
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Medical Software Needs Calm Compliance

© 2022, IEEE

Accepted version (Final draft)

Granlund, Tuomas; Stirbu, Vlad; Mikkonen, Tommi

Granlund, T., Stirbu, V., & Mikkonen, T. (2022). Medical Software Needs Calm Compliance. IEEE
Software, 39(1), 19-28. https://doi.org/10.1109/ms.2021.3117292

2022



1

Medical Software Needs Calm Compliance
Tuomas Granlund, Vlad Stirbu, and Tommi Mikkonen

Abstract—Traditionally, compliance activities in association with medical software have been considered document-oriented. However,
with automated workflows it is possible to pinpoint the decisions that are taken, and document them so that comprehensive
documentation can be generated as needed. Accomplishing this will embed compliance in the fabric of the development activities of a
company to the extent that very few people in the organization are thinking about compliance besides the designated regulatory
compliance professionals. In this article, we present such calm compliance, where compliance activities are carried out in a
non-invasive fashion, without the concerns over delayed bug fixing, extended turnover time, stress, and drop in productivity that are
commonly associated with them. The paper is based on several years of hands-on engineering of standalone software medical devices
in industry, covering both in-house development as well as a subcontracting role.

Index Terms—Regulated software, compliance, agile development, change management, calm computing, calm compliance

F

1 INTRODUCTION

THE promise of calm computing [14], a concept introduced
by Mark Weiser over 20 years ago, has been mostly

realised today. For instance, as an end user, you expect
to interact during your daily routine with a multitude
of sophisticated services and applications, without being
aware of their technical implementation. All you need is
a smartphone and an always-on internet connection.

However, application providers and software developers
perceive the calm technology reality differently than end-
users. They need a deep understanding of the specialized
hardware and software used to deliver their applications.
In addition, the involvement of other stakeholders can
add complexity to the software development process. In
the medical devices industry, in particular, that is subject
to comprehensive compliance requirements, the regulatory
authorities aim to ensure that the technology produced by
the developers is fit for purpose and safe for end-users.
Furthermore, there is a considerable disconnect between
the medical domain, where empirical data is crucial, and
software engineering, where evidence-based attitude is less
common [8].

In this article, we introduce calm compliance, where com-
pliance activities are carried out in a calm fashion, without
the hassle that is commonly associated with them. Calm
compliance – or low-ceremony compliance, which we also
considered as the name – is the end result of applying agile,
continuous software development activities in a regulated
domain. The required regulatory activities are fed into the
process in a way that does not lead to the big-bang type
of integration, and, like with end-user applications, the
software is used to carry out the tedious, time consuming,
and humanly error-prone tasks in the process.

• T. Granlund is with Solita, Tampere, Finland.
E-mail: tuomas.granlund@solita.fi

• Vlad Stirbu is with CompliancePal, Tampere, Finland. E-mail:
vlad.stirbu@compliancepal.eu

• Tommi Mikkonen is with University of Helsinki, Helsinki, Finland. E-
mail: tommi.mikkonen@helsinki.fi

Manuscript received April 19, 2005; revised August 26, 2015.

To make calm compliance concrete, we use Software
as Medical Device (SaMD) definitions [5] to observe how
agile development methodologies can be augmented with
regulatory activities required by the Federal Food, Drug,
and Cosmetic Act (FD&C Act [10]) and forthcoming Medical
Devices Regulation (MDR [2]). The viewpoint we assume is
that of the developer, building on the applicable standards
(see sidebar). To simplify, we leave other, possibly related
compliance requirements outside the scope of the article,
apart from possible inspiration we can take from them. The
article is based on several years of experience in engineering
standalone software medical devices in industry, covering
both in-house development and consulting roles.

2 SOFTWARE AS MEDICAL DEVICE

Medical device software development has unique needs.
Its design, development, and manufacturing processes are
regulated. Hence, there must be proper control mechanisms
in place to ensure the end product’s safety, reliability, and
ability to meet user requirements. These control mechanisms
originate from the regulations’ requirements, corresponding
guidance documents, international standards, and national
legislation. However, their plentiful existence is one of the
reasons medical software is often considered a complex
domain.

Plan-driven methodologies have been the preferred way
to develop products in regulated industries. Their cultural
affinity with the language and format used by standards
referred to above have made them the natural choice.
However, the long feedback loops that characterize these
methodologies are even longer in the high ceremony process
required to comply with regulations.

The applicability and rigor of the medical device reg-
ulatory requirements are based on the risk level of the
product. It is not enough to have just a compliant end-
product as the regulatory framework affects the operations
of the entire manufacturing organization. The design and
development of the device are done within a formal process
that is part of a robust quality management system. The



2

SIDEBAR: THE REGULATORY LANDSCAPE IN
THE MEDICAL DOMAIN.
The medical domain’s regulatory landscape can be
interpreted to consist of several layers (Figure 1). For
every phase within the product lifecycle – design, de-
velopment, manufacturing, risk management, mainte-
nance, and post-market processes – certain standards
must be followed for regulatory compliance. The set
of applicable standards for software include: general
requirements for health software product safety (IEC
82304-1) [IEC82304], software life cycle process (IEC
62304 [IEC62304]), risk management process (ISO 14971
[ISO14971]), and usability engineering (IEC 62366-1
[IEC62366]). Furthermore, the manufacturers are ex-
pected to have a quality management system that must
comply with further associated regulations – require-
ments of the Medical Device Quality Systems standard
ISO 13485 [ISO13485] or its US counterpart, US FDA
21 CFR part 820. These standards form a minimum
set of regulations to consider when developing medical
devices with software. Although their total page count
is not extensive as such, the requirements included can
feel overwhelming as the standards come with rich,
sometimes heavy information.

Fig. 1. The regulatory landscape in the medical domain illustrated.

REFERENCES

[IEC62304] International Electrotechnical Commission. IEC
62304:2006/A1:2015. Medical device software – Software
lifecycle processes, 2015.

[IEC62366] International Electrotechnical Commission. IEC
62366-1:2015. Medical devices – Part 1: Application of
usability engineering to medical devices, 2015.

[IEC82304] International Electrotechnical Commission. IEC
82304-1:2016.Health software – Part 1: General requirements
for product safety,2016.

[ISO13485] International Organization for Standardization. ISO
13485:2016. Medical devices – Quality management systems
– Requirements for regulatory purposes, 2016.

[ISO14971] International Organization for Standardization. ISO
14971:2019. Medical devices – Application of risk management
to medical devices, 2019.

controlled product development process aims to produce
high-quality software while simultaneously producing ob-
jective evidence to demonstrate compliance upon regulatory
approval. The purpose of the evidence is to demonstrate that
the development was done according to predefined proce-
dures and, at the same time, to prove that the software meets
its predetermined specifications and fulfils its intended use
and user needs. In practice, the evidence includes test
results, review records and automatically generated trace-
ability records with an audit trail. It is essential that full
traceability for all design and development elements can be
demonstrated.

The overall goal of design and development controls is to
manage the end product’s risk level. Therefore, in addition
to the quality management system, a regulatory-compliant
risk management system is needed. In the case of medi-
cal software, risk management activities are implemented
according to the requirements of ISO 14971 (see sidebar),
where the focus is on safety-related risks. These can be
divided into risks that emerge from the intended use of
the medical software, usually directly affecting the patient
(e.g., providing an overdose of medicine), and those related
to the technology selection (e.g., operating system failure).
Both types of risks are treated as product-related risks
during and after development. The process includes risk
identification, mitigation, and verification of implemented
mitigation actions. Furthermore, the process assesses the
acceptability of the residual risk when mitigation actions
have been implemented.

As the product development process of the medical de-
vice is multidisciplinary in its nature, also the risk manage-
ment process requires a multidisciplinary team to be gen-
uinely effective, covering both clinical and technical risks.
Clinical risks, i.e., risks that can compromise the clinical
condition or the safety of the patient, have most often been
identified well before the implementation process. However,
in the implementation phase, the developers are responsible
for identifying and documenting technical risks associated
with the design, which are then connected to clinical risks.
Streamlining the connection between clinical and technical
risks requires teamwork between software developers, clin-
ical experts, product owners, security experts and compli-
ance officers, and forms the core of calm compliance.

3 PAIN POINTS TODAY

In addition to the usual complications related to software
projects, the developers in the medical domain face certain
unique challenges. The key pain points can be associated
with regulations, guidance documents, and a selected set of
standards that establish an interrelated set of requirements
that must be interwoven into the development process. In
the following, we list the most serious ones and provide a
short rationale for their emergence.

Compliance-related activities frustrate developers. The
benefits of agile methods and continuous software engi-
neering also apply to medical software. Still, using them
in medical software development introduces the same con-
cerns as with any technology – how to deal with legal and
regulatory bindings in a new context [13]. This culminates
in the context of continuous software development, where



3

new releases can be made several times a day, but this
is not benefited from because of regulatory constraints.
Instead, the developers are stopped from deploying things
until all the compliance and regulatory related processes
are complete, forming a contradiction to Agile manifesto
statement Working software over comprehensive documentation
and breaking the natural flow of the development team. It is
not uncommon to discover that the developers feel that reg-
ulatory activities do not improve the quality of the software
and are, therefore, a waste of time. When the compliance
controls are seen as an impediment to effective product
development, the developers may start looking for ways
to circumvent quality system requirements. For example,
common development practices like refactoring can be hard
to grasp from compliance perspective, due to their potential
to change things to such a degree that previous completed
compliance activity are invalidated, and have to be per-
formed again. To complicate matters further, regulatory
affairs professionals have often practiced in environments
where the medical devices always include hardware, and
where they typically follow a linear development model.
Hence they might not have the skills and experience to
operate in an agile software development environment, in
particular when dealing with medical devices that consist
of only software, are highly distributed, contain a large
number of open source components developed by third
parties, or rely on external software systems maintained by
public cloud providers.

Gap between regulations and development activities.
The legally binding legislation texts and international stan-
dards describe the expected results, but do not describe
how to achieve those results. Therefore, practical expertise
is required to define the steps required to achieve the
objectives [6]. To complicate matters, many of the available
project management and application life cycle management
tools for software development require that the developers
invest time and effort to keep them in sync instead of relying
on automation. Software developers are professionals in
software development, not regulation. They often resort
to compliance over-engineering or adding extra effort to
compliance-related activities to play it safe – even if those
activities do not truly contribute to improved quality. Hence,
the developers may view compliance as the necessary evil
that must be considered but has little practical relevance.
Consequently, the compliance activities are often put aside
while creating software and resurrected only when the de-
velopment task is completed. This resurrection often needs
support from dedicated compliance personnel.

Regulations are written in a non-familiar language.
Regulations, guidance documents, and industry standards
have been written with careful consideration and precisely
defined terminology to communicate the text’s purpose
without ambiguity. However, these governing documents’
regulatory language and terminology might not be famil-
iar to an organization. The regulatory framework, which
consists of several different documents, is a complex to-
tality that must be well understood to create an effective
and compliant regulatory implementation. In addition, as
the concrete requirements in the regulatory documents are
often written vaguely, they can be subject to interpretation,
implying that the practitioners may interpret even the key

terminology in various ways. Unfortunately, regulatory ap-
proval processes are designed in such a way that they tend
to verify interpretations only afterwards when the effort is
already invested in the development. One practical way
to overcome related problems is to educate the personnel
regarding regulations and applying the learnings in soft-
ware development. Moreover, endorsing commonly shared
and understood terminology with Domain-Driven Design’s
Ubiquitous Language practice [3] might offer help.

Tooling silos. Traditionally, quality processes, and regu-
latory activities in particular, have been implemented using
Application Lifecycle Management (ALM) tools that have
a different philosophy than version control systems man-
aging the software development lifecycle (SDLC). Typically,
proficiency in using one tool does not translate into mas-
tery of the other. While the ALMs are effective at record-
ing high-ceremony document-centric activities, like change
management boards decisions, the version control systems
and associated tools excel at automating tasks, serving as
integration points for various DevOps tools. As such, the
attempts to align the two tool ecosystems is brittle and
requires significant maintenance effort.

Due to the above pain points, much of the regulatory
actions in software development are at risk to be rendered
as illusion of control. Their effect is largely an add-on to
daily development activities that the developers are famil-
iar with, and hence compliance-related activities are only
triggered when fundamentally unavoidable. To improve, we
rely on calm compliance where compliance activities are
part of daily routines and do not require elaborate, high-
level ceremonies.

4 TOWARDS CALM COMPLIANCE

The proposed calm compliance for software development
aim at alleviating the above pain points. In general, the
approach we propose is the full integration of compliance
activities to the daily software-related activities, following
the trend for lean thinking [11], rapid feedback cycles [1],
and extensive tool support across all the development activ-
ities.

Use streamlined regulatory processes. The core of com-
pliance should be carefully determining the intended pur-
pose of the medical software, and its transformation to user
needs and system requirements. In general, it is helpful
to minimise the footprint of the requirements that need to
be traced, rather than considering the superset of possibly
related factors – the latter tends to generate considerably
more tasks for the developers. For instance, the architectures
of some medical software products should be segregated
into a number of modules where some modules do not
have a medical purpose. The non-medical device modules
are not subject to the medical device regulations [7] and,
as a result, can be addressed with more light-weight de-
velopment processes. Understanding the balance between
regulated and other requirements is critical for streamlined
regulatory processes.

Perform compliance activities when change happens.
When working with regulatory software, compliance is
everyone’s business. Hence, all team members should be
prepared to work on compliance related activities, to the



4

extreme that whenever code is committed to a source code
repository, compliance related activities are invoked. In
essence, this means that when committing code, there is
a procedure concerning compliance checks, as proposed in
[12].

To a large degree, automation can help to perform the
compliance checks. However, the developer must be aware
of them and their intended consequences, which must be
documented. Furthermore, it is often a good practice to
collect the change approval from the most qualified team
members when change happens, as this may help in prob-
lematic cases.

Document architecture evolution. One of the funda-
mental artifacts in software development is the underlying
architecture. Well-documented software architecture serves
as a communication tool that facilitates the interaction be-
tween the development team and the other stakeholders,
and a map that describes how the user needs are imple-
mented into software components. In addition, IEC 62304
(see sidebar) requires the manufacturer to create software
architecture and more detailed design documentation for
certain architectural decomposition items. Due to the evolu-
tionary and iterative nature of the development process, the
architecture has to reconcile and capture both the intentional
and the emergent design decisions resulting from individual
changes made by the developers. The decisions can be
captured using a markdown file structured according to
MADR1. Further, the tooling for architecture management
should be lightweight and accessible. For example, the C42

model for visualizing software architecture is serialized
using a human but also machine readable domain specific
language3, an approach that provides a low entry barrier
so that performing architecture activities is not limited to
specific individuals in the team. To meet compliance require-
ments, the supporting tools should support versioning, so
that the evolution of the architecture can be documented
effectively and traced to the requirements that triggered the
respective change.

Use documentation as code practices. Regulatory docu-
mentation is the ”sum of all docs” created during product
development. Today, a common perception is that these
documents and their traceability form the core of the work,
at the expense of technical development. However, in true
calm computing, the tools become the documentation. For
example, Git can act as a ledger, where changes are tied to
commit hashes rather than archival tools such as SharePoint.
In general, rich text formats like Markdown or AsciiDoc,
combined with domain-specific languages for capturing
technical diagrams like PlantUML4 or Mermaid5, provide
the right affordances that allow the documentation to be
maintained and versioned in Git but also to build pipelines
that generate end user friendly content for online (e.g., a
website) or offline (e.g., a PDF document) consumption.

1. https://adr.github.io/madr/
2. https://c4model.com
3. https://github.com/structurizr/dsl
4. https://plantuml.com
5. https://mermaid-js.github.io/mermaid

5 COMPLIANCEPAL TOOL CHAIN FOR CALM
COMPLIANCE

CompliancePal6 is a commercially available software prod-
uct that aims at streamlining compliance activities with
software development. As of today, there are two pilot
customers, who have provided support for externally val-
idating the system. The experiences presented in this article
largely stem from the pilot customers as well as from
discussions with other manufacturers of medical software.

The CompliancePal system takes into account the ele-
ments of calm compliance introduced in Section 4, assisting
the daily routine of an agile development team practicing
the Scrum methodology [12]. Among the agile team we
emphasize four relevant roles that are needed in a medical-
oriented Scrum team – the product owner, the software de-
veloper, the architect and the compliance officer. Like with
any Scrum team, they are jointly responsible for solving the
emerging regulatory problems. Additionally, the product
owner ensures that the appropriate quality management
system is in use. A quote from CompliancePal users, ”We
like opinionated compliance tools, because we do not have to
come up with a solution ourselves”, suggests that this is well
appreciated by the developers.

The code produced by the team is managed using a
Git repository hosted on GitHub7. The compliance checks
are performed by our service that extends the standard
GitHub workflows using the Apps8 integration method.
The check results are exposed using the GitHub’s Statuses
functionality associated with each commit. Possible compli-
ance problems are brought to the attention of the team via
dedicated chat room hosted in Slack9.

The architecture related documentation describing how
the software components implement the product require-
ments, their hierarchy, and how they interact with each
other is managed in a repository in GitHub, in a similar
fashion as the rest of the code produced by the team.

The compliance officers are able to react to the detected
problems that require their attention via the team commu-
nication channel. Following the link, the officer can handle
the problem using CompliancePal’s user interface, a web
application dedicated to compliance activities, but linked
to GitHub at the backend to automate as much as possible.
This way, the compliance officer does not have to be familiar
with the GitHub service as used by the developers.

The compliance workflows can be configured to include
also the functionality provided by third parties, such as
Dependabot10 or WhiteSource11 for managing the open
source dependencies and their vulnerabilities, or Fossa12

for managing and enforcing license policies for open source
dependencies.

By using directly git and the GitHub provided APIs,
CompliancePal is able to leverage the existing capabilities
of the ecosystem described in Fig. 2, but also contribute to
the creation of new tooling.

6. https://compliancepal.eu
7. https://github.com/
8. https://developer.github.com/apps/
9. https://slack.com/
10. https://dependabot.com
11. https://www.whitesourcesoftware.com
12. https://fossa.com



5

Product Owner

Architect

Developer Compliance
Officer

Traceability
Change

Management

Software

Architecture

SoftwareQuality

git

Issues

Pipelines

Statuses git Pull
requests

users 3rd party extensions git vendor extensions git core

Fig. 2. Calm compliance empowers users with diverse skills to perform their activities using a common tool ecosystem. Built around git, leveraging
the functionality provided by the git vendors and other services provided by third parties like CompliancePal, the ecosystem forms a continuum that
presents specialised views suited for each user needs. Working together, at the speed determined by the software development, the team ensures
that compliance becomes a mundane activity, completed at the end of each increment.

TABLE 1
CompliancePal solution for calming the pain points of compliance.

Impediment CompliancePal solution
Compliance-related
activities frustrate
developers.

CompliancePal hooks into GitHub, and
seamlessly embeds compliance related ac-
tions alongside mainstream software devel-
opment, streamlining the regulatory pro-
cesses.

Gap between regu-
lations and devel-
opment activities.

Everything takes place in GitHub; if neces-
sary, separate interface can be created for
compliance officers to simplify their oper-
ations. Furthermore, by relying on pull re-
quests, compliance activities are executed
when a change happens.

Regulations are
written in a non-
familiar language.

Regulatory workflows formalised as
GitHub actions and CompliancePal
extensions. Developer input is collected
using a familiar user interface and friendly
language.

Tooling silos. Single tool ecosystem build around GitHub.
Team rhythm is determined by pull re-
quests.

To summarize, Table 1 presents a mapping from the main
pain points to CompliancePal features.

6 RECOMMENDATIONS

To truly reach the calm compliance, related activities should
be embedded in the fabric of the development approach
of a company, to the extent that very few people in the
organization are thinking about compliance besides the des-
ignated regulatory compliance professionals. The rest of the
personnel, in contrast, spend their days solving problems,
delivering products, and managing processes, and compli-
ance is built-in in all of them.

As demonstrated above, steps towards reaching the vi-
sion are related to every-day tools and practices. Integrated

regulatory activities in tools used by the developers are
the first step in this process. This in particular concerns
pull requests, which are the way to introduce changes to
software, but which can also be used as means to manage
compliance with respect to changes in code. Furthermore,
tooling to present artifacts stored in version control system
or produced by CI/CD pipelines will facilitate the partic-
ipation of all team members – including also compliance
officers – in the development activities, as advocated in agile
methods.

While tooling can integrate compliance related actions in
continuous development, cultural differences may prevent
calm compliance, even if tooling was in place. In our ex-
perience, companies with established medical development
are rather looking for a separate process and application to
consider the regulatory issues, thus keeping the compliance
officers distant from the development team. This is in line
with their established organizational structures, which are
common in large companies.

In contrast, organisations that are familiar with contin-
uous software development, relying on teams that are self-
organizing, but are new to regulatory aspects have found
the CompliancePal tool and the related approach fit for
their use cases. Here, compliance officers align to the de-
velopment activities, not the other way around. Achieving
this requires reconsidering traditional distribution of tasks
using well-considered, yet relatively simple tooling. So far,
with the presented implementation, there has been minimal
number of change requests emerging from pipeline users.
We take this as evidence of the viability of its feature set for
calm compliance.

Finally, it is important to notice that some elements
of calm compliance cannot be achieved with development
tools alone, but require a change in mindset and behav-
ior. One example is constituted by security threat analysis



6

SIDEBAR: MANAGING 3RD PARTY SOFTWARE DEPENDENCIES WITH COMPLIANCEPAL

main

feature branch
open pr merge pr

GitHub

CompliancePal

a)

b)

c)

d)

Fig. 3. Workflow for handling 3rd party software components

Handling 3rd party software components in medical software devices is a chore. While these components allow the
developers to rapidly extend its functionality by reusing code developed by others, the drawback is that the 3rd party
code becomes part of the medical product, and hence it is governed by the same software development lifecycle rules
as the own code.

The procedure behind the workflow is that every 3rd party software component is accompanied by a change decision
that describes the rationale for using the component. The change decision is structured following the architecture
decision record (ADR) format [9]. To enforce the workflow, CompliancePal analyses the code committed by developers
in pull requests to identify if new 3rd party software components have been added. If new components are added,
the commit check is marked as failed (a). When the developer or architect that originated the change adds the change
decision, the compliance officer can open the commit check details to view the changes to the 3rd party components
using a unified view, representing a component diagram diff that is common for all programming languages (b). The
change decision view (c), augmented with data fetched from the package registry, enables the compliance officer to
effectively performing the required risk analysis activities. When these activities are performed, and the component
is assigned a safety classification, the commit check changes to pass (d). The change set can be merged now into the
common code baseline.
Comparing with a traditional plan-based development methodology, where the compliance officer would have to
ask the development team what changes related to 3rd party components have happened during an increment, this
approach brings the stakeholders into the process at the time of change. The risk management activities happen during
the pull request review, involving only the relevant team members, which makes compliance a low-ceremony team
activity.



7

and modelling, which are widely used practices during
application development in many fields, including also the
medical domain [4]. In this context, tools like OWASP Threat
Dragon13 facilitates the identification of security threats
early on and mitigate the risks, helped by methodologies
like STRIDE14. However, despite similarities with the risk
analysis in the area of medical devices, practitioners have
not introduced unified threat models, relying on spread-
sheets in their work instead. As a result the risk analysis
practice is bound to the own experience of the practitioner
that analyses the risks. Then, without common conventions,
beyond those that ISO 14971 prescribes, these threat assess-
ments are not portable, essentially preventing the develop-
ment of uniform tooling.

In summary, we believe that we are at the brink of
a transition towards more agile development in medical
domain, enabling the delivery of new features at software
speed, as well as lowering the barrier of entry for new
companies and innovative products. A critical element in
the transition is calm compliance, where compliance no
longer is a high-ceremony operation but business as usual.

ACKNOWLEDGMENTS

The authors would like to thank Business Finland and the
members of AHMED (Agile and Holistic MEdical software
Development) consortium for supporting this work.

REFERENCES

[1] Jan Bosch. Speed, data, and ecosystems: Excelling in a software-driven
world. CRC press, 2017.

[2] European Parliament and the Council. Regulation (EU) 2017/745
on medical devices, 2017. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:02017R0745-20200424#tocId168
Accessed Feb 16, 2021.

[3] Eric Evans and Eric J Evans. Domain-driven design: tackling com-
plexity in the heart of software. Addison-Wesley Professional, 2004.

[4] Tuomas Granlund, Juha Vedenpää, Vlad Stirbu, and Tommi
Mikkonen. On medical device cybersecurity compliance in eu.
arXiv preprint arXiv:2103.06809, 2021.

[5] International Medical Device Regulators Forum IMDRF. Software
as a medical device (samd): Key definitions, 2013.

[6] Teemu Laukkarinen, Kati Kuusinen, and Tommi Mikkonen. De-
vOps in regulated software development: case medical devices. In
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing: New Ideas and Emerging Technologies Results Track (ICSE-NIER),
pages 15–18. IEEE, 2017.

[7] Medical Device Coordination Group (MDCG). MDCG 2019-
11. Guidance on Qualification and Classification of Software in
Regulation (EU) 2017/745 – MDR and Regulation (EU) 2017/746
– IVDR, 2019.

[8] Artur Nowak and Holger J Schünemann. Toward evidence-based
software engineering: lessons learned in healthcare application
development. IEEE Software, 34(5):67–71, 2017.

[9] Michael Nygard. Documenting architecture decisions,
2011. https://cognitect.com/blog/2011/11/15/documenting-
architecture-decisions, accessed Mar 28, 2021.

[10] U.S. Department of Health and Human Services. Federal food,
drug, and cosmetic act. https://www.fda.gov/regulatory-
information/laws-enforced-fda/federal-food-drug-and-cosmetic-
act-fdc-act Accessed Feb 24, 2021.

[11] Mary Poppendieck et al. Principles of lean thinking. IT Manage-
ment Select, 18(2011):1–7, 2011.

13. https://owasp.org/www-project-threat-dragon/
14. https://en.wikipedia.org/wiki/STRIDE (security)

[12] Vlad Stirbu and Tommi Mikkonen. CompliancePal: A tool for
supporting practical agile and regulatory-compliant development
of medical software. In 2020 IEEE International Conference on
Software Architecture Companion (ICSA-C), pages 151–158. IEEE,
2020.

[13] Dana R Wagner. The keepers of the gates: Intellectual property,
antitrust, and the regulatory implications of systems technology.
Hastings LJ, 51:1073, 1999.

[14] Mark Weiser. The computer for the 21 st century. Scientific
american, 265(3):94–105, 1991.

Tuomas Granlund is a quality manager and a regulatory compliance
specialist at Solita Ltd., Finland and a doctoral student at Tampere
University, Finland. Contact him at tuomas.granlund@solita.fi.

Vlad Stirbu is the founder of CompliancePal, Finland. Contact him at
vlad.stirbu@compliancepal.eu.

Tommi Mikkonen is a professor of software engineering at University
of Helsinki and University of Jyväskylä, both located in Finland. Contact
him at tommi.j.mikkonen@jyu.fi.


