution of
channel increase to the model performance has not yet been investigated (Yan
et al., 2019). For example, three main features of REM sleep need to be captured
by EEG, EOG, and EMG collectively (Berry et al., 2012). The single-channel EEG-
based model may hinder the recognition accuracy of REM.

Thirdly, it is challenging to perform well when training a model on dataset
A but testing it on another dataset B, which has different data attributes. In Article
I, we train our SCNet on the CCSHS dataset and then test the trained SCNet on
the Sleep-EDF dataset, the accuracy is 65.9%, and the proposed SCNet obtains an
accuracy of 70.2% using the inverse training strategy. By doing this, the overall
accuracy of our proposed SCNet decreases drastically, a typical flaw of most deep
learning methods that must be further overcome.

Fourthly, the proposed GAN model in Article IV for balancing the dataset
samples could improve the overall accuracy. However, the N1 accuracy exhibits
a slight decrease in experimental PSG datasets. More balancing methods cus-
tomized explicitly for EEG signals could be further explored to enhance the over-
all and N1 accuracy simultaneously. Last but not least, the proposed interpretable
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scheme in Article V fails to detect other EEG patterns associated with specific
sleep stages (e.g., K-complexes in stage N2, Saw tooth waves in stage REM),
which can improve sleep scoring performance. Additionally, the multi-modal
PSG data would enhance the model interpretation of DL-b methods for automatic
sleep scoring.

Based on the study’s limitations, as stated above, we briefly summarize the
following future directions in automatic sleep stage classification tasks:

1. More clinic PSG datasets from hospitals, especially individuals with sleep
disorders (e.g., apnea, insomnia, narcolepsy), are valuable future practical
applications. Collaboration with specialized hospitals or sleep laboratories
is essential for achieving this aim.

2. The impact of different numbers of channels on model performance needs
to be further explored using a channel selection strategy. The model per-
formance and computational cost with different channels input are worth a
comprehensive comparison.

3. This thesis focus on the two most popular deep learning methods: CNN and
LSTM (as well as the combination of CNN and LSTM). More deep learning
approaches (e.g., Transformer (Vaswani et al., 2017), Graph neural network
(Scarselli et al., 2008), Spiking neural network (Ghosh-Dastidar and Adeli,
2009)) should be investigated and discussed in terms of the training effi-
ciency and model performance in future studies.

4. More efficient dataset sample balancing methods should be examined and
tailored specifically for EEG signals, such as the variational auto-Encoding
network (Kingma and Welling, 2013). The accuracy enhancement of the
minority class should not sacrifice the overall accuracy. The continuous ex-
ploration of CIP is one of the main directions in my future work.

5. Future studies will also focus on multi-modal data for improved model in-
terpretability in automatic sleep scoring tasks. In addition, it is also valuable
to determine the role of other EEG patterns (e.g., K-complexes, Sleep spin-
dles, Vertex waves, Saw tooth waves) in model prediction.



YHTEENVETO (SUMMARY IN FINNISH)

Tämä opinnäytetyö keskittyy syväoppimiseen perustuviin algoritmeihin auto-
maattisessa univaiheen luokittelussa käyttämällä yksikanavaista EEG:tä. Artik-
keleissa I ja II ehdotamme kahta uutta konvoluutiohermoverkkopohjaista unen
pisteytyskehystä SCNet ja LSNet, jotka perustuvat raaka-EEG-signaaleihin ja spekt-
rogrammeihin. Artikkeleissa III ja IV pyritään tutkimaan ratkaisuja luokkaepäta-
sapaino-ongelmaan automaattisissa unen pisteytystehtävissä. Artikkelissa V esi-
tellään tulkittavissa oleva unen pisteytysjärjestelmä, jossa on kerroksittainen re-
levanssin eteneminen mallin selittämiseksi.

Artikkelissa I kehitetään yksiulotteinen konvoluutiohermoverkkopohjainen
malli SCNet, joka yhdistää ominaisuuksien oppimisen ja luokittelun. Rakennam-
me sitten kontekstuaalisen kierroksen (engl., epoch) käyttämällä monesta-yhteen
-kaaviota mallin syötteenä. Ehdotettu SCNet, jossa on raaka yksikanavainen EEG,
voisi saavuttaa lupaavan suorituskyvyn julkisissa polysomnografiatietosarjois-
sa. Artikkelissa II saamme ensin spektrogrammit raaka-EEG-signaaleista STFT-
menetelmällä. Spektrogrammit syötetään sitten kevyeen mutta tehokkaaseen kak-
siulotteiseen konvoluutiohermoverkkopohjaiseen kehykseen (LSNet). LSNet- verk-
komme ei pystynyt ainoastaan toteuttamaan nopeaa unipisteytystä spektrogram-
meilla, vaan myös saavuttamaan vertailukelpoisen suorituskyvyn vähemmillä
malliparametreilla muihin alan vakiintuneisiin menetelmiin verrattuna. Luokka-
epätasapaino-ongelman ratkaisemiseksi artikkelissa III esitetään kaksi tasapai-
notusmenetelmää vähemmistöluokan määrän lisäämiseksi raaka-EEG-signaalien
aika-taajuuskuvien perusteella. Artikkelissa IV esittelemme datan lisäysmenetel-
miä, jotka käyttävät Gaussin valkoisen kohinan lisäyksen eri intensiteettejä ja ai-
koja sekä generatiivisen adversariaalisen verkon mallia. Lisäksi tutkimme rat-
kaisua verkkoyhteyden tasapainottamiseen muuttamatta tietojoukon näytteitä.
Artikkeleissa III ja IV ehdotetut tasapainotusmenetelmät voivat parantaa yleis-
tä ja univaiheen N1 tarkkuutta. Artikkelissa V esittelemme konvoluutiohermo-
verkkopohjaisen relevanssin kerroksittaiseen etenemiseen perustuvan selitettä-
vän mallin MSSENet, joka osoittaa visuaalisesti kunkin univaiheen tiettyjen EEG-
kuvioiden vaikutuksen mallin ennustamiseen. MSSENet-malli voisi saada lupaa-
van suorituskyvyn kolmella polysomnografiatietojoukolla. Relevanssin kerrok-
sittaiseen etenemiseen perustuvat tulokset osoittavat, että tiettyjen univaiheiden
EEG-kuvioilla (eli delta-, theta-, alfa- ja beeta-aallot) on suuri merkitys oikean en-
nustamisen kannalta, mikä on yhteensopivaa unen pisteytyskriteerien kanssa.

Lopuksi tässä opinnäytetyössä tutkitaan systemaattisesti menetelmiä au-
tomaattisessa univaiheen luokittelussa sekä etsitään ratkaisuja luokkaepätasa-
paino-ongelmaan ja automaattisen unipisteytysmallin selittämiseen käyttäen yk-
sikanavaista EEG:tä. Laajemmassa mielessä odotamme tässä opinnäytetyössä eh-
dotettujen menetelmien helpottavan unen seurantaa kliinisessä tai päivittäisessä
hoidossa.
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LightSleepNet: A Lightweight Deep Model for Rapid Sleep Stage
Classification with Spectrograms

Dongdong Zhou1,2, Qi Xu3,4,∗, Jian Wang1,2, Jiacheng Zhang5, Guoqiang Hu1, Lauri Kettunen2,
Zheng Chang2, Senior Member, IEEE and Fengyu Cong1,2,3,6,∗, Senior Member, IEEE

Abstract— Deep learning has achieved unprecedented success
in sleep stage classification tasks, which starts to pave the
way for potential real-world applications. However, due to
its enormous size, deployment of deep neural networks is
hindered by high cost at various aspects, such as computation
power, storage, network bandwidth, power consumption, and
hardware complexity. For further practical applications (e.g.,
wearable sleep monitoring devices), there is a need for simple
and compact models. In this paper, we propose a lightweight
model, namely LightSleepNet, for rapid sleep stage classification
based on spectrograms. Our model is assembled by a much
fewer number of model parameters compared to existing ones.
Furthermore, we convert the raw EEG data into spectrograms
to speed up the training process. We evaluate the model
performance on several public sleep datasets with different
characteristics. Experimental results show that our lightweight
model using spectrogram as input can achieve comparable
overall accuracy and Cohen’s kappa (SHHS100: 86.7%-81.3%,
Sleep-EDF: 83.7%-77.5%, Sleep-EDF-v1: 88.3%-84.5%) com-
pared to the state-of-the-art methods on experimental datasets.

I. INTRODUCTION

High quality sleep plays an important role in humans’
health. It has a significant influence on diagnosing and treat-
ing sleep-related disorders (e.g., insomnia) through correct
sleep stage classification [1]–[4]. In order to accomplish the
sleep scoring task, overnight polysomnography (PSG) data
need to be recorded by several sensors attaching to different
parts of the body. The PSG recordings mainly comprise elec-
troencephalogram (EEG), electromyogram (EMG), electro-
cardiogram (ECG), electrooculogram (EOG) and so on [5].
In clinical practice, the PSG data are usually split into 30s
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segments sequentially. Each 30s epoch is further classified
into different sleep stages by experienced clinicians manually
according to sleep manuals. Specifically, sleep stages include
six stages: Wake (W), Rapid Eye Movement (REM), Non-
REM1 (N1), Non-REM2 (N2), Non-REM3 (N3) and Non-
REM4 (N4) based on the Rechtschaffen and Kales (R&K)
standard [6].

Nevertheless, the manual sleep stage classification is not
only prone to subjective error but also time-consuming.
Therefore, there is an urgent need for an effective sleep
scoring method to release the workload of clinicians and
obtain reliable performance. Recently, deep learning has been
applied to automatic sleep stage classification successfully
due to its powerful learning ability of feature extraction
in a data-driven way. Whereas, various approaches based
on convolutional neural network (CNN) have too much
complex structures with millions of parameters [1] leading
to probable overfitting issue and the high demand for com-
puting resources. This drawback hinders those methods from
further practical application (e.g., portable sleep monitor de-
vices), which require light but efficient methods on resource-
constrained devices, the time costs of model training should
be also considered. Compared to previous studies using PSG
data time series (30× fs, channel) as input, CNNs are more
efficient to process static imagery or matrix structure, which
means CNNs are good at processing static images through
their powerful feature extraction structure.

To solve mentioned problems, we propose the LightSleep-
Net (LSNet), a lightweight model for automatic sleep stage
classification based on single-channel EEG. Transforming
the raw time-series EEG signals to static spectrograms as
the input, this model could be implemented and trained in
a more efficient way which is suitable for rapid sleep stage
classification tasks. The main contributions of this work are
as follows:

i) We propose a light but efficient model with much fewer
model parameters for automatic sleep stage classifica-
tion.

ii) To speed up the training process, we utilize the spec-
trograms through short-time Fourier transform as the
model input rather than the long time series EEG
signals.

iii) The results demonstrate that our model can achieve
comparable performance on different single-channel
EEGs (C4/A1, Fpz-Cz) on experimental datasets with
different characteristics.



TABLE I
THE DISTRIBUTION OF EACH SLEEP STAGE OF EACH DATASET

Dataset W N1 N2 N3 REM Total

SHHS-100 23708 3010 41207 14306 14989 97220

Sleep-EDF 69518 21522 69132 13039 25835 199046

Sleep-EDF-v1 10917 2804 17799 5703 7717 44220

II. MATERIALS AND METHODS

A. Data Description

We evaluate the performance of proposed model employ-
ing three public PSG datasets: Sleep Heart Health Study
(SHHS), Sleep-EDF Database (Sleep-EDF-v1, version 2013)
and Sleep-EDF Database Expanded (Sleep-EDF, version
2018). The corresponding hypnograms of three datasets were
scored by the well-trained clinicians following the R&K rule.
For all employed datasets, we adopt single-channel EEG
which can benefit to further reduce the computational cost
and simply the scheme of data acquisition.

The SHHS dataset includes two subsets: initial PSG
(SHHS1) and second PSG (SHHS2). Unlike the computer
vision research, it is difficult to acquire abundant PSG
samples to train the model. In order to better show the
few-shot learning ability of the proposed model in sleep
stage classification tasks, we adopt 100 near-normal subjects
from the SHHS1 (i.e., SHHS-100) with the standard of the
respiratory disturbance index 3 percent (RDI3P) < 15 and
no reported high pressure, cardiopathy or stroke. Single-
channel EEG C4 sampled at 125 Hz is utilized for evaluating
the proposed model as the suggestion of AASM manual.
Detailed information of the SHHS dataset can be found in
[7].

In the Sleep-EDF database, a total of 78 subjects with
153 whole-night PSG recordings from the sleep-cassette (SC)
subset are selected. In addition, we also conduct the experi-
ments on the first version of the Sleep-EDF dataset (Sleep-
EDF-v1) before the expansion to make a fair comparison
with the existing methods. We employ the single-channel
EEG Fpz-Cz with 100 Hz in our experiments. To keep the
same fs, the EEG Fpz-Cz is resampled at 125 Hz. The [8]
presents the detailed description of Sleep-EDF dataset.

For both datasets, we merge the N3 and N4 stages into
stage N3 according to the latest AASM manual [9]. Hence
each 30s epoch is labeled as one of five sleep stages (i.e., W,
N1, N2, N3 and REM). In this paper, we use three successive
EEG epochs (90s epoch) rather than the conventional 30s
epoch as the contextual input of model. It is considered
that experts classify the sleep stage depend not only on the
current epoch but also the preceding and succeeding epochs.
Also, the contextual input can enhance the model’s learning
ability of the transition information between epochs. The
corresponding label of the 90s epoch is the label of current
30s epoch. As shown in Table I, we reveal the distribution
of each stage from experimental datasets.
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Fig. 1. The overall architecture of proposed model.

B. Data Preprocessing

The raw EEG data are filtered by a notch filter, a high-
pass filter and a low-pass filter to eliminate the effect of noise
and artifacts. To get the power spectrum of each 90s epoch,
we adopt the short-time Fourier transform (STFT) with a
window size of two seconds and 50% overlap. Moreover,
Hamming window and 256 points Fast Fourier Transform
(FFT) are conducted. The effective frequency band is set to
0.5-30 Hz and the obtained power spectrum is then converted
to the log-power spectrum of size of F × T , where F = 61,
T = 89.

C. The Proposed Model

Different from our prior work [10] in which the SCNet
is trained with the raw EEG data, the proposed model here,
namely LSNet, is designed for handling with the spectrogram
input. We show in Fig. 1 the overall architecture of proposed
model. The first two-dimensional convolutional (Conv2D)
layer with 256 filters of size 3× 3 and the stride of 2 points
is used to attain the feature map from the spectrum input
(61 × 89 × 1) and the activation function is rectified linear
unit (ReLU). Additionally, we apply the batch normalization
to normalize the output of the first Conv2D layer. The M-
Apooling2D layer is the concatenation of max-pooling2D
and average-pooling2D layers that can learn feature repre-
sentation from two scales.

We construct a multi-convolution (MC) block containing
three different sizes of filters (1× 1, 3× 3, 7× 7) to obtain
multiscale features simultaneously. To be specific, the small
filter is better to learn the temporal context, while the large
filter is prone to capture the frequency information. Similar
to the first Conv2D layer, the MC block is followed by the
batch normalization and M-Aplooing2D layers. Besides, a
dropout layer with the probability of 0.1 is applied to avoid
the overfitting problem. It should be noticed that the size of
stride in the MC block is set as 1× 1.

Aiming to flat the previous output, we implement the
global average pooling layer before the decision layer. A
dropout layer with a drop rate of 0.5 can further prevent
the overfitting issue. Except for the dropout method, another
solution for overfitting applying in this work is the L2



regularization, which adds a squared magnitude of coefficient
as penalty term to the loss function. The regularization rate,
lambda, is chosen as 10−3 based on the experimental results
of four lambda values (10−1, 10−2, 10−3 and 10−4). The
final output is achieved by a dense layer whose activation
function is the softmax to determine the probability of each
stage, the stage with maximum probability is considered
as the predicted sleep stage. The detailed parameters of
proposed model are illustrated in Table II.

We also assemble a baseline model, in which time series
as the input, for making a comparison with the proposed
model in terms of the training computational cost for each
iteration. The baseline is consistent with the structure and
training setup except for the filter sizes. To be specific, the
filter size of N ×N is replaced by the filer size of N . For
instance, 3× 3 in the LSNet model should be converted into
size of 3 in the baseline model.

D. Training Setup

We use 5-fold cross-validation to assess our model per-
formance on all databases. The whole subjects are divided
into training and test sets with a ratio of 4 to 1 using the
subject-wise and epoch-wise schemes independently. For the
subject-wise approach, the division of training and test sets is
based on subjects. Nevertheless, we divide the whole epochs
into training and test sets following the epoch-wise scheme.
In each fold, we further employ 20% of the training set as
the validation set to validate the training model. The model
with the best overall accuracy is kept for evaluation on the
test set. The model is trained by the Adam optimizer in
30 epochs, where the learning rate (lr), beta1 and beta2
are set as 10−3, 0.9 and 0.999 respectively. Moreover,
ReduceLROnPlateau of Callback in Keras is implemented
to tune the lr dynamically. The lr would be reduced to half
of it when the validation accuracy does not increase within 3
epochs. We choose the categorical cross-entropy as the loss
function of the model. In addition, batch sizes of 32, 64,
128 and 256 are tested to determine the final batch size of
64 for training. Furthermore, we evaluate the performance
of proposed model using the accuracy (ACC) and Cohen’s
kappa coefficient (K), which are defined as follows:

ACC =
TP + TN

TP + FN + TN + FP
. (1)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

1−
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

. (2)

Where TP, FP, TN and FN represent the true positive, false
positive, true negative and false negative respectively. The
N is the number of 90s epoch in the test set, n is the
number of classes. xii represents the diagonal value of the
confusion matrix. It is noteworthy that we optimize the
hyper-parameters of our model on the SHHS-100 database.
Once obtaining the optimal model, there is no need to tune
the architecture and hyper-parameters on the Sleep-EDF and
Sleep-EDF-v1 datasets.
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Fig. 2. The comparison between the baseline and LSNet in terms of
the model parameters and computational cost for each epoch. The black
diagonal stripe represents the training time of each iteration, the gray cross
stripe denotes the number of model parameters.

III. EXPERIMENTAL RESULTS

To show the efficiency of spectrogram input, Fig.2 demon-
strates the number of parameters and training computational
cost for each iteration in the baseline and LSNet models. The
number of parameters of the baseline is about 0.14 million
(m) and time cost in each iteration ups to 224 s. By contrast,
even if the LSNet has more parameters (around 0.21 m), the
training speed is more than 6 times faster (35 s) for each
epoch.

In Table III, we further make the performance comparison
between our framework (epoch-wise and subject-wise) and
other state-of-the-art methods using the same dataset across
the ACC and K. The values of ACC are more than 83%
on all datasets, which show the proposed LSNet model can
achieve comparable performance compared to the existing
ones. More importantly, the number of parameters of LSNet
is much less than that of compared models. Besides, the K
demonstrates that our model can reach perfect (0.81 to 1) and
substantial (0.61 to 0.8) agreement with the sleep experts.

IV. DISCUSSION

In this paper, we propose a lightweight but effective CNN
based model for rapid automatic sleep stage classification,
named LSNet. Different with taking time series EEG signals
as input, the proposed LSNet transforms those dynamic data
to static spectrograms. The proposed LSNet also employs
a light structure with few parameters compared to over-
parameterized CNN models which lead to the proposed
model could be trained in a more efficient way. As the result
shows that even though there are roughly 1.5 times as many
model parameters of the LSNet as of the baseline model, our
model can realize rapid sleep stage classification with more
than 6 times speed promotion.

On the other hand, among the previous studies that we
compare, the numbers of model parameters in Sors et al
[11], Zhang et al [12], Supratak et al [13], [14] and Mousavi
et al [15] are about 2.2 m, 1.3 m, 1.3 m, 21 m and 2.6 m
respectively, which are at least 6 times larger than our model



TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD (LSNET) AND PREVIOUS METHODS ON THE SHHS, SLEEP-EDF AND

SLEEP-EDF-V1 DATASETS

Study Dataset Method Input channel Input type Parameters (×106) Subjects ACC(%) K(%)

Proposed (epoch-wise) SHHS-100 Deep CNN C4-A1 Spectrogram 0.2 100 86.7 81.3
Proposed (subject-wise) SHHS-100 Deep CNN C4-A1 Spectrogram 0.2 100 85.6 79.4
Sors et al. [11] SHHS Deep CNN C4-A1 Time series 2.2 5728 87 81
Seo et al. [16] SHHS CNN + LSTM C4-A1 Time series - 5791 86.7 79.8
Zhang et al. [12] SHHS CNN + LSTM 2EEG + 2EOG + EMG Spectrogram 1.3 5793 87 82
Proposed (epoch-wise) Sleep-EDF Deep CNN Fpz-Cz Spectrogram 0.2 78 83.7 77.5
Proposed (subject-wise) Sleep-EDF Deep CNN Fpz-Cz Spectrogram 0.2 78 83.4 76.7
Supratak et al. [13] Sleep-EDF CNN + LSTM Fpz-Cz Time series 1.3 78 83.1 77
Mousavi et al. [15] Sleep-EDF CNN + LSTM Fpz-Cz Time series 21 78 80.0 73

Proposed (epoch-wise) Sleep-EDF-v1 Deep CNN Fpz-Cz Spectrogram 0.2 20 88.3 84.5
Proposed (subject-wise) Sleep-EDF-v1 Deep CNN Fpz-Cz Spectrogram 0.2 20 86.1 81.0
Supratak et al. [14] Sleep-EDF-v1 CNN + LSTM Fpz-Cz Time series 21 20 82.0 76
Supratak et al. [13] Sleep-EDF-v1 CNN + LSTM Fpz-Cz Time series 1.3 20 85.4 80
Mousavi et al. [15] Sleep-EDF-v1 CNN + LSTM Fpz-Cz Time series 2.6 20 84.3 79

(0.21 m). We do not list the number of model parameters in
[16] as it cannot be calculated from the literature. Besides,
we do not sacrifice the model performance to achieve the
purpose of reducing the model parameters. Experimental
results show that our model can attain similar performance
compared to the state-of-the-art methods on adopted datasets,
which indicate the desirable generalization of the LSNet
model. Considering the computing resources and time delay
for real-time application, the lightweight model we propose
for rapid sleep stage classification maybe more easily adapt-
able to clinical or wearable devices applications. In future
works, we will explore more brain-inspired models (e.g.,
spiking neural networks) [17], [18] to realize energy-efficient
implementation on sleeping scoring tasks.

ACKNOWLEDGMENT

This study is to memorize Prof. Tapani Ristaniemi from
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Abstract—Accurate sleep stage classification is vital to assess
sleep quality and diagnose sleep disorders. Numerous deep learn-
ing based models have been designed for accomplishing this labor
automatically. However, the class imbalance problem existing in
polysomnography (PSG) datasets has been barely investigated in
previous studies, which is one of the most challenging obstacles
for the real-world sleep staging application. To address this
issue, this paper proposes novel methods with signal-driven and
image-driven ways of noise addition to balance the imbalanced
relationship in the training dataset samples. We evaluate the
effectiveness of the proposed methods which are integrated into a
convolutional neural network (CNN) based model. Experimental
results evaluated on Sleep-EDF-V1, Sleep-EDF and CCSHS
databases demonstrate that the proposed balancing approaches
with specific tensity Gaussian white noise could enhance the
overall or stage N1 recognition to some degree, especially the
combination of two types of Data augmentation (DA) strategies
shows the superiority of overall accuracy improvement.

Index Terms—Sleep stage classification, Class imbalance prob-
lem, Data augmentation, Time-frequency image

I. INTRODUCTION

Sleep is one of the most important human activities, which
makes great contributions to one’s mental and physical health
and recovery [1], [2]. However, millions of people around
the world suffer from different degrees and types of sleep-
related issues [3]. It is a time-consuming and labor-intensive
procedure to diagnose and treat them, thereinto correct sleep
stage classification is an essential step. Clinically, whole-night
sleep PSG data, including electroencephalogram (EEG), elec-
tromyogram (EMG), electrocardiogram (ECG), electrooculo-
gram (EOG), etc, are divided into 30s epochs with labels of
Wake (W), Rapid Eye movement (REM), Non-REM1 (N1),
Non-REM2 (N2) and Non-REM3 (N3) by hands [4]. Although
large amounts of deep learning methods have been proposed to
handle this task automatically [5]–[12], it seems that there is
still a gap from real-world implementation, one of possibilities
is that the class imbalance problem (CIP) of PSG datasets
which has not been paid enough attention and solved well.

1 Equal contribution to this work, ∗ Corresponding author:
xuqi@dlut.edu.cn

In simple terms, the CIP in sleep scoring refers to the
duration of each sleep stage is not equal because of the special
sleep structure. For instance, stage W and N2 occupy the
dominant proportion of samples (more than 60%). By contrast,
the N1 stage usually accounts for 2%-5% of overnight sleep
time. It is not fair for minority classes when training a deep
neural network model with the imbalanced dataset. In such
a way, the major categories contribute the leading weight
updating, while the contribution of minority ones is biased
during the back-propagation. Whether the overall accuracy or
the recognition rate is limited by the CIP, which is worth
further exploration. As the representation of minority groups,
N1 stage suffers from heavy discrimination with the highest
misclassification rate. Only a few of works have focused on
the solutions for CIP in the sleep scoring. Supratak et al.
[6] duplicated the minority sleep stages in the training set
in which each sleep stage is equally shown. Similarly, Dong
et al. [13] used oversampling to generate new samples to
keep the same percentage of all sleep stages. However, if
increasing the number of minority classes in a mechanical way
to reach a state that all sleep stags have an equal number of
samples, the initial sleep structure was totally destroyed. Fan et
al. [14] applied five DA methods to assess the enhancement
of overall accuracy and N1 classification rate, although the
overall performance was improved, the N1 accuracy showed
a slight drop sadly.

To remedy the CIP in the sleep scoring task with deep
learning based models, we aim to balance the dataset samples
by only increasing the number of N1 stage in the original
training set with Gaussian white noise addition, this way could
retain the original sleep architecture as much as possible.
Additionally, we further investigate two categories of Gaussian
white noise addition to the EEG signal. One is to add Gaussian
white noise to the raw EEG signals (signal-driven) and then
transform the noisy EEG signals to time-frequency images.
Another one is to convert the EEG signals to time-frequency
images then add the noise to the images (image-driven). These
two balancing methods are embedded into a CNN based
model to show the effectiveness of the relatively balanced state



TABLE I
THE SCHEME OF SIGNAL-DRIVEN AND IMAGE-DRIVEN APPROACHES

Intensity signal-driven image-driven

low 10 dB mean = 0, variance = 0.05

moderate 5 dB mean = 0, variance = 0.1

high 1 dB mean = 0, variance = 0.2

between the imbalanced training data and model. Both signal-
driven and image-driven balancing methods could improve
overall accuracy or N1 accuracy to varying degrees.

The rest of this paper is organized as follows: The Sec.II
describes the class imbalance problem and defines the class
imbalance factor of PSG datasets. We present the experiments
and experimental results in Sec. III and IV, respectively. The
final conclusion and discussion are included in Sec.V.

II. CLASS IMBALANCE PROBLEM

Class imbalance is a common yet easily overlooked issue
in the sleep stage classification task, the class distribution of
the PSG dataset not only depends on the physical or mental
conditions but also depends on the ages and genders. When the
number of each category is severely unequal, we can say the
dataset suffers from the CIP. Here, we define a class imbalance
factor (CIF) to quantify the degree of CIP as follow:

CIF =
N

2 · c ·min{Ni}
i ∈ {1, 2, . . . , c} (1)

Where the N is the total samples, c refers to the number
of sleep stages, and Ni represents the number of each stage.
If the CIF = 0.5, it means the dataset is balanced. If the
CIF > 0.5 in eq. (1), that dataset could be regarded as
an imbalanced one. Furthermore, the larger CIF means that
the PSG dataset is more imbalanced. The CIP mainly affects
the training procedure of the deep model which leads to
erroneous results in pattern classification tasks. For example,
one of the most popular used training rules in deep learning
is the back-propagation (BP) algorithm, in which the major
classes are responsible for prime parts of weight update. As a
consequence, the minority categories become the biased ones
with relatively lower recognition rate.

The straightforward way is to increase the number of
minority classes to keep equivalent with others [6]. However,
the original sleep architecture is broken completely in such
a way. Therefore, we only generate new epochs for the N1
stage in training set with the noise addition to maintain the
intact sleep structure as far as possible. In this study, we
adopt the scheme with a time-frequency image input, which
is generally considered as a higher-level representation of the
raw signal and can get a faster training speed [11], [15].
Furthermore, we also investigate whether the sequence order
of Gaussian white noise addition (i.e., before and after the
time-frequency transform) would affect the final result. To
be specific, the same type of noise (Gaussian white noise)

(a) (b)

(c) (d)

Fig. 1. (a) is the time-frequency image of raw EEG signal (N1 stage, Sleep-
EDF-V1), the x-axis represents the time, the y-axis denotes the frequency.
Subfigures (b), (c) and (d) illustrate the time-frequency images of raw EEG
signal with 10, 5 and 1 dB Gaussian white noise addition respectively.

with three intensities is designed for comparison. The first
method is to add the Gaussian white noise with 10, 5 and 1
dB (low, moderate and high intensities) to the raw EEG signal,
respectively, then the noisy EEG signals are converted to
time-frequency image using the short-time Fourier transform
(STFT), it is a signal-driven approach to conduct the noise
addition. As a comparison, the second scheme, the image-
driven way, adds the similar intensities of Gaussian white
noise (the mean (M) is 0, the variances (V) are 0.05, 0.1,
0.2 respectively) to the time-frequency image rather than the
raw EEG signal. The scheme of two Gaussian white noise
addition methods is demonstrated in Table I.

(a) (b)

(c) (d)

Fig. 2. (a) is the time-frequency image of raw EEG signal (N1 stage, Sleep-
EDF-V1) which is the same as Fig. 1. The x-axis represents the time, the
y-axis denotes the frequency. (a). Subfigures (b), (c) and (d) present the
time-frequency images with three intensities of Gaussian white noise addition
(variances are respectively 0.05, 0.1 and 0.2).

When attaining the optimal intensity of two balancing
methods, the efficiency of the combination of two proposed



methods is further tested. We visualize the time-frequency
images of two noise addition methods in Fig. 1 and Fig. 2.

III. EXPERIMENTS

A. Experimental Datasets

1) Sleep-EDF-V1: The Sleep-EDF-V1 dataset has two sub-
sets: sleep-cassette (SC) and sleep-telemetry (ST). In this
study, we choose the 20 individuals with 39 overnight PSG
recordings from the SC cohort, the age ranges from 25 to 34
years. As the suggestion of the American Academy of Sleep
Medicine (AASM) manual, the frontal lobes Fpz-Cz channel
EEG with a sampling rate of 100 Hz is adopted. More details
are described in [16], [17]. The whole PSG recording was
labeled with different sleep stages (i.e., W, N1-N4 and REM)
based on the Rechtschaffen and Kales (R&K) [18], we merged
the stages N3 and N4 into stages N3 for being consistent with
the latest AASM standard.

2) Sleep-EDF: The Sleep-EDF dataset is the expanded
version, including 78 subjects whose age stretches to 101
years. It has a higher proportion of N1 stages with the increase
of age. In order to mitigate the negative impact of the long W
stage period on overall accuracy (e.g., stage W has the highest
classification accuracy), 30 minutes of W stages before and
after regular sleep stages are employed for both versions of
Sleep-EDF datasets.

3) CCSHS: The last PSG dataset used in this study is
the Cleveland Children’s Sleep and Health Study (CCSHS),
which includes 515 children aged from 16-19 years. Due the
absence of the FPz-Cz, we employ the the C4/A1 (sampled
at 128 Hz) channel EEG instead. The main description can
be found in [19], [20]. Here, we implement the many-to-one
scheme which treats the combination of one 30 s epoch and its
neighboring epochs as the contextual input (i.e., 90 s epoch).
In Table II, we conclude the number of each sleep stage, the
CIF is respectively 6.3%, 6.6% and 2.8% for the Sleep-EDF-
V1, Sleep-EDF and CCSHS datasets. Although the sleep stage
with the minimum number of Sleep-EDF is different from the
other two datasets, we adopt the proposed balancing method
only to increase the samples of stage N1 on all experimental
datasets.

4) Data preprocessing: In this work, we adopt the STFT
with a window size of two seconds and 50% overlap to
convert the EEG signal to the image. Firstly, the EEG signal
(with/without Gaussian white noise addition) is filtered by a
notch filter, a high-pass filter and a low-pass filter in sequence.
Hamming window and 256 points Fast Fourier Transform
(FFT) [21] are further conducted to obtain the time-frequency
image (efficient frequency band: 0.5-30 Hz).

B. Experimental setting

The whole dataset is divided into the training and test sets
randomly based on the ratio of 4 to 1 (i.e., 80% subjects as the
training set, 20% subjects as the test set). We use the Adam
optimizer to train the model within 30 iterations, the model
with the best performance in the test set is saved in all epochs.
In addition, the learning rate would drop to half value when the

TABLE II
THE DATA DISTRIBUTION OF THE EXPERIMENTAL DATASETS

Stage Sleep-EDF-V1 Sleep-EDF CCSHS

W 10197 (23.1%) 69518(34.9%) 211030 (30.6%)

N1 2804 (6.3%) 21522 (10.8%) 19211 (2.8%)

N2 17799 (40.3%) 69132 (34.7%) 249681 (36.2%)

N3 5703 (13.0%) 13039 (6.6%) 110188 (16.0%)

REM 7717 (17.5%) 25835 (13.0%) 100252 (14.5%)

test accuracy shows no enhancement within three epochs. The
categorical cross-entropy is chosen as the model loss function.
To find out a proper batch size, we assess four batch sizes
(32, 64, 128 and 256), the batch size of 64 achieves the best
performance. In our cases, a workstation with two Inter Xeon
E5-2640 V4 CPUs and four Nvidia Tesla P100 GPUs with 16
GB memory is applied to conduct all experiments.
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Fig. 3. The overall construct of the evaluation model.

C. The evaluation model

We construct a convolutional neural network based model
to assess the efficiency of the proposed balancing method, it is
treated as the baseline model (shown as Fig.3). The baseline
model is mainly composed of a two-dimensional convolu-
tional (Conv2D) layer, a multi-convolution (MC) block, two
Max-Apooling2D layers and several BatchNormalization and
dropout layers. The MC block, containing three filter sizes
(1× 1, 3× 3, 7× 7), is inspired by the inception module [24]
to obtain the multi-scale feature representations. Similarly,
we concatenate the outputs of Max-pooling2D and Average-
pooling2D layers to rebuild as the Max-Apooling layer. The
dropout layer aims to prevent the overfitting problem with
a drop rate of 0.1 and 0.5. In addition, the Global Average
Pooling (GAP) layer is used to replace the fully connected
layer, which is considered more robust spatial translations
of the input without parameter optimization [25]. The final
dense layer employing the softmax as the activation function
is implemented for predicting the sleep stage. We also apply
the shortcut connection strategy to combine the input of the



TABLE III
PERFORMANCE COMPARISON OF DIFFERENT INTENSITIES OF THE GAUSSIAN NOISE ADDITION (SIGNAL-DRIVEN AND IMAGE-DRIVEN WAYS) IN THIS

WORK

Sleep-EDF-V1 Sleep-EDF CCSHS

ACC (%)K (%)RE N1 (%)ACC (%)K (%)RE N1 (%)ACC (%)K (%)RE N1 (%)

Without DA 86.3 81.1 38.9 84.5 79.0 24.6 87.0 82.0 22.9

DA (signal-driven, 10 dB) 85.4 80.0 35.2 84.5 79.0 26.1 87.3 82.4 25.7

DA (signal-driven, 5 dB) 86.8 81.1 42.7 84.3 78.6 18.7 87.2 82.3 24.1

DA (signal-driven, 1 dB) 87.1 82.3 34.8 84.7 79.3 24.0 87.5 82.5 27.3

DA (image-driven, V = 0.05) 87.0 82.1 30.8 84.6 79.0 15.6 87.1 82.1 21.9

DA (image-driven, V = 0.1) 87.0 82.2 34.5 84.6 79.1 21.1 87.3 82.3 22.2

DA (image-driven, V = 0.2) 86.1 80.7 30.3 84.6 79.1 25.9 87.3 82.3 23.0

DA (Combination, 1 dB & V = 0.1 ) 87.2 82.4 28.5 84.9 79.4 19.1 87.9 82.9 20.7

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHODS AND PREVIOUS METHODS ON THE CCSHS DATASET

Study Method Input channel Input type Subjects ACC(%) K(%) RE N1

Nakamura et al. [22] HMM C4/A1 + C3/A2 Spectrogram 515 - 73.0 -

Li et al. [23] Random Forest C4/A1 Features 116 86.0 80.5 7.3

Baseline CNN C4/A1 Time-frequency image 515 87.0 82.0 22.9

DA (signal-driven, 1 dB) CNN C4/A1 Time-frequency image 515 87.5 82.5 27.3

DA (image-driven, V = 0.1) CNN C4/A1 Time-frequency image 515 87.3 82.3 23.0

MC block with features learned from the MC block, in which
240 filters with size of 1× 1 are used to unify the dimension.

IV. EXPERIMENTAL RESULTS

A. Overall performance

We employ the overall accuracy (ACC), Cohen’s kappa
coefficient (K) and class-wise recall of N1 (RE N1) to assess
the performance. The RE, ACC and K are defined as follows:

RE =
TP

TP + FN
. (2)

ACC =

∑n
i=1 xii

N
(3)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

1−
∑n

i=1(
∑n

j=1 xij
∑n

j=1 xji)
N2

. (4)

where TP and FN denote the true positives and false neg-
atives respectively, N is the total number of all sleep stages,
xii represents the diagonal value of the confusion matrix, n
refers to the number of classes.

Table III illustrates the results of the baseline model without
DA methods and different intensities Gaussian white noise
addition using two balancing methods. We can see that the 1
dB Gaussian white addition could obtain the most significant
improvement of ACC and K for the signal-driven DA on
three datasets (Sleep-EDF-V1: ACC-0.8%, K-1.2%; Sleep-
EDF: ACC-0.2%, K-0.3%; CCSHS: ACC-0.5%, K-0.5%).
In terms of the RE of N1 stage, the 5, 10 and 1 dB achieve

3.8%, 1.5% and 4.4% enhancement from 38.9%, 24.6%
and 22.9% on the Sleep-EDF-V1, Sleep-EDF and CCSHS
datasets, respectively. Regarding the image-driven DA, the
low and moderate intensities (V = 0.05 and 0.1) have the
same ACC improvement on Sleep-EDF-V1 and Sleep-EDF
datasets. Nevertheless, only the heavy intensity (V = 0.2)
gains a gentle enhancement (1.3% and 0.1%) of RE N1 on
the Sleep-EDF and CCSHS databases. It is pleasant that the
combination of two intensities (1 dB and V = 0.1) realise
the most considerable ACC and K improvement (ACC-
0.9%, K-1.3%; ACC-0.4%, K-0.4%; ACC-0.9%, K-0.9%)
on the experimental datasets, but an unfavorable decrease in
the RE N1 on three datasets. In addition, two balancing
approaches fail to show remarkable distinctions concerning
the accuracy improvement with the experimental datasets.

B. Performance comparison

In order to further validate the efficiency of proposed
methods, we also compare the overall and N1 accuracies
with other works on the same dataset in Tables IV and V.
It can be observed in Table IV that the proposed methods can
outperform [22], [23] on the CCSHS dataset. Similarly, the
baseline model shows better overall accuracy than the perfor-
mance of [14], [15], [21] on the Sleep-EDF-V1 and Sleep-
EDF datasets. Moreover, the performance (i.g., accuracies of
all stages and N1) obtain further enhancement with proposed
balancing methods.



TABLE V
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHODS AND PREVIOUS METHODS ON THE SLEEP-EDF-V1 AND SLEEP-EDF DATASETS

Study Database Method Input type Subjects ACC(%) K(%) RE N1

Ref. [14] Sleep-EDF-V1 Deep CNN Time series 20 74.8 66.0 -

Ref. [21] Sleep-EDF-V1 1-max CNN Time-frequency image 20 82.6 76 29.9

Ref. [15] Sleep-EDF-V1 CNN Spectrogram 20 86.1 81.0 -

Baseline Sleep-EDF-V1 CNN Time-frequency image 20 86.3 81.1 38.9

DA (signal-driven, 5 dB) Sleep-EDF-V1 CNN Time-frequency image 20 86.8 81.1 42.7

DA (image-driven, V = 0.1) Sleep-EDF-V1 CNN Time-frequency image 20 87.0 82.2 34.5

Ref. [26] Sleep-EDF CNN + LSTM Time series 78 80.0 73 -

Ref. [27] Sleep-EDF CNN + LSTM Time series 78 83.1 77 -

Ref. [11] Sleep-EDF RNN Time series 78 84.0 77.8 -

Baseline Sleep-EDF CNN Time-frequency image 78 84.5 79.0 24.6

DA (signal-driven, 10 dB) Sleep-EDF CNN Time-frequency image 78 84.5 79.0 26.1

DA (image-driven, V = 0.2) Sleep-EDF CNN Time-frequency image 78 84.6 79.1 25.9

V. CONCLUSION AND DISCUSSION

The inherent CIP existing in the PSG datasets has hindered
the real-world application of automatic sleep scoring models
greatly. In this paper, we try to explore the solutions for
the CIP in the sleep stage classification procedures. We first
define the CIF to quantify the imbalance degree in three
common PSG datasets. Two balancing methods are further
introduced to mitigate the undesirable effect from the types
of noise addition. The first one is to add different intensities
of Gaussian white noise to the raw EEG signal, the noisy
EEG signals are then converted to the time-frequency images.
In this way, extra frequency components could be added to
the time-frequency images, it is called the signal-driven way.
Another noise addition way is to add the Gaussian white noise
to the time-frequency image directly, it is more similar to
the implementation in the computer vision field, we name
it the image-driven method. Different from previous studies
balancing the PSG datasets with equal proportion [6], [13],
[14], we argue that it would break the original overnight sleep
structure and hide the physiological mechanism related to
sleep. By contrast, we only increase the number of the minority
class (N1 stage in this study) that we intend to improve to keep
consistent with the test set as much as possible. The proposed
methods are validated on a CNN based model with three public
PSG datasets.

According to the experimental results, although there is no
fixed intensity Gaussian white noise suitable for the enhance-
ment of ACC, K and the recognition of N1 stage on exper-
imental PSG datasets, the overall and N1 stage classification
rate could be improved with different intensities. In addition,
two DA methods do not show significant differences regard
to the improvement of model performance. It can be inferred
that it should be tailored to adopt the different intensities and
types of Gaussian white noise addition based on the practical
results on different properties of PSG datasets. In future work,

we will explore more data argumentation methods to deal with
the CIP of PSG datasets. Except for balancing the samples,
how to balance the deep network is another aspect that can be
considered.
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Jyväskylä. We also thank Prof. Hämäläinen Timo from Uni-
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Alleviating Class Imbalance Problem in Automatic
Sleep Stage Classification

Dongdong Zhou, Qi Xu∗, Jian Wang, Hongming Xu, Lauri Kettunen, Zheng Chang, Senior Member, IEEE, and
Fengyu Cong, Senior Member, IEEE

Abstract—For real-world automatic sleep stage classification
tasks, various existing deep learning based models are biased
towards the majority with high proportion. Because of the unique
sleep structure, most of the current polysomnography datasets
suffer an inherent class imbalance problem (CIP), in which the
number of each sleep stage is severely unequal. In this study,
we first define the class imbalance factor (CIF) to describe
the level of CIP quantitatively. Afterwards, we propose two
balancing methods to alleviate this problem from the dataset
quantity and the relationship between the class distribution and
the applied model respectively. The first one is to employ the
data augmentation (DA) with the generative adversarial network
(GAN) model and different intensities Gaussian white noise to
balance samples, thereinto, Gaussian white noise addition is
specifically tailored to deep learning based models, which can
work on raw electroencephalogram (EEG) data while preserving
their properties. In addition, we try to balance the relationship
between the imbalanced class and biased network model to
achieve a balanced state with the help of class distribution and
neuroscience principles. We further propose an effective deep
convolutional neural network (CNN) model utilizing bidirectional
Long Short-Term Memory (Bi-LSTM) with single-channel EEG
as the Baseline. It is used for evaluating the efficiency of two
balancing approaches on three imbalanced polysomnography
datasets (CCSHS, Sleep-EDF and Sleep-EDF-V1). The qualitative
and quantitative evaluation of experimental results demonstrates
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that the proposed methods could not only show the superiority
of class balancing through the confusion matrix and class-wise
metrics, but also get better N1 stage and whole stages classifi-
cation accuracies compared to other state-of-the-art approaches.

Index Terms—Sleep stage classification, Class imbalance prob-
lem, Deep neural network, Data augmentation, Generative ad-
versarial network, Network connection.

I. INTRODUCTION

CORRECT sleep stage classification with overnight
polysomnography (PSG) recordings plays an essential

role in diagnosing and treating sleep-related disorders [1]–[3].
The PSG data consist of the EEG, electromyogram (EMG),
electrocardiogram (ECG), electrooculogram (EOG), etc [4].
Clinically, the PSG data are divided into sequential 30-second
(30s) epochs and then each epoch is labeled as one of the sleep
stages by clinicians manually following the guidelines of the
Rechtschaffen and Kales (R&K) [5] or the American Academy
of Sleep Medicine (AASM) [6]. Regarding the AASM manual,
the sleep stages can be defined as Wake (W), Rapid Eye
Movement (REM), Non-REM1 (N1), Non-REM2 (N2) and
Non-REM3 (N3).

However, it is cumbersome, time-consuming and prone to
be subjective errors for the manual approach with visual
inspection of PSG recordings [3]. Hence a large body of
automatic sleep stages classification methods including the
conventional machine learning [7]–[9] and the deep networks
[10]–[15] have been proposed. Although these methodologies
achieve promising performance in terms of overall accuracy,
the inherent class imbalance problem (CIP) of PSG datasets
have been barely explored. The class distribution of PSG
databases is highly imbalanced on account of the specific sleep
architecture. Additionally, the structure of whole-night sleep is
greatly related to the subject’s physiological and psychological
condition and data acquisition environment. Hereinto, the stage
N1 is the most challenging to be recognized and regarded as
a representative of minority groups which usually accounts
for 2%-5% of total sleep time, and the N1 stage plays the
role of indicator in some sleep disorders. Typically, stage
N1 would start within minutes of going to sleep, whereas
insomnia may delay the beginning of the N1 stage. Moreover,
people who have insomnia show a higher proportion of the N1
stage [16]. Besides, the sufferer with apnea may experience
abnormal breathing during sleep, which would awaken the
brain from deeper sleep. This could lead to an increase in stage
N1 [17]. The N1 stage is also highly related to narcolepsy
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[18]. Considering the importance of stage N1 recognition, the
high misclassification rate of N1 has tremendously limited the
practical application of automatic sleep stages classification
approaches.

Only a few literature attempt to address the CIP in the
sleep stage classification task. Sun et al. [19] introduced a
DA approach employing the synthetic minority oversampling
technique algorithm. A range of 8–14 dB white noise were
added to enable the equal number of each sleep stage. It can
be more appropriate to apply the DA to stage N1 rather than
all sleep stages to maintain original structure of whole-night
sleep maximally. In addition, the scope of signal noise ratio
(SNR) of white noise could be extended to investigate the
efficiency of different intensities noise. Tsinalis et al. [20]
used class-balanced random sampling across sleep stages to
avoid biased performance on the side of the most represen-
tative sleep stages and significantly improve the recall of
the stage N1. But the overall accuracy achieved was 78%,
which is not good enough compared to other state-of-the-art
methodologies. One important reason is that the class-balanced
random sampling diminished the importance of major classes
making the primary contribution to classification performance.
It should be noted that keeping a sensible equilibrium among
different distribution classes. Fan et al. [21] investigated the
efficiency of five DA approaches for sleep EEG signals.
New training datasets were created with each class equals in
number by means of DA algorithms. The overall classification
performance was improved, nevertheless, the stage N1 showed
a slight drop in terms of F1 scores. Apart from applying DA
methods to balance the class distribution of PSG datasets, the
correlation between categories and the trained model should
not be ignored. CIP poses a big challenge for the prediction
model as most machine learning or deep learning algorithms
for classification were designed based on the assumption of the
same number of samples in each category. The loss weight of
each class is equal, which may lead to discrimination against
the minority class.

We initially introduce CIP and define the class imbalance
factor (CIF) in sleep PSG datasets systematically. To tackle
the CIP in the field of automatic sleep stage classification,
two solutions are introduced. The first one is to balance the
database quantity by means of the DA approaches using the
generative adversarial network (GAN) model and Gaussian
white noise (GWN) addition, which increases the number
of the N1 stage in the training set. The second method is
to balance the relationship between the trained model and
the original imbalanced dataset through setting different class
weights (CW) in the loss function. To assess the efficiency
of DA and CW methods, we further propose an efficient deep
model that implements Bi-LSTM and CNNs to extract features
across temporal and spatial scales with single-channel EEG
simultaneously. In this paper, the proposed model is regarded
as the Baseline, the proposed framework with the DA of GAN
model, the DA of Gaussian white noise and CW are named
the Baseline + GAN , the Baseline + GWN and the Baseline
+ CW, respectively. The main contributions of this work are
summarized as follows:

i) We systematically analyze the class imbalance problem

in PSG datasets. Furthermore, we propose two solutions
to tackle the CIP from the database quantity and the
correlation between classes and the applied model.

ii) We explore the GAN model and the method with Gaus-
sian white noise addition to balance the PSG dataset
samples. We further search for the balanced network
connection from the perspectives of class distribution and
neurology.

iii) We develop a novel model that utilizes one convolution
block and two multi-convolution (MC) blocks with dif-
ferent filter sizes as the spatial feature extractor. Another
temporal feature extractor consisting of one CNN and Bi-
LSTM can learn the information of sleep stage transition
rules.

iv) The overall performance and recognition of the N1 stage
could be improved to different extents by proposed meth-
ods on three public datasets.

The rest of this paper is organized as follows. We demon-
strate the experimental datasets and methodologies in Sec. II.
In Sec. III, the experimental results are represented. The final
discussion and conclusion are included in Sec. VI and Sec. V.

II. MATERIALS AND METHODS

A. Data Description

We employ three public PSG datasets in this study:
Cleveland Children’s Sleep and Health Study (CCSHS) [22],
[23], Sleep-EDF Database (Sleep-EDF-V1, version 2013) and
Sleep-EDF Database Expanded (Sleep-EDF, version 2018)
[24]. As the recommendation of the AASM manual, the central
and frontal lobes are used. More specifically, C4/A1 and Fpz-
Cz EEG channels are selected from the CCSHS and Sleep-
EDF datasets respectively.

The CCSHS database is one of the largest pediatric cohorts,
including 515 children whose ages range from 16-19 years. In
our experiments, C4/A1 channel EEG signals sampled at 128
Hz are used. Each 30s epoch was labeled by trained-well sleep
experts.

There are two subsets: sleep-cassette (SC) and sleep-
telemetry (ST) in the Sleep-EDF dataset (Sleep-EDF-V1). We
use 39 whole-night PSG recordings from 20 subjects aged
25 to 34 years in the SC cohort. Each subject has two full
night PSG recordings except for subject 13. The number of
individuals in SC subset is increased to 78 with 153 over-night
sleep recordings in Sleep-EDF Database Expanded (Sleep-
EDF). The oldest subject is 101 years. In our study, we employ
Fpz-Cz EEG signals with a sampling rate (i.e., fs) of 100Hz.
It is worthy that the resampling method is not applied to
restrict the sampling rate, which means our model can be
adaptable to different input lengths. Besides, we only adopt 30
minutes of W epochs before and after sleep stages, as there
are long W stages at the start and end of the whole-night
sleep in Sleep-EDF and Sleep-EDF-V1 datasets. Considering
the correlation and dependency between surrounding epochs,
we use the many-to-one scheme described in our prior study
that combines one 30s epoch with its neighboring epochs (i.e.,
three sequential 30s epochs) as the 90s epoch [25]. There is
60s overlap between the adjacent 90s epochs and the label
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TABLE I
THE NUMBER OF 90S EPOCHS FOR EACH SLEEP STAGE FROM

EXPERIMENTAL DATASETS

Stage CCSHS Sleep-EDF Sleep-EDF-V1

W 211030 (30.6%) 69518(34.9%) 10197 (23.1%)

N1 19211 (2.8%) 21522 (10.8%) 2804 (6.3%)

N2 249681 (36.2%) 69132 (34.7%) 17799 (40.3%)

N3 110188 (16.0%) 13039 (6.6%) 5703 (13.0%)

REM 100252 (14.5%) 25835 (13.0%) 7717 (17.5%)

Total 690372 199046 44220

CIF 3.6 1.5 1.6

TABLE II
THE NUMBER AND PROPORTION OF N1 STAGE BEFORE AND AFTER DATA

AUGMENTATION (GAN MODEL) IN THE TRAINING SET

Status CCSHS Sleep-EDF Sleep-EDF-V1

Before 15721 (2.8%) 19284 (11.2%) 2024 (5.4%)

After 31442 (5.5%) 38568 (20.1%) 4048 (10.3%)

of the 90s epoch is the same as the label from the middle
30s epoch. We show in Table I the number and percentage
of 90s epochs for each sleep stage from three datasets in our
experiments, the class with the smallest number of samples is
labeled in bold. The N1 stage occupies the smallest percentage,
which equals 2.8% and 6.3% respectively in CCSHS and
Sleep-EDF-V1 datasets. While the proportion of N1 in the
Sleep-EDF dataset is 10.8% and the N3 stage has the smallest
number of samples. Sleep architecture changes with ages [26],
sleep efficiency would decline with the increase of age due
to frequent arousals from sleep, these changes result in an
increment of N1 stage.

B. Class Imbalance Problem

In computer vision (CV), the equal number of each category
of some image datasets (e.g., CIFAR-10 database) can be
guaranteed. However, the sleep pattern differs from ages,
genders and physical conditions of individuals [26], [27], the
sleep PSG database suffers severe CIP with imbalanced class
distribution. In other words, some sleep stages occupy the
dominant proportion, whereas the other stages become the
minority classes. For instance, the number of the N2 stage
is several times that of the N1 stage. When training a model,
the majority class contributes the leading weight updating and
therefore the performance of minority classes is biased with a
higher misclassification rate. The severity of CIP is described
using the class imbalance factor (CIF), which is calculated as
follow:

CIF =
N

2 · c ·min{Ni}
i ∈ {1, 2, . . . , c} (1)

Where c is the number of classes, N represents the number
of all epochs, Ni refers to the number of epochs of class i. We
argue that the dataset suffers CIP when CIF is greater than or
equal to 1. The greater the CIF is, the more imbalanced the
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Fig. 1. The framework of the GAN model. Demonstrate the structure: (a)
Generator, (b) Discriminator.

database is. In this study, the CIF of CCSHS, Sleep-EDF, and
Sleep-EDF-V1 datasets are 3.6, 1.5 and 1.6, respectively.

In order to alleviate the negative effect of CIP on clas-
sification performance, we propose two balancing solutions.
The first one is to raise the number of N1 stage with the
DA method, which could improve the severity of imbalance
to some extent. Another one is to find out the inner network
connection between classes and the trained model while main-
taining the original dataset quantity, that is to say, setting
different class weights for each category depend on the specific
class distribution and the neuroscience rule.

C. Balance the Dataset Samples

The imbalanced class distribution has negative effect on the
training procedure, which means the applied model could not
be trained efficiently. Hence, it is natural and straightforward
to increase the number of minority classes to achieve the same
proportion, whereas this would break the original architecture
of whole-night sleep. By contrast, we choose to produce new
epochs of the N1 stage in the training set to maintain the
physiologic sleep structure maximally, but the test set is kept
independent without balancing sample operation.

The generative adversarial network model has attained sig-
nificant achievement in the CV field, however, this technology
is barely adopted to augment synthetic EEG signals. We use
the GAN model as the first method to generate artificial EEG
signals of the N1 stage in this study. The GAN is generally
comprised of two opposing networks (i.e., generator (G) and
discriminator (D)) as shown in Fig. 1. The generator mainly
includes three one-dimensional convolutional (Conv1D) lay-
ers, thereinto, the first two Conv1D layers are assembled with
LeakyReLU (the activation function) and the batch normaliza-
tion and the last one is used to generate the demanded length
signals. In addition, the padding is set as casual to keep the
length unchanged. In terms of the discriminator, the Conv1D
layer is followed by the LeakyReLU, batch normalization
and MaxPooling1D sequentially. The final dense layer makes
the prediction for the inputting signal. Given a latent vector
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Fig. 2. Raw EEG signal (N1 stage) and Gaussian white noise addition with
four SNR. (a) Raw EEG. (b) Gaussian white noise addition with 10 dB. (c)
Gaussian white noise addition with 5 dB. (d) Gaussian white noise addition
with 2 dB. (e) Gaussian white noise addition with 1 dB. (f) Artificial signal
by the proposed GAN model.
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Fig. 3. Spectrogram of raw EEG signal and artificial signals generated by the
Gaussian white noise addition with 10 dB, 5 dB, 2 dB, 1 dB and the GAN
model.

z following the standard normal distribution (N (0,1)), the
generator maps it to the input space and learns a distribution
Pg to approach the distribution Pdata. The discriminator is
designed for distinguishing the fake signals generated by the
generator and real signals by estimating the correspondence
between Pg and Pdata. It can be defined as the minimax
objective:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)]

+Ez∼Pg(z)[log(1−D(G(z)))]
(2)

where D(x) means the probability of x sampled from
the real samples Pdata. G(z) stands for the artificial signals
produced by the generator. Additionally, we adopt the loss
function presented by Gulrajani et al. [28]:

L (Pdata,Pg) = Exr∼Pdata
[D(x)]

−Exg∼Pg
[D (xg)] + P (x̃)

(3)

P (x̃) = λ · Ex̂∼X̃

[
max (0, ∥∇x̂D(x̂)∥2 − 1)

2
]

(4)

where P (x̃) is defined as the one-sided gradient penalty,
λ denotes the the penalty coefficient and X̃ includes points
sampling alone the straight line between Pdata and Pg . We
employ the Adam optimizer to update the model parameters
and choose five iterations to train the generator for each
iteration of the discriminator. We demonstrate the number and
the proportion of N1 in the training set before and after the
data augmentation with the GAN model in Table II.

The second method for balancing the dataset samples is the
noise addition. Unlike repeating samples of the minority stage
directly [11], the data augmentation method with Gaussian
white noise addition is implemented in this work for two
important reasons. On the one hand, the acquisition of EEG
signals always accompanies with noise, a Gaussian noise
that imitates the line-related noise that is commonly found
in electrophysiology recordings, hence the data generated
by noise addition can be more real-like sleep EEG signals.
On the other hand, generated data with noise addition can
provide the trained model with new features and enhance the
generalization. To be specific, we investigate the efficiency of
the DA algorithm with four different intensities Gaussian white
noise ranging from 1-10 dB. Fig. 2 and Fig. 3 show an example
of this DA procedure with different intensities and the DA
with GAN model in terms of the amplitude and spectrogram,
we can find that these implementations with Gaussian white
noise addition retain wave properties of the raw EEG signal.
We further explore the effectiveness of various times noise
addition. Specifically, once obtaining the optimal intensity (x
dB), the intensities of three and five times noise addition
are defined as (x - 0.2, x, x + 0.2) dB and (x - 0.2, x
- 0.1, x, x + 0.1, x + 0.2) dB with a type of arithmetic
progression, respectively. Compared with the way of repeating
corresponding times noise addition with x dB, this could
provide with the trained model with additional information.

D. Balance Relationship Between the Imbalanced Dataset and
Trained Model

The CIP is not only the imbalance of class distribution
but also the imbalanced network connection. Although the
DA method could mitigate the imbalance of PSG datasets,
whether DA with the GAN model or DA with noise addition,
the generated data are still fake. More importantly, we could
not ignore the corresponding physiological information behind
the PSG dataset for real-world application. In other words,
it would be more meaningful to achieve the performance
improvement without changing the distribution of class. There-
fore, another alternative is to balance the network connection
between the sample distribution and the trained model with
the original imbalance PSG dataset. By default, the weight
of each class is the same. As a consequence, the majority
class occupies the dominant weight updating with a more
considerable length of the gradient component. Furthermore,
the performance of the minority classes is prejudiced by the
trained model. To eliminate the discrimination, we reassign
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Fig. 4. The schematic diagram of the proposed model.

TABLE III
PARAMETERS OF THE PROPOSED MODEL

Layer Layer Type Filters Size Stride Activation Output dimension

SFE1 Input - - - - (90× fs, 1)

SFE2 Convolution block 128 128 2 relu (⌈45× fs/2⌉, 256)

SFE3 MC block1 - - - - (⌈45× fs/4⌉, 544)

SFE4 MC block2 - - - relu (⌈45× fs/8⌉, 544)

SFE5 GAP - - - - 544

SFE6 Dropout (0.5) - - - - 544

TFE1 Input - - - (90× fs, 1)

TFE2 Conv1D 128 128 16 relu (⌈(90× fs − 128)/16⌉, 128)

TFE3 BatchNormalization - - - - (⌈(90× fs − 128)/16⌉, 128)

TFE4 M-Apooling1D - 1 16 - (⌈(90× fs − 128)/256⌉, 256)

TFE5 Bi-LSTM 64 - - tanh 128

Decision Dense - - - softmax 5

the weight (W ) of each class based on the class distribution
and the brain-inspired rule, namely CW (Ratio), CW (Log R)
and CW (E I), respectively. The Wi, Wj using CW (Ratio),
CW (Log R) methods are shown in equations (5), (6):

Wi =
N

Ni
i ∈ {1, 2, . . . , 5} (5)

Wj = ln
N

Nj
j ∈ {1, 2, . . . , 5} (6)

Where N , Ni and Nj are respectively the numbers of whole
classes, class i and j samples. The CW (Ratio) is a direct
way to get the Wi by calculating the ratio of the numbers
of all samples and each class. Additionally, we attempt a
more moderate and sensible approach, the CW (Log R),
to attain the natural logarithm of Wi of the CW (Ratio)
method. The CW (E I) algorithm considers the allocation
of neurons during information processing procedures in the
human brain [29], [30], namely the ratio of excitatory neurons
to inhibitory neurons. Zeng et al. [29] investigated the effect

of the proportion of inhibitory neurons on the spiking neural
networks. As a result, the 15% of inhibitory neurons are the
optimal for good performance. Inspired by this brain-inspired
rule, we regard the samples of N1 stage as the excitatory
neurons, other stages as the inhibitory neurons. To be specific,
we set the weight of N1 stage with the value of 8.5, other
stages with the weight of 1.5. Three CW methods adopted in
this study aim to strengthen the contribution of the minority
class and ultimately mitigate the bias towards the majority
class.

E. Proposed Model

To evaluate the efficiency of two balancing methods used in
this study, we propose a CNN based model for automatic sleep
stage classification. The proposed framework is composed of
two key parts as illustrated in Fig. 4. The first part is the
temporal feature extractor (TFE), which could learn the tempo-
ral information (e.g., transition rules between stages). Another
part is the spatial feature extractor (SFE) for extracting spatial
features. The concatenation of feature maps extracted from the
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temporal and spatial feature extractors is fed into the dense
layer with the activation function of softmax to make the final
decision.

The temporal feature extractor consists of a one-dimensional
convolutional (Conv1D) layer, batch normalization, M-
Apooling layer and Bi-LSTM layer. The main function of the
Conv1D is to attain the feature map from the raw EEG signal.
Then the Bi-LSTM is responsible for leaning the temporal
information, such as the transition rule between successive
stages. Practically, the clinicians decide the next probable stage
based on the prior stage on some occasions.

The spatial feature extractor includes four components: a
convolution block, two multi-convolution (MC) blocks (in-
spired by the inception module [31]), a GlobalAveragePooling
(GAP) layer and a dropout layer. The convolution block is
followed by a Conv1D layer with 128 filters of size 128
and a stride of 2, batch normalization and M-Apooling layer
in sequence. Analogously, the MC block comprises different
sizes of filters, batch normalization, M-Apooling layer and
dropout layer. The purpose of different filter sizes is to capture
feature representations in multi-scales. We optimize the filter
sizes with small (3, 5 and 7), medium (16 and 32) and large
(64, 128 and 256) sizes to adapt to the long input length.
In addition, the filter size of 1 is applied to enhance the
nonlinearity of the network. The filter sizes are selected with
1, 3, 16 and 64 as they provide the optimal results in our
testing. We use the M-Apooling layer, the concatenation of
the average-pooling and max-pooling layer, to replace the
conventional max-pooling layer in our model. The GAP layer
plays the role of the traditional fully connected layer to flat the
previous output without introducing extra trainable parameters,
which can prevent the overfitting problem efficiently [32].
Table III shows the detailed information of the proposed
model, the length of input is 90× fs, which is related to the
sampling rate.

F. Experimental Setup

We divide the whole dataset into the training and test
sets randomly based on the subject-wise scheme (i.e., 80%
subjects for training, 20% subjects for test). Only recordings
from the CCSHS dataset are employed to tune the hyper-
parameters of the proposed model. Besides, we choose the
Adam as the model optimizer with the algorithm of learning
rate (LR) reducing, and the LR would decrease to half of it
when the accuracy of test set shows no improvement within
three epochs. The value of LR ranges from 10−7 to 10−3. In
addition, the size of mini-batch is set to 64 chosen from four
batch sizes (32, 64, 128, and 256). We select the categorical
cross entropy as the loss function, which is always employed
for the multi-class model. The number of iteration is 40 as the
proposed model could achieve the convergence state within
40 epochs. Furthermore, we save the model with the best test
accuracy in all iterations.

To prevent the overfitting problem, we adopt two regular-
ization strategies in this study. The first strategy is the L2
regularization, which adds a squared magnitude of coefficient
as penalty term to the loss function. Then we test four

regularization rates (10−1, 10−2, 10−3, 10−4), and 10−3 is
adopted finally. The second technology is the dropout that
drops units from the model with a probability from 0-1. In
the MC block and dropout layer, the probabilities are set to
0.1 and 0.5 respectively.

In our cases, we conduct the experiments on a workstation
with two Inter Xeon E5-2640 V4 CPUs and four Nvidia Tesla
P100 GPUs with 16 Gbytes memory.

III. EXPERIMENTAL RESULTS

A. Performance Metrics

We use class-wise recall (RE), overall accuracy (ACC) and
Cohen’s kappa coefficient (K) to evaluate the performance.
Similar to the binary classification, we regard each class as a
positive class, other classes as a negative class to compute the
class-wise metrics. The calculation of RE, ACC and K are
shown as follows:

RE =
TP

TP + FN
. (7)

ACC =

∑n
i=1 xii

N
(8)

K =

∑n
i=1 xii

N −
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

1−
∑n

i=1(
∑n

j=1 xij

∑n
j=1 xji)

N2

. (9)

where TP and FN, respectively, stand for the true positive
and false negative, N is the total number of test epochs, c
represents the number of classes. In this study, c equals 5,
xii (1 ≤ i ≤ 5) refers to the diagonal value of the confusion
matrix.

B. Efficiency of Balancing the Dataset Samples

Table IV illustrates the performance of DA methods with
proposed GAN model and different intensities and times
Gaussian white noise addition, the bold format stands for the
best performance of each index. Compared to the Baseline
model, the proposed GAN model can improve the overall
accuracy, however, show an slight decrease in terms of the
RE of N1 stage (RE N1) on the experimental datasets. By
contrast, the ACC, K and RE N1 have been enhanced to
a different extent on three datasets with the GWN method.
Specifically, the RE N1 has an increase of 9.7%, 16.2%,
12.0% with systems of Baseline + GWN (1 dB), Baseline
+ GWN (1 dB) and Baseline + GWN (10 dB) on the CCSHS,
Sleep-EDF, Sleep-EDF-V1 databases, respectively. In addition,
ACC and K are also improved with a range of 0.1% to 2.2%.
The improvement of N1 performance (RE N1) is the priority
thing to be considered in the situation of comparable ACC
and K. Besides, the enhancement of N1 recognition should not
sacrifice the overall performance. Considering the overall and
N1 performance, the optimal intensity of Gaussian white noise
addition is set as 1 dB. Hence, the intensities of GWN methods
with three and five times are respectively set to (0.8, 1.0, 1.2)
dB and (0.8, 0.9, 1.0, 1.1, 1.2) dB. Generating more samples
of N1 stage could not achieve better overall (ACC and K)
and N1 (RE N1) performance simultaneously compared to the
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED GAN MODEL AND DIFFERENT INTENSITIES AND TIMES GAUSSIAN WHITE NOISE ADDITION IN THIS

WORK

CCSHS Sleep-EDF Sleep-EDF-V1

ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%)

Baseline 88.2 83.8 23.0 86.4 81.1 24.7 85.4 79.9 33.6

Baseline + GAN 88.5 84.3 21.4 86.9 82.0 20.4 86.5 81.5 32.1

Baseline + GWN (1 dB) 88.3 84.0 32.7 86.5 81.5 40.9 86.3 81.4 44.6

Baseline + GWN (2 dB) 88.3 84.0 30.0 86.7 81.7 28.3 86.8 82.1 35.9

Baseline + GWN (5 dB) 88.4 84.1 28.4 86.6 81.5 26.7 86.1 80.9 34.6

Baseline + GWN (10 dB) 88.4 84.0 29.0 87.0 82.2 32.4 86.0 80.9 45.6

Baseline + GWN (three times) 88.6 84.3 28.2 86.2 80.9 38.2 85.8 80.8 49.0

Baseline + GWN (five times) 88.4 83.9 31.0 86.5 81.6 30.2 85.9 80.9 47.4

TABLE V
THE WEIGHT OF EACH CLASS WITH DIFFERENT CW METHODS

CCSHS Sleep-EDF Sleep-EDF-V1

CW (Ratio) CW (Log R) CW (E I) CW (Ratio) CW (Log R) CW (E I) CW (Ratio) CW (Log R) CW (E I)

W 3.3 1.2 1.5 2.5 0.9 1.5 3.7 1.3 1.5

N1 34.9 3.6 8.5 9.0 2.2 8.5 18.4 2.9 8.5

N2 2.8 1.0 1.5 3.1 1.1 1.5 2.6 1.0 1.5

N3 6.3 1.8 1.5 19.4 3.0 1.5 8.0 2.1 1.5

REM 6.9 1.9 1.5 8.6 2.1 1.5 5.9 1.8 1.5

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT CW METHODS IN THIS WORK

CCSHS Sleep-EDF Sleep-EDF-V1

ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%) ACC (%) K (%) RE N1 (%)

Baseline 88.2 83.8 23.0 86.4 81.1 24.7 85.4 79.9 33.6

Baseline + CW (Ratio) 85.3 80.3 75.0 86.5 81.5 30.4 87.3 82.7 42.6

Baseline + CW (Log R) 87.8 83.4 51.3 86.3 81.1 33.9 85.9 80.8 36.4

Baseline + CW (E I) 86.6 81.8 67.7 85.9 80.4 35.7 85.8 80.8 34.5

Baseline + GWN (1 dB). It is noteworthy that we do not
apply the DA operation to the test set, which means the sleep
structure of the test set is not destroyed. Employing more times
noise addition stands for the worse consistency of training and
test sets, which may hinder the classifier from achieving better
performance.

C. Efficiency of Balancing the Network Connection

Table V shows the class weight of the training set using
three CW methods from the experimental datasets. To further
demonstrate how different CW methods may affect the per-
formance, we make a performance comparison in Table VI.
The performance obtained by CW methods differs significantly
on three datasets. It can be seen that the RE N1 shows a
dramatic increase by all CW approaches, corresponding to
52.0%, 28.3%, and 44.7% (by CW (Ration), CW (Log R) and
CW (E I) respectively) on the CCSHS dataset. Nevertheless,
ACC and K decrease slightly instead. By contrast, on the
Sleep-EDF and Sleep-EDF-V1 databases, ACC and K attain

slight improvements except by the CW (Log R) and CW
(E I) methods on the Sleep-EDF dataset. Additionally, the
improvements of RE N1 is relatively lower than those on the
CCSHS dataset.

We show in Fig. 5 the confusion metrics of three datasets
utilizing four systems (the Baseline, the Baseline + GAN, the
Baseline + GWN, and the Baseline + CW). For both CCSHS
and Sleep-EDF datasets, the Baseline + GWN (1 dB) and the
Baseline + CW (Log R) are selected as the optimal decision
considering the overall performance and the accuracy rate of
N1 stage. Whereas, we choose the Baseline + GWN (1 dB)
and the Baseline + CW (Ratio) based on experimental results
of the Sleep-EDF-V1 database. We further in Fig. 6 reveal the
hypnogram comparison labeled by experts and the predictions
of four systems for one subject (ccshs-trec-1800905) of the
CCSHS dataset. Fig. 7 demonstrates the distribution of weights
in the layer with the largest number of parameters (without
and with the CW method). We also calculate the kurtosis
and skewness of two weight distributions, the kurtosis and
skewness of the weight distribution without and with the
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Fig. 5. The confusion matrices of three datasets with four systems. (a) the CCSHS dataset. (b) the Sleep-EDF dataset and (c) the Sleep-EDF-V1 dataset.

CW (Log R) method are (0.034, -0.414) and (0.094, -0.090),
respectively. The CW method more closely resembles a normal
distribution (i.e., (0,0)). In such way the network convergence
velocity becomes faster [33] and achieving more efficient
training procedure for the minority class.

D. Performance Comparison

To see an overall picture, we demonstrate the performance
comparison with previous works on the three datasets in Tables
VII and VIII. Only a few studies employ the CCSHS dataset,
the proposed systems (the Baseline, the Baseline + GWN (1
dB)) could achieve better performance compared to [34], [35].
Similarly, we compare the performance of the Baseline, the
Baseline + GWN (1 dB) with [25], [36]–[39] on the Sleep-
EDF database, the best ACC, K and RE N1 are obtained by
the Baseline + GWN (1 dB). Those literature [21], [38], [40],
[41] utilize the Sleep-EDF-V1 dataset to develop automatic
sleep stage classification model, the Baseline + CW (Ratio)
framework shows a better ACC, K and a more favorable
RE N1 compared with them.

IV. DISCUSSION

Class imbalance problem is one of the critical factors in
real-world automatic sleep stage classification tasks especially
using deep learning based models. Here in this paper, we
introduce the CIP and define the CIF in the currently common
PSG datasets. Correspondingly, this paper introduces two bal-
ancing methods to alleviate its negative effect from the dataset
quantity and the relationship between the class distribution and
the applied model respectively. One is to balance the dataset
quantity through increasing the number of samples in the N1
stage, the other aims to balance the relationship between the
original imbalanced datasets and deep neural networks while
keeping the original dataset quantity. Embedding with two
introduced methods, this paper propose a deep convolution
neural network based model with Bi-LSTM units for automatic
sleep stage classification tasks with single-channel EEG.

In order to enhance the ability of feature extraction, we
use the MC block with four sizes of filters to capture spatial
features from different scales. The small and large filters
are responsible for capturing local features and big context,
respectively [10]. In addition, the Bi-LSTM is designed as the
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Hypnogram of one subject from the test set (ccshs-trec-1800905). (a) the ground truth. (b) the prediction of the Baseline. (c) the prediction of the
Baseline + GAN. (d) the prediction of the Baseline + GWN (1 dB). (e) the prediction of the Baseline + CW (Log R).

(a) imbalanced network connection (b) balanced network connection

Fig. 7. The distribution of weights, black lines represent the curve of normal
distribution, Y-axis refers to the probability density. (a) without the CW
method, (b) with the CW (Log R) method.

temporal feature extractor to learn the information of sleep
stage transition rules. It further enriches features learned from
the proposed model. The principle of the DA method here is
quite different from previous studies [19], [21], in which the
number of each category is designed as the same proportion.
However, doing so, the original sleep structure is seriously
destroyed. We argue that the physiological correlation between
successive sleep stages should not be ignored. That is to
say, the initial architecture of whole-night sleep needs to
be intact maximally for clinical significance. By contrast,
we only increase the number of N1 stage as it is typically
considered as the archetype of minority classes with the high-
est misclassification rate. Different from duplicating selected
samples from minority classes in [11], this paper adopts two
DA methods with the proposed GAN model and Gaussian
white noise addition to generate EEG signals. Although the
under-sampling method can also improve the proportion of
the minority class and does not need to generate new samples,

the evaluation model may suffer from the underfitting problem
with the decrease in the training samples. Employing the
proposed DA methods, we could not only achieve the goal
of increasing the samples of the minority class, but also
introduce additional features to enhance the generalization of
the applied model. As can be seen from Table IV, the applied
GWN method could obtain different degrees of improvement
of overall accuracy and recall of N1 stage simultaneously
on three datasets compared to those of the baseline model.
Nevertheless, the performance of N1 stage showed a slight
decrease in [21]. Unlike the image database with independent
classes, it is not necessary to keep the equal percentage of each
class for mitigating the CIP in PSG datasets. More importantly,
we should take into consideration in maintaining inherent
characteristics of PSG datasets when employing DA methods.
On the other hand, we should develop tailor made DA methods
(e.g., different intensities and times noise addition) to deal
with the diversity of subjects in different PSG datasets. For
instance, both the macro-level (including the sleep stages and
duration) and micro-level (such as the quality and quantity of
sleep oscillations) structure of sleep would change with the
older age [42] and sleep disorders.

Nevertheless, the generated EEG signals by the DA ap-
proaches are still artificial. Apart from balancing the class
distribution of datasets, another method is to discover the
balanced network connection with the original imbalanced
dataset. Compared to the DA method, this method could
enable the original architecture of sleep and handle general
imbalanced PSG datasets. More specifically, we try to balance
the relationship between the class and the trained model from
the data distribution and the brain-inspired rule. According
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TABLE VII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEMS AND PREVIOUS METHODS ON THE CCSHS DATASET

Study Method Input channel Input type Subjects ACC(%) K(%) RE N1

Ref. [34] HMM C4/A1 + C3/A2 Spectrogram 515 - 73.0 -
Ref. [35] Random Forest C4/A1 Features 116 86.0 80.5 7.3
Baseline CNN + LSTM C4/A1 Time series 515 88.2 83.8 23.0
Baseline + GWN (1 dB) CNN + LSTM C4/A1 Time series 515 88.3 84.0 32.7

TABLE VIII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SYSTEMS AND PREVIOUS METHODS ON THE SLEEP-EDF AND SLEEP-EDF-V1 DATASETS

Study Database Method Input channel Input type Subjects ACC(%) K(%) RE N1

Ref. [25] Sleep-EDF CNN Fpz-Cz Time series 78 83.9 77.8 -
Ref. [36] Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 80.0 73 -
Ref. [37] Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 83.1 77 -
Ref. [38] Sleep-EDF RNN Fpz-Cz Time series 78 84.0 77.8 -
Ref. [39] Sleep-EDF CNN Fpz-Cz Spectrogram 78 83.4 76.7 -
Baseline Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 86.4 81.1 24.7
Baseline + GWN (1 dB) Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 86.5 81.5 40.9
Ref. [21] Sleep-EDF-V1 Deep CNN Fpz-Cz Time series 20 74.8 66.0 -
Ref. [38] Sleep-EDF-V1 RNN Fpz-Cz Time series 20 83.9 77.1 -
Ref. [40] Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 83.9 78.0 40.0
Ref. [41] Sleep-EDF-V1 1-max CNN Fpz-Cz Time-frequency image 20 82.6 76 29.9
Baseline Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 85.4 79.9 33.6
Baseline + CW (Ratio) Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 87.3 82.7 42.6

to the experimental results demonstrated in Table VI, we
conclude some important findings. Firstly, it is essential to
keep a sensible equilibrium between minority and majority
classes, there is a trade-off between the overall accuracy and
the recognition of the N1 stage on the CCSHS dataset, the RE
improvement of the N1 stage is accompanied by the sacrifice
of ACC and K. Secondly, even the same rule of relationship
may result in different results on experimental datasets. The
overall and N1 performance could be improved simultaneously
on the Sleep-EDF and Sleep-EDF-V1 databases, but much
lower enhancement of N1 stage than that on the CCSHS
dataset. As mentioned in Sec. II. A, three experimental datasets
comprise of subjects from different age groups (CCSHS: 16-19
years, Sleep-EDF: 25-101 years, Sleep-EDF-V1: 25-34 years).

In summary, the CW method is suitable for avoiding
generating new EEG samples and keeping the dataset intact
for retaining overnight sleep structure. In addition, when
recognizing the N1 stage for diagnosing some related sleep
disorders, the CW method is prone to show better performance
(CCSHS dataset). If we prefer to enhance the performance
of all stages and N1 simultaneously, the GWN method can
improve the accuracy of the N1 stage without the sacrifice of
overall accuracy. In this study, although the GAN model can
enhance the overall accuracy, the stage N1 shows a slight drop
in recall on three datasets.

V. CONCLUSION

In this study, we aim to deal with the widely existing class
imbalance problem in the field of automatic sleep stage clas-
sification through balancing the dataset quantity and network
connection. The attained results suggest that the proposed

methods could make positive contribution to the improvement
of biased performance. In most cases, the accuracies of N1
and whole stages are enhanced simultaneously on three public
PSG datasets. In addition, our frameworks could outperform
the state-of-the-art studies on the same dataset. This study
paves new avenues for enhancing the sleep stage classifica-
tion performance with class imbalance and monitoring the
sleep equality and disorders. However, there are some aspects
worthy of further exploration in future works. Firstly, more
DA methods for balancing the dataset quantity could be
investigated, such as the Variational Auto-Encoding network
(VAE), which has obtained significant achievements in CV
field. In terms of the imbalanced network connection, we will
take into consideration of the activation function simulating the
operation of neural’s synapse for the duration of information
processing procedures.
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Interpretable Sleep Stage Classification Based on
Layer-wise Relevance Propagation

Dongdong Zhou, Qi Xu∗, Jiacheng Zhang, Lei Wu, Lauri Kettunen, Zheng Chang, Senior Member, IEEE,
Hongming Xu, and Fengyu Cong, Senior Member, IEEE

Abstract—Many deep learning-based approaches have been
proposed for conducting the automatic sleep stage classification
tasks. Nevertheless, the black-box nature of these approaches
is one of the skeptical factors hindering clinical application.
Towards model interpretability, this study presents a novel
interpretable sleep stage classification scheme based on layer-
wise relevance propagation (LRP). We first adopt the short-time
Fourier Transform (STFT) to convert the raw electroencephalo-
gram (EEG) signals to the time-frequency images, which could
visually demonstrate EEG patterns of each sleep stage. Moreover,
we introduce an efficient convolutional neural network (CNN)
based model, namely MSSENet, that assembles with the Multi-
Scale CNN module and residual Squeeze-and-Excitation block
for the image input. The LRP method is eventually applied to
evaluate the contribution of each frequency pixel in the input
time-frequency image to the model prediction. Experimental
findings show that the MSSENet could exceed other state-of-
the-art approaches on three polysomnography (PSG) datasets.
Furthermore, through utilizing the heat mapping, the LRP-based
explainability results validate the high relevance of specific EEG
patterns to the prediction of the corresponding sleep stage, which
is consistent with the sleep scoring guidelines.

Index Terms—Sleep stage classification, Model interpretability,
Layer-wise relevance propagation, Neural networks.

I. INTRODUCTION

SLEEP is a vitally important physiological activity that
makes up about one-third of human life. There is proof

that getting good sleep helps human cognitive function [1].
In addition, people have various sleep problems (e.g., apnea,
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insomnia), which immensely interrupt their daily activities.
Therefore, there is an urgent requirement to quantify sleep
quality and detect sleep-related disorders precisely.

Sleep stage classification is the initial and fundamental
step in evaluating sleep quality and identifying sleep disor-
ders. Clinically, whole-night polysomnography (PSG) data,
containing EEG, electromyogram (EMG), electrooculogram
(EOG), electrocardiogram (ECG), etc [2], are first collected
in the hospital or laboratory. Afterwards, sleep specialists
classify each 30-second epoch of PSG recordings into distinct
sleep stages manually, in which the intensive time-cost can
be expected. Two gold rules, the Rechtschaffen and Kales
(R&K) manual [3] and American Academy of Sleep Medicine
(AASM) rule [4], can be referred by the sleep clinician to
label the hypnogram. Sleep stages can be classified as six
stages, Wake (W), Rapid eye movement (REM), and None
rapid eye movement (N1, N2 N3 and N4), with the R&K
manual. However, stages N3 and N4 are merged into N3 in
the AASM rule.

In recent years, machine and deep learning methods have
been applied successfully in various fields [5]–[11]. For the
automated sleep stage classification tasks, the deep learning
techniques have gained popularity and obtained significant
achievements due to their unbelievable power of feature ex-
traction. These works can be summarized as convolutional
neural networks (CNNs) [12]–[15], recurrent neural networks
(RNNs) [16]–[18], CNN + RNN [19]–[21], etc. In addition,
a many-to-one scheme [22] has been further explored to
handle the limitation of the short input context. Despite all
this progress, the black-box property of deep learning-based
models still lacks convincing interpretability and they receive
scepticism from sleep experts for the real-world automatic
sleep stage classification application. It is a necessary step
to clearly explain how the deep model makes decisions and
establish trust among the practitioners.

Some studies attempt to give evidence to support the pro-
posed models’ sleep staging decision from different aspects.
Thereinto, the t-distributed stochastic neighbor embedding (t-
SNE) method has been employed to visualize the output of the
model layer in numerous automatic sleep stage classification
studies [23]–[27]. The t-SNE approach can transform high-
dimensional data to two-dimensional data to offer feature
visualization of each layer, which can demonstrate the classi-
fication results of each sleep stage in each model layer [28].
Yan et al. [25] presented a new deep model integrating the
Long Short-Term Memory (LSTM) and CNN for sleep scoring
with multimodal time series. The proposed model was then
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visualized using the t-SNE through analysis of the compressed
layer outputs. Nevertheless, the features learned by each layer
of the applied model were not illustrated. An ablation method
is proposed in [29] to validate the importance of each modality
data to the applied CNN-based model for the classification of
each sleep stage.Each modality’s signals were substituted by
a mixture of a 40 Hz sinusoid with an amplitude of 0.1 and
Gaussian noise with a mean of 0 and a standard deviation of
0.1. To make the performance comparison before and after
ablation of each modality, the weighted and individual F1
scores were calculated, respectively. However, the ablation
approach can not be efficiently adaptive to the automatic sleep
classification models using the single-channel EEG. Moreover,
it is still unknown what elements the model captures from
the input and whether these feature presentations are related
to specific sleep stages. Ellis et al. [30] proposed a new
local spectral explainability method to evaluate the importance
of different frequency bands over time by perturbing EEG
signals. However, using perturbation techniques might result in
unrealistic, atypical samples that do not represent a classifier’s
learning fairly. Moreover, the temporal information of different
EEG patterns was discarded using the spectral power.

In this study, we present an explainable scheme to explore
the inner connection between the input and prediction of
the applied model, which is depicted in Fig.1. First, we
acquire time-frequency images containing the EEG patterns
information using the short-time Fourier Transform (STFT),
which are fed into the proposed model. We further propose
a novel CNN-based model assembling with Multi-Scale and
Residual Squeeze-and-Excitation block for automatic sleep
stage classification. A conservative relevance redistribution
method, layer-wise relevance propagation (LRP), is finally
applied to detect significant pixels (corresponding to frequency
features) in the time-frequency image input that contribute the
most to the final layer and receive the most relevance from
it. We aim to verify whether specific EEG patterns existing in
each sleep stage can be identified properly by the proposed
model for making the final decision. The following are the
main contributions:

i) We present a novel CNN-based model containing a
Multi-scale CNN module for extracting feature presen-
tation from different scales and a Residual Squeeze-
and-Excitation block to recalibrate learned features and
enhance the performance.

ii) We design an interpretable system to demonstrate the
contribution of different frequency bands in the time-
frequency image input to the model prediction with the
layer-wise relevance propagation method.

iii) Our proposed MSSENet model could achieve remarkable
performance on three public datasets and certificate the
high relevance of specific EEG patterns to the prediction
of the corresponding sleep stage visually.

The remaining of this work is structured as follows: The ex-
perimental datasets and methodologies are primarily described
in Sec. II. In Section III, we provide the experimental findings.
Additionally, Section IV has the discussion and conclusion.
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Fig. 1. The overall schematic diagram of the interpretable sleep stage
classification with layer-wise relevance propagation.

II. MATERIALS AND METHODS

A. Data Description

In this paper, we conduct experiments using the following
three open PSG datasets:

Cleveland Children’s Sleep and Health Study (CCSHS):
This database is one of the largest pediatric cohorts for study-
ing objective sleep. The age of 515 subjects starts from 16 to
19 years, and the EEG channel C4/A1 (sampled at 128 Hz) is
employed in this study. More details are available in literature
[31], [32]. (Data link: https://sleepdata.org/datasets/ccshs).

Sleep-EDF-V1: It is a subset of the Sleep-EDF Expanded
dataset called Sleep Cassette (SC), published in 2013, contain-
ing 20 subjects between the ages of 25 and 34. Each subject
has two consecutive overnight PSG recordings, excluding
subject 13 due to the device error. We adopt the Fpz-Cz EEG
channel instead as there is no C4/A1 EEG channel. (Data link:
https://www.physionet.org/content/sleep-edfx/1.0.0/).

Sleep-EDF: This is the expanded edition of Sleep-EDF-V1
(version 2018), the number of subjects (aged 25-101) increases
to 78 with 153 full-night PSG recordings. Each individual
receives two consecutive nighttime PSG recordings, with the
exception of subjects 13, 36, and 52 on account of the device
failure. More detailed information can be found in [33]. We
use the Fpz-Cz EEG channel in this study. For Sleep-EDF
series datasets, the 30-second EEG epoch sampled at 100 Hz,
and the sleep stages are unified as five stages W, N1, N2, N3,
and REM for all experimental datasets based on the AASM
standard. As we concentrate more on the sleep stages than the
wake stage, the samples of 30-minute wake periods are kept
prior to and following the sleep periods. [19].

Besides, we implement the many-to-one scheme, in which
three consecutive 30-second epochs are reconstructed as the
contextual 90-second epoch [22]. Table I provides the details
of employed PSG datasets.

B. Data preprocessing

As shown in Table II, we provide the EEG patterns of
the five phases of sleep, including Delta, Theta, Alpha, Beta,
and others. We aim to validate whether these EEG patterns
are also crucial for the proposed model to make the final
decision. To display the EEG patterns associated with various
sleep stages more visually, we first use the short-time Fourier
Transform with a window size of two seconds and 50% overlap
to convert the raw EEG signal to the time-frequency image.
The time-frequency image is also considered the representation
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TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL DATASETS EMPLOYED IN THIS STUDY (EACH EPOCH REFERS TO THE 90-SECOND EPOCH)

Dataset Subject EEG channel Sampling Rate W N1 N2 N3 REM Total

CCSHS 515 C4/A1 128 Hz 211030 19221 249681 110188 100252 690372

Sleep-EDF-V1 20 FPz-Cz 100 Hz 10197 2804 17799 5703 7717 44220

Sleep-EDF 78 FPz-Cz 100 Hz 69518 21522 69132 13039 25835 199046

TABLE II
AN OVERVIEW OF EEG PATTERNS FOR DISTINCT SLEEP STAGES

Stage Delta (<4 Hz) Theta (4 - 8 Hz) Alpha (8 - 13 Hz) Beta (13 - 30 Hz) Other EEG Patterns

W ✓ ✓

N1 ✓ ✓ Vertex waves

N2 ✓ K-complexes; Sleep spindles

N3 ✓ Sleep spindles may persist

REM ✓ ✓ Saw tooth waves

Conv2D(256, (3, 3)@(2, 2))

BatchNormalization

M-Apooling2D((3, 3) @(2, 2))

BatchNormalization

Dropout(0.1)

GlobalAveragePooling2D

Dropout(0.5)

Dense(5, softmax)

Max-pooling2D

Average-pooling2D

Input

Sleep Stage

MC Block

M-Apooling2D((3, 3) @(2, 2))

Output

(a) Proposed MSSENet

(b) M-Apooling2D

Conv2D(16, (1, 1))

Conv2D(96, (3, 3))

Conv2D(48, (7, 7))

Conv2D(32, (1, 1))M-Apooling2D((3, 3))

Conv2D(64, (1, 1))

Conv2D(64, (1, 1))

Output

(c) MC Block

Input

Residual SE Block

Output

Input

GlobalAveragePooling2D

Fully Connected 

Fully Connected 

ReLU

Sigmoid

(d) Residual SE Block

it
l

u
M

-
N

N
C 

el
ac

S
n

oi
si

c e
D

W H C

1 1 C

1 1 C

W H C

W H C

1 1 C/r

Fig. 2. The structure of proposed MSSENet. a) is an overall of the proposed
framework. b) is the M-Apooling, which combines the Max-pooling and
Average-pooling. c) illustrates the structure of MC Block, which includes
different filter sizes. d) is the SE Block with the shortcut connection strategy.

of the original signal’s higher-level features [34]. In addition,
Hamming window and 256 point Fast Fourier Transform
(FFT) are performed. We retain information from the efficient
frequency band of 0.5-30 Hz for the subsequent step analysis.

C. Overall of MSSENet

With the use of time-frequency image input, we design
a CNN-based deep model called MSSENet for automatical
sleep scoring, which is shown in Fig.2. It includes three main
key parts: the Multi-Scale CNN, the Residual Squeeze-and-
Excitation (SE) block and the classification part. The number

of model parameters of the MSSENet model is around 0.34
million.

1) Multi-Scale CNN (MSCNN): This part mainly com-
prises one 2-dimensional convolutional (Conv2D) layer and
the multi-convolution (MC) block. The original size of the
time-frequency image is (656, 857) and then we resize it to
(64, 64) as the model input. Feature maps are acquired by
the 256 filters with the size of (3, 3), the MC block is then
tailored to acquire diversiform feature representations with
distinct sizes of filters. As each sleep stage corresponds to
different frequency ranges, three different CNN kernel sizes
(i.e., 1 × 1, 3 × 3, 7 × 7) are designed to obtain various
frequency characteristics (i.e., low and high frequencies). More
specifically, the smaller kernel size of (3, 3) is expected to
learn the local feature, while the bigger filter size of (7, 7) is
prone to capture the big context. Similarly, the combination
of Max-pooling and Average-pooling layers, termed the M-
Apooing, is desired to further enhance the feature extraction
ability [22]. The Conv2D and MC layers are followed by one
BatchNormalization layer and a M-Apooling layer, the dropout
layer with the drop rate of 0.1 is responsible for preventing
the overfitting issue.

2) Residual SE Block (R-SE): To further recalibrate
features attained from the Multi-Scale CNN, the Squeeze-
and-Excitation block [35] with the residual strategy is used
to enhance the performance. As demonstrated in Fig.2.(d),
we define feature maps generated from the Multi-Scale CNN
as F = {F1, . . . , FC} ∈ RW×H , where C is the number of
filters. To mine more contextual information outside of a local
receptive field in each filter, the global average pooling (GAP)
is first used to squeeze global spatial information by shrinking
the F = {F1, . . . , FC} ∈ RW×H to z = {z1, . . . , zC} ∈ RC ,
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which is shown as follows:

zc =
1

H ×W

H∑

i=1

W∑

j=1

Fc(i, j), c ∈ {1, 2, . . . , C} (1)

The next step is to take advantage of the aggregated infor-
mation by implementing two fully connected (FC) layers. The
first FC layer with the ReLU activation function is responsible
for reducing the channel numbers with the reduction ratio
r. Another FC layer is used as the dimensionality-increasing
layer with the sigmoid activation function. This processing is
described in Eq.(2).

s = σ (W2δ (W1z)) (2)

where σ and δ stand for sigmoid and ReLU functions respec-
tively, W1 ∈ RC

r ×C and W2 ∈ RC×C
r . The output of the SE

block is generated by rescaling F with s:

O = F⊗ s (3)

where ⊗ denotes the channel-wise multiplication. Addition-
ally, we utilize the shortcut connection technique to merge the
F with the output of the SE block O as the final output.

3) Decision Part: This part consists of a GAP layer, a
dropout layer, and a dense layer. Here, we u substitute the
traditional fully connected layer with the GAP layer for flatting
the output of Residual SE Block without introducing trainable
parameters. Another dropout layer with a drop rate of 0.5 is
employed before the final decision. The dense layer calculates
the likelihood of each sleep stage using the softmax activation
function, and the final forecast is chosen based on the sleep
stage with the best probability.

D. Layer-wise relevance propagation

The layer-wise relevance propagation (LRP) is proposed to
explore the contribution of each pixel of the input image x to
the prediction f(x) when conducting the image classification
task [36]. We relate the diagram of LRP method in Fig.3. LRP
assumes that the prediction f(x) can be explained by a sum
of terms of the separate input dimensions xd:

f(x) = Rf =
∑

d

Rd(x) (4)

where Rd(x) is the resulting relevance for the pixel xd of
input image x and Rf refers to the relevance of prediction
f(x). Note that the sum of relevance of all nodes of each
layer should be equal:

∑

d

R
(1)
d = . . . =

∑

i

R
(l−1)
i =

∑

j

R
(l)
j = . . . = Rf (5)

The relevance can be regarded as information flowing along
the network connection, the flow direction is from the output
node to the input node. As demonstrated in Fig.3, we can
decompose the relevance layer by layer along the sub-paths
between nodes referring to the idea of back propagation. Here
we always assume that i represents the sequence number of
the lower layer neuron, and j denotes the sequence number of
the higher layer neuron:

f(x)

x

( )

( ) ( )) (
←

( , )

f(x)

x

input

output

Fig. 3. The diagram of the layer-wise relevance propagation method.

R
(l−1,l)
i←j = factor

(l−1,l)
ij ·R(l)

j (6)

where factorij stands for the distribution factor, which be-
longs to 0-1 and satisfies:

∑

i

factor
(l−1,l)
ij = 1 (7)

For any higher layer neuron, its input z
(l)
j = W

(l)
j a(l−1)

and a(l−1) is the activation output vector of the lower layer
neuron. Each component z(l)ij of z(l)j can be considered as the
relevance distribution factor between the lower layer neuron i
and higher layer neuron j. To satisfy the constraint of Eq.(7),
it is divided by a normalization parameter z(l)j as follows:

factorij =
z
(l)
ij

z
(l)
j

=
w

(l)
ij a

(l−1)
i∑

i w
(l)
ij a

(l−1)
i

(8)

Hence we can rewrite Eq.(6) as follows:

R
(l−1,l)
i←j =

w
(l)
ij a

(l−1)
i∑

i w
(l)
ij a

(l−1)
i

·R(l)
j (9)

We can map the resulting relevance Rd(x) for each input
pixel xd to color space and visualize it with a conventional
heat mapping. In this study, each pixel of input time-frequency
images represents the frequency at each time point. We can
easily decide whether the EEG patterns (described in Table
II) corresponding to a particular sleep stage can be captured
and are essential for the model to recognize this specific sleep
stage with the help of the heat mapping.
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E. Training setup

To acquire the training and test sets, we divided the exper-
imental datasets at random into a 4:1 ratio (i.e., 80% of the
subjects served as the training set, while 20% served as the
test set). In addition, The categorical cross entropy (CE) and
Adam are chosen as the loss function and model optimizer,
respectively. The definition of categorical cross entropy is
given in Eq. (10), where x stands for the input sample, C
presents the class numbers to be categorized, yi refers to the
true label for the class i, and fi(x) denotes the model’s output
value.

CE(x) = −
C∑

i=1

yi log fi(x) (10)

Adam’s learning rate (LR), beta1 and beta2 begin with 10−3,
0.9 and 0.999. To train the model more efficiently, we reduce
the LR by half when the test accuracy fails to improve with
three epochs. The training iteration is set to 40 since the
proposed MSSENet reaches the optimal solution in 40 epochs.
Besides, the batch size is set as 64.

III. EXPERIMENTAL RESULTS

A. Performance metrics

We employ per-class and overall metrics to assess the
efficiency of the proposed MSSENet model, namely, precision
(PR), recall (RE), F1 score (F1), overall accuracy (ACC)
and Cohen’s kappa coefficient (K) [37]. Following are the
definition of these metrics:

PR =
TP

TP + FP
. (11)

RE =
TP

TP + FN
. (12)

F1 = 2 · RE · PR

RE + PR
. (13)

ACC =
TP + TN

TP + FN + TN + FP
. (14)

K =

∑5
i=1 xii

N −
∑5

i=1(
∑5

j=1 xij

∑5
j=1 xji)

N2

1−
∑5

i=1(
∑5

j=1 xij

∑5
j=1 xji)

N2

. (15)

where TP , FP , TN , and FN denote true positive, false
positive, true negative and false negative respectively. The N
is the total number of the testing samples. xij (1 ≤ i ≤ 5,
1 ≤ j ≤ 5) is the element of the confusion matrix.

TABLE III
CONFUSION MATRIX OF OUR MSSENET ON C4/A1 EEG CHANNEL

FROM THE CCSHS DATASET

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REM PR(%)RE(%)F1(%)ACC(%)K(%)

W 40405465 785 50 1225 96.1 94.1 95.1

N1 555 975 565 0 1440 33.0 27.6 30.0

N2 555 59040965 2270 2440 87.7 87.5 87.6 87.7 83.3

N3 70 0 2775 19185 25 89.2 87.0 88.1

REM 460 925 1640 5 18705 78.5 86.1 82.1

TABLE IV
CONFUSION MATRIX OF OUR MSSENET ON FPZ-CZ EEG CHANNEL

FROM THE SLEEP-EDF-V1 DATASET

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REMPR(%)RE(%)F1(%)ACC(%)K(%)

W 2032 63 7 23 38 93.0 93.9 93.4

N1 88 295 144 14 161 62.4 42.0 50.2

N2 38 51 3248 206 134 91.9 88.3 90.1 86.9 82.2

N3 5 0 83 1031 1 80.9 92.1 86.1

REM 23 64 52 0 1297 79.5 90.3 84.6

TABLE V
CONFUSION MATRIX OF OUR MSSENET ON FPZ-CZ EEG CHANNEL

FROM THE SLEEP-EDF DATASET

Predicted Per-class Metrics Overall Metrics

W N1 N2 N3 REMPR(%)RE(%)F1(%)ACC(%)K(%)

W 7734 227 153 31 355 92.4 91.0 91.7

N1 430 428 596 18 712 44.1 19.6 27.1

N2 120 177 11889 598 356 85.6 90.5 88.0 84.3 78.3

N3 20 0 360 3595 0 84.7 90.4 87.5

REM 62 139 884 3 4395 75.5 80.2 77.8
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Fig. 4. The normalized confusion matrices of three PSG datasets. x-axis and
y-axis represent the predicted and true labels, respectively.

We demonstrate the confusion and performance matrices of
the proposed MSSENet implemented on the C4/A1 channel in
CCSHS dataset and on the FPz-Cz channel in Sleep-EDF-V1
and Sleep-EDF datasets in Tables III, IV and V. The normal-
ized confusion matrices are also related in Fig.4. The values
of each row and collum in aforementioned tables represent
the number of each sleep stage labeled by the sleep expert
and the proposed model. The corresponding performance
metrics are also calculated based on the confusion matrices.
We can observe that stage N1 attains the most unfavorable
performance, with F1 less or close to 50%, and it is prone
to be misclassified as REM, N2 and W. By contrast, stage W
achieves the most promising performance, with F1 more than
90% on three datasets. In terms of the overall performance,
ACC of three datasets are more than 84% and CCSHS obtains
the highest ACC of 87.7%. In Fig.5, we show the comparison
between expert-labeled hypnogram and the model’s prediction.
The solid blue and dotted red lines represent the ground truth
and the prediction of the MSSENet, respectively.

B. Performance comparison

We also compare the overall performance of our MSSENet
based on the time-frequency image and the many-to-one
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Fig. 5. The comparison between expert-labeled hypnogram and the model’s prediction. The solid blue and dotted red lines represent the ground truth and
the prediction of the MSSENet, respectively. (a) CCSHS dataset (ccshs-trec-1800399), (b) Sleep-EDF-V1 (SC4112), and Sleep-EDF (SC4622).

TABLE VI
PERFORMANCE EVALUATION OF THE PROPOSED METHOD USING THE CCSHS DATASET COMPARED TO PREVIOUS METHODS

Study Database Method Input channel Input type Subjects ACC(%) K(%)

Ref. [38] CCSHS HMM C4/A1 + C3/A2 Spectrogram 515 - 73

Ref. [39] CCSHS Random Forest C4/A1 Features 116 86.0 80.5

MSSENet CCSHS Deep CNN C4/A1 Time-frequency image 515 87.7 83.3

TABLE VII
PERFORMANCE EVALUATION OF THE PROPOSED METHOD USING THE SLEEP-EDF-V1 AND SLEEP-EDF DATASETS COMPARED TO PREVIOUS

METHODS

Study Database Method Input channel Input type Subjects ACC(%) K(%)

Ref. [19] Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 82.0 76

Ref. [40] Sleep-EDF-V1 CNN + LSTM Fpz-Cz Time series 20 83.9 78

Ref. [41] Sleep-EDF-V1 Deep CNN Fpz-Cz Time series 20 84.3 78

Ref. [42] Sleep-EDF-V1 1-max CNN Fpz-Cz Time-frequency image 20 82.6 76

Ref. [22] Sleep-EDF-V1 Deep CNN Fpz-Cz Time series 20 86.1 80.5

MSSENet Sleep-EDF-V1 Deep CNN Fpz-Cz Time-frequency image 20 86.9 82.2
Ref. [18] Sleep-EDF RNN Fpz-Cz Time-frequency image 78 82.6 76

Ref. [43] Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 80.0 73

Ref. [44] Sleep-EDF CNN + LSTM Fpz-Cz Time series 78 83.1 77

Ref. [13] Sleep-EDF CNN Fpz-Cz Spectrogram 78 83.4 76.7

Ref. [34] Sleep-EDF RNN Fpz-Cz Time series 78 84.0 77.8

Ref. [22] Sleep-EDF Deep CNN Fpz-Cz Time series 78 83.9 77.8

MSSENet Sleep-EDF Deep CNN Fpz-Cz Time-frequency image 78 84.3 78.3

scheme with other state-of-the-art approaches employing the
same PSG dataset in Tables VI and VII. We can conclude from
Table VI that our MSSENet could achieve better performance
(ACC and K) compared to studies [38] employing the multi-
modal signal and [39] using the same single-channel EGG
(C4/A1). In Table VII, note that all methods use the single-
channel EEG (FPz-Cz) with different representation types, our
MSSENet could also outperform the CNN-based approaches
[22], [41], [42] and the CNN + LSTM frameworks [19], [40]
on Sleep-EDF-V1 dataset. Considering Sleep-EDF dataset, the
proposed model could also show superiority of ACC and K
compared with the method based on the RNN [18], [34], CNN

[13], [22], and the combination of CNN and RNN [43], [44].

C. Ablation study
The proposed MSSENet comprises two essential mod-

ules: Multi-Scale CNN (MSCNN) and Residual Squeeze-and-
Excitation (R-SE) block. To validate the efficiency of each
module, we conduct the ablation study on three experimental
datasets. Fig.6 illustrates the results of the ablation study. In
specific, the MSCNN means the MSCNN module only and the
MSCNN + R-SE refers to the MSCNN module and Residual
Squeeze-and-Excitation block together (i.e., MSSENet). Al-
though MSCNN + R-SE fails to improve the performance of
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Fig. 6. Ablation study conducted on three PSG datasets. a) is the comparison
of ACC, and b) presents the comparison of K.

Sleep-EDF dataset compared to MSCNN only, it can be seen
that ACC shows an improvement of 0.7% and 0.3% with
the addition of R-SE block on Sleep-EDF-V1 and CCSHS
datasets, respectively. Similarly, 0.9% and 0.5% are enhanced
on Sleep-EDF-V1 and CCSHS datasets concerning K with the
proposed MSSENet.

D. LRP-based explainability results

We reveal the explainability results for each sleep stage
using the LRP method in Fig.7. Panel (a) shows the raw
EEG signals of five sleep stages and panel (b) illustrates
the corresponding time-frequency images through the short-
time Fourier Transform, which contains the EEG patterns
information. The heat mapping of each sleep stage with the
LRP is depicted in panel (c). We can find that the heat mapping
of stage W shows high relevance in a high-frequency band
(i.e., Beta waves), which is consistent with the main EEG
patterns of stage W. In addition, stage N3, as the deep sleep, is
characterized by the slowest EEG rhythms (i.e., Delta waves).
The LRP-based results show that Delta waves contribute the
most to the prediction of stage N3. As for stage N1, the
significant contribution of Alpha and Theta waves (4-13 Hz)
can also be detected, as illustrated in the heat mapping.
From the heat mapping of stage N2, we can observe that the
contribution of Theta waves (4-7 Hz) is vital for the model’s
prediction. During REM sleep, the brain activity closes to the
pattern of stage N1, and Theta waves similarly show high
relevance to the prediction of stage REM.

IV. DISCUSSION AND CONCLUSION

Model interpretability is one of the critical factors in
promoting the practical application of deep learning-based
models. This study presents a novel, interpretable scheme
for the automatic sleep stage classification task. The main
principle is to find the direct correlation between the input
and prediction, miming the processing of sleep experts’ visual
inspection of PSG recordings. To depict the characteristic EEG
patterns of each sleep stage more intuitively, we first convert
the raw EEG signal to the time-frequency image with the
short-time Fourier Transform. Moreover, we propose an ef-
ficient CNN-based model, MSSENet, to realize the automatic
sleep stage classification with the time-frequency image input.
Once the applied model predicts the input time-frequency

image, the contribution of each pixel for the input image
(i.e., the frequency at each time point) could be encoded to
a color space and visualized with a heat mapping using the
layer-wise relevance propagation approach. By checking each
EEG pattern’s contribution to the prediction, we can validate
whether the LRP-based explainability results fit with the sleep
scoring manuals.

Performance comparison results reveal that our MSSENet
could outperform than other state-of-the-art methods employ-
ing the same PSG dataset. The Multi-Scale CNN is designed
for learning feature presentations from different scales through
different kernel sizes of filters. Moreover, we also implement
a Squeeze-and-Excitation block with the residual strategy (R-
SE) to recalibrate the multi-scale features captured from the
Multi-Scale CNN. The efficiency of the recalibration ability
of the R-SE block to the multi-scale features is validated on
three datasets using the ablation study. Although we do not
see the performance enhancement on the Sleep-EDF dataset
with the R-SE block, the ablation study on CCSHS and
Sleep-EDF-V1 verifies the positive contribution of the R-
SE block to performance improvement. The major cause for
the disparities in results might be due to the varied data
distributions in the three datasets. It should be noted that
three experimental datasets include participants of various ages
(CCSHS: 16-19 years, Sleep-EDF-V1: 25-34 years, and Sleep-
EDF: 25-101 years). The performance improvement of the
Sleep-EDF dataset is relatively more challenging than the
other two datasets due to a more complex age distribution.
Besides, we can observe that the Sleep-EDF dataset has
the lowest ACC and K. In addition, the LRP-based heat
mapping in Fig.7 can provide visual interpretability to the
model prediction. The EEG patterns (i.e., Delta, Theta, Alpha,
and Beta waves) of specific sleep stages show high relevance
to the correct prediction, which is consistent with the sleep
scoring guidelines. Different from the study [45], in which
the LRP was also implemented for interpretable sleep staging.
We adopt the time-frequency image as the model input rather
than the power spectral density, which contains the time-
frequency domain information simultaneously. Besides, it is
more visually accessible by demonstrating the relevance of
different EEG patterns with the heat mapping.

There are also some limitations of our study. First, while
our MSSENet could achieve favorable overall performance, it
is still challenging to classify stage N1 accurately. The F1
of stage N1 in three datasets is less or close to 50%, which
is much lower than other stages. Considering Tables III, IV,
and V, we can see that stage N1 is easily misclassified as
stages REM, N2 and W. As shown in Table II, EEG patterns
of stage N1 are similar to stage W (i.e., Theta and Alpha
waves). Besides, stage N1 has the same brain activity as stage
N2 (Theta wave). Although the single-channel EGG-based
method can significantly reduce computational costs, the con-
tribution of other modality signals to the correct identification
of stage N1 is disregarded. For instance, EOG signals can
be shown to differentiate between stages N1 and REM [46].
Similarly, EMG signals also benefit the accurate recognition
between stages N1 and W [47]. The multi-modality scheme
with channel selection strategy could be investigated in future
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Fig. 7. The explainability results for each sleep stage implementing the LRP method.

work. Secondly, the proposed interpretable scheme could not
detect other EEG patterns of particular sleep stages (e.g., K-
complexes in stage N2), which also benefits sleep scoring. The
study [47] provided insight into the possible detection of other
EEG patterns with the raw EEG signals using the LRP method,
a more morphological representation of different EEG patterns
that mimic the manual visual inspection. In addition, we will
explore other modalities to understand the learning course of
the deep learning-based method for automatic sleep scoring.
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