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In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral 
components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information about the objects we are 
classifying, recognizing, diagnosing, etc. Traditionally, uncertainty is considered to be a problem especially in the responsible use 
of AI and ML tools in the smart manufacturing domain. However, in this study, we aim not to fight with but rather to benefit 
from the uncertainty to improve the classification performance in supervised ML. Our objective is a kind of uncertainty-driven 
technique to improve the performance of Convolutional Neural Networks (CNNs) for image classification. The intuition behind 
our suggested “decontextualize-and-extrapolate” approach is as follows: any image not necessarily contains all the needed 
information for perfect classification; any trained CNN will give for the entire image (with some uncertainty) the probability 
distribution among possible classes; the same CNN may also give similar probability distribution to the “part” of the image (i.e., 
with the higher uncertainty); one may discover the trend of the probability distribution change with the change of uncertainty 
value; a better (refined) probability distribution could be computed from these two distributions as the result of their 
extrapolation towards the less uncertainty. In this paper, we suggested several ways and corresponding analytics to discover 
reasonable part(s) of the images and to make the extrapolation to get better (refined) image classification results. We have 
considered image representation at the level of pixels as well as at the level of the discovered features. Our preliminary 
experiments show that the suggested refinement techniques (applied during the testing phase of the CNNs) can improve their 
classification performance.    
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1. Introduction 

Industry 4.0 and smart manufacturing domains are dealing nowadays with the increased uncertainty as noticed by 
Longo et al. [1]. Much of the uncertainty is brought there due to various human factors [2]. AI and ML methods, tools 
and systems are deeply embedded nowadays into Industry 4.0 [3]. Therefore, an essential share of the uncertainty is 
also brought by them.  A good classification of ML uncertainty issues in industry applications is available in [4]. The 
vast majority of related studies in ML are intended to combat, tame, decrease or handle uncertainty [5]. In contrast, in 
this study, we are going to artificially increase uncertainty within some ML tasks and benefit from that when 
appropriate. 

For our study we consider the supervised ML domain and particularly image classification with CNNs. Uncertainty 
(to a certain extent) is always presented in image classification tasks because an image may not include neither 
explicitly nor implicitly all the needed information for its perfect classification.  However, we may use here the 
philosophy of the “semantic balance existence” between the internal and external knowledge axiom [6]. Among other 
consequences of this axiom, an interesting thing for this study could be the following one. If you have incomplete 
information within the boundaries of known and relevant facts needed for your objectives, which provokes uncertainty 
in using these facts efficiently, and if it is also impossible to get any extra information outside these boundaries, then 
you may still try to get useful extra information from inside the boundaries. One way of doing that would be as follows: 
take a subset of available information (e.g., cut some part of the image and, therefore, artificially increase its 
uncertainty); solve your task (e.g., classify) twice: with the entire knowledge (original image with some “reasonable” 
uncertainty) and with the chosen part(s) (with “larger” uncertainty); combine both outcomes in the “extrapolation” 
way, i.e., moving from “larger” uncertainty to the intended “perfectness” through the “reasonable” uncertainty. To 
make this trick work, we need certain analytics to measure uncertainty, discover suitable parts (“decontextualize”) of 
images, combine (“extrapolate”) the classification outcomes for the entire images and their parts to get the refined 
classification outcome with potentially better classification accuracy. Just these objectives (under the overall umbrella 
of our “decontextualize-and-extrapolate” approach to classification refinement) we are going to address in this paper. 
We also want to emphasize that “getting part(s)” of images in this study must not be confused with either semantic 
segmentation of images [7] or with the CNNs’ pruning techniques [8]. 

The rest of the paper is organized as follows: Section 2 provides a motivation scenario for our study; Section 3 
discusses a naïve and biased refinement option just with one part of the input image; Section 4 makes the refinement 
less biased by considering several parts of the image discovered by “sliding focus”; Section 5 suggests using entropy 
measure to discover the best parts of the image for the refinement; Section 6 considers refinement schemas, which will 
work not at the level of pixels but at the level of the discovered features; Section 7 summarizes our experiments, which 
compare classification performance of different refinement techniques; and we conclude in Section 8. 

2. Looking beyond an image (the motivating scenario) 

Assume that we are classifying some abstract object (e.g., an image of a dog marked as “full” in Fig. 1) on the basis 
of available input information about the object (e.g., a complete set of pixels representing the image) to one of two 
possible classes (e.g., “dog” and “cat”).  Assume that the amount of information encoded in the input is 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (it could 
be measured by different ways, e.g., simply the number of pixels representing the complete image). The result of 
classification by some trained classifier (e.g., by CNN) would be a probability distribution among the considered 
classes. Let it be as follows (Fig. 1): 

{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.45; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.55}, 
and it indicates that the classifier is not quite certain about preferring the “cat” over the “dog” label, which is actually 
incorrect. 

Assume that we take some subset of the input information, i.e., “decontextualize” part of the input (e.g., cut part of 
the image and get an image marked as “part” in Fig. 1). Naturally, the amount of information within the 
decontextualized part will be less than in the whole input, i.e.: 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 < 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . 

Assume now that we apply the same trained classifier to label the part as a separate input and we get another 
probability distribution among the classes (see Fig. 1):  
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{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.2; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8}, 
which indicates that the chosen part of the input gives more evidence for the classifier preferring “cat” over “dog” and, 
therefore, making the misclassification error even greater. 

An interesting question would be: what if we somehow get some extra information about our object, so that the 
resulting (the original plus the new one) set of input information “res” will be greater than “full”, i.e.: 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 > 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 
then what would be the result of classification with such greater evidence? An important yet intuitive assumption here 
could be as follows: (a) when dealing with “full” and “part” (Fig. 1), we noticed that with getting more information 
(“part” → “full”) the “dog” classification choice has the tendency of growing (0.2 → 0.45) while the probability of 
the “cat” option decreases (0.8 → 0.55); (b) if the tendency stays the same with getting more information, we may 
expect that the probability for the “cat” option will decrease from 0.55 further and probably falls to a value less than 
50%, while the probability for the “dog” option will continue increasing from 0.45 further and could result to the value 
greater than 50%; (c) without any actual update of input information and just by studying the (“part” → “full”) 
tendencies (“extrapolating”), we may refine and even change when appropriate the result of classification. For 
example, Fig. 1 shows that such an extrapolation …: 

{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.2; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8} → {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.45; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.55} → ⋯ 

 … results to preferring the “dog” over the “cat” label for the original image, i.e.: 
… → {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 0.52; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 = 0.48}. 

 

 
Fig. 1. Illustrating the intuition behind the “decontextualize-and-extrapolate” approach to classification. The input image “full” is classified 
separately (by some CNN) from its chosen and decontextualized “part”. Results of classification for both “full” and “part” images give preference 
to the “cat” label. However, the study of the “part-to-full” tendencies (extrapolation) gives the grounds to assume that some potential and more 
informative (unknown, abstract) image “res” of the same object may have another classification label, i.e., “dog”, which makes it reasonable to 
prefer the “dog” over the “cat” as a classification label also for the original image in spite of the classifier preference.    

The intuition behind such a “decontextualize-and-extrapolate” approach is motivated by our former studies in the 
nineties [9] and [10], which suggested the way to handle uncertain information acquired from multiple sources. Each 
source is supposed to give its own interval estimation of the value of some parameter having different conditions for 
the estimation (noise, quality of sensors, etc.). The goal was to process all the intervals, discover the trends (i.e., in 
which direction the estimated value goes by increasing the quality of the estimation conditions) and derive the resulting 
estimation that is more precise than the original ones. Now, due to the recent advances in deep learning and particularly 
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with the growing popularity of CNNs for image processing, we are able to test and possibly benefit from our former 
approach to modern image classification problems. 

Further questions (to be considered in the following sections) are as follows: how to define an appropriate part 
(one or several) of an image for decontextualization? How to measure the “quality” of an entire image and of its part, 
i.e. 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝? How to compute a better estimation of the class probability on the basis of the estimations 
provided by the classifier for the entire image and for its part? At which level of abstraction are we supposed to 
perform such “decontextualize-and-extrapolate” manipulations (at the “surface” or pixel level or going deeper into 
the features of the image and its part after the convolutional layers)?   

3. An optimistic computational schema for the “just-one-part” classification refinement  

Assume that we have some CNN classifier already trained on some image dataset to classify images into one of 𝐶𝐶 
classes. Assume that we are testing this classifier on a test image “full” taken entirely as an input. Let us also assume 
that, in this section, we will use the simplest estimate for the amount of information (𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) within an image, i.e., the 
number of pixels in it. During the classification process, the last SoftMax layer of the CNN classifier provides (as 
output) the computed probability distribution of the image belonging to each of 𝐶𝐶 possible classes as follows:  

{𝑝𝑝1
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑝𝑝2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , … , 𝑝𝑝𝐶𝐶
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓}, where ∀𝑝𝑝𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≥ 0); 𝑝𝑝1

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑝𝑝2
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + ⋯+ 𝑝𝑝𝐶𝐶

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1.   (1) 

Normally, the class with the maximal value of probability in this vector is taken as a final label assigned to the 
input test image. We, however, are going to challenge this traditional way of defining the winner. 

Assume that we cut some integral “part” of the input image “full” and decontextualize it (put zeros instead of the 
pixels outside the chosen part). The number of pixels within the “part” will be denoted as 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. If we apply the CNN 
classifier to the chosen part as a separate image, we will get another probability distribution as a result: 

{𝑝𝑝1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑝𝑝2

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, … , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝}, where ∀𝑝𝑝𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 0); 𝑝𝑝1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + ⋯+ 𝑝𝑝𝐶𝐶

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.   (2) 
Now, following the logic of the previous section, we assume that there could be some (yet unknown) abstract 

image (named “res”) wider than the original “full” and such that: 
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟
2 , which means that 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 2 ∙ 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.     (3) 

Can we guess what would be the result of classification, if you apply the CNN classifier, taking the abstract “res” 
image as an input? Therefore, we want to estimate the following probability distribution: 

{𝑝𝑝1𝑟𝑟𝑟𝑟𝑟𝑟, 𝑝𝑝2𝑟𝑟𝑟𝑟𝑟𝑟, … , 𝑝𝑝𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟}, where ∀𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0); 𝑝𝑝1𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝2𝑟𝑟𝑟𝑟𝑟𝑟 + ⋯+ 𝑝𝑝𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 1.    (4) 
Let us suggest a simple computational schema of estimating distribution (4) given distributions (1) and (2) and 

assumption (3). The heuristic assumption here would be the following weighted average schema: 

 𝑝𝑝𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙𝑝𝑝𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟∙𝑝𝑝𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟

𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟
, and, therefore, the preliminary (not normalized) estimate 𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟  for 𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟  would be 

(taking (3) into account): 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 =
2∙𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∙𝑝𝑝𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2∙𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
.         (5) 

Now we need to normalize (5) to guarantee that ∀𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 0); 𝑝𝑝1𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝2𝑟𝑟𝑟𝑟𝑟𝑟 + ⋯+ 𝑝𝑝𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 1. We suggest using 
two different options to do that: 

(A) The SoftMax option, which will use the SoftMax function, i.e.: 

 𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒(𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟) =
𝑒𝑒𝑝̃𝑝𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟

∑ 𝑝𝑝𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶

𝑗𝑗=1
;        (6) 

Special cases of formula (6) for more comfortable computing are as follows: 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 (2∙𝛼𝛼∙𝑝𝑝𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

2∙𝛼𝛼−1 ), if  
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝛼𝛼;       (6a) 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 (4∙𝑝𝑝𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

3 ), if  
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 2;       (6b) 
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𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ((1+√5)∙𝑝𝑝𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

√5 ), if  
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝜑𝜑 = 1+√5
2 ≈ 1.618  - ”Golden Ratio” constant. (6c) 

(B) Shift-and-normalize (we name it as basic and computationally less expensive than the previous one) option, 
which is as follows: 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 =
2∙𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∙𝑝𝑝𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙(1−𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

2∙𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙(𝐶𝐶−1)
.        (7) 

Special cases of formula (7) are as follows: 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 =
2∙𝛼𝛼∙𝑝𝑝𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1

2∙𝛼𝛼+𝐶𝐶−1 , if  
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝛼𝛼;        (7a) 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 =
4∙𝑝𝑝𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1

3+𝐶𝐶 , if  
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 2;        (7b) 

𝑝𝑝𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 =
(1+√5)∙𝑝𝑝𝑖𝑖

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1

√5+𝐶𝐶 , if  
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝜑𝜑 = 1+√5
2 ≈ 1.618  - ”Golden Ratio” constant.   (7c) 

If, for example, we have the case 
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 2 in Fig. 1, then by using the SoftMax computation option (6b) we get: 

{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.45; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.55} with {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.2; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8} → {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 0.51(6); 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 = 0.48(3)}. 

If to use the basic computation option (7b) for the same case then we have the result already shown in Fig. 1: 

{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.45; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.55} with {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.2; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8} → {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 0.52; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 = 0.48}. 
We may see that in both cases the preference will be finally given to the “dog” label (which is the correct one for 

the original image) in spite of the original image classification by CNN. 
The analytical options listed above could be used as part of the testing phase for the supervised learning tasks with 

CNNs as shown in Fig.2. One may see that both the entire image and its chosen part go through the same CNN and 
the two resulting probability distributions will be combined into a final one by the Decontextualization component. 

 
Fig. 2. Illustrating the generic schema of the simple option of the “decontextualize-and-extrapolate” approach. The entire input image and its chosen 
part go through the same CNN for classification. Both outcomes are integrated into one following the appropriate computation schema. Such 
refinement of the CNN classification outcome is expected to provide useful corrections and improve the classification accuracy on the test set.    
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These simple (naïve) schemas may give a certain improvement to classification accuracy. However, they depend 
a lot on the choice of the “part” of the analysed image. We are going to correct this in the following section.  

4. Computational schema for the “sliding focus” classification refinement 

Assume that we are working with the colored images of a size [3 × 𝑚𝑚 × 𝑛𝑛] in pixels according to the RGB schema. 
Assume that we want to use the “decontextualize-and-extrapolate” approach described above with such images. This 
would mean that the simplest estimate for the amount of information (𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) within each image will be as follows: 
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3 ∙ 𝑚𝑚 ∙ 𝑛𝑛. Then, to be able to apply the above analytics, we need to define the size and location of the image 
“part” 3D frame [3 × 𝑚̃𝑚 × 𝑛̃𝑛] , where 𝑚̃𝑚 < 𝑚𝑚, 𝑛̃𝑛 < 𝑛𝑛 , and, therefore, 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 3 ∙ 𝑚̃𝑚 ∙ 𝑛̃𝑛 ,  

𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝛼𝛼 = 𝑚𝑚∙𝑛𝑛
𝑚̃𝑚∙𝑛̃𝑛 . We 

recommend using 𝛼𝛼 to be either 2 or 𝜑𝜑 (“Golden Ratio”). If we choose just one particular location of the “part” frame 
as a kind of focus in addition to the entire image (as, e.g., presented in Fig.1), then we will be biased towards this 
choice, and the correction computed on its basis cannot be fully trusted. Therefore, in this section, we consider a more 
computationally expensive yet more consistent way to apply the “decontextualize-and-extrapolate” approach to image 
classification. 

The chosen frame (aka focus) will be a sliding 3D window, which will be moved step-by-step across the entire 
image. The size of each step (both horizontal and vertical) will be denoted as “stride”. For each 𝑖𝑖-th “part”, which 
happens to be within the frame during its sliding process, we get the classification result (probability distribution) and 
collect it into the following matrix: 

  𝑃𝑃 =

{ 
 
  
𝑝𝑝1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1, 𝑝𝑝2

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1, … , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1

𝑝𝑝1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2

…
𝑝𝑝2
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2, … ,
…

𝑝𝑝𝐶𝐶
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2

…
𝑝𝑝1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔 𝑝𝑝2

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔, … , 𝑝𝑝𝐶𝐶
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔} 

 
  

,         (8) 

where 𝑔𝑔  is the number of different parts collected during the “sliding focus” process; each 𝑖𝑖 -th row represents 
probability distribution as a result of classification of the 𝑖𝑖-th “part” of the original image; each 𝑗𝑗-th column represents 
probabilities (aka “votes”) from each part regarding the choice of 𝑗𝑗-th class label for the image. 

Now, using the values from matrix (8), we are able to compute more solid and unbiased value for each of the 
𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝component in the distribution from formula (2) as a simple average: 

𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1

𝑔𝑔 ∙ ∑ 𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑔𝑔

𝑖𝑖=1 .          (9) 

After that we can apply any of the computational schemas from the previous section to get refined estimations 𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 
from 𝑝𝑝𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  together with the more smartly computed 𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

How to compute the number of parts 𝑔𝑔 for the “sliding focus” method? This will depend on 𝑚𝑚, 𝑛𝑛, 𝑚̃𝑚, 𝑛̃𝑛 and stride 
as follows: 

𝑔𝑔 = ⌊(𝑚𝑚−𝑚̃𝑚)∙(𝑛𝑛−𝑛̃𝑛)stride2 ⌋.          (10) 

If, for example, we have some dataset with images of size [3 × 𝑚𝑚 × 𝑛𝑛] = 3 × 128 × 128 and we want to consider 
the parts, which will be cut according to the “Golden Ratio” constant, we will get the following: 

𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3 ∙ 128 ∙ 128 = 49152; 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜑𝜑 = ⌊128

√𝜑𝜑
⌋ ∙ ⌊128

√𝜑𝜑
⌋ ∙ 3 ≈ 100 × 100 × 3 = 30000; 𝑚̃𝑚 = 𝑛̃𝑛 = 100. 

Now, if to choose formula (10) and apply stride = 4, then we have: 

𝑔𝑔 = ⌊(128−100)∙(128−100)42 ⌋ = ⌊78416 ⌋ = 49. 

If in this example, the dataset has four categories (classes) of differently labelled images (i.e., 𝐶𝐶 = 4) and we want 
to apply the basic computation schema (formula (7a)), then, by combining it with formula (9) we get the following 
formula for computing the refined probability distribution for our example: 

𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 =
160.5632∙𝑝𝑝𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+49−∑ 𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖49

𝑖𝑖=1
307.5632 . 
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Consider example in Fig. 3. 

 
 

Fig. 3. Example of applying the “sliding focus” schema, which is intended to take into account several different parts (same size) of the original 
image to get an unbiased evaluation for the “part” component for the “decontextualize-and-extrapolate” refinement approach. In this example, the 
results of classification (got separately for each of the four parts of the original image) are collected into matrix P, which will be used for further 
refinement of the CNN classifier outcome obtained separately for the whole image.  
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The example illustrates the “sliding focus” procedure for the same image as the one in Fig.1. Here the size of the 
frame and the stride has been chosen so that we have only four options for the “part” to be considered. After the entire 
image and each of the four parts have been classified independently, we get all the needed components (which are: 
{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.45; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.55} and matrix 𝑃𝑃  as shown in Fig.3) for computing the refined probability distribution 

{𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟𝑟𝑟𝑟𝑟 ;  𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟}. In this example, we have 𝛼𝛼 = 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 2.25. According to formula (9), we get: 

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1

𝑔𝑔 ∙ ∑ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑔𝑔

𝑖𝑖=1 = 1
4 ∙ (0.2 + 0.1 + 0.9 + 0.5) = 0.425 and

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1

𝑔𝑔 ∙ ∑ 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑔𝑔

𝑖𝑖=1 = 1
4 ∙ (0.8 + 0.9 + 0.1 + 0.5) = 0.575.

And, finally, by applying computational schema from formula (7a), we get the following refined probability 
distribution: 

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑟𝑟𝑟𝑟𝑟𝑟 =

2∙𝛼𝛼∙𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1
2∙𝛼𝛼+𝐶𝐶−1 = 2∙2.25∙0.45−0.425+1

2∙2.25+2−1 = 4.5∙0.45−0.425+1
5.5 = 0.4(72); and

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑟𝑟𝑟𝑟 = 2∙𝛼𝛼∙𝑝𝑝𝑐𝑐𝑎𝑎𝑎𝑎

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1

2∙𝛼𝛼+𝐶𝐶−1 = 2∙2.25∙0.55−0.575+1
2∙2.25+2−1 = 4.5∙0.55−0.575+1

5.5 = 0.5(27).

As one may see: the entire image classification by CNN has given us {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.45; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.55} probability 
distribution, which means “cat” as a label for the image; the biased “decontextualize-and-extrapolate” approach (Fig.1) 
results in {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.52; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.48}  distribution and, therefore, “dog” label; and, finally, the unbiased (due to the 

“sliding focus”) “decontextualize-and-extrapolate” approach (Fig.3) gives us {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.4(72); 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.5(27)} 
distribution. Knowing that the actual label for the image is “dog” (i.e., the distribution done by a “perfect” classifier 
must be {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1; 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0}), we admit that the traditional classifier (applied on top of the entire image) has made 

a classification mistake; the naïve (biased) refinement has “guessed” the correct label for the image; and the unbiased 
and solid refinement still made a mistake but it happens to be about 2.3% smaller than the mistake from a traditional 
classifier. Therefore, with one image, the classification accuracy loss has been substantially decreased, which means 
that, in general, the suggested “sliding focus” refinement procedure on top of traditional CNNs could potentially 
improve image classification accuracy. 

It would also be important to mention that, if the computational resource (particularly time) is not a problem, and 
we have high-resolution images, then all the above analytics could be recursively applied to the parts of the image the 
same way as to the entire image and, therefore, the analytics will produce smaller and smaller parts at each iteration 
and resulting to deeper refinement of the original image classification through the whole chain of refinements for the 
parts’ classification. 

5. Computational schemas for an entropy-aware refinement 

In the previous sections, we used the number of pixels as a simple estimate for the amount of information in the 
images and their parts (𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). In this section, we will adapt the computational schemas to a more solid measure 
of information (used in information theory), which is entropy. Assume that we are working with a colored image 𝑋𝑋 
(size [3 × 𝑚𝑚 × 𝑛𝑛] in pixels), which is represented by three [𝑚𝑚 × 𝑛𝑛] RGB channels 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3. 

Claude Channon had defined information entropy already in 1948 [11] as a measure of the information content 
within a message (i.e., a measure of uncertainty reduced by the message). The general definition considers such a 
message (textual, image, etc.) as a random variable, which takes values from some “alphabet” (of 𝑣𝑣 items) with a 
certain probability distribution of the items within the alphabet. Information entropy is defined as follows:  

𝐻𝐻(𝑋𝑋) = − ∑ [𝑝𝑝(𝑥𝑥𝑖𝑖) ∙ log2 𝑝𝑝(𝑥𝑥𝑖𝑖)]𝑣𝑣
𝑖𝑖=1 .         (11) 

where the sum is taken over all variable's possible values. 
It would be easy to adapt this definition to the case of image entropy. We have an “alphabet” of 256 intensity levels 

for the pixels. To get the needed probabilities we can use the histogram of an image [12]. To compute the entropy for 
the color image, we can average the entropies of each RGB channel computed separately. Therefore, the entropy of a 
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color image 𝑋𝑋 will be as follows: 

𝐻𝐻(𝑋𝑋) = 1
3 ∙ ∑ {− ∑ [𝑝𝑝𝑠𝑠(𝑋𝑋𝑟𝑟) ∙ log2 𝑝𝑝𝑠𝑠(𝑋𝑋𝑟𝑟)]255

𝑠𝑠=0 }3
𝑟𝑟=1 ,       (12) 

where 𝑝𝑝𝑠𝑠(𝑋𝑋𝑟𝑟) = Number of occurences of the intensity level 𝑠𝑠 within the  𝑟𝑟th RGB channel of image 𝑋𝑋
Number of pixels (size) within the the 𝑟𝑟th RGB channel of image 𝑋𝑋 . 

 
Once we know the way to compute an image entropy and, therefore, to have better estimates for 𝜔𝜔𝑓𝑓𝑓𝑓𝑙𝑙𝑙𝑙  and 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 

we can adapt the previous computational schemas (just-one-part (section3) and “sliding focus” (section 4)) 
accordingly. 

5.1. An entropy-aware “just-one-part” biased refinement schema 

In spite of the fact that the optimistic “just-one-part” refinement schema (section 3) is obviously biased to the 
choice of a “part” or a cut from a classified image, entropy awareness provides the possibility to improve it. Before 
we were dealing just with volume of pixels, i.e., from the image of size [3 × 𝑚𝑚 × 𝑛𝑛] we randomly chose the part of 
size [3 × 𝑚̃𝑚 × 𝑛̃𝑛] so that we had 

𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑚𝑚∙𝑛𝑛
𝑚̃𝑚∙𝑛̃𝑛  = 𝛼𝛼 (e.g., 𝛼𝛼 = 2 for the “Dichotomy” case; or 𝛼𝛼 = 𝜑𝜑 for the “Golden 

Ratio” case). Now we can update this approach towards having 
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝐻𝐻(full)
𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  = 𝛼𝛼 (e.g., 𝛼𝛼 = 2 for the “Dichotomy” 

case; or 𝛼𝛼 = 𝜑𝜑 for the “Golden Ratio” case). Therefore, now we can formulate the task of finding “the best” part as 
follows: how to find the smallest possible “part” (3D frame or cut) of the original image so that it keeps the 𝛼𝛼-
proportion above. This would mean that we are going to find the “part” with the highest density of information and 
with the fixed proportion of entropy with the entire (“full”) image. A possible algorithm to do that could be as follows:  

THE “BEST PART” SEARCH 
----------------------------------------------------------------------------------------------------------------------------- ---------- 
INPUTS: original colored image 𝑋𝑋 of [3 × 𝑚𝑚 × 𝑛𝑛] size; choice for the case {“Dichotomy” or “Golden Ratio”}; 

OBJECTIVES: weight 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  for the original image; part 𝑋̃𝑋 of the original image 𝑋𝑋 and its weight 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

THE ALGORITHM: 
Initialize: 𝑋̃𝑋0 = 𝑋𝑋 ; 𝑋̃𝑋 = 𝑋𝑋; 𝑖𝑖 = 0; 
Compute: 𝐻𝐻(𝑋̃𝑋0) according to formula (12) 
Assign: 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐻𝐻(𝑋̃𝑋0); 

(*)  Increment 𝑖𝑖; 
         𝑖𝑖-th ITERATION LOOP: 

• [remove the right column (in all 3 RGB channels) if possible from the 𝑋̃𝑋𝑖𝑖−1 and get 𝑋̃𝑋𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡]; 

• [remove the left column (in all 3 RGB channels) if possible from the 𝑋̃𝑋𝑖𝑖−1 and get 𝑋̃𝑋𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙]; 

• [remove the top row (in all 3 RGB channels) if possible from the 𝑋̃𝑋𝑖𝑖−1 and get 𝑋̃𝑋𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡]; 

• [remove the bottom row (in all 3 RGB channels) if possible from the 𝑋̃𝑋𝑖𝑖−1 and get 𝑋̃𝑋𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]; 

• [for each of four 𝑋̃𝑋𝑖𝑖
𝑗𝑗 compute 𝐻𝐻(𝑋̃𝑋𝑖𝑖

𝑗𝑗) and entropy loss 𝐻𝐻(𝑋̃𝑋𝑖𝑖−1) − 𝐻𝐻(𝑋̃𝑋𝑖𝑖
𝑗𝑗)]; 

• [from the four 𝑋̃𝑋𝑖𝑖
𝑗𝑗 choose the one 𝑋̃𝑋𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 with the minimal entropy loss]; 
• [assign 𝑋̃𝑋𝑖𝑖 = 𝑋̃𝑋𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ; 𝐻𝐻(𝑋̃𝑋𝑖𝑖) = 𝐻𝐻(𝑋̃𝑋𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)]; 

     EITHER: CASE “Dichotomy”:            IF:  𝐻𝐻(𝑋̃𝑋0)
𝐻𝐻(𝑋̃𝑋𝑖𝑖) ≥ 2, … 

     OR:         CASE “Golden Ratio” :         IF:  𝐻𝐻(𝑋̃𝑋0)
𝐻𝐻(𝑋̃𝑋𝑖𝑖) ≥ 1+√5

2 ≈ 1.618, … 

… THEN (FOR BOTH CASES): assign 𝑋̃𝑋 = 𝑋̃𝑋𝑖𝑖 ;  𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐻𝐻(𝑋̃𝑋𝑖𝑖)  and STOP ALGORITHM; 
• ELSE: continue to (*) … 

----------------------------------------------------------------------------------------------------------------------------- ---------- 
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After getting the intended “part” of the image and the entropy-based evaluations (𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) for both: image 

and its part, we can  use: either any of the cases for the SoftMax refinement option (formulas (6), (6a), (6b), and (6c)); 
or any of the cases for the Basic refinement option (formulas (7), (7a), (7b), and (7c)).  

5.2. An entropy-aware “sliding focus” unbiased refinement schema 

The “sliding focus” refinement schema (section 4) uses the same size frame to collect all intended parts of the 
original image to be used for further classification and ∀𝑖𝑖(𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). In the new entropy-awareness context, 
these weights (or corresponding entropies) could be different for different parts collected by the sliding frame. 
Therefore, we have to change a simple average formula (9) to a weighted average. The computational schema for the 
“sliding focus” refinement from section 4 is updated here by the formulas (13), (14) and (15) as follows: 

 
𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐻𝐻(full) = 𝐻𝐻(𝑋𝑋);         (13) 

𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖∙𝑝𝑝𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑔𝑔
𝑖𝑖=1
∑ 𝑝𝑝𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑔𝑔
𝑖𝑖=1

, where 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 𝐻𝐻(parti);      (14) 

𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1
𝑔𝑔 ∙ ∑ 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑔𝑔
𝑖𝑖=1 .         (15) 

6. From pixels to features (deep “semantic” refinement schemas) 

Similar schemas as discussed above, which are supposed to work on the level of pixel representation of an image, 
could be adapted also to the level of the features discovered from the image. It is known that convolutional layers of 
a CNN architecture discover the features of an input image with respect to its location in the image; and then these 
features are used by the rest (fully-connected layers) of the network to classify an image (compute probability 
distribution among the possible classes). 

A generic schema of CNN capable of the “decontextualize-and-extrapolate” refinement at the level of features 
(i.e., semantic level) is illustrated in Fig. 4. One can see that, in addition to the normal information flow in the network, 
which uses all the discovered features for classification, there is a parallel information flow, which uses only particular 
cuts from the feature maps (i.e., decontextualized from the rest of the features “parts”). Both flows result in probability 
distributions 𝑝𝑝𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝑝𝑝𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , which are used to compute the refined distribution 𝑝𝑝𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟  using analytics, which has 

already been described in the paper. The only (fortunate) specific here is that the feature maps already represent the 
values of the presence of particular features within image locations, and, therefore, just sums of values within the 
chosen frames can be used to measure 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (i.e., no need for specific entropy computing).  

7. Summary of the experiments 

For fast check of the suggested analytics, we did image classification experiments with the public and popular 
image dataset Kaggle (“Cats and Dogs” Dataset: www.microsoft.com/en-us/download/details.aspx?id=54765), which 
contains 50K colored images of various cats and dogs. For fair comparison, we have not used any pre-trained models. 
We have trained the baseline CNN model and we have tested it without and with different refinement enhancements 
to compare various approaches. 

Table 1 contains examples of our experiments. We may see that refinement improves classification in all the 
refinement cases, even for such a relatively simple dataset for ML. As expected, unbiased refinement performed a bit 
better than a biased one and the semantic (feature) refinement shows the best test accuracy. However, processing time, 
especially for entropy-aware computing, is essentially higher than for the baseline model (subject of optimization).  

For making the final judgement about the hidden potential of the discussed “decontextualize-and-extrapolate” 
refinement techniques for improving image (and, possibly, not only image) classification, one would need many more 
experiments with different datasets. This is planned as an objective for our future studies.  
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Fig. 4. A generic schema of “semantic refinement” (at the level of features) of image classification within a CNN architecture. The full discovered 
feature content (after convolutional layers) goes as usual through the fully-connected layers of the already trained CNN and gives one probability 
distribution as a result. The pruned feature content (after cutting away the features outside the chosen part(s)) goes through the same layers and 
gives another probability distribution as a result. Finally, both computed distributions go through the “Decontextualization” component of the 
analytics, which will compute the resulting and refined probability distribution as the final outcome of the input image classification. 

     Table 1. Comparisons of classification accuracy of CNN alone and several options of CNN + refinement over the Kaggle dataset images. 

Baseline  CNN 
model (without pre-
training and without 
refinement) … + … 

… + “Just-one-
part” (SoftMax, 

“Golden 
Ratio”). 

… + “Just-one-
part”   (Basic, 

“Golden 
Ratio”). 

… + “Sliding 
Focus” (Basic, 

“Golden 
Ratio”). 

… + “Entropy 
Aware”/“Just-

one-part” (Basic, 
“Golden Ratio”). 

… + “Entropy 
Aware”/“Sliding 
Focus” (Basic, 

“Golden Ratio”). 

… + “Semantic”/ 
“Sliding Focus” 
(Basic, “Golden 

Ratio”). 

82.11 83.02 83.19 84.55 83.98 84.71 85.34 
 

8. Conclusions 

Data-driven decision-making under uncertainty is an important concern of Industry 4.0 [13]. Image classification 
is an important topic within this agenda. In this paper, we suggested an approach (“decontextualize-and-extrapolate”) 
to refine (improve) the outcomes of already trained ML classifiers, particularly of CNNs for image classification. We 
are talking here about images just with one object to be classified (recognized) and not about semantic segmentation 
(image clustering to capture different objects). We have based our analytics on the assumption that classification 
outcome for the image as a whole (i.e., getting a probability distribution among possible classes) will benefit from 
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classifying part(s) of the image separately (i.e., getting a probability distribution(s) among the same set of possible 
classes for the part(s)) and then combining these distributions in the extrapolation manner. 

The intuition behind our approach is as follows: if you assume that Outcome (entire image) = FULL; Outcome 
(part of the image) = PART, then the refined classification result Outcome (Abstract image, wider than the original 
one) = RES, will not be a value between FULL and PART, but it can be obtained as extrapolation of these two. This 
means that our method assumes that any object to be classified does not contain all the information for perfect 
classification and, therefore: (a) there is no way to get more information from outside the object; we take some part(s) 
of the available information (“decontextualize” them from the rest of the image) to classify the same object even 
having less information available for that; (b) we discover the trend of the classification result change from less to 
more information; (c) finally, we use the trend to guess (“extrapolate”) what would be the classification result if we 
have even more information that the original object has. Suggested refinement analytics provides different options for 
making such an extrapolation at different layers of information about the object to be classified: from the “surface” 
layer (e.g., pixels of an image) to the “semantic” layer (e.g., discovered feature maps from an image).  

Our preliminary experiment on a public dataset provides certain optimism towards the validity of the suggested 
refinement techniques. However, many more experiments are still foreseen to discover the full hidden potential or the 
suggested approach. The nearest plan for our future research is to check the analytics with the datasets related to the 
security of the industrial logistics processes within the IMMUNE project [14]. 
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