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In an Industry 4.0 ecosystem, all the essential components are digitally interconnected, and automation is
integrated for higher productivity. However, it invites the risk of increasing cyber-attacks amid the current
cyber explosion. The identification and monitoring of these malicious cyber-attacks and intrusions need
efficient threat intelligence techniques or intrusion detection systems (IDSs). Reducing the false positive rate in
detecting cyber threats is an important step for a safer and reliable environment in any industrial ecosystem.
Available approaches for intrusion detection often suffer from high computational costs due to large number of
feature instances. Therefore, this paper proposes a novel unsupervised IDS for Industry 4.0 which we term as:
Unsupervised Intrusion Detection System for Industry 4.0 (UInDeSI4.0). We have substantiated the proposed
UInDeSI4.0 approach through its experimentation on the well-known UNSW-NB15 Industry 4.0 dataset. The
proposed UInDeSI4.0 employs feature selection approaches to obtain minimal and optimal features. These
features are then used to train isolation forest to detect network traffic threats in an unsupervised manner.
Accordingly, the proposed UInDeSI4.0 approach can efficiently differentiate between the normal events and
the attacks or intrusions in environments with no label information. Experimental results show that the
proposed UInDeSI4.0 provides better accuracy (~63%) and a minimal feature set (nine) compared to traditional
IDSs. In contrast to deep learning approaches, UInDeSI4.0 generates faster results with minimum features. In
conclusion, we establish the superiority of UInDeSI4.0 approach as an accurate and computationally efficient
IDS for Industry 4.0.

1. Introduction network environment, it is still highly vulnerable to intrusion that
leads to economic and manufacturing harms with privacy breaches in

Industry 4.0 (I14.0) conceptualizes factories with processes and or- an organization’s assets. These intrusions include distributed denial-

ganizations to be flexible, customized, efficient, cheaper, safer, and
responsible. Powered by digitization and connectivity, the fourth in-
dustrial revolution revolves around several technologies that, when
used together, are causing a massive paradigm shift. Overall, it is a
connected autonomous network that interacts in real-time (Lee et al.,
2014; Janmaijaya et al., 2021). The efficiency is attained as the In-
dustry 4.0 systems rely on data-driven approaches for operation and
decision-making. Moreover, data transparency and data privacy are
two significant issues that are valuable to the industries where peo-
ple’s information is generated and securely accumulated (Onik et al.,
2019). The machines in these systems heavily utilize cyber—physical
systems (CPSs), internet of things (IoT) devices, and internet con-
nectivity in production processes, which thus open the gateways for
increased cyber-attacks. Although the manufacturing in this industry
is designed to be highly efficient and secure in the highly volatile
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of-service, unauthorized access, identity theft, buffer overflow, etc.
These attacks could be initiated from any element or module of the
overall system, thus, blurring the boundaries between various levels of
authentication (Moustafa et al., 2017). Moreover, integrating 4.0 into
legacy systems has also enabled attackers to jeopardize their security
by exposing crucial information. This is basically due to the integration
of different complex technologies. Hence, security in a smart industry
is challenging due to more customer/user access in the business and
control systems (Yan et al., 2017). The increasing number of modern
and different cyber-attacks require efficient intrusion detection systems
(IDSs) to secure smart industries.

Therefore, this paper proposes a novel unsupervised intrusion de-
tection approach for Industry 4.0 which we term as: Unsupervised
Intrusion Detection System for Industry 4.0 (UInDeSI4.0). The proposed
UInDeSI4.0 can efficiently identify intrusions with better accuracy, less

E-mail addresses: amit.k.shukla@jyu.fi (A.K. Shukla), shubham.srv10@gmail.com (8. Srivastav), 2431sandeep@gmail.com (S. Kumar),

pranabmuhuri@cs.sau.ac.in (P.K. Muhuri).

https://doi.org/10.1016/j.engappai.2023.105848

Received 7 February 2022; Received in revised form 28 October 2022; Accepted 9 January 2023

Available online xxxx

0952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.engappai.2023.105848
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.105848&domain=pdf
mailto:amit.k.shukla@jyu.fi
mailto:shubham.srv10@gmail.com
mailto:2431sandeep@gmail.com
mailto:pranabmuhuri@cs.sau.ac.in
https://doi.org/10.1016/j.engappai.2023.105848
http://creativecommons.org/licenses/by/4.0/

A.K. Shukla, S. Srivastav, S. Kumar et al.

Engineering Applications of Artificial Intelligence 120 (2023) 105848

Industry 4.0

Cyber Security

Cloud Computing

I IXIA Traffic Genrator
Server 1 Server 2
(normal activity) (Malicious activity
Malware) Server 3

R aces T i
LN >

Router 1
| w (TCP dump)
o
PCAP files

L

(normal activity)

Devices
Router 2 \

D

Fig. 1. Traffic flow for generating normal and attack instances in Industry 4.0.

false positive rate, and less computational time than other recently
proposed IDSs in the literature. For IDSs, feature selection (FS) is one
of the crucial steps (Pérez et al., 2020) since selecting an optimal set of
features from high-feature instances is computationally complex in the
continuously increasing network traffic data. Accordingly, for FS, our
proposed UInDeSI4.0 employs the random forest (RF), which selects the
optimal and minimal features based on their importance. It is associated
with low overfitting and provides better predictive performance. These
RF-selected relevant features reduce the computational cost and also
helps in additional analytics. Once the optimal features are extracted,
the dataset is subjected to a reliable unsupervised anomaly detection
approach which is also a synonym for intrusion detection (ID).
Intrusion detections are majorly of three types: supervised, unsu-
pervised and semi-supervised. In an applicative context, the collected
data is in deficiency of any label information. Moreover, most of the
ID models need to be trained occasionally as they are unable to detect
undefined attacks. UInDeSI4.0 uses the isolation forest (IF) approach
to detect anomalies from the selected feature set in an unsupervised
manner. IF is an unsupervised tree-based algorithm in which an iso-
lation tree separates the anomalies based on the average path length
of the leaf node in a tree by calculating the anomaly score (Liu
et al.,, 2008, 2012). It separates scattered and clustered anomalies
more efficiently than the density or distance-based algorithms. Also,
IF requires less fine-tuning of the parameters than other unsupervised
approaches. Moreover, it has less running time complexity since it
isolates anomalies considering a sub-sample of the dataset, which also
enables IF to work efficiently with large datasets. It can better deal
with the problem of swamping and masking in the dataset. Therefore,
to detect intrusions in the network traffic flow of the Industry 4.0

ecosystem, UInDeSI4.0 trains IF by utilizing the RF-extracted optimal
features. We have substantiated the proposed UInDeSI4.0 approach
through experimentation on the well-known UNSW-NB15 Industry 4.0
dataset. UNSW-NB15 dataset is generated using the IXIA PerfectStorm’
tool (Moustafa and Slay, 2015), and the complete generation procedure
is shown in Fig. 1.

To assess the proficiency and robustness of the proposed Uln-
DeSI4.0, several FS techniques are considered for comparison purposes,
including a supervised technique, chi-square (CHI2), and two unsuper-
vised approaches: principal component analysis (PCA) and independent
component analysis (ICA). The features extracted from these three FS
techniques are then individually trained on the IF and the performance
is compared with UInDeSI4.0. Notably, there are also deep learning-
based approaches that automatically extract the features and identify
the anomalies. However, they are associated with high computational
costs and less interpretability. Our proposed UInDeSI4.0, on the other
hand, operates on minimal features resulting significant reduction in
the computational cost; and importantly, it does not require label
information for anomaly detection. Nevertheless, for a fair and thor-
ough comparison, we have further included auto-encoder (AE), deep

1 The traffic generator tool, PerfectStorm, consists of three virtual servers.
Two servers produce normal events and third server produce malicious or
attack event in network traffic. The servers are connected to host via routers.
A tcpdump tool is installed in the router to capture the PCAP (Packet Capture)
in the simulation uptime. These routers relate to the fire wall device that
is configured to pass all the traffic either normal or abnormal. The whole
process captures normal or attack events in the traffic flow, which shows how
network traffic is established between a server and a client. More details on
the UNSW-NB-15 Industry 4.0 dataset are provided in the Section 4.
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auto-encoder (DAE), and deep variational auto-encoder (DVAE) in our
comparative analysis. From the experimental results, it may be seen
that the proposed UInDeSI4.0 provides higher accuracy with a minimal
feature set than other recently reported approaches. Thus, we estab-
lish the superiority of the UInDeSI4.0 approach as a computationally
efficient IDS for Industry 4.0.

The major contributions of this paper are as follows:

1. An unsupervised intrusion detection system for Industry 4.0
(UInDeSI4.0) is proposed, which extracts optimal features using
RF approach and then identifies anomalies with IF.

2. Experiment results with the well-known UNSW-NB15 Indus-
try 4.0 dataset confirm that the proposed approach achieves
efficient performance.

3. A supervised (CHI2) and two unsupervised (PCA and ICA) fea-
ture selection approaches are also employed to establish the
proficiency and robustness of the UInDeSI4.0.

4. Further, comparisons with state-of-the-art conventional and deep
learning-based approaches have been executed to evaluate the
suitability of the proposed UInDeSI4.0 approach.

The organization of this paper is as follows: Section 2 discusses the
background and related work. Section 3 describes a basic overview
and explains the procedure of the proposed UInDeSI4.0 approach.
The description of the Industry 4.0 dataset and an explanation of the
experiments performed and analysis is discussed in Section 4. Section 5
concludes the paper with a detailed discussion.

2. Related work

IDS has been studied thoroughly in the literature with various super-
vised and unsupervised approaches. Hassan et al. (2020) have proposed
a feature extraction-based semi-supervised deep learning method. It is
compatible with multi-level protocols of Industrial-IOT and detect wide
range of cyber-attacks effectively. In these cyber-attacks space, Iwendi
et al. (2020) introduced KeySplitWatermark approach for watermark
detection. Wu et al. (2020) proposed the IF-based algorithm for pre-
dicting events from low-quality data of synchrophasor measurement.
They select features using a hierarchal subspace methodology of two-
level scheme. Li et al. (2020) proposed a CNN-GRU based intrusion
detection model for a federated CPS. A variational LSTM model for
intrusion detection that selects deep learning-based features of UNSW-
NB15 dataset was proposed by Zhou et al. in Zhou et al. (2020). Iwendi
et al. (2021) proposed a novel approach for IDS in smart healthcare
using genetic algorithm and RF.

From the above discussion, we see that several FS techniques have
been used in different application areas, such as cyber security, fraud
detection, image and voice pattern recognition, geophysics, etc., which
are then used to detect anomalous behavior in the dataset. Mostly, IF
based approaches with different frameworks as unsupervised methods
have been proposed for intrusion detection. Other notable approaches
are local outlier factor (LOF), one class support vector machine (OC-
SVM), and robust convolution methods.

There are also several neural networks and deep learning-based
methods used for IDS (Mittal et al., 2021). However, there is a trade-off
between a marginal better accuracy and high computational complex-
ity. For cyber security, we need a more reliable, time-efficient, and
better analytical approach that solves vulnerabilities in real time. Our
proposed UInDeSI4.0 approach solves intrusion detection problems in
the unsupervised big data environments of 14.0 utilizing minimal opti-
mal features extracted through RF. A detailed theoretical comparison
of our UInDeSI4.0 with other recent approaches is given in Table 1,
which clearly shows that the main motivation behind the proposed
UInDeSI4.0 is to have a time-efficient and less complex IDS.
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Fig. 2. Flow of the UInDeSI4.0 system.

3. Unsupervised intrusion detection system for Industry 4.0 (Uln-
DeSI4.0)

This section describes the complete procedure for the proposed
unsupervised intrusion detection system for industry 4.0 (UInDeSI4.0).
It is a generalized feature optimization scheme for intrusion detection.
It exploits optimal features from data and utilizes them for training IF
to detect anomalies of the selected features. The proposed approach
efficiently deals with unbalanced datasets by selecting appropriate data
samples. Moreover, it has better decision making for intrusion detection
by selecting optimized features of the data. Fig. 2 pictorially depicts the
flow of the proposed approach, the step-by-step explanation of which
is discussed next.

Step-1: In the first step, optimal features are selected, which is an
essential step because irrelevant features in the data make it difficult to
detect an intrusion in a network. For making a more reliable and less
false positive rate, UInDeSI4.0 utilizes RF-extracted top important fea-
tures with the highest importance score. The labels in RF are retrieved
by first training the model and then selecting the top features according
to the highest feature importance score. It returns the relevant optimal
features from the data that make a more reliable and generalized
framework for intrusion detection. A detailed description of feature sets
is given in the experiments and results in Section 4.

Step-2: For each of the optimal features extracted from the above
step, we observe its distribution and skewness using the boxplot. This
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Table 1
Comparative summarization of the existing and the proposed approaches.
Refs. FS technique Methodology Dataset Application Remark
Pérez et al. PCA & IF, LOF, OC-SVM, & UNSW-NB15, NSL-KDD, Intrusion Uses 20 PCA features and 4 layer [230,
(2019) Auto-Encoder (AE) features robust-convolution CIC-IDS-2017 and Kyoto detection 120, 60, 20] AE features for
dataset. UNSW-NB15
Portela et al. Sequential FS, main SVM, KNN, UNSW-NB15 Intrusion In unsupervised methods K-means, IF
(2019) component analysis, features K-means, IF detection uses raw features of the dataset
validated in Onik et al.
(2019), raw features
Pérez et al. High dimensional PCA (Yan IF, LOF, UNSW-NB15, NSL-KDD, Intrusion Uses 100 PCA (HDFS) features, 5-layer
(2020) et al., 2017), Mahalanobis, and CIC-IDS-2017 and Kyoto detection [230, 180, 100, 180, 230] DAE and
Deep Auto-Encoder (DAE), HBOS model dataset. 5-layer [230, 180, 100, 180, 230] DVAE
Deep Variational Auto-Encoder
(DVAE)
Yang et al. IBFS IF Synthetic dataset Outlier detection Introduces penalized imbalance score for
(2019) each feature
Kiran et al. Raw features PCA, AE, IF i-perf generated traffic Anomaly PCA, AE are used to detect anomaly
(2020) detection cluster, while IF detects anomaly
instances.
John and PCA features LOF, IF Kaggle credit card Credit card fraud 28 PCA features of the dataset used in

Naaz (2019) transaction dataset detection IF method.
Liang et al. Recursive feature elimination RF, OC-SVM, IF, Audio recording of Anomaly Selects features with RF& SVM which
(2019) (RFE) technique multivariate telephonic data detection in are used by unsupervised method (IF &

Gaussian (MG)

telephonic data

MG)

Wang et al.
(2020)

Spectral features, Gabor
features, EMP features, EMAP
features

IF

AVIRIS-I, AVIRIS-II, Cri,
PaviaC

Anomaly pixel in
image

Spectral features are extracted using
spectral feature matrix while other
features based on PCA.

Carletti et al. DIFFI method IF Synthetic dataset, Anomaly An imbalance coefficient A is introduced
(2019) refrigerator industry detection in for each feature to assign rank to each
dataset industry 4.0 feature.
Ren et al. FS using RF and genetic IF UNSW-NB15 Intrusion Feature selected using hybrid technique
(2019) algorithm (GA) dataset detection based on RF and GA
Karczmarek Raw features K-means based IF Artificial data points, NYC Anomaly Each tree is splitted into k branches.
et al. (2020) taxi trip, ship, train detection Also introduces intuitive result for
transportation dataset finding anomaly score.
Ao et al. Sequential attribute selection SCIForest Channel identification in Seismic Features are selected using sequential
(2019) procedure western bohai sea interpretation of attribute selection procedure and
channel sand SCIForest used to find anomaly clusters.
body
UInDeSI4.0 ICA, PCA, CHI2, RF IF UNSW-NB15 dataset Intrusion Nine features extracted from RF base
detection FS technique and IF is used to find

anomalies

ALGORITHM-1: IF ANOMALY DETECTION

Output: Anomalous points

Input: Test set x, feature f, no. of iterations T

Let D(x;) be the depth of the point x;

Let D(x;) be the average of the point x;

1
2
3. Randomly select the feature f°
4

While every data point is not in its own leaf do

a. Randomly select the splitting threshold 7 from the range [min(xf), max (xr)]

b. Split the dataset into two subsets based on ¢

Repeat T number of times

6. Compute the anomaly score as follows:

a. Score(x;)=2 @ Here, c(x;) is the expected depth

D(xp)

7. Anomaly if Score > threshold.




A.K. Shukla, S. Srivastav, S. Kumar et al.

explanatory data analysis is used to visualize whether there is a linear
separation of features between the normal and attack instances.

Step-3: In the third step, the IF is trained with the optimal feature set
from RF without giving label information. IF selects a fixed sub-sample
S from the data. Data splitting is carried out next by randomly choosing
a feature f from optimal features. From a selected feature f, a threshold
t is generated, which splits the data point in a tree-based structure.
Threshold ¢t is a random value between the minimum and the maximum
value of the feature f in each subtree. The data splitting creates a left
subtree if the data value is less than the threshold t; else, it creates a
right subtree. It continues further recursively until each data point is a
leaf itself or some maximum height threshold is attained. IF consists of
T decision tree where each decision tree calculates the depth of each
data points. An expected depth of each data point is computed from all
T decision trees.

Further, an anomaly score for each data point is calculated with the
help of the expected depth of each data point as shown in Algorithm
1 (Liu et al., 2012). If the anomaly score is greater than a threshold,
the data point is considered anomalous; otherwise, it is a normal point.
A detailed numerical experimentation for training IF models is given in
Section 4.

Step-4: In step 4, accuracy and ROC curve are computed, which are
used as a performance metric for the IF model. The performance
evaluation of the selected feature set (from RF) in an IF model is
computed in terms of testing accuracy. Here, different contamination
values (more detail in Section 4) are used for the IF.

The contamination value is the percentage of expected points set as
outliers. ROC (Receiver operating characteristic) curve, which is a plot
between the False Positive Rate (FPR) and True Positive Rate (TPR), is
used to show the efficacy of the proposed approach.

Step-5: In step 5, we have analyzed the importance of the optimal
feature set to be used in an IF model for identifying the anomalies.
Algorithm 2 procedurally compiles the proposed UInDeSI4.0. The ben-
efit of the approach lies in a low computational cost due to the optimal
FS technique. Moreover, it is an effective and computationally efficient
unsupervised technique and works best with any real-world data.

4. Dataset, experiments, and results

This section first details the Industry 4.0 dataset used for experimen-
tation. The discussion of this dataset is of utmost importance due to the
scarcity of such realistic datasets. Hence, we first discuss the same, and
later, details of the experiments and results are discussed in depth.

4.1. Dataset description

The UNSW-NB15 (Moustafa and Slay, 2015) is an Industry 4.0
dataset that contains more than a million instances. This is one of
the rare Industry 4.0 datasets that are publicly available, and read-
ers/practitioners are using it to test their approach in Industry 4.0
domain. As mentioned earlier in Section 1, the UNSW-NB15 dataset
is created using IXIA perfect storm tool in the cyber range lab of
Australian center for cyber security (ACCS) (Moustafa and Slay, 2015).
It consists of modern normal and abnormal network traffic created for
industry 4.0 systems. It is a relational dataset where instances consist of
attributes of different data types (integer, float, nominal, binary). The
label assigned to normal instances is ‘0’, whereas an attack state label
is ‘1°.

The UNSW-NB15 dataset contains a network traffic flow in a cyber—
physical system that is generated to understand real-life normal pro-
cesses and cyber-attack processes in network traffic. This dataset has
47 flow-based and service-based features in network traffic flow. It
contains six transactional flow features, six message queue telemetry
transport (MQTT) features, 13 DNS features, and 11 http features. The
remaining 11 features are basic and time stamp features (Moustafa and

Engineering Applications of Artificial Intelligence 120 (2023) 105848

Table 2
UNSB-NB15 whole dataset.
Dataset No of No of Normal Attack
features instances instances instances
UNSW-NB15 dataset 42 257673 93000 164673

Table 3
Training accuracy of feature sets using isolation forest.

Isolation forest BEST training Contamination value

(T =100 S =256) accuracy for training accuracy
PCA features 0.7294 0.25
ICA features 0.6354 0.10
CHI2 features 0.7744 0.25
RF features 0.6926 0.25

Slay, 2015). In all, it contains nine types of attacks: Analysis, Backdoor,
DoS, Exploit, Fuzzers, Generic, reconnaissance, Shellcode, and Worms.
In the training set, there are 1,75,341 instances, while 82,332 instances
in the test set.

4.2. Experiments and results

To evaluate the robustness and the efficacy of the RF-based im-
portant features, we have compared it with other widely used FS
techniques such as CHI2, PCA, and ICA. UNSW-NB15 dataset is used
to analyze the accuracy of different features set in an IF. As mentioned
in Table 2, this dataset has a total of 42 features and 257,673 instances,
out of which there are 93000 normal instances and 164,673 attack
instances. The features with most of the missing values are removed
from the overall feature set resulting in 42 features. Among them, some
categorical features are changed into numbers using the label encoder
method.

In the first step, features are selected from RF, CHI2, PCA, and
ICA techniques. Notably, CHI2 features are extracted by giving label
information during feature extraction. Fig. 3(a)-(d) respectively shows
the box plot of the distribution of normal instances and attack instances
in ICA features, PCA features, CHI2 features, and RF-based important
features of the UNSW-NB15 dataset.

The PCA features and CHI2 features are extracted using the high-
est covariance principle and chi-square test method, respectively. In
contrast, RF-based important features are extracted according to the
highest importance value. In each box plot, the red line is the distri-
bution of normal instances, whereas the blue line is the distribution of
attack events. Each feature value is normalized in the range of 0 to 1.

In the training phase, IF is applied to each of the feature sets
selected by the FS techniques without giving label information in an
unsupervised manner. To assess the accuracy of the approach, different
contamination values are used to analyze the effectiveness of each
feature set in the dataset. A contamination value is a parameter in IF,
which is set as the percentage of anomalies in the dataset. For experi-
menting with IF, the parameters settings are: contamination values in
the range [0.1:0.05:0.4], sample size (S) is 256, and the number of trees
(T) is 100, which are the default values as suggested by the original
algorithm (Liu et al., 2012). Fig. 4 shows the training accuracy of each
feature set in the considered contamination values.

It can be deduced from this figure that ICA achieved best training
accuracy at contamination value of 0.10, whereas PCA, CHI2 and RF
achieved it at 0.25. Among all the FS techniques, CHI2 attained the
higher training accuracy for every contamination value, while ICA
features have the lowest training accuracy. CHI2 achieved its highest
training accuracy at the contamination value of 0.25, and ICA achieved
it at 0.10. PCA features has higher training accuracy than RF which
achieved its higher training accuracy at the contamination value of
0.25. Table 3 compiles training accuracies of each of the FS techniques
with their best selected contamination values.
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Algorithm 2: UInDeSI4.0

Input.’ Dataset (D) UNSW-NB-15 {DTRAIN V) DTEST}
Parameters: Sample (S), Number of Trees (T), Contamination Value (C)

Feature set: F RF

Output: Intrusion detection, accuracy

Training phase:

1. F_RF, Ny = extracted features using RIF;, Number of extracted features

[\

CF=(L

. for each F; :

4. for T=1; T<=100; T++

Select S samples from Drpan

W

select a feature f;, where k = rand(l, Nf)

recursion(S,t):

select thresold t = rand([min(value(fk)) ,max(value(fk))])

5. for each instance of S:
if (value(S) <t):
S = S;gr € left sub tree

recursion(S;sr, t), until each instance is in the leaf node
calculate anomaly score of each leaf node using Algo. 1.

else:
S = Spsr € right sub tree

recursion(Sgsr, t), until each instance is in the leaf node
calculate anomaly score of each leaf node using Algo. 1

6. for C =0.1to [0.1:0.05:0.4]:

find optimal threshold ¢,p,, for fitting Drg4,y With best training accuracy

If (anomaly score > t,p;):

leaf node is an anomaly
else:
leaf node is a normal

7. Output:

Trained model M with parameter (S, T, C) using Fyp features

Testing phase:
8. for the trained model M :

Evaluate testing acc(Dyggr) using trained model M

The testing accuracies are computed on the highest achieved con-
tamination values for each of the above FS techniques. Fig. 5 shows
the average testing accuracy bar-plot of the proposed UInDeSI4.0 (with
RF feature set) compared with the average testing accuracy on IF
when trained with feature sets of CHI2, ICA, and PCA. To further
show the effectiveness of the binary classifier among all the above four
approaches, Fig. 6 shows the ROC curve. In this curve, the maximum
AUC (Area Under the Curve) represents better class separation in the
dataset.

The RF features have better area under the curve than the CHI2,
PCA, ICA features. Besides RF, PCA, ICA, and CHI2, Fig. 5 also shows
the average testing accuracies given by five other recent published
approaches viz. PCA with 20 features (PCA20), AE, DAE, DVAE, and
Raw Features (RWF) (Pérez et al., 2019; Portela et al., 2019; Pérez
et al., 2020). Out of all, UInDeSI4.0 provides better accuracy with
faster execution time as compared to other approaches. DAE and DVAE
attained marginally higher accuracies than UInDeSI4.0 but at higher
computational times. Table 4 shows the optimal number of features,

average testing accuracy and average training accuracy (with standard
deviation (SD)), maximum testing accuracy, timing complexity, and
average execution time of the proposed UInDeSI4.0, along with eight
other compared approaches. As can be seen in terms of all the per-
formance factors, i.e., training accuracy (0.6897) and testing accuracy
(0.6261), time complexity (O(fnlogn) + O(n)), and execution time
(14.38 sec), UInDeSI4.0 performs efficiently considering its being the
unsupervised approach.

CHI2 shows slightly better testing accuracy and average time ex-
ecution, however, it uses the label information during FS, hence, is
categorized as a supervised approach. ICA and PCA have somewhat
faster average time as compared to UInDeSI4.0 but at the cost of lower
testing accuracy. Other approaches used by Pérez et al. (2019) with 20
feature set using PCA and AE achieved inferior accuracy of 0.5944 and
0.6374, respectively. AE’s average execution time is extremely higher
than the UInDeSI4.0, i.e., 327.24 s. Recently, raw features (RAWF)
of the dataset were experimented using IF (Portela et al., 2019). It
also gives less average testing accuracy (0.5678) and high execution
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Fig. 3. Box plot of normal and attack instances: (a) of ICA features, (b) PCA features, (c) CHI2 features, and (d) RF features.

Table 4

Comparing proposed approach with other state of the art methods in UNSW-NB15 dataset using IF.

Method FS technique No of fea- Average testing Average training Maximum Time complexity Average time
tures/Resulting accuracy (100 accuracy (100 testing (s) (FS + IF
dimensions iterations) iterations) accuracy training)
ICA + IF ICA features 9 0.5029 + 0.0070 0.6327 + 0.0057 0.5245 OQ2qf (f+1)n)+0m) 12.26
(c = 0.10)

PCA + IF PCA features 9 0.6129 + 0.0091 0.7087 + 0.0134 0.6391 O(r? f) +0(n) 10.98
(c = 0.25)

CHI2 + IF CHI2 features 9 0.6438 + 0.0111 0.7738 + 0.0102 0.6735 O(no of classes % f)+0(n) 10.14
(c = 0.25)

UInDeSI4.0 RF-features 9 0.6261 + 0.0061 0.6897 + 0.0079 0.6410 O(fnlogn) + O(n) 14.38
(c = 0.25)
PCA features 20 0.5944 + 0.0175 0.6533 + 0.0182 0.6310 o(n*f) + O(n) 14.39
Pérez et al. (c = 0.10)
(2019) .
AE features 20 0.6374 + 0.0201 0.6681 + 0.0139 0.6737 O(ng s (i % j+j*k+k=l)+0(n) 327.24
(c = 0.42)
Deep AE 100 0.6132 + 0.0117 0.7157 + 0.0123 0.6437 O(ng # (i % j+j* k+ksl+1%m)) 358.99
features + O(n)

Pérez et al. (¢ =0.15)

(2020) Deep VAE 100 0.5472 + 0.0043 0.6596 + 0.0026 0.5597 O(mg+(i%j+jxk+ksl+1xm)+  349.90
features O(n)
(c = 0.05)

Portela et al. Raw features 42 0.5678 + 0.0091 0.6729 + 0.0109 0.5968 O(n) 17.27

(2019)

*AE = Auto-Encoder, *VAE = Variational Auto-Encoder, *c = contamination value.

time (17.27 s) in comparison to UInDeSI4.0. Neural network-based ap-
proaches such as DAE and DVAE took 358.99 and 349.90 s and returned
testing accuracy of 0.6132 and 0.5472, respectively. The marginally
better maximum testing accuracy of AE and DAE comes at the cost of
significant execution time. This trade-off of better accuracy (marginal)
versus high computational cost is solely dependent on the context of
the application and other factors. Notably, the testing accuracy SD
of the proposed UInDeSI4.0 (0.0061) is significantly better than any
other approaches, making it more reliable. Only DAE has a better SD
of 0.0043, however, it performs poorly on all the other performance
indicators.

Overall, our approach produces significantly better accuracies in
efficient execution times with manageable computational costs and
only nine optimal features. The extracted features from RF according to

its feature importance value are shown in Table 5 for the UNSW-NB15
Industry 4.0 dataset.

An interesting aspect of this work is the dataset (in particular) used.
The dataset used in this paper has around 67.80% of attack events as
compared to the normal events (32.20%). This fact can be verified from
Table 6 which classifies the number of normal and attack instances
of the UNSW-NB15 dataset. However, related works available in the
literature mostly considered only those datasets where the anomalies
or irregularities (attack events) in the dataset are less in numbers than
the regularities (normal events).

Moreover, the anomaly detection approach employed by
UInDeSI4.0, i.e., IF also works on the principle that anomalies (outliers)
are less in number, and they may be easily isolated from normal events
(inliers), which are in the majority. After the computation of anomaly
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Table 5

RF-based important features.

Features (Abbreviation) Feature importance index

sttl (rfl) 0.125962
ct_state_ttl (rf2) 0.103160
dload (rf3) 0.077700
rate (rf4) 0.063724
dmean (rf5) 0.061195
dttl (rf6) 0.043587
ackdat (rf7) 0.040899
Sload (rf8) 0.039744
Sbytes (1f9) 0.033084

Table 6
UNSW-NB15 dataset used in isolation forest.

UNSW-NB15 dataset

Attack instances

119876
54987

Normal instances

55456
27435

Training dataset
Testing dataset

Table 7
Labels allocation for the UNSW-NB15 dataset with IF.

Original data (label)

IF prediction

Normal (32.2%) 0 -1 0
Attack (67.8%) 1 1 (0) 1

Labels change

scores, IF will predict ‘1’ for inliers and ‘-1’ for outliers. In general,
inliers are considered normal events, while outliers are considered
as attack events by IF. However, for UNSW-NB15 dataset, we have
considered attack events as inliers and normal events as outliers since
they are in the minority. This situation can be visualized in Table 7.
Hence, from the aspects of the studied data set also, the current work
is a novel contribution.

Based on the above discussion, there are a few but crucial observa-
tions that we would like to point out to the readers before they undergo
any intrusion detection approach:

1. A careful analysis of the dataset is a prerequisite before the in-
trusion detection step. In exceptional cases where anomalies are
comparatively high compared to normal events, label switching
is required in the accuracy computation step after the anomaly
detection process is completed.

2. This verification of labels is required only when we already have
label information to compute the accuracy. In an unsupervised
setting, IF can be used the way it is intended. It is to be kept in
mind that, for IF, anomalies are those points which belongs to
minority class irrespective of whether they are normal instances

Engineering Applications of Artificial Intelligence 120 (2023) 105848

or attack instances. Else, IF will be wrongly tagged as a poor per-
forming approach, in such rare scenarios where attack instances
dominate.

5. Discussion and conclusion

Due to the advent of industry 4.0 and its rapid, pervasive all-around
expansion, the threat of cyber-attacks has touched its zenith. With the
continuous emission of data from smart devices in the smart industry,
efficient threat intelligence techniques or intrusion detection systems
(IDSs) for identifying and monitoring malicious cyber-attacks and in-
trusions is the need of the hour. This paper has proposed a novel unsu-
pervised IDS for Industry 4.0 which we have termed as: unsupervised
intrusion detection system (UInDeSI4.0). In our proposed UInDeSI4.0
approach, after extracting the optimal feature set technique, anomalies
are identified using IF in an unsupervised manner.

We have experimented the proposed UInDeSI4.0 approach on the
well-known UNSW-NB15 Industry 4.0 dataset. The reliability and ef-
ficacy of the proposed UInDeSI4.0 are justified by comparing it with
other recently reported approaches. The feature sets selected by various
FS techniques are trained with the IF model to analyze the importance
of diverse feature sets using the unbalanced and unsupervised UNSW-
NB15 dataset. It also shows the impact of all these feature sets in threat
detection by IF in the Industry 4.0 domain. Experimental analysis sug-
gests that the proposed UInDeSI4.0, which extracts the optimal feature
set using RF, performs better in most cases compared to its other coun-
terparts. When compared with the deep learning-based methods, our
proposed UInDeSI4.0 approach is computationally faster and provides
comparable accuracy. The proposed UInDeSI4.0 gives a robust solution
to real-world smart monitoring systems by enabling intrusion detection
in an unsupervised manner. Moreover, our study infers that the RF
features perform efficiently with IF in threat detection as compared to
other features. Our proposed UInDeSI4.0 may be applied in anomaly
detection tasks such as detecting incorrect values in the database, fraud
detection, transportation system, and many other application areas as a
generalized approach. In the future, new feature extraction techniques
with optimized isolation forest models shall be tested. A unified tree-
based structure shall be explored for FS and anomaly detection for
efficient and much faster execution.
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