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The DMT of Real and Quaternionic Lattice

Codes and DMT Classification of Division

Algebra Codes
Roope Vehkalahti and Laura Luzzi, Member, IEEE

Abstract—In this paper we consider the diversity-

multiplexing gain tradeoff (DMT) of so-called minimum

delay asymmetric space-time codes for the n ×m MIMO

channel. Such codes correspond to lattices in Mn(C) with

dimension smaller than 2n2. Currently, very little is known

about their DMT, except in the case m = 1, corresponding

to the multiple input single output (MISO) channel.

Further, apart from the MISO case, no DMT optimal

asymmetric codes are known.

We first discuss previous criteria used to analyze the

DMT of space-time codes and comment on why these

methods fail when applied to asymmetric codes. We then

consider two special classes of asymmetric codes where

the code-words are restricted to either real or quaternion

matrices. We prove two separate diversity-multiplexing

gain trade-off (DMT) upper bounds for such codes and

provide a criterion for a lattice code to achieve these

upper bounds. We also show that lattice codes based on Q-

central division algebras satisfy this optimality criterion.
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As a corollary this result provides a DMT classification

for all Q-central division algebra codes that are based on

standard embeddings. While the Q-central division algebra

based codes achieve the largest possible DMT of a code

restricted to either real or quaternion space, they still fall

short of the optimal DMT apart from the MISO case.

Index Terms—division algebra, space-time block

codes (STBCs), multiple-input multiple-output (MIMO),

diversity-multiplexing gain trade-off (DMT), algebra,

number theory.

I. INTRODUCTION

The DMT [2] is a powerful tool for analyzing the

performance of a space-time block code in one shot

MIMO communication. Analyzing the DMT curve of

a given code gives us a good grasp of the expected per-

formance of the code over the Rayleigh fading channel.

It is therefore of great interest to develop methods to

measure the DMT of a given code.

The previous research reveals that this task is non-

trivial. When the diversity-multiplexing gain trade-off

was introduced in 2003 in by Zheng and Tse [2], the

only explicit example of a code achieving the optimal

DMT was the Alamouti code [3] when it was received

with a single antenna. Later in [4] Elia et al. proved

that in a MIMO system with n transmit and m receive

antennas and minimal delay T = n, the non-vanishing
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determinant property (NVD) is a sufficient condition for

a 2n2-dimensional lattice code in Mn(C) to achieve the

optimal diversity-multiplexing gain trade-off. They also

pointed out that division algebra based codes, such as the

perfect codes [5], are DMT optimal, and gave a general

construction for DMT-achieving 2n2-dimensional lattice

codes in Mn(C). This criterion was generalized by

Tavildar and Viswanath [6] who showed that if the

product of the smallest m singular values of any non-

zero matrix in a 2nm-dimensional lattice L ⊂ Mn(C)

stays above some fixed constant, then L achieves the

optimal DMT curve in the n × m MIMO channel. In

the case where n = m, this criterion coincides with the

NVD condition.

The work in [4] revealed that there exist 2n2-

dimensional codes in Mn(C) achieving the optimal

DMT curve, when received with an arbitrary number

of receiving antennas m. Maximum likelihood (ML)

decoding of these codes can be performed using the

sphere decoding algorithm [7], although its complexity

is in general exponential in the lattice dimension [8, 9].

On the other hand, it has been shown that the decoding

complexity can be considerably reduced using lattice

reduction (LR) aided regularized lattice decoding, which

preserves DMT-optimality [10]. Moreover, in [11] the

authors prove that with LR-aided regularized sphere

decoding it is possible to get a vanishing gap to ML

performance with subexponential complexity.

However, when receiving a full 2n2-dimensional

space-time lattice code with minimum delay (T = n)

with m < n antennas, the dimension of the receiver

space is only 2mT = 2mn and so the image of the

infinite lattice is no longer a lattice, but a dense set

of points. Thus the standard sphere decoding algorithm

cannot be employed, although special techniques such

as generalized sphere decoding have been proposed

[12, 13]. Therefore, it is in many cases desirable to

use lattice space-time codes that are at maximum 2nm-

dimensional1. On the other hand, a less than 2nm-

dimensional lattice would be a waste of receiving signal

space and energy and is believed to lead to a suboptimal

DMT curve. Therefore a 2nm-dimensional lattice code

is the “best fit” for the n × m MIMO channel. We

refer to such a code as a well fitting asymmetric space-

time code. In this case currently the only available

general criterion for DMT-optimality is the approximate

universality criterion given in [6].

However, when n > m no asymmetric codes satis-

fying the approximate universality condition in [6] are

known except in the case m = 1. It is also known that

there are space-time codes that are DMT optimal despite

not satisfying the approximate universality criterion [14].

This motivates the search for a more general and easily

applicable DMT criterion.

In [15] the authors claimed, when translated into lat-

tice theoretic language, that any 2nm-dimensional lattice

code L ⊂Mn(C) with NVD would achieve the optimal

DMT curve with m receive antennas when n > m. This

would imply that large families of asymmetric space-

time codes are DMT optimal.

In this paper we study the DMT of asymmetric space-

time codes. We begin by reviewing some of the previous

DMT criteria and discuss why they seem to fall short

when applied to asymmetric codes. We then construct a

code that satisfies the DMT optimality criterion in [15],

but is not DMT optimal. This suggests that, unfortu-

nately, Theorem 2 in [15] is incorrect. Indeed, there are

no known DMT optimal asymmetric codes except in the

case of MISO channels.

Next, we consider the special class of asymmetric

codes based on division algebras whose center is Q.

1For example [11] assumes that the lattice code is well-fitting [11,

equation (6)], and in particular it should be 2nm-dimensional when

n > m.
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This choice seems natural since on one hand, this class

includes the Alamouti code [3], which is one of the

few DMT-optimal asymmetric space-time codes, and on

the other hand, in [4] the optimal codes were based

on division algebras. However, the difference is that in

[4] the center of the algebras was complex quadratic,

which always leads to lattice codes with full rank 2n2

in Mn(C).

All the Q-central division algebra codes have the NVD

property and several examples have appeared previously

in the literature [16, 17, 18, 19]. However, their DMT

was still unknown, apart from Alamouti type codes in

the 2× 1 channel [2].

Unlike the case of complex quadratic center, we show

that Q-central division algebras are divided into two

categories with respect to their DMT performance. This

distinction is based on the ramification of the infinite

Hasse-invariant of the division algebra, which determines

whether the corresponding lattice code can be embedded

into real or quaternionic space.

Our DMT classification holds for any multiplexing

gain, extending previous partial results in [20, 21] which

were based on the theory of Lie algebras. We note

that the approach used in this paper is quite different

and more general. In the spirit of [4] we are not just

considering division algebra codes, but all space-time

codes where the codewords are restricted to the real and

quaternionic matrices Mn(R) or Mn/2(H) respectively.

We provide DMT upper bounds for both cases, and prove

that n2-dimensional NVD lattice codes inside Mn(R)

(resp. Mn/2(H)) achieve the respective upper bounds. As

the Q-central division algebra codes are of this type, we

get their DMT as a corollary. We note that while these

codes achieve the best possible DMT for their natural

ambient spaces, they don’t achieve the general optimal

DMT, the only exception being quaternionic codes in the

2× 1 channel.

Finally we consider the DMT in multi-block channels,

where we are allowed to encode and decode over a

number of independently faded blocks. Again we find

the best possible DMT of asymmetric multi-block codes

whose elements belong either to real or quaternionic

space and prove that certain division algebra based codes

achieve this upper bound. This analysis also provides the

DMT classification of all division algebras whose center

is totally real.

Organization of the paper

Section II reviews the definition of diversity-

multiplexing gain trade-off and basic properties of ma-

trix lattices. Section III summarizes previous criteria

for DMT-optimality and provides a counterexample to

show that the NVD property is not sufficient for DMT-

optimality in the asymmetric case. Section IV establishes

DMT upper bounds for real and quaternionic space-time

codes, and shows that codes with the NVD property

achieve these upper bounds. Section V shows how to ob-

tain real and quaternionic lattices with the NVD property

from the embeddings of Q-central division algebras, and

presents a conjecture about the DMT of space-time codes

arising from the regular representations of these algebras.

Finally, Section VI extends the results of Section IV to

the multi-block case.

II. NOTATION AND PRELIMINARIES

A. Single-block channel model and DMT

Throughout the paper we will consider a MIMO

system with n transmit and m receive antennas, and

minimal delay T = n. The received signal is2

Yc =

√
ρ

n
HcX̄ +Wc, (1)

2A more general multi-block MIMO channel model will be consid-

ered in Section VI.
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where X̄ ∈ Mn(C) is the transmitted codeword, Hc ∈

Mm,n(C) and Wc ∈ Mm,n(C) are the channel and

noise matrices with i.i.d. circularly symmetric complex

Gaussian entries hij , wij ∼ NC(0, 1), and ρ is the signal-

to-noise ratio (SNR). We suppose that perfect channel

state information is available at the receiver but not at

the transmitter.

Given a matrix X ∈ Mm,n(C), let ‖X‖F =√
tr(X†X) denote its Frobenius norm.

Definition 1: A space-time block code (STBC) C for

some designated SNR level ρ is a set of n× n complex

matrices satisfying the average power constraint

1

|C|
∑
X∈C

‖X‖2F ≤ n
2. (2)

A coding scheme {C(ρ)} is a family of STBCs, one for

each SNR level. The rate for the code C(ρ) is R(ρ) =

1
T log |C(ρ)|.

We say that the coding scheme {C(ρ)} achieves the

diversity-multiplexing gain trade-off (DMT) of spatial

multiplexing gain r and diversity gain d(r) if the rate

satisfies

lim
ρ→∞

R(ρ)

log(ρ)
= r, (3)

and the average error probability is such that

Pe(ρ)
.
= ρ−d(r),

where by the dotted equality we mean f(M)
.
= g(M) if

lim
M→∞

log(f(M))

log(M)
= lim
M→∞

log(g(M))

log(M)
. (4)

Notations such as ≥̇ and ≤̇ are defined in a similar way.

With the above definitions, the main result in [2] is

the following.

Theorem 1 (Optimal DMT): Let n, m, T , {C(ρ)},

and d(r) be defined as before. Then any STBC coding

scheme {C(ρ)} has error probability lower bounded by

Pe(ρ) ≥̇ ρ−d
∗(r) (5)

or equivalently, the diversity gain

d(r) ≤ d∗(r), (6)

when the coding is limited within a block of T chan-

nel uses. The optimal diversity gain r 7→ d∗(r), also

termed the optimal DMT, is a piece-wise linear function

connecting the points (r, (n − r)(m − r)) for r =

0, 1, . . . ,min{n,m}.

B. Matrix Lattices and their coding schemes

In this section we describe how to obtain a coding

scheme that satisfies the rate condition (3) and average

energy condition (2) from a matrix lattice L ⊆Mn(C).

Definition 2: A matrix lattice L ⊂ Mn(C) has the

form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBk,

where the matrices B1, . . . , Bk are linearly independent

over R, i.e., form a lattice basis, and k is called the rank

or the dimension of the lattice.

Definition 3: If the minimum determinant of the lattice

L ⊂Mn(C) is non-zero, i.e. it satisfies

inf
0 6=X∈L

|det(X)| > 0,

we say that the lattice satisfies the non-vanishing deter-

minant (NVD) property.

Definition 4 (Spherical shaping): Given a positive real

number M and a k-dimensional lattice L ⊂Mn(C), we

define

L(M) = {X ∈ L : ‖X‖F ≤M, X 6= 0}.

The following two results are well known [22].

Lemma 1: If L is a k-dimensional lattice in Mn(C)

and L(M) is defined as above, then there exist real

constants K1,K2 > 0, that are independent of M , so

that

K1M
k ≤ |L(M)| ≤ K2M

k. (7)

Lemma 2: Let L be a k-dimensional lattice in Mn(C).

Then

s2M
k+2 ≤

∑
X∈L(M)

‖X‖2F ≤ s1M
k+2,
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where s1 and s2 are constants independent of M .

We can now give a formal definition of a family of

space-time lattice codes of finite size.

Definition 5: Given the lattice L ⊂ Mn(C), a space-

time lattice coding scheme associated with L is a col-

lection of STBCs given by

CL(ρ) = ρ−
rn
k L

(
ρ
rn
k

)
(8)

for the desired multiplexing gain r and for each ρ level.

One can see that according to Lemma 1 the coding

scheme defined this way indeed has multiplexing gain

r.

From Lemma 2 we have∑
X∈L

(
ρ
rn
k

) ρ−
2rn
k ‖X‖2F

.
= ρ−

2rn
k (ρ

rn
k )k+2 = ρrn.

On the other hand we also have that |L(ρ
rn
k )| .= ρrn

from Lemma 1. Combining the above shows that the

code CL(ρ) has the correct average power (2) from the

DMT perspective, i.e., in terms of the dotted equality.

Remark 1: We discussed the question of transforming

a lattice code into a coding scheme in detail since in

Section III-A we will prove that a certain lattice code is

not DMT optimal. It is therefore crucial that our coding

schemes are using the lattices in an asymptotically

optimal way.

III. PREVIOUS CRITERIA FOR DMT OPTIMALITY

AND FAILING OF THE NVD CONDITION

Several methods have been proposed to analyze the

DMT of a space-time code, but most of them are not

tight enough to prove DMT-optimality except for special

cases. For example, in [2] the authors analysed the DMT

of different versions of BLAST [23]. They also showed

the DMT optimality of the Alamouti code over the

2 × 1 channel by transforming the MISO channel into

two parallel channels. A similar approach was used to

prove that different diagonal space-time codes are DMT-

optimal [6]. However, this criterion can be only applied

to special classes of codes.

Using the union bound for the error probability to

evaluate the DMT [6] is a universal approach that can be

used to analyze any kind of space-time codes. However,

it consistently gets too loose when the multiplexing gain

is high [24, 21].

So far the most effective criterion to prove DMT

optimality is the NVD criterion [24, 4]. This criterion

was generalized by Tavildar and Viswanath in [6]. We

begin by shortly reviewing their approximate universality

(AU) criterion and draw some implications of their work

for the lattice based coding schemes introduced in the

previous section. We do not define AU, but do note that it

is a considerably stronger condition that implies DMT.

In particular a space-time code can be DMT optimal

despite not being approximately universal.

Theorem 2: A sequence of codes C(ρ) of rate R(ρ) is

approximately universal over the n×m MIMO channel if

and only if, for every pair of distinct codewords X, X̄ ∈

C(ρ),

λ2
1 · · ·λ2

s ≥
1

2R(ρ)+o(log ρ)
, (9)

where λ1, . . . , λs are the smallest s singular values of the

codeword difference matrix X − X̄ and s = min(m,n).

Here the notation o(log ρ) refers to a function that is

asymptotically dominated by ε log ρ for any ε > 0.

In the case m ≥ n, this condition is simply the NVD

condition of Definition 3.

Definition 6: We refer to the i-th smallest singular

value of the matrix X with λi(X) and for s ≤ n, we set

∆s(X) =

s∏
i=1

λ2
i (X).

We can now extend this definition to lattices.

Definition 7: Given a lattice L ⊂Mn(C), we define

∆s(L) := inf{∆s(X) | X ∈ L \ {0}}.

February 3, 2023 DRAFT
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The result by Tavildar and Viswanath now implies the

following.

Corollary 1: Suppose that n ≥ m, L is a 2mn-

dimensional lattice in Mn(C) and that

∆m(L) 6= 0.

Then CL(ρ) is approximately universal (and therefore

DMT optimal), when received with m antennas.

Proof: Assume without loss of generality that we

have scaled our lattice so that ∆m(L) = 1. The

finite codes we consider are of the type CL(ρ) =

ρ−
r

2mL(ρ
r

2m ). Given two codewords ρ−
r

2mX and

ρ−
r

2m X̄ in ρ−
r

2mL(ρ
r

2m ), we have

∆m

(
ρ−

r
2m

(
X − X̄

))
= ρ−r∆m(X − X̄) ≥ ρ−r.

The last inequality here follows as X − X̄ ∈ L and we

assumed that ∆m(L) = 1. On the other hand according

to equation (7) we have K1ρ
rn ≤ |CL(ρ)| ≤ K2ρ

rn for

fixed constants K1,K2 > 0 and

1

2R(CL(ρ))
≤ 1

2
1
n log(K1ρrn)

=
ρ−r

2
1
n logK1

.

Thus condition (9) is satisfied, and we conclude that

approximate universality holds as a consequence of

Theorem 2.

Remark 2: The reader should note that the approx-

imate universality criterion in Theorem 2 is actually

more general than Corollary 1 and does allow ∆m(L)

to vanish as long as ∆m(L) ≥ 1
2o(log ρ) .

Example 1: The Alamouti code together with QAM

modulation can be seen as a 4-dimensional lattice code

LAlam ⊂ M2(C). For this code ∆1(L) > 0. Therefore

the coding scheme CLAlam(ρ) is approximately universal

when received with a single antenna.

Example 2: The division algebra based codes such

as the Perfect codes [5] are 2n2-dimensional lattices in

Mn(C) and have the NVD property and are therefore

DMT optimal.

However, the conditions of Corollary 1 seem difficult

to satisfy in other cases. As a matter of fact we conjecture

the following:

Conjecture 1: The conditions of Corollary 1 can be

satisfied only when either m = n or when n = 2 and

m = 1.

A. Failing of the NVD criterion

Many codes are DMT optimal despite not satisfying

the approximate universality criterion of the previous

section. For example the diagonal number field codes

[25] and many of the fully diverse quasi-orthogonal

codes [26] are DMT optimal in the n×1 MIMO channel

[14]. Seen as lattice codes, these are 2n-dimensional

lattices in Mn(C) and have the NVD property. However,

they are not approximately universal [27].

It is a tempting idea that the NVD condition for a

2nm-dimensional lattice L ⊆ Mn(C) would be enough

for the coding scheme CL(ρ) to be DMT optimal when

received with m receiving antennas. This was suggested

in [15].

Using the normalization in [15] we can state the NVD

condition for a 2nm dimensional lattice L and scheme

ρ
1
2CL(ρ) = ρ

1
2−

r
2mL

(
ρ

r
2m

)
in the form

∆n(X) ≥ cρn(1− r
m ), (10)

for any non-zero codeword X in ρ1/2CL(ρ) and fixed

positive constant c. According to Theorem 2 in [15] this

should be a sufficient condition for achieving the optimal

DMT.

However, this is not the case and we will now build

a code for the 4 × 1 MISO channel that satisfies the

criterion (10), but is not DMT optimal in this channel.

Remark 3: One should notice that condition (10) is

considerably weaker than the condition in Corollary

1. Using the normalization of [15], the condition of

Corollary 1 can be written as follows: if a coding scheme

February 3, 2023 DRAFT
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ρ1/2CL(ρ), based on a 2mn-dimensional lattice code L,

satisfies

∆m(X) ≥ cρm(1− r
m ),

for any non-zero codeword X ∈ ρ1/2CL(ρ), any ρ and

some fixed constant c, then it is approximately universal.

Let us begin with the Golden Code LGold [28]. One

can see it as an 8-dimensional NVD lattice in M2(C).

According to (8) we can use scheme ρ
1
2−

r
4LGold(ρ

r
4 ) to

study the DMT of LGold. It was already proven in [4]

that this scheme achieves the optimal DMT curve in the

2× 2 MIMO channel.

Let’s now transform the Golden Code into an 8-

dimensional code in M4(C) by setting

diag(X,X) =

X 0

0 X

 ,

where X ∈ M2(C) and 0 is the 2 × 2 zero matrix.

The set diag(LGold) = {diag(X,X) |X ∈ LGold}

is an 8-dimensional NVD lattice code in M4(C). In

order to satisfy the energy normalization demands we

have to consider the scheme ρ
1
2−

r
2 diag(LGold)(ρ

r
2 ) =

Cdiag(LGold)(ρ).

Proposition 1: The scheme Cdiag(LGold)(ρ) is not a

DMT optimal code over the 4× 1 MISO channel.

Proof: Suppose that we transmit a codeword

diag(X,X), where

X =

x1 x2

x3 x4

 .

Given the channel vector h = [h1, h2, h3, h4] and the

noise w = [w1, w2, w3, w4], the received signal is

y = [y1, y2, y3, y4] = h · diag(X,X) + w

=[h1x1+h2x3, h1x2+h2x4, h3x1+h4x3, h3x2+h4x4]+w.

But this system is equivalent toy1 y2

y3 y4

 =

h1 h2

h3 h4

x1 x2

x3 x4

+

w1 w2

w3 w4

 .

We can see that the error performance of diag(LGold)

when received with a single antenna is exactly that of

LGold when received with two antennas. The DMT for

the coding scheme ρ
1
2−

r
4LGold(ρ

r
4 ) is is the piecewise

linear function connecting the points [r, (2− r)(2− r)+]

for integer values. However, this is not directly the

DMT for ρ
1
2−

r
2 diag(LGold)(ρ

r
2 ). This is due to the fact

that for the diagonal scheme we have T = 4 and

therefore the diversity gain achieved with multiplexing

gain r in the 4 × 1 channel corresponds to diversity

gain d(2r) in the 2 × 2 channel. We then see that

the DMT of ρ
1
2−

r
2 diag(LGold)(ρ

r
2 ) is represented by

a line connecting points [r, (2 − 2r)(2 − 2r)+], where

r = 0, 1
2 , 1. On the other hand the DMT of the 4 × 1

MISO channel is simply a straight line between [0, 4]

and [1, 0].

This result shows that for a lattice L ⊂ Mn(C) of

dimension smaller than 2n2 the NVD condition is not

enough for the code to reach the optimal DMT.

Remark 4: We point out that while our counterexample

involves coding schemes of the form (8), it generalizes

to other schemes.

IV. THE DMT OF REAL AND QUATERNION

SPACE-TIME CODES

In the previous sections we have seen that character-

izing the DMT of asymmetric codes is a difficult task.

In the rest of the paper we propose a new approach that

applies to a large class of asymmetric codes. We will

prove that if the codewords of the space-time scheme

belong to a certain restricted set of matrices, its DMT is

automatically upper bounded by a limit that is tighter

than the general DMT bound. We then show that if

the space-time code belongs to this class of codes,

has suitable degree and satisfies the NVD condition,

it achieves this restricted DMT. Later, in Section V,

we show that codes satisfying these conditions can be

February 3, 2023 DRAFT
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obtained from division algebras, and conclude that our

DMT upper bounds are tight.

The asymmetric space-time codes we are consider-

ing live in the subspaces of the 2n2-dimensional real

vector space Mn(C). The first such subspace consists

of all the real matrices inside Mn(C) and we denote it

with Mn(R). The other subspace of interest consists of

quaternionic matrices.

Let us assume that 2 | n. We denote with Mn/2(H)

the set of quaternionic matricesA −B∗

B A∗

 ∈Mn(C),

where ∗ refers to complex conjugation and A and B are

complex matrices in Mn/2(C).

The spaces Mn/2(H) and Mn(R) are n2-dimensional

real subspaces of Mn(C). It follows that if a lattice L

is a subset of either of these subspaces, its dimension is

at most n2.

A. Equivalent channel model for real lattice codes

In this section, we focus on the special case where

C(ρ) ⊂Mn(R), i.e. the code is a set of real matrices.

First, we show that the channel model (1) is equivalent

to a real channel with n transmit and 2m receive

antennas.

We can write Hc = Hr + iHi, Wc = Wr + iWi, where

Hr, Hi,Wr,Wi have i.i.d. real Gaussian entries with

variance 1/2. If Yc = Yr+iYi, with Yr, Yi ∈Mm×n(R),

we can write an equivalent real system with 2m receive

antennas:

Y =

Yr
Yi

 =

√
ρ

n

Hr

Hi

 X̄+

Wr

Wi

 =

√
ρ

n
HX̄+W,

(11)

where H ∈ M2m×n(R), W ∈ M2m×n(R) have real

i.i.d. Gaussian entries with variance 1/2.

B. General DMT upper bound for real codes

Using the equivalent real channel, we can now estab-

lish a general upper bound for the DMT of real codes.

Theorem 3: Suppose that ∀ρ, C(ρ) ⊂ Mn(R). Then

the DMT of the code C is upper bounded by the function

d1(r) connecting the points (r, [(m−r)(n−2r)]+) where

2r ∈ Z.

Proof: The proof is an adaptation of the results of

[2] to the real case, so we only provide the main steps3.

Given a rate R = r log ρ, the outage probability is

lower bounded by

Pout(R) ≥ P
{

1

2
log det(I + ρHTH) ≤ R

}
.

Let L = min(2m,n), and ∆ = |n− 2m|. Let λ1 ≥

λ2 ≥ · · · ≥ λL > 0 be the nonzero eigenvalues of HTH .

The joint probability distribution of λ = (λ1, . . . , λL) is

given by [29]4:

p(λ) = Ke
−

L∑
i=1

λi
L∏
i=1

λ
∆−1

2
i

∏
i<j

(λi − λj) (12)

for some constant K. Consider the change of variables

λi = ρ−αi ∀i. The corresponding distribution for α =

(α1, . . . , αL) in the set A = {α : α1 ≤ · · · ≤ αL} is

p(α)=K(log ρ)Le
−
L∑
i=1

ρ−αi

ρ
−
L∑
i=1

αi( ∆+1
2 )∏

i<j

(
ρ−αi−ρ−αj

)
(13)

To simplify notation, we take s = 2r. Then we have

Pout(R) ≥̇ P

{
L∏
i=1

ρ(1−αi)+

≤ ρs
}
≥ P(A0),

3A detailed proof can be found in the preprint version of this paper

at https://arxiv.org/pdf/2102.09910.
4We have slightly modified the expression to be consistent with

our notation. In [29], the author considers a matrix AAT where each

element of A is N (0, 1).
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where

A0 =

{
α ∈ A : αi ≥ 0 ∀i = 1, . . . , L,

L∑
i=1

(1− αi)+ ≤ s

}

=

{
α ∈ A : αj ≥ 0,

j∑
i=1

(1− αi) ≤ s ∀j = 1, . . . , L

}
.

(14)

Consider Sδ = {α ∈ A : |αi − αj | > δ ∀i 6= j}. Then

one can show that

Pout(R) ≥̇
∫
A0∩Sδ

ρ
−

L∑
i=1

αiNi
dα,

where Ni = 1
2 (∆ + 2L− 2i+ 1).

Lemma 3: Let f(α) =
L∑
i=1

(q + L+ 1− 2i)αi. Then

inf
α∈A0

f(α) = (−q−L+2 bsc+1)s+qL−bsc (bsc+1) = f(α∗)

where α∗1 = . . . = α∗k−1 = 0, α∗k = k−s, α∗k+1 = . . . =

α∗L = 1 for k = bsc+ 1.

The proof of Lemma 3 can be found in Appendix A.

Using Lemma 3 with q = ∆ + L, s = 2r, we find that

infα∈A0

∑L
i=1Niαi = infα∈A0

f(α)
2 is equal to

1

2
[(−∆− 2L+ 2 b2rc+1)2r + (∆ + L)L− b2rc (b2rc+1)]

= (−2m− n+ 2 b2rc+ 1)r +mn− b2rc (b2rc+ 1)

2
.

This is the piecewise function d1(r) connecting the

points (r, [(m− r)(n− 2r)]+) where 2r ∈ Z.

Using the Laplace principle, ∀δ > 0 we have

lim
ρ→∞

− logPout(R)

log ρ
≥ inf
A0∩Sδ

f(α)

2
.

Note that ∀δ, the point αδ such that αδ,i = α∗i + δi
L is

in A0 ∩ S δ
L

and when δ → 0, αδ → α∗. By continuity

of f ,

lim
δ→0

inf
A0∩Sδ

f(α)

2
=
f(α∗)

2
= d1(r).

C. DMT of real lattice codes with NVD

In this section, we show that real spherically shaped

lattice codes with the NVD property achieve the DMT

upper bound of Theorem 3. This result extends Proposi-

tion 4.2 in [21].

Theorem 4: Let L be an n2-dimensional lattice in

Mn(R), and consider the code C(ρ) = ρ−
r
nL(ρ

r
n ). If L

has the NVD property, then the DMT of the code C(ρ)

under ML decoding is the function d1(r) connecting the

points (r, [(m− r)(n− 2r)]+) where 2r ∈ Z.

Proof: Since the upper bound has already been

established in Theorem 3, we only need to prove that the

DMT is lower bounded by d1(r). The following section

follows very closely the proof in [4], and thus some

details are omitted. To simplify notation, we assume that

detmin (L) = 1.

We consider the sphere bound for the error probability

for the equivalent real channel (11): for a fixed channel

realization H ,

Pe(H) ≤ P
{
‖W‖2 > d2

H/4
}

where d2
H is the squared minimum distance in the

received constellation:

d2
H =

ρ

n
min

X̄,X̄′∈C(ρ), X̄ 6=X̄′

∥∥H(X̄ − X̄ ′)
∥∥2

=
1

n
ρ1− 2r

n min
X,X′∈L(ρ

r
n ), X 6=X′

‖H(X −X ′)‖2 .

We denote ∆X = X − X ′. Let L = min(2m,n), and

∆ = |n− 2m|. Let λ1 ≥ λ2 ≥ · · · ≥ λL > 0 be the

nonzero eigenvalues of HTH , and 0 ≤ µ1 ≤ · · · ≤ µn

the eigenvalues of ∆X∆XT . Using the mismatched

eigenvalue bound and the arithmetic-geometric inequal-

ity as in [4], for all k = 1, . . . , L

d2
H =

1

n
ρ1− 2r

n min
X,X′∈L(ρ

r
n ), X 6=X′

tr(H∆X∆XTHT )

≥ 1

n
ρ1− 2r

n

L∑
i=1

µiλi ≥
k

n
ρ1− 2r

n

(
k∏
i=1

λi

) 1
k
(

k∏
i=1

µi

) 1
k

.

For all i = 1, . . . , n, µi ≤ ‖∆X‖2 ≤ 4ρ
2r
n , and∏n

i=1 µi = det(∆X∆XT ) ≥ 1 due to the NVD
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property. Consequently, for all k = 1, . . . , L

k∏
i=1

µi =
det(∆X∆XT )∏n

i=k+1 µi
≥ 1

4n−kρ
2r(n−k)

n

.

Consider the change of variables λi = ρ−αi ∀i =

1, . . . , L. For k = 1, . . . , L we can write

d2
H ≥

k

n4
n−k
k

ρ1− 2r
n ρ
− 1
k

k∑
i=1

αi 1

ρ
2r(n−k)
nk

= ckρ
δk(α,s),

(15)

where α = (α1, . . . , αL), s = 2r, ck = k

n4
n−k
k

and

δk(α, s) = −1

k

(
k∑
i=1

αi + s− k

)
. (16)

Since 2 ‖W‖2 ∼ χ2(2mn), we have

P
{

2 ‖W‖2 > d
}

= Φ2mn(d), where

Φt(d) =

t−1∑
i=0

e−d
di

i!
. (17)

The distribution p(α) in (13) is bounded by

p(α) ≤ p′(α) = Ke
−

L∑
i=1

ρ−αi

ρ
−

L∑
i=1

αiNi
(log ρ)L (18)

where Ni = 1
2 (∆ + 2L− 2i+ 1). By averaging over the

channel, the error probability is upper bounded by

Pe ≤
∫
A
P
{

2 ‖W‖2 > d2
H

2

}
p(α)dα

≤
∫
A

Φ2mn

(
d2
H

2

)
p′(α)dα (19)

where A = {α : α1 ≤ · · · ≤ αL}.

The following Lemma closely follows [30], and it is

proven in Appendix B:

Lemma 4: Assuming that d ≥ ckρ
δk(α,s) for some

constants ck, k = 1, . . . , L, then for all t ∈ N+,

− lim
ρ→∞

1

log ρ
log

∫
A
p′(α)Φt (d) dα ≥ inf

α∈A0

L∑
i=1

Niαi,

where A0 is defined in (14).

The proof of the Theorem is concluded using Lemma

3 with q = ∆ + L, s = 2r.

r
0 1

2
1

1
2

2

3

9
2

3
2

2

8

d(r)

Fig. 1. DMT upper bounds for real (solid) and quaternion (dashed)

codes for n = 4 and m = 2. The dotted lines correspond to the

optimal DMT.

D. Equivalent channel model for quaternion lattice

codes

Suppose that n = 2p is even. We consider again the

channel

Yc =

√
ρ

n
HcX̄ +Wc, (20)

and we suppose that the codewords X̄ are of the form

X̄ =

A −B∗

B A∗

 ∈M2p(C),

where A,B ∈Mp(C).

First, we derive an equivalent model where the channel

has quaternionic form. We can write

Yc =
(
Y1 Y2

)
, Hc =

(
H1 H2

)
, Wc =

(
W1 W2

)
,

where Y1, Y2, H1, H2,W1,W2 ∈Mm×p(C). Then

Y1 =

√
ρ

n
(H1A+H2B) +W1,

Y2 =

√
ρ

n
(−H1B

∗ +H2A
∗) +W2,

and we have the equivalent “quaternionic channel”: Y1 Y2

−Y ∗
2 Y ∗

1


︸ ︷︷ ︸

Y

=

√
ρ

n

 H1 H2

−H∗
2 H∗

1


︸ ︷︷ ︸

H

A −B∗

B A∗


︸ ︷︷ ︸

X̄

+

 W1 W2

−W ∗
2 W ∗

1


︸ ︷︷ ︸

W

.
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E. General DMT upper bound for quaternion codes

Theorem 5: Suppose that ∀ρ, C(ρ) ⊂Mn/2(H). Then

the DMT of the code C is upper bounded by the function

d2(r) connecting the points (r, [(m− r)(n− 2r)]+) for

r ∈ Z.

Proof: The quaternionic channel can be written in

the complex MIMO channel form Y1

−Y ∗2

 =

√
ρ

n

 H1 H2

−H∗2 H∗1

A
B

+

 W1

−W ∗2


(21)

If r is the multiplexing gain of the original system (20),

then the multiplexing gain of this channel is 2r, since

the same number of symbols is transmitted using half

the frame length.

The proof follows once again the approach in [2].

Consider the eigenvalues λ1 = λ′1 ≥ λ2 = λ′2 ≥ · · · ≥

λp = λ′p ≥ 0 of H†H . Let L = min(m, p) the number

of pairs of nonzero eigenvalues, and ∆ = |p−m|. For

fixed H , the capacity of this channel is [31]

C(H)
.
= log det(I + ρH†H) = 2

L∑
i=1

log(1 + ρλi).

The joint eigenvalue density p(λ) = p(λ1, . . . , λL) of a

quaternion Wishart matrix is [32]5

p(λ1, . . . , λL) = K
∏
i<j

(λi − λj)4
L∏
i=1

λ2∆+1
i e

−
L∑
i=1

λi

for some constant K. With the change of variables

λi = ρ−αi ∀i = 1, . . . , L, the distribution of α =

(α1, . . . , αL) is

p(α)=K(log ρ)Le
−

L∑
i=1

ρ−αi

ρ
−2

L∑
i=1

αi(∆+1)∏
i<j

(
ρ−αi−ρ−αj

)4
The outage probability for rate R = r log ρ is given by

Pout(R)
.
= P

{
L∏
i=1

ρ(1−αi)+

<ρr

}
≥P(A0)

5The quaternion case corresponds to taking β = 4 in [32, equation

(4.5)]. Note that we modify the distribution to take into account the

fact that each entry of H has variance 1/2 per real dimension.

whereA0 =

{
α : 0 ≤ α1 ≤ . . . ≤ αL,

L∑
i=1

(1− αi)+ < r

}
.

Given δ > 0, define Sδ = {α : |αi − αj | > δ ∀i 6= j}.

Then

Pout(R) ≥̇
∫
A0∩Sδ

ρ
−

L∑
i=1

Niαi
dα

where Ni = 2(∆ + 2L−2i+ 1). Let f(α) =
∑L
i=1(q+

L− 2i+ 1). Using the Laplace principle,

lim
ρ→∞

− logPout(R)

log ρ
≥ 2 inf

A0∩Sδ
f(α) ∀δ > 0.

Using Lemma 3 with s = r, q = ∆ + L, we find that

infα∈A0
Niαi = 2f(α∗) is the piecewise linear function

d2(r) connecting the points (r, [2(p− r)(m− r)]+) =

(r, [(n− 2r)(m− r)]+) for r ∈ Z. By continuity of f ,

2 limδ→0 infA0∩Sδ f(α) = 2f(α∗) = d2(r).

F. DMT of quaternionic lattice codes with NVD

We now show that quaternionic lattice codes with

NVD achieve the upper bound of Theorem 5. This result

extends Proposition 4.3 in [21].

Theorem 6: Let L be an n2-dimensional lattice in

Mn/2(H) with the NVD property. Then the DMT of

the code C(ρ) = ρ−
r
nL(ρ

r
n ) under ML decoding is the

piecewise linear function d2(r) connecting the points

(r, [(m− r)(n− 2r)]+) for r ∈ Z.

Proof: Assume detmin (L) = 1. For a fixed realiza-

tion H , Pe(H) ≤ P
{
‖W‖2 > d2

H/4
}

, where

d2
H =

1

n
ρ1− 2r

n min
X,X′∈L(ρ

r
n ), X 6=X′

‖H(X −X ′)‖2 .

Let ∆X = X − X ′. We denote by λ1 = λ′1 ≥

λ2 = λ′2 ≥ · · · ≥ λp = λ′p ≥ 0 the eigenvalues of

H†H , and by 0 ≤ µ1 = µ′1 ≤ · · · ≤ µp = µ′p the

eigenvalues of ∆X∆X†. Both sets of eigenvalues have

multiplicity 2 since H and X are quaternion matrices.

Again we set L = min(m, p) and ∆ = |p−m|. Using

the mismatched eigenvalue bound and the arithmetic-

geometric mean inequality as in [4], for all k = 1, . . . , L,

d2
H =

1

n
ρ1− 2r

n min
X,X′∈C(ρ), X 6=X′

tr(H∆X∆X†H†)
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≥ 1

n
ρ1− 2r

n

L∑
i=1

(2µiλi) ≥
k

p
ρ1− 2r

n

(
k∏
i=1

λi

) 1
k
(

k∏
i=1

µi

) 1
k

.

For all i = 1, . . . , p, µi ≤ ‖∆X‖2 ≤ 4ρ
2r
n , and∏p

i=1 µi = det(∆X∆X†)
1
2 ≥ 1 using the NVD

property. For all k = 1, . . . , L

k∏
i=1

µi =
det(∆X∆X†)

1
2∏p

i=k+1 µi
≥ 1

4p−kρ
r(p−k)
p

.

Setting λi = ρ−αi ∀i = 1, . . . , L, we have

d2
H ≥ ckρ

1− rp ρ
− 1
k

k∑
i=1

αi
ρ−

r(p−k)
pk = ckρ

δk(α) (22)

for k = 1, . . . , L, where α = (α1, . . . , αL), δk(α, r) =

− 1
k

(
k∑
i=1

αi + r − k
)

, and ck = k

p4
p−k
k

. Since ‖W‖2 =

2 ‖W1‖2 + 2 ‖W2‖2 ∼ χ2(4mp), we have

Pe(H) ≤ P
{
‖W‖2 > d2

H

4

}
= Φ4mp

(
d2
H

4

)
,

where Φt is defined in (17). By averaging with respect

to p(α), we get

Pe ≤̇
∫
A
p′(α)Φ4mp

(
d2
H

4

)
dα

where A = {α : α1 ≤ · · · ≤ αL}, and

p′(α) = K(log ρ)Le
−

L∑
i=1

ρ−αi

ρ
−

L∑
i=1

αiNi
,

where Ni = 2(∆ + 2L − 2i + 1). From Lemma 4 we

find d(r) ≥ infα∈A0
2
∑L
i=1 αi(∆+2L−2i+1), which

by Lemma 3 is the piecewise linear function connecting

the points (r, [(n− 2r)(m− r)]+) for r ∈ Z.

V. DIVISION ALGEBRA CODES ACHIEVE THE

OPTIMAL RESTRICTED DMT IN Mn/2(H) AND

Mn(R)

Theorems 4 and 6 state that n2-dimensional NVD lat-

tices in Mn(R) and Mn/2(H) do achieve the respective

DMT upper bounds of Theorems 3 and 5. In order to

show that these bounds are tight and indeed describe the

optimal restricted DMTs, it is enough to prove the ex-

istence of n2-dimensional NVD lattice codes in Mn(R)

and Mn/2(H). For that we need some results from non-

commutative algebra. For details and definitions we refer

the reader to [33].

Let D be an index n Q-central division algebra. We

say that D is ramified at the infinite place if

D ⊗Q R 'Mn/2(H).

If it is not, then

D ⊗Q R 'Mn(R).

Let Λ be an order in an index n Q-central division

algebra D. We then have the following.

Lemma 5: [16] If the infinite prime is ramified in the

algebra D, then there exists an embedding

ψabs : D →Mn/2(H)

such that ψabs(Λ) is an n2-dimensional NVD lattice. If

D is not ramified at the infinite place, then there exists

an embedding

ψabs : D →Mn(R)

such that ψabs(Λ) is an n2-dimensional NVD lattice. For

every n there exists an index n Q-central division algebra

that is ramified at the infinite place and one which is not.

The following corollary follows from Theorems 4 and

6 and from Lemma 5. It proves that the upper bounds

in Theorems 3 and 5 are tight.

Corollary 2: For every n there exists an n2-

dimensional NVD lattice L ⊂ Mn(R) that achieves

the upper bound of Theorem 3. For every even n there

exists an n2-dimensional NVD lattice L ⊂ Mn/2(H)

that achieves the upper bound of Theorem 5.

The following corollary gives us a complete DMT

characterization of Q-central division algebra codes.

The DMT of such codes only depends on whether the

corresponding algebra is ramified at the infinite place or

not.
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Corollary 3: Let Λ be an order in an index n Q-central

division algebra D. If D is ramified at the infinite place,

then the code ψabs(Λ) ⊂ Mn/2(H) achieves the upper

bound of Theorem 5. If D is not ramified at the infinite

place, then the DMT of the code ψabs(Λ) ⊂ Mn(R)

achieves the upper bound of Theorem 3.

A. DMT of Q central division algebra codes based on

the regular representation

In the previous sections we classified the DMT of all

Q-central division algebra codes. However, this result

was proven in the case where the code lattices were

constructed using the abstract embedding of Lemma 5. In

contrast, explicit codes are typically built using regular

representations. In this section we study the DMT of

division algebra codes that are constructed by using such

representations.

Let E/Q be a cyclic field extension of degree n with

Galois group G(E/Q) = 〈σ〉. Define a cyclic algebra

D = (E/Q, σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

where u ∈ D is an auxiliary generating element subject

to the relations xu = uσ(x) for all x ∈ E and un =

γ ∈ Q∗.

Considering D as a right vector space over E, every

element x = x0 + ux1 + · · · + un−1xn−1 ∈ D has the

following left regular representation as a matrix ψreg(x):

x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)

x1 σ(x0) γσ2(xn−1) γσn−1(x2)

x2 σ(x1) σ2(x0) γσn−1(x3)
...

...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)


.

The mapping ψreg is an injective Q-algebra homo-

morphism that allows us to identify D with its image in

Mn(C).

Proposition 2: [33] If Λ is a Z-order in an index n

Q-central division algebra D, then ψreg(Λ) is an n2-

dimensional NVD lattice in Mn(C).

Example 3: Consider the following two algebras

A1 = (Q(
√

3)/Q, σ,−1) and A2 = (Q(i)/Q, σ,−1).

Let us use the notation Z[
√

3] = Z + Z
√

3 and Z[i] =

Z+ iZ. By using regular presentation ψreg, we can find

the following 4-dimensional lattice codes

L1 =


x1 −x2

x2 x1

 : x1, x2 ∈ Z[
√

3]

 ,

L2 =


x1 −x∗2
x2 x∗1

 : x1, x2 ∈ Z[i]

 .

Here L1 corresponds to the algebra A1 [17], while L2

corresponds to the algebra A2 and is the lattice of the

Alamouti code. As L1 is completely real and L2 is

quaternionic, we can read their DMTs from Theorems 4

and 6. Here the DMT of Alamouti was already known,

while the DMT of L2 is a new result.

However, in general, while the lattices of Proposition

2 have the correct dimension and the NVD property,

there is no guarantee that they are always contained in

Mn(R) or in Mn/2(H) and we can not directly apply

Theorems 4 and 6. However, the following result shows

that all the lattices produced by regular representations

are conjugated versions of lattices whose DMT we know:

Lemma 6: [20, Lemma 9.10] Let D be an index n

Q-central division algebra and Λ ⊂ D an order. If the

infinite prime is ramified in the algebra D, then there

exists an invertible matrix A ∈Mn(C) such that

Aψreg(Λ)A−1 = ψabs(Λ) ⊂Mn/2(H).

If D is not ramified at the infinite place, then there exists

an invertible matrix B ∈Mn(C) such that

Bψreg(Λ)B−1 = ψabs(Λ) ⊂Mn(R).

The following conjecture then seems to be plausible, but

its proof has eluded us.

February 3, 2023 DRAFT



14

Conjecture 2: Let D be an index n Q-central division

algebra and Λ ⊂ D an order. If D is ramified at the

infinite prime, then the DMT of ψreg(Λ) under ML

decoding is equal to the DMT upper bound of Theorem

5. If D is not ramified at the infinite prime, then the

DMT of ψreg(Λ) under ML decoding is equal to the

DMT upper bound of Theorem 3.

Example 4: Applying the regular representation to the

algebra D1 = (Q(i)/Q, σ, 3) yields the following lattice

L1 =


x1 3x∗2

x2 x∗1

 : x1, x2 ∈ Z[i]

 .

We can easily see that D1 is not ramified at the infinite

place, but on the other hand L1 *M2(R). However, our

conjecture claims that the DMT of L1 is described by

Theorem 3.

VI. MULTI-BLOCK CODES

When introducing the concept of diversity-

multiplexing trade-off in [2] the authors mostly

focused on one shot quasi-static channels. However,

they also considered a channel model where it is

possible to decode and encode over a fixed number of

independent faded blocks and found the corresponding

optimal DMT curve.

In this section we consider such multi-block channels

Y (l)
c =

√
ρ

n
H(l)
c X̄(l) +W (l)

c , l = 1, . . . , k, (23)

where H
(l)
c ,W

(l)
c ∈ Mm,n(C) are the channel and

noise matrices with i.i.d. circularly symmetric complex

Gaussian entries in NC(0, 1). The set of multi-block

codewords X = [X(1), . . . , X(k)] should satisfy the

global power constraint

1

kn2

1

|C|
∑
X∈C

k∑
l=1

∥∥X(l)
∥∥2

F
≤ 1. (24)

A multi-block matrix lattice L ⊆ Mn×nk(C) has the

form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBd,

where the matrices B1, . . . , Bd ∈ Mn×nk(C) are lin-

early independent over R, and d ≤ 2n2k is the dimen-

sion of the lattice.

We then have a natural extension for the NVD condi-

tion. First we define

pdet(X) =

k∏
i=1

det(Xi).

Definition 8: Given a multi-block lattice L ⊆

Mn×nk(C), we say that the lattice satisfies the non-

vanishing determinant (NVD) property if

inf
X∈L\{0}

|pdet(X)| > 0.

Given a multi-block lattice L ⊆Mn×nk(C) of dimen-

sion d, we consider spherically shaped multi-block codes

of the form

C(ρ) = ρ−
rnk
d L(ρ

rnk
d ). (25)

Note that such a code will satisfy the power constraint

(24), and its multiplexing gain is r.

A general DMT upper bound for multi-block codes

C ⊂ Mn(C)k was given in [2, Section V]. In [34] it

was proven that 2n2k-dimensional lattice multi-block

codes with the NVD property achieve this DMT upper

bound, extending the result of [4] to the multi-block case.

However, as in the case of the single block channel,

the DMT of asymmetric multi-block codes is mostly

unknown.

We will now consider multi-block codes that are

subsets of Mn×n(R)k or Mn/2(H)k, and show that if

the codewords of a space-time code belong to either

of these spaces, its DMT is limited by a bound that

is tighter than the general DMT bound and depends

on the ambient space. We then show that if a space-

time lattice code belongs to Mn(R)k or Mn/2(H)k,

has degree n2k and satisfies the NVD condition, it

achieves the corresponding restricted DMT. Furthermore,

we prove that division algebra based codes do achieve

these restricted DMT limits for every k and n.
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Let us now assume we have a degree k number field

K with signature (r1, r2), and an index n K-central

division algebra D. We then have that

D⊗QR ∼= Mn/2(H)ω×Mn(R)r1−ω×Mn(C)2r2 , (26)

where ω ≤ r1 is an integer depending on the structure

of the algebra D. We call the triplet (ω, r1 − ω, r2)

the signature of the algebra D. We note that this result

is an extension of Lemma 6. The signature of Q is

(1, 0). Hence any Q-central division algebra has signa-

ture (ω, 1 − ω, 0). When ω = 1 the algebra is ramified

at the infinite prime and when ω = 0 it is not.

Proposition 3: [16] Let D be a K-central division

algebra with signature (ω, r1 − ω, r2) of index n and

Λ an order in D. Then ψabs(Λ) is a kn2 dimensional

lattice in Mn/2(H)ω ×Mn(R)r1−ω ×Mn(C)2r2 and

detmin (ψabs(Λ)) = 1.

Lemma 7: For any integer n and triplet (ω, r1−ω, r2)

there exist a number field K and a K-central index n

division algebra D with signature (ω, r1 − ω, r2).

In particular, according to Proposition 3, for any n

(respectively for any even n) and for any k, there

exists a kn2-dimensional multi-block code with NVD

in Mn(R)k (respectively in Mn/2(H)k).

A. Real multi-block codes

We have the following multi-block extensions of The-

orems 3 and 4:

Theorem 7: Suppose that ∀ρ, C(ρ) ⊂ Mn(R)k.

Then the DMT of the code C is upper bounded by

kd1(r), where d1(r) is the function connecting the points

(r, [(m− r)(n− 2r)]+) for 2r ∈ Z.

Theorem 8: Let L be an n2k-dimensional lattice

in Mn(R)k, and consider the spherically shaped code

C(ρ) = ρ−
r
nL(ρ

r
n ). If L has the NVD property, then

the DMT of the code C(ρ) under ML decoding is the

function kd1(r).

The proof of Theorems 7 and 8 can be found in

Appendix C.

We then have the following corollary that follows

directly from Theorem 8 and Lemma 7.

Corollary 4: For every n and k there exists a kn2-

dimensional NVD lattice L ⊂ Mn(R)k that achieves

the DMT of Theorem 7.

B. Quaternion multi-block codes

Similarly, we can extend Theorems 5 and 6 to the

multi-block case:

Theorem 9: Suppose that ∀ρ, C(ρ) ⊂ Mn/2(H)k.

Then the DMT of the code C is upper bounded by

kd2(r), where d2(r) is the function connecting the points

(r, [(m− r)(n− 2r)]+) for r ∈ Z.

Theorem 10: Let L be an n2k-dimensional lattice in

Mn/2(H)k, and consider the spherically shaped code

C(ρ) = ρ−
r
nL(ρ

r
n ). If L has the NVD property, then

the DMT of the code C(ρ) under ML decoding is the

function kd2(r).

The proof of these Theorems can be found in Ap-

pendix D.

According to Lemma 7 we now have the following.

Corollary 5: For every even n and any k there exists

a kn2-dimensional NVD lattice L ⊂ Mn/2(H)k that

achieves the DMT of Theorem 9.
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APPENDIX

A. Proof of Lemma 3

Let d̄(s) = (−q−L+2 bsc+1)s+qL−bsc (bsc+1).

Without loss of generality, we can suppose that k− 1 ≤

s < k for some k ∈ N, i.e. k − 1 = bsc, k = bsc+ 1.

First, we show that ∀α ∈ A0, we have f(α) ≥ d̄(s). In

fact

f(α) = (q − L− 1)

L∑
i=1

αi + 2

L∑
i=1

(L− i+ 1)αi

= (q − L− 1)

L∑
i=1

αi + 2

L∑
i=1

i∑
j=1

αj

≥ (q − L− 1) (L− s) + 2

L∑
i=k

i∑
j=1

αj

≥ (q − L− 1) (L− s) + 2

L∑
i=k

(i− s)

= (q −L− 1) (L−s)+L(L+ 1)−(k − 1)k − 2(L− k + 1)s

= d̄(s).

Next, we show that ∃α∗ such that f(α∗) = d̄(s).

Let α∗1 = . . . = α∗k−1 = 0, α∗k = k − s, α∗k+1 = . . . =

α∗L = 1. Then

f(α∗) =

L∑
i=1

(q + L+ 1)αi − 2

L∑
i=1

iαi

= (q + L+ 1) (L− s)− 2k(k − s)− 2

L∑
i=k+1

i

= (q + L+ 1) (L− s)− 2k(k − s)− L(L+ 1) + k(k + 1)

= d̄(s)

B. Proof of Lemma 4

The proof closely follows [30], which is a preliminary

version of [4]. Note that Φt (d) ≤ 1 since it is a

probability. Given ε > 0, we can bound the integral (19)

as follows:∫
A
p′(α)Φt (d) dα

≤
∫
Ā
p′(α)Φt (d) dα +

L∑
j=1

∫
Aj
p′(α)Φt (d) dα,

(27)

where Ā = {α ∈ A : αi ≥ −ε ∀i = 1, . . . , L} and

Aj = {α ∈ A : αj < −ε}. Note that∫
Aj
p′(α)Φt (d) dα ≤

∫
Aj
p′(α)dα

≤̇

∏
i 6=j

∫ ∞
−∞

e−ρ
−αi

ρ−αiNidαi

∫ −ε
−∞

e−ρ
−αj

ρ−αjNjdαj

=

∏
i 6=j

∫ ∞
0

e−λiλNi−1
i

log ρ
dλi

∫ ∞
ρε

λ
Nj−1
j e−λj

log ρ
dλj

.
= ρ0

∫ ∞
ρε

λ
Nj−1
j e−λj

log ρ
dλj

which vanishes exponentially fast as a function of ρ. For

the first term in (27), we have∫
Ā
p′(α)Φt (d) dα

≤
∫

α>−ε
δ(α,s)<ε

p′(α)Φt (d) dα +

L∑
j=1

∫
α>−ε,

δj(α,s)≥ε

p′(α)Φt (d) dα,

where the notation α > −ε means αi > −ε ∀i =

1, . . . , L, and δ(α, s) = (δ1(α, s), . . . , δL(α, s)). Since

Φt(d) is a decreasing function of d, using the assumption

that d ≥ cjρδj(α,s) ∀j = 1, . . . , L, (15) we can write∫
α>−ε,

δj(α,s)≥ε

p′(α)Φt (d) dα ≤̇
∫

α>−ε,
δj(α,s)≥ε

p′(α)Φt

(
cjρ

δj(α,s)
)
dα

≤̇

 L∏
i=j+1

∫
αi>−ε

ρ−αiNidαi


·

∫
α1,...,αj>−ε
δj(α,s)≥ε

e−cjρ
δj(α,s)

t−1∑
τ=0

(
cjρ

δj(α,s)
)τ 1

τ !
ρ
−

j∑
i=1

αiNi
j∏
i=1

dαi

since δj(α, s) is independent of αi for i > j. As

δj(α, s) ≥ ε, αi > −ε, the second integral is over a
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bounded region and tends to zero exponentially fast as

a function of ρ, while the first integral has a finite SNR

exponent. Thus, the previous expression tends to zero

exponentially fast.

Finally, the SNR exponent of (19) is determined by the

behavior of∫
α>−ε

δ(α,s)<ε

p′(α)Φt (d) dα ≤
∫

α>−ε
δ(α,s)<ε

p′(α)dα

≤̇
∫

α>−ε
δ(α,s)<ε

ρ
−

n∑
i=1

Niαi
dα.

The conclusion follows by using the Laplace principle,

and taking ε→ 0. Note that

A0 =

{
α ∈ A : αj ≥ 0,

j∑
i=1

(1− αi) ≤ s ∀j = 1, . . . , L

}

= {α : αj ≥ 0, δj(α, s) ≤ 0 ∀j = 1, . . . , L}.

C. Proof of Theorems 7 and 8 (DMT of real multi-block

codes)

Consider a multi-block lattice L ⊂ Mn(R)k of di-

mension d = n2k, and a multi-block code C(ρ) =

ρ−
r
nL(ρ

r
n ). Every codeword is of the form X =

[X(1), . . . , X(k)].

Similarly to the single-block case, for all l = 1, . . . , k

we can write

Y (l)
c = Y (l)

r +iY
(l)
i , H(l)

c = H(l)
r +iH

(l)
i , W (l)

c = W (l)
r +iW

(l)
i

and obtain the equivalent real channel with 2m receive

antennas:

Y (l)
c =

Y (l)
r

Y
(l)
i

 =

√
ρ

n

H(l)
r

H
(l)
i

X(l) +

W (l)
r

W
(l)
i


= H(l)X(l) +W (l),

where H(l) ∈M2m×n(R), W (l) ∈M2m×n(R) have real

i.i.d. Gaussian entries with variance 1/2.

1) Proof of Theorem 7: We can write the outage

probability as

Pout(R) = P

{
1

k

(
1

2

k∑
l=1

log det(I + ρ(H(l))TH(l))

)
≤ R

}
.

Define L = min(2m,n), ∆ = |n− 2m|, and let

λ
(l)
1 ≥ · · · ≥ λ

(l)
L , l = 1, . . . , k

the ordered nonzero eigenvalues of (H(l))TH(l). Their

distribution is

p(λ
(l)
1 , . . . , λ

(l)
L ) = K

L∏
i=1

(λ
(l)
i )

∆−1
2 e
−

L∑
i=1

λ
(l)
i
∏
i<j

∣∣∣λ(l)
i − λ

(l)
j

∣∣∣
for l = 1, . . . , k. Thus, we can write the outage

probability as

Pout(R) = P

{
k∏
l=1

L∏
i=1

(1 + ρλ
(l)
i )1/2 ≤ ρrk

}
.

Consider the change of variables λ(l)
i = ρ−α

(l)
i ∀l =

1, . . . , k, and let

A =
{
α ∈ RkL : 0 ≤ α(l)

1 ≤ · · · ≤ α
(l)
L ∀l = 1, . . . , k

}
Then

p(α)
.
=ρ
−

k∑
l=1

L∑
i=1

∆+1
2 α

(l)
i
e
−

k∑
l=1

L∑
i=1

ρ−α
(l)
i

k∏
l=1

∏
i<j

∣∣∣ρ−α(l)
i −ρ−α

(l)
j

∣∣∣ .
(28)

Recalling that 1 + ρ1−x ≤̇ ρ(1−x)+

, we have

Pout(R) = P

{
k∏
l=1

L∏
i=1

(1 + ρ1−α(l)
i )1/2 ≤ ρrk

}
≥ P(A0),

where

A0 =

{
α ∈ A :

1

2

k∑
l=1

L∑
i=1

(1− α(l)
i )+ ≤ rk

}

=

α ∈ A : ∀j ≤ L, 1

2

k∑
j=1

jl∑
i=1

(1− α(l)
i ) ≤ rk

 .

In the previous expression, given j = (j1, . . . , jk), the

notation j ≤ L means jl ≤ L for all l = 1, . . . , k.

Given δ > 0, let

Sδ =
{
α ∈ A : ∀i 6= j,

∣∣∣α(l)
i − α

(l)
j

∣∣∣ > δ ∀l = 1, . . . , k
}
.
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Then

Pout(R) ≥̇
∫
A0∩Sδ

p(α)dα

.
=

∫
A0∩Sδ

ρ
−

k∑
l=1

L∑
i=1

α
(l)
i

∆+1
2
e
−

k∑
l=1

L∑
i=1

ρ−α
(l)
i

·
k∏
l=1

∏
1≤i<j≤L

∣∣∣ρ−α(l)
i − ρ−α

(l)
j

∣∣∣ dα
≥̇
∫
A0∩Sδ

ρ
− 1

2

k∑
l=1

L∑
i=1

(∆+2L−2i+1)α
(l)
i
dα.

To find the DMT upper bound, we need an extension of

Lemma 3 to the multi-block case:

Lemma 8: Let F (α) =
∑k
l=1

∑L
i=1(q+L−2i+1)α

(l)
i .

Then

inf
α∈A0

F (α)

= k [(−q − L+ 2 bsc+ 1)s+ qL− bsc (bsc+ 1)] = kd̄(s).

Proof of Lemma 8: If ∀l = 1, . . . , k we have

ᾱ
(l)
1 = · · · = ᾱ

(l)
bsc = 0,

ᾱ
(l)
bsc+1 = 1 + bsc − s,

ᾱ
(l)
bsc+2 = · · · = ᾱ

(l)
L = 1

then ᾱ ∈ A0 and

F (ᾱ) = k [(−q − L+ 2 bsc+ 1)s+ qL− bsc (bsc+ 1)] .

We want to show that this value is the minimum of the

function F over A0. For α ∈ A0 we have the following

global constraints: ∀j ≤ L,
k∑
l=1

j∑
i=1

α
(l)
i ≥ k(j − s). (29)

Recalling that
L∑
i=1

i∑
j=1

αj =
L∑
i=1

(L − i + 1)αi, we can

write

F (α) = (q − L− 1)

k∑
l=1

L∑
i=1

α
(l)
i + 2

k∑
l=1

L∑
i=1

(L− i+ 1)α
(l)
i

= (q − L− 1)

k∑
l=1

L∑
i=1

α
(l)
i + 2

k∑
l=1

L∑
i=1

i∑
j=1

α
(l)
j

≥ k(q − L− 1)(L− s) + 2

L∑
i=1

k(i− s) = kd̄(s),

where the final step in the proof is the same as in Lemma

3.

Using Lemma 8 with q = ∆ + L, s = 2r, we find that

the DMT upper bound infα∈A0

F (α)
2 = kd1(r). This

concludes the proof of Theorem 7.

2) Proof of Theorem 8: The proof for the lower

bound is similar to the proof of Theorem 2 in [34],

but we include it for completeness6. Letting H =

diag(H(1), . . . ,H(k)) and W = [W (1), . . . ,W (k)] the

multi-block channel matrix and noise for the equivalent

real channel, we have the sphere bound Pe(H) ≤

P{‖W‖2 > d2
H/4}, where

d2
H =

ρ

n
min

X,X′∈C(ρ)
X 6=X′

k∑
l=1

∥∥∥H(l)(X(l) −X ′(l))
∥∥∥2

≥ 1

n
ρ1− 2r

n

k∑
l=1

L∑
i=1

λ
(l)
i µ

(l)
i ,

where 0 ≤ µ(l)
1 ≤ · · · ≤ µ

(l)
n are the ordered eigenvalues

of ∆X(l)(∆X(l))T with ∆X = X −X ′.

For any j = (j1, . . . , jk) with J =
∑k
l=1 jl ≥ 1, we

have

d2
H ≥

1

n
ρ1− 2r

n

k∑
l=1

jl∑
i=1

λ
(l)
i µ

(l)
i

≥ 1

n
ρ1− 2r

n
J

n

(
k∏
l=1

jl∏
i=1

λ
(l)
i µ

(l)
i

) 1
J

.

Note that ∀i = 1, . . . , L, ∀l = 1, . . . , k, µ(l)
i ≤ 4ρ

2r
n ,

and

k∏
l=1

jl∏
i=1

µ
(l)
i =

det(∆X∆XT )∏k
l=1

∏n
i=jl+1 µ

(l)
i

≥ 1

4kn−Jρ(kn−J) 2r
n

.

Therefore ∀j 6= 0, d2
H ≥ cjρδj(α,2r), where

δj(α, s) = − 1∑k
l=1 jl

k∑
l=1

(
jl∑
i=1

α
(l)
i + s− jl

)
,

6Note that compared to [34], we deal separately with the eigenvalues

in each block instead of re-ordering them. The two approaches are

equivalent.
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and cj is a suitable constant. The proof proceeds sim-

ilarly to Section IV-C. The distribution p(α) in (28) is

upper bounded as

p(α) ≤̇ p′(α) = e
−

k∑
l=1

L∑
i=1

ρ−α
(l)
i

ρ
−

k∑
l=1

L∑
i=1

α
(l)
i Ni

where Ni = 1
2 (∆ + 2L − 2i + 1). Since 2 ‖W‖2 ∼

χ2(2mnk), we have P
{
‖W‖2 > d2

H

4

}
= Φ2mnk

(
d2
H

2

)
,

where Φt is defined in (17). So ∀j 6= 0,

Pe ≤
∫

P
{
‖W‖2 > d2

H

4

}
p(α)dα

≤
∫
A
p′(α)Φ2mnk

(
d2
H

2

)
dα.

To conclude the proof, we need an extension of Lemma

4 to the multi-block case. As before, for a vector j =

(j1, . . . , jk), we use the notation j ≤ L to mean that

jl ≤ L for all l = 1, . . . , k.

Lemma 9: Assuming that d ≥ cjρδj(α,s) ∀j 6= 0 , then

∀t ∈ N+,

− lim
ρ→∞

1

log ρ
log

∫
A
p′(α)Φ (d) dα ≥ inf

α∈A0

k∑
l=1

L∑
i=1

Niα
(l)
i ,

whereA0 =

{
α ∈ A : ∀j ≤ L,

k∑
l=1

jl∑
i=1

(1− α(l)
i ) ≤ sk

}
.

Proof of Lemma 9: The proof is very similar to the

proof of Lemma 4. We include a sketch for convenience.

Note that Φt

(
d2
H

4

)
≤ 1 since it is a probability. If we

define

Ā =
{
α ∈ A : α

(l)
i ≥ −ε ∀i = 1, . . . , L, ∀k = 1, . . . , l

}
,

A(l)
i =

{
α ∈ A : α

(l)
i < −ε

}
,

then we have the bound

Pe ≤
∫
Ā
p′(α)Φt (d) dα+

k∑
l=1

L∑
i=1

∫
A(l)
i

p′(α)Φt (d) dα

(30)

With the change of variables λ
(l)
i = ρ−α

(l)
i ∀l =

1, . . . , k, ∀i = 1, . . . , L, we have∫
A(l)
i

p′(α)Φt (d) dα ≤
∫
A(l)
i

p′(α)dα

≤̇
∫ −ε
−∞

e−ρ
−α(l)

i ρ−α
(l)
i Nidα

(l)
i

∏
(̄i,l̄) 6=(i,l)

∫ ∞
−∞

e−ρ
−α(l̄)

ī ρ−α
(l̄)

ī
Nīdα

(l̄)

ī

=

∫ ∞
ρε

e−λ
(l)
i (λ

(l)
i )Ni−1

log ρ
dλ

(l)
i

∏
(̄i,l̄)6=(i,l)

∫ ∞
0

e−λ
(l̄)

ī (λ
(l̄)

ī
)Nī−1

log ρ
dλ

(l̄)

ī

.
=

∫ ∞
ρε

e−λ
(l)
i (λ

(l)
i )Ni−1

log ρ
dλ

(l)
i

which vanishes exponentially as a function of ρ. The first

term in (30) is bounded by∫
Ā

p′(α)Φt (d) dα

≤
∫

α>−ε,
δj′ (α,s)<ε ∀j

′

p′(α)Φt (d) dα +

∫
α>−ε,

δj′ (α,s)≥ε ∀j
′

p′(α)Φt (d) dα.

(31)

Since Φt is decreasing, and using the assumption that

d ≥ cjρδj(α,s) ∀j 6= 0, we have∫
α>−ε,

δj′ (α,s)≥ε ∀j
′

p′(α)Φt (d) dα

≤
∫

α>−ε,
δj′ (α,s)≥ε ∀j

′

p′(α)Φt

(
cjρ

δj(α,s)
)
dα

≤̇
∫

α>−ε,
δj′ (α,s)≥ε ∀j

′

Φt

(
cjρ

δj(α,s)
) k∏
l=1

L∏
i=1

ρ−α
(l)
i Nidα

≤̇

(
k∏
l=1

∏
i>jl

∫
α

(l)
i >−ε

ρ−α
(l)
i Nidα

(l)
i

)

·
∫

α
(l)
i >−ε ∀i<jl
δj′ (α,s)≥ε

Φt

(
cjρ

δj(α,s)
)
ρ
−

k∑
l=1

jl∑
i=1

Ni
k∏
l=1

jl∏
i=1

dα
(l)
i

since δj′(α, s) is independent of α(l)
i ∀i > j′l . The first

integral has a finite SNR exponent, while the second is

over a bounded region, and so it tends to 0 exponentially

as a function of ρ. Thus, the product also tends to zero
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exponentially.

To conclude, observe that the first term in (31) is upper

bounded by∫
α>−ε,

δj′ (α,s)<ε ∀j
′

p′(α)dα ≤̇
∫

α>−ε,
δj′ (α,s)<ε ∀j

′

ρ
−

k∑
l=1

L∑
i=1

α
(l)
i Ni

dα.

The statement follows by using the Laplace principle and

taking ε→ 0.

To conclude the proof of Theorem 8, we use Lemma 8

with q = ∆ + L, s = 2r.

D. Proof of Theorems 9 and 10 (DMT of quaternion

multi-block codes)

Suppose n = 2p is even. Consider a multi-block lattice

L ⊂ Mn/2(H)k of dimension d = n2k, and a multi-

block code C(ρ) = ρ−
r
nL(ρ

r
n ). Every codeword is of

the form X = [X(1), . . . , X(k)] ∈ C(ρ).

Referring back to the channel model (23), for all l =

1, . . . , k we can write

Y (l)
c =

(
Y

(l)
1 Y

(l)
2

)
,

H(l)
c =

(
H

(l)
1 H

(l)
2

)
,

W (l)
c =

(
W

(l)
1 W

(l)
2

)
,

where Y
(l)
1 , Y

(l)
2 , H

(l)
1 , H

(l)
2 ,W

(l)
1 ,W

(l)
2 ∈ Mm×p(C),

and we have the equivalent quaternionic channel

Y (l) =

√
ρ

n
H(l)X(l) +W (l),

where

Y (l) =

 Y
(l)
1 Y

(l)
2

−(Y
(l)
2 )∗ (Y

(l)
1 )∗

 ,

H(l) =

 H
(l)
1 H

(l)
2

−(H
(l)
2 )∗ (H

(l)
1 )∗

 ,

X(l) =

A(l) −(B(l))∗

B(l) (A(l))∗

 ,

W (l) =

 W
(l)
1 W

(l)
2

−(W
(l)
2 )∗ (W

(l)
1 )∗

 .

1) Proof of Theorem 9: We can write the outage

probability as

Pout(R) = P

{
1

k

(
k∑
l=1

log det(I + ρ(H(l))†H(l))

)
≤ 2R

}
.

Define L = min(m, p), ∆ = |p−m|, and let λ(l)
1 ≥

· · · ≥ λ(l)
L , l = 1, . . . , k the ordered nonzero eigenval-

ues of (H(l))†H(l) with distribution

p(λ
(l)
1 , . . . , λ

(l)
L )

= K

L∏
i=1

(λ
(l)
i )2∆+1e−

∑L
i=1 λ

(l)
i

∏
i<j

(
λ

(l)
i − λ

(l)
j

)4

.

Let λ(l)
i = ρ−α

(l)
i ∀l = 1, . . . , k, and

A =
{
α ∈ Rk : 0 ≤ α(l)

1 ≤ · · · ≤ α
(l)
L ∀l = 1, . . . , k

}
.

Then p(α) can be written as

ρ
−2

k∑
l=1

L∑
i=1

(∆+1)α
(l)
i
e
−

k∑
l=1

L∑
i=1

ρ−α
(l)
i

k∏
l=1

∏
i<j

(
ρ−α

(l)
i −ρ−α

(l)
j

)4

.

We have

Pout(R) = P

{
k∏
l=1

L∏
i=1

(1 + ρ1−α(l)
i ) ≤ ρrk

}
≥ P(A0),

where

A0 =

{
α ∈ A :

k∑
l=1

L∑
i=1

(1− α(l)
i )+ ≤ rk

}

=

{
α ∈ A : ∀j ≤ L,

k∑
l=1

jl∑
i=1

(1− α(l)
i ) ≤ rk

}
.

Given δ > 0, and letting

Sδ =
{
α ∈ A : ∀i 6= j,

∣∣∣α(l)
i − α

(l)
j

∣∣∣ > δ ∀l = 1, . . . , k
}
,

we find that Pout(R) is lower bounded by∫
A0∩Sδ

ρ
−2

k∑
l=1

L∑
i=1

α
(l)
i (∆+1)

e
−

k∑
l=1

L∑
i=1

ρ−α
(l)
i

k∏
l=1

∏
i<j

(
ρ−α

(l)
i−ρ−α

(l)
j

)4

dα

≥̇
∫

A0∩Sδ

ρ
−2

k∑
l=1

L∑
i=1

(∆+2L−2i+1)α
(l)
i
dα.

Using Lemma 8 with q = ∆ + L, s = r, we find that

the DMT upper bound is 2 infα∈A0 F (α) = kd2(r).
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2) Proof of Theorem 10: We only highlight the main

steps of the proof. Let H = diag(H(1), . . . ,H(k))

and W = [W (1), . . . ,W (k)] the multi-block quaternion

channel matrix and noise. We have

d2
H =

ρ

n
min

X,X′∈C(ρ)
X 6=X′

k∑
l=1

∥∥∥H(l)(X(l) −X ′(l))
∥∥∥2

≥ 1

p
ρ1− 2r

n

k∑
l=1

L∑
i=1

λ
(l)
i µ

(l)
i ,

where 0 ≤ µ
(l)
1 = µ

(l)
1

′
≤ · · · ≤ µ

(l)
p = µ

(l)
p

′
are the

ordered eigenvalues of ∆X(l)(∆X(l))† with ∆X = X−

X ′.

For any j = (j1, . . . , jk) with J =
∑k
l=1 jl ≥ 1,

d2
H ≥

J

p
ρ1− 2r

n

(
k∏
l=1

jl∏
i=1

λ
(l)
i µ

(l)
i

) 1
J

.

Note that ∀i = 1, . . . , p, ∀l = 1, . . . , k, µ(l)
i ≤̇ ρ

2r
n , and

k∏
l=1

jl∏
i=1

µ
(l)
i =

det(∆X∆X†)
1
2∏k

l=1

∏p
i=jl+1 µ

(l)
i

≥ 1

4kp−Jρ(kp−J) rp
.

Therefore ∀j 6= 0, d2
H ≥ cjρδj(α,r), where

δj(α, r) = − 1∑k
l=1 jl

k∑
l=1

(
jl∑
i=1

α
(l)
i + r − jl

)
,

and cj is a suitable constant. The distribution p(α) in

(28) is upper bounded by

p(α) ≤̇ p′(α) = e
−

k∑
l=1

L∑
i=1

ρ−α
(l)
i

ρ
−

k∑
l=1

L∑
i=1

α
(l)
i Ni

where Ni = 2(∆ + 2L − 2i + 1). Since ‖W‖2 ∼

χ2(4mpk), we have

Pe ≤
∫

P
{
‖W‖2 > d2

H

4

}
p(α)dα

≤
∫
A
p′(α)Φ4mpk

(
d2
H

4

)
dα.

To conclude the proof, we use Lemma 9 and Lemma 8

with q = ∆ + L, s = r.
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