
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY-NC 4.0

https://creativecommons.org/licenses/by-nc/4.0/

Segmentation boundaries in accelerometer data of arm motion induced by music :
online computation and perceptual assessment

©2022 Mendoza, and the Centre of Sociological Research, Poland

Published version

Mendoza Garay, Juan Ignacio

Mendoza Garay, J. I. (2022). Segmentation boundaries in accelerometer data of arm motion
induced by music : online computation and perceptual assessment. Human Technology, 18(3),
250-266. https://doi.org/10.14254/1795-6889.2022.18-3.4

2022



 

 

 

 

                                                                              ISSN: 1795-6889 

https://ht.csr-pub.eu                                                                                                       Volume 18(3), December 2022, 250-266 

250 

 

 

SEGMENTATION BOUNDARIES IN ACCELEROMETER DATA 
OF ARM MOTION INDUCED BY MUSIC:  

ONLINE COMPUTATION AND PERCEPTUAL ASSESSMENT 
 
 
 
 
 
 
 

Abstract: Segmentation is a cognitive process involved in the understanding of 

information perceived through the senses. Likewise, the automatic segmentation of data 

captured by sensors may be used for the identification of patterns. This study is 

concerned with the segmentation of dancing motion captured by accelerometry and its 

possible applications, such as pattern learning and recognition, or gestural control of 

devices. To that effect, an automatic segmentation system was formulated and tested. 

Two participants were asked to ‘dance with one arm’ while their motion was measured 

by an accelerometer. The performances were recorded on video, and manually 

segmented by six annotators later. The annotations were used to optimize the automatic 

segmentation system, maximizing a novel similarity score between computed and 

annotated segmentations. The computed segmentations with highest similarity to each 

annotation were then manually assessed by the annotators, resulting in Precision 

between 0.71 and 0.89, and Recall between 0.82 to 1. 

 

Keywords: gestural interface, perceptual evaluation, temporal segmentation, 
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INTRODUCTION 
 

The advancement in miniaturization of accelerometers, gyroscopes and magnetometers has 

made it possible to develop portable and wearable systems that sense the movement of the 

human body. This has opened doors for many applications in a vast range of domains. Many 

such applications require identifying segmentation boundaries within movement, that is, 

where data changes from one regime to another. Following this, the detected segments can be 

classified or clustered. Some methods detect segmentation boundaries in the same process 

that performs classification or clustering. Examples of applications that use these processes 

include systems for detecting, recognizing and monitoring activities for clinical diagnosis or 

assisting in sports training (Cornacchia, Ozcan, Zheng, &Velipasalar, 2017).  

The focus of the current study was to identify segmentation boundaries within the 

movement of a person dancing. In a practical application, the detected segmentation 

boundaries may be used to control playback of sound, music or lighting, for example. The 

movement of the dancer may be sensed in a number of different ways, but this study focuses 

on the use of a single triaxial accelerometer. The output is the time when a segmentation 

boundary has occurred, with respect to real time. Then, this information may be used for the 

control of a separate process (e.g., triggering events) or for machine-learning processes such 

as clustering or classification of the found segments.  

It is desirable that the result of the segmentation system is produced fast enough for near-

real-time interaction. Also, it is necessary that the motion segments are meaningful to an 

observer. In other words, motion segments produced by the system should match the 

segments perceived by an observer. The meaningfulness of motion segments would 

additionally facilitate the learning of motion patterns and mappings to audio or visual effects. 

To that extent, it must be acknowledged firstly, that human perception of bodily movement is 

highly subjective (Bläsing, 2015; Kahol, Tripathi, & Panchanathan, 2004; Zacks, Kumar, 

Abrams, & Mehta, 2009) and is hierarchically structured such that short patterns are grouped 

into larger ones (Bernard, Dobermann, Vögele, Krüger, Kohlhammer, & Fellner, 2017; 

Dreher, Kulp, Mandery, Wächter, & Asfour, 2017; Krüger, Kragic, Ude, & Geib, 2007; Lin, 

Karg, & Kulić, 2016). Also, it must be taken into consideration that dance patterns may or 

may be not repetitive. Thus, the system must be capable of detecting repetitive and non-

repetitive patterns, and must allow the user to make adjustments to obtain perceptually 

meaningful results.  

The algorithm described by Foote (2000) for segmentation of digital audio was found to 

be an appropriate candidate for segmentation of dance movement. This algorithm has 

subsequently been used for segmentation of video (Foote & Cooper, 2003), and of dance 

motion based on speed extracted from video (Tardieu et al., 2009). It has also been used to 

identify boundaries between activities such as walking, jogging and sitting, in single-axis 

accelerometer data (Rodrigues, Probst, & Gamboa, 2021). While most published 

implementations are online (i.e., data is processed serially as it is input to the algorithm), 

Schätti (2007) described an online implementation for segmentation of an audio signal. Also 

these implementations have been tested on data whose segments span several seconds or 

minutes (e.g., sections of a song, walking).  Therefore, the current study has focused on the 

adaptation of an online version of the algorithm to work with a triaxial accelerometer signal, 

and the assessment of its capability to meet the requirements of the intended application. The 
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contributions of the present study are, first, the application and testing of the segmentation 

algorithm at a smaller time-scale (i.e., short dancing patterns spanning a few seconds), and a 

more robust perceptual assessment than those used in previous work. The second contribution 

is a novel measure to evaluate the similarity between computed and perceived segmentation 

boundaries.  

This report is structured as follows: The remainder of the introduction presents a succinct 

review of the state-of-the-art methods that most closely meet the requirements stated above, 

including unsupervised near-real-time detection of segmentation boundaries, boundaries of 

self-similarity checkerboard patterns, and assessments of effectiveness. In favor of a timely 

report, a comprehensive comparison of different techniques is out of the scope of this study. 

Following this, the Methods utilized and the Results so obtained are reported. Finally, the 

Conclusion provides a summary of the study, including directions for future work.  

 

Unsupervised Near-Real-Time Detection of Segmentation Boundaries  
 

Several algorithms that detect segmentation boundaries and give results in near-real-time 

have been tested with data from accelerometers. For example, Gharghabi et al. (2019) 

described a method that evaluates the similarity in shape –but not in statistical properties– 

between all fixed-length windows within a bigger window, the length of which is specified 

by the user. A segmentation boundary is recorded where the similarity is minimal. This 

method assumes that each segment will be composed of at least two instances of a periodic 

motion. 

Another approach is to pose the task as a multivariate change-point detection problem 

(Endres, Christensen, Omlor, & Giese, 2011; Gong, Medioni, & Zhao, 2014; Krüger et al., 

2017; Zhou, De la Torre, & Hodgins, 2012). Essentially, a change-point indicates a difference 

in statistical properties of the data within a sliding window (Aminikhanghahi & Cook, 2017; 

Fathy, Barnaghi, & Tafazolli, 2018; Liu, Yamada,  Collier, & Sugiyama, 2013; Patterson et 

al., 2016). The sliding window is a free parameter that adjusts time-scale (i.e., granularity). 

Depending on the method, other free parameters may need to be adjusted. Zameni et al. 

(2020) described a method that efficiently identifies segmentation boundaries in signals that 

can be highly dimensional. This method has initialization parameters, but no parameters that 

can be used to explicitly adjust time-scale or relevance. The cited systems were tested with 

various types of data. When the test data had been recorded by triaxial accelerometers, the 

tests aimed to segment activities that take at least a few seconds to complete. However, 

segments of dancing motion may range from less than a second to more than a few seconds.  

 

Boundaries of Self-Similarity Checkerboard Patterns 
 

The detection of change-points in motion data can be seen as equivalent to novelty detection, 

which is the identification of abrupt changes in data by a system, without training of the 

system (Markou & Singh, 2003). Foote (2000) described a method suitable for finding 

segmentation boundaries in musical audio signals. This method exploits the characteristic 

checkerboard patterns that can be observed in a self-similarity distance matrix of audio 

features through time, by correlating a checkerboard kernel along the diagonal of the matrix. 

This results in a novelty score that indicates the rate of change in the data. The peaks of the 
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novelty score indicate change-points that correspond to perceived changes in the music. The 

granularity of the novelty score is adjusted with the width of the kernel and relevant peaks 

can be selected over a threshold. 

 

Assessment of Effectiveness 
 

To measure the effectiveness of segmentation algorithms, most published studies have relied 

at least to some extent on classic measures of precision, recall and accuracy, by comparing 

human-annotated ground truth boundaries annotated by one or more people with computed 

boundaries. These measures work well for classification problems in which the options are 

either “match” or “not a match” between a computed boundary and a ground truth boundary. 

Dreher et al. note that a computed segmentation boundary being only slightly different to the 

ground truth should be counted as a match. This is usually solved by establishing a window 

around each ground truth boundary. A computed point is deemed to be a true positive if it lies 

within that window. This approach was used in the study by Zameni et al., for example. 

Dreher et al. proposed a method that involves a window weighted with a normal distribution. 

However, the problem with this approach is that the window’s width is fixed while there is no 

certainty that any given width will correspond to the true probability distribution for the 

occurrence of a boundary, for all boundaries. It is not possible to generalize the temporal 

length of the transition from one motion to another. In contrast, the evaluation method used 

by Gharghabi et al. consists of a score that measures the temporal distance between each 

computed boundary and the closest boundary in the ground truth. All the distances are added 

and then divided by the total time. However, this score does not penalize extra or missing 

computed boundaries, which is problematic as there is no certainty that the number of 

annotated and computed boundaries will always be the same. Lin et al. (2013) describe 

another approach for evaluation of results, in which all frames in the ground truth segments 

are labelled and the number of frames in the computed segments corresponding to the ground 

truth-labels constitute the measure of similarity. This last method might be appropriate for 

classification of segments but it might be too restrictive for evaluating only the boundaries. 

This is because boundaries of short false-positive computed segments (e.g., transitions 

between motions) will break the continuity of parallel labelling resulting in a very high 

dissimilarity score. Mendoza (2014), and also Mendoza and Thompson (2017), proposed 

similarity scores that measure the distance between ground truth and computed boundaries as 

in the method by Gharghabi et al., but also penalize missing or extra computed boundaries.  

 

The Present Study 
 

The following section describes the implementation of Foote’s algorithm for the 

segmentation of accelerometer data. Then, an experimental assessment is described in which 

ground truth is used to tune the algorithm’s free parameters using a revised version of the 

similarity measure by Mendoza and Thompson. In contrast to previous studies, the computed 

results are not assessed by means of a similarity measure but manually by the same 

annotators who provided the ground truth.  

METHODS 
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Detection of Segmentation Boundaries  
 

This subsection describes the method for finding temporal segmentation boundaries, focusing 

on its online implementation and its adaptations to work with accelerometer data. A succinct 

description of the original offline version is provided. For details of the algorithm in general 

and the offline version, the reader is directed to the original source (Foote, 2000).  

The offline version of the algorithm has as input data stored in memory, which has been 

sampled at regular intervals. This data is represented by the matrix 𝑀 ∈ ℝ, so that 𝑀1:𝑚 =
[𝐹1, 𝐹2 … 𝐹𝑚]Τ. Each frame 𝐹 at time-index 𝑡 ∈ {1 … 𝑚} contains data for each sample. A 

distance matrix 𝐷 ∈ ℝ𝑚×𝑚 is computed for all data in 𝑀. 𝐷 is a self-similarity matrix. A 

two-dimension checkerboard kernel is produced by the Kronecker product of checkerboard 

matrix 𝐶 and only-ones matrix 𝐽 of width 𝑛 as follows: 

 

 𝐶 = [
−1 1
1 −1

]         (1) 

 

K = C ⊗ J         (2) 

   

𝐾 is then tapered by multiplying it element-wise with a two-dimensional Gaussian (i.e., a 

normal distribution). Next, 𝐾 is correlated along the diagonal of 𝐷. The result of this 

correlation is novelty score 𝑁, the peaks of which indicate the locations of segmentation 

boundaries. The peaks can be selected by a threshold 𝜃, discarding peaks of lower values that 

might be irrelevant. Hence, 𝑛 and 𝜃 are free parameters for granularity and peak relevance, 

respectively. 

The online version of the algorithm consists in 𝑀 being a stream of data frames 𝐹𝑡 =
(𝑓𝑥

𝑡, 𝑓𝑦
𝑡, 𝑓𝑧

𝑡), sampled at regular intervals, containing the three axes of the accelerometer. A 

window of 𝑛 frames is stored in a buffer 𝑊𝑛𝑜𝑣 (Figure 1a). For each incoming frame, the last 

frame in the buffer is removed while the current frame is stacked in the first position, and 

distance matrix 𝐷 ∈ ℝ𝑛×𝑛  is computed for 𝑊𝑛𝑜𝑣 (Figure 1b). In this study, Euclidean 

distance was used. Then, the inner product between Gaussian-tapered checkerboard kernel 𝐾 

and 𝐷 is computed, resulting in a new point in novelty score 𝑁 (Figure 1c).  
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Figure 1.  Online detection of temporal segmentation boundaries. Horizontal axes represent time. (a) is 

triaxial accelerometer data. (b) is self-similarity matrix 𝐷 of data in the buffer 𝑊𝑛𝑜𝑣, where lighter shades 

represent more distance. (c) is novelty score 𝑁, where the vertical dotted line indicates the current result. 

(d) is the smoothed novelty score 𝑁′, where 𝜃 is a threshold and the point in a circle is the selected peak 

indicating a segmentation boundary. Note that this visualization shows 𝑁 and 𝑁′ aligned in time, but in 

practice there will be a lag due to the low-pass Gaussian filter and the test for a peak. 

 

When tested, 𝑁contained many irrelevant peaks. Therefore a low-pass filter was applied. 

The filter used in this study was a one-dimension Gaussian kernel with minima zero and unit 

area to prevent artefacts at borders and to preserve scale, respectively. This filter is computed 

upon a second buffer 𝑊𝑓𝑖𝑙𝑡 having the size of the one-dimensional Gaussian 𝑛𝑓𝑖𝑙𝑡, resulting in 

a smooth novelty score 𝑁′. Finally, if the current novelty score value is a peak over threshold 

𝜃, it is considered a segmentation boundary (Figure 1d). Identification of peaks requires 

another buffer of only three samples to test a local maximum. Hence, the identification of a 

novelty peak has lag 

 

𝑙 =  
𝑛+ 𝑛𝑓𝑖𝑙𝑡

2
+ 3         (3) 

 

with respect to the current incoming frame.  

 

Since self-similarity matrix 𝐷 is symmetric, it is necessary to compute only half of it, 

either the upper or lower triangle, without the diagonal. Also there is no need to compute the 

whole triangle for each new frame. It is only needed to initialize matrix 𝐷 with allocation 

values (e.g., zeros), then compute the distance between the current frame and all the other 

frames in the buffer. Then, compute the inner product of the upper or lower triangle of 𝐷 and 

the corresponding triangle of 𝐾. This will output the current novelty value. Then the values 

within 𝐷 are shifted, discarding the distances between the oldest frame and the newer ones. 
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This operation reallocates memory indexes, which takes much less computation time than 

redundant computation of distance.  

The time-scale of the segments may be adjusted dynamically with parameters 𝑛 and 𝜃. 

This may be accomplished by fixing the ratio between parameters 𝑛𝑛𝑜𝑣 and 𝑛𝑓𝑖𝑙𝑡, so that 

parameter 𝑛 modifies the size of buffers 𝑊𝑛𝑜𝑣 and 𝑊𝑓𝑖𝑙𝑡 at the same time. When changing 𝑛, 

a new checkerboard kernel may be computed, or a kernel may be selected from many that 

might have been previously computed and stored in memory. Because of the operations on 𝐷 

and 𝐾, the asymptotical memory complexity is 𝑂(𝑛2) while computing-time complexity is 

linear. However, in practice 𝑛 may not grow too much to present a concern, as its size would 

be limited to the intended granularity and may be reduced by reducing the sampling rate. 

 

Accelerometer Data Collection 
 

Two participants, one female and one male, provided motion data to test the segmentation 

method. This data was collected at the motion-capture laboratory of the department of Music, 

Art and Culture Studies at the University of Jyväskylä. These participants are referred to as 

dancers to differentiate them from the participants that provided data for the ground truth and 

perceptual assessment (see subsection “Ground truth annotation”).  

 In individual sessions, the dancers were asked to “dance with one arm” while holding 

with the corresponding hand a Nintendo Wii-remote controller. They were asked to move to 

the music, without displacement of the body, and always facing one corner of the room. 

While these conditions may not generalize to all dancing scenarios, they provided a clear 

view of the moving arm to a video camera. Video recordings were later used for manual 

annotation. The elimination of the random variable of orientation facilitated the annotation 

task. Also it simplified the analysis, thus making it possible to focus on first solving the 

segmentation problem in a simple condition before embarking on a more complex scenario.  

The dancers were told that other than these constraints, they could move as they wanted.  

Three musical stimuli were presented through loudspeakers: 

1. “Minuet” (Petzold, ca. 1725) MIDI rendition with piano sound, from beginning to end 

(104 bars, duration 92.5 s.) with no fade-in or fade-out. It has a ternary metre (3/4, or 

three beats per bar). Both participants declared to know this piece. 

2. “Ciguri” (Otondo, 2008) from 56 to 183.7 s. (duration 122.7 s.) with fade-out the last 

5 s. This is an electroacoustic piece that has no perceivable beat and therefore no 

metre. Both participants declared to not know this piece. 

3. “Stayin’ Alive” (Gibb, Gibb, & Gibb, 1977) from the beginning to 108.5 s. with fade-

out the last 2.3 s. It has a binary metre (4/4, or four beats per bar). Both participants 

declared to know this piece. 

The number of performances amounted to six. This was deemed enough for this study as 

they provided variety: musical genre, metre, familiarity and the gender of the participants. 

These characteristics would permit to observe to some extent their effect on the test. 

Furthermore, later these performances were used for the task described in the next section 
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(“Ground truth annotation”). More performances would have extended the annotation task 

implying the risk of abandonment or fatigue, the latter reducing the reliability of results.  

Stimuli were presented in the order listed above and each stimulus was presented twice. 

During the first presentation, participants were asked to move freely within an area of about 

4m2, to familiarize themselves with the stimulus. For the second presentation, participants 

were asked to dance with one arm as described above. Data of the performances were 

recorded as follows: 

• Accelerometer: The Nintendo Wii-remote has a triaxial accelerometer, which 

transmits data in real-time via Bluetooth. This stream was received and recorded by a 

computer at a rate of 100 Hz, using custom-made software. 

• Video: A digital video camera recorded video showing the participant’s whole body 

against a white wall. Both participants used their right arm, and were recorded so the 

image clearly showed the moving arm. 

• Audio: Digital audio was captured by the microphone of the video camera and by a 

microphone hanging from the ceiling. The latter was recorded to a digital audio 

workstation synchronized with the recording of accelerometer data. These signals 

were subsequently used to synchronize video and accelerometer data. 

Ground Truth Annotation 
 

Six participants (3 male, 3 female) were recruited to identify segmentation boundaries in the 

one-arm-dancing videos. None of them had participated in the data collection described in the 

previous section. Their ages ranged from 26 to 34 years, with a median age of 27. All were 

non-Finnish international students at the University of Jyväskylä. All had completed at least 

an introductory course in music psychology, covering an introduction to perception and 

segmentation. These participants are referred to as annotators, to differentiate them from the 

dancers who performed the one-arm dance (see subsection “Accelerometer data collection”). 

 Each annotator, in an individual session, was asked to watch the videos and identify 

segmentation boundaries in two conditions. In the first condition, the videos with audio were 

presented by a computer running custom-made software. The annotators were instructed to 

press a key when a boundary was identified, in real time. The time of the key relative to the 

video was recorded by the computer. They had only one chance to perform the task. It was 

thought that the music in the video may influence the responses as auditory cues, such as 

pitch or rhythm, and could be used to judge the existence of a boundary. For the second 

condition, the videos without audio were presented by the computer running a digital audio 

editor software. In this condition, participants could freely play the video, pause, scroll 

forward and backwards, place markers and adjust the location of the markers until they were 

satisfied. In this condition, the annotators did not have a limit of time for the task and the 

annotation was based solely on visual information.  

 The following were the instructions to the annotators, common for both conditions: 

 “You will be presented with six videos, each lasting around two minutes. Each video 

shows a person 'dancing' with an arm. When doing this, the person does distinct patterns 

with the arm. A pattern is composed by one distinct movement or several repetitions of the 
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same movement. When the video is playing press the space bar to indicate a change in 

pattern. Focus in the movement of the arm holding the white device (it is a sensor).” 

 The two annotation conditions represented different approaches for perceived 

segmentation. To assess their suitability, the annotators were interviewed after completing the 

tasks. They were asked to verbally express what they considered to be difficult or easy about 

the tasks. All participants mentioned that, in the real-time annotation task, their responses 

might have been influenced by the music and they were less precise than in the non-real-time 

condition. The reasons mentioned for this included that in the real-time condition the 

responses might have been anticipated as an effect of the music. Also, it was mentioned that, 

in the real-time task, it was more difficult to press the button exactly at the intended time, 

thus preventing a response to be recorded accurately or in some cases at all. All participants 

expressed that the non-real time condition allowed for more precise responses, as they could 

take time to revise them. Because of this, the data relating to real-time audiovisual annotation 

was deemed inappropriate for use as a ground truth. Thus, non-real-time visual annotation 

was chosen as ground truth for perceived segmentation boundaries. 

 
Optimization using similarity based on distance and rate of paired elements 
 

A grid search was performed to maximize the similarity between annotated (ground truth) 

and computed segmentation boundaries, by modification of parameters n and θ. This search 

was performed independently for each accelerometer recording and their corresponding 

annotations, mimicking the adjustment that might be achieved manually by an end-user or 

automatically by a machine-learning procedure. Similarity was evaluated by distance and 

penalization of extra or missing boundaries, improving previous work (Mendoza, 2014; 

Mendoza & Thompson, 2017).  

 Consider vectors 𝑎 and 𝑏 containing the time indexes of annotated and computed 

segmentation boundaries, respectively. 𝐿 is the length, in samples, of the corresponding 

recorded data, from the start to the end of the musical stimulus. 𝑛𝑎 and 𝑛𝑏 are the number of 

boundaries, or length, of 𝑎 and 𝑏 respectively. In any case  𝑛𝑎 ≥  𝑛𝑏 or vice-versa. Each 

element in 𝑎 is paired to the closest element in 𝑏, so that 𝑎′ and 𝑏′ are vectors containing only 

the paired elements and have equal lengths 𝑛𝑝 (equivalent to the shortest between 𝑛𝑎 and 𝑛𝑏). 

Then, the following measures are computed: 

 

 

Closeness: 

𝑐 = 1 −  
1

𝐿
∑ |𝑎𝑖

′ − 𝑏𝑖
′|

𝑛𝑝

𝑖=1
         (4) 

 

Rate of paired elements: 

𝑝 =  
2𝑛𝑝

𝑛𝑎+𝑛𝑏
            (5) 

 

Similarity: 

𝑆 = 𝑐 ∙ 𝑝 , 0 ≥ 𝑆 ≥ 1          (6) 
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 The distance between paired boundaries is the absolute time difference, as shown in 

equation 4. Note that two boundaries of either sequence (a or b) may be paired with a single 

boundary in the other sequence if their distances are equal. Also, if 𝑛𝑎 and 𝑛𝑏 are not equal 

and there are no equidistant boundaries to compensate for that inequality, then some 

boundaries will not be paired and this will be penalized by the rate of paired elements 

(equation 5).  A Monte Carlo simulation was computed with pseudo-random 𝑎 and 𝑏, for 𝐿 =
1000, with 𝑛𝑎 and 𝑛𝑏 in the range {1. . . 𝐿 − 1}, and 104 iterations. The distribution for the 

resulting 𝑆 values has an upper 𝑝-value of 0.05 at 𝑆 =  0.66. 

 

Perceptual Assessment 
 
The perceptual assessment was made by the same annotators that provided the ground truths. 

For each annotator, the annotated and computed boundaries with highest similarity were 

selected. This means that the assessment is for the 'best case scenario'. For each of these 

sequences of boundaries a video was produced embedding a scrolling timeline with 

consecutive numbers for boundaries into the corresponding video that was annotated (Figure 

2). 

 Three videos were produced for each annotator. One had markers for their original 

annotation, to measure the extent of agreement they would have with the annotation they had 

previously made. A second video had markers for the computed boundaries. A third video 

had a confounding sequence of boundaries produced by placing a marker in the middle of the 

segments bounded by the average point for each pair of paired annotated and computed 

boundaries. The videos with confounding boundaries were intended to reduce the chance of 

annotators realizing that one of the sequences was their own annotation, and the responses to 

those videos were not analyzed. 

 

 
 

Figure 2.  Example frame of a video shown to an annotator for perceptual assessment.  

The same video without the numbered markers had been used for annotation. 
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The videos contained no audio, as the annotations used in the computation of boundaries 

corresponded to video without audio. Each video was embedded in a webpage and had on-

screen controls that could be activated with a pointing device (e.g., mouse, trackpad) to play, 

stop, scroll forward and backwards. The pages were presented in random order by an 

automatic system that also recorded responses. Each page consisted of instructions, the video 

and a list of numbered items, one for each marker. Each item in the list had two buttons that 

could be selected by clicking on them. One button was to answer “yes, there is a change in 

pattern” and was recorded as a confirmed boundary. The other button was to answer “no, 

there is no change in pattern” and was recorded as a rejected boundary. This assessment is 

used in replacement of the paradigm used in previous studies that considered a computed 

boundary to be correct if it is within a window around a ground truth boundary. It has the 

advantage of not needing to specify a fixed window. 

 The definition of the task was identical to the one given for the annotation task. One 

distinct questionnaire was produced for each annotator with the corresponding videos. This 

questionnaire did not reveal how the segmentation sequences were produced. After 

completing each page all responses were recorded and options were shown to immediately 

continue to the next page or to continue later. The annotators were asked to complete the 

questionnaire in their own space and time, using their own computers and to take as much 

time as they needed.  

 The decision to assess the best-case-scenario boundaries was made after testing the 

questionnaire. This test was done with different participants who would take up to 50 minutes 

to complete a questionnaire with three videos. It was decided that the questionnaire should 

not exceed three videos, to prevent fatigue and abandonment. 

 The data obtained from the questionnaires was processed to obtain the following 

relevance measures: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑) =  
𝑛𝑐𝑏

𝑛𝑏
         (7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑) =  
𝑛𝑐𝑏

𝑛𝑐𝑏+𝑛𝑐𝑎−𝑛𝑝
        (8) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑) =  
𝑛𝑐𝑎

𝑛𝑎
         (9) 

 

where 𝑛𝑐𝑏 is the number of confirmed computed boundaries (true positives), 𝑛𝑏 is the number 

of computed boundaries (true and false positives), 𝑛𝑐𝑎 is the number of confirmed annotated 

boundaries, 𝑛𝑝 is paired annotated and computed (𝑛𝑐𝑎− 𝑛𝑝 is false negatives), and 𝑛𝑎 is the 

number of annotated boundaries (true and false positives). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑) may be 

considered as an indication of the assessment’s reliability. It is not possible to obtain 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑) as false negatives would require the possibility of adding new 

boundaries, which was not part of the assessment task. 
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RESULTS AND DISCUSSION 
 

Computation of the grid search was performed with the recorded accelerometer data 

downsampled to 25 Hz. The standard deviation σ for the two-dimensional Gaussian that 

tapers K and the one-dimensional Gaussian smoothing filter for 𝑁′ were set to 𝜎 = 𝑛/5. The 

length of the one-dimensional Gaussian was set to n; that is, to the width of 𝐾 and 𝐷. The 

standard deviation of both Gaussians was searched within 𝜎 = {0.5,0.6, . . . ,2} seconds. Since 

recorded accelerometer data was used, computation was performed in non-real-time. 

Therefore, the filtered novelty score was rescaled to 0 ≥ 𝑁 ≥ 1 and the threshold for peak 

selection was searched within 𝜃 = {0,0.1, . . . ,0.5}. For real-time computation, these values 

would yield a lag time of l = {0.22, 0.24, ..., 0.52} seconds. Note that lag time does not 

consider computation time, which depends on the specific computing device used. 

 The highest lag time among the results is 0.5s, for the segmentation corresponding to 

Annotator 2, of Dancer 1, to "Minuet". The median lag time was 0.35s. Considering this time 

scale, this system is not suitable for any practical application that requires immediate 

perceptual real-time response (i.e., up to about 10 to 50 milliseconds). However, this lag time 

is suitable for applications in which the occurrence of a segmentation boundary is not to be 

acted upon immediately. For example, this delayed response may be mapped to a procedure 

that changes the stimulus music in such a way that it prompts the dancer to change the motion 

pattern, thus creating a feedback loop. Another use of this delayed response is to record the 

segments’ times, then compute statistics (e.g., mean, standard deviation) and use those for a 

larger time-scale control of music, lights or other actionable medium. Furthermore, the 

segmentation result may be used to produce a near-real-time visual or sonic display that may 

be useful in clinical applications and research in biomechanics, for example.  

 Tables 1 and 2, respectively, show values for maximum distance 𝑑 and similarity (𝑆) 

obtained in the grid search, where 𝑑 =  |𝑎′ − 𝑏′|. The distance is expressed in seconds. The 

minimum similarity value (𝑆 = 0.56) has a 𝑝-value of 0.39, while the minimum mean 

similarity value (𝑆 = 0.62) has a 𝑝-value of 0.17. These minimum values represent the worst 

performance of the automatic segmentation. The greatest mean 𝑆 values were found for the 

musical stimuli “Minuet” and “Stayin' Alive”, which both have a clear beat and were familiar 

to the dancers. Conversely, similarity is lower for “Ciguri”, which is a piece that has no clear 

beat and was not familiar to the dancers. This suggests that the effectiveness of the method 

may be directly related to both or either of these conditions: the presence of a clear beat, and 

the familiarity the dancers might have with the musical stimulus. Also the table shows that 

most maxima 𝑑 seem too large to indicate corresponding paired boundaries. Although this 

may be considered a limitation of the method, it is still possible that the highly distant 

computed boundaries are confirmed in the perceptual assessment. 
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Table 1. Maximum Distance (𝑑) in seconds, between Annotated and Computed Boundaries. 

  Dancer 1  Dancer 2 
Annotator  Minuet Ciguri Stayin’ Alive  Minuet Ciguri Stayin’ Alive 

1  3.80 2.52 2.62  2.33 6.07 2.11 
2  4.11 3.59 1.69  5.67 6.74 2.22 
3  4.53 7.87 1.96  3.60 5.31 2.84 
4  4.44 3.10 3.74  1.15 5.78 3.29 
5  3.82 6.31 2.79  2.13 2.27 0.73 
6  1.59 2.86 2.72  2.47 1.90 1.56 

mean  3.71 4.38 2.52  2.89 4.68 2.13 

 

Table 2. Similarity (𝑆) between Annotated and Computed Boundaries. 

  Dancer 1  Dancer 2 
Annotator  Minuet Ciguri Stayin’ Alive  Minuet Ciguri Stayin’ Alive 

1  0.64 0.66* 0.74*  0.71* 0.75* 0.83* 
2  0.76* 0.63 0.68*  0.82* 0.63 0.80* 
3  0.71* 0.60 0.68*  0.71* 0.68* 0.91* 
4  0.61 0.57 0.74*  0.82* 0.67* 0.74* 
5  0.66* 0.68* 0.73*  0.64 0.63 0.71* 
6  0.56 0.60 0.70*  0.64 0.61 0.74* 

mean  0.66* 0.62 0.71*  0.72* 0.66* 0.79* 

 
* 𝑝 ≤ 0.05 (not adjusted for multiple comparisons) 
 

 Table 3 contains relevance values for the case of maximum similarity for each annotator. 

The corresponding sequences of annotated and computed boundaries are visualized in Figure 

3. The fifth and sixth boundaries of Annotation 2 seem to be too far for any of them to 

correspond to the fifth computed boundary. However, this boundary was confirmed in the 

perceptual assessment. It is not possible to conclude whether this boundary corresponds to 

any of the annotated boundaries, or if it is a new boundary that was unseen at the annotation 

task (i.e., serendipity effect) or if it was a mistake made by the annotator in the assessment 

task. 

 
Table 3. Perceptual Assessment of Annotated and Computed Segmentation  

with Highest Similarity (𝑆) for each Annotator. 

Annotator Stimulus Dancer 𝑺 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 
(𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒅) 

𝑹𝒆𝒄𝒂𝒍𝒍 
(𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒅) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 
(𝒂𝒏𝒏𝒐𝒕𝒂𝒕𝒆𝒅) 

1 Stayin’ Alive 2 0.83 0.75 0.82 1 

2 Minuet 2 0.82 0.86 0.86 0.75 
3 Stayin’ Alive 2 0.91 0.89 1 0.67 
4 Minuet 2 0.82 0.71 1 0.71 
5 Stayin’ Alive 1 0.73 0.71 0.88 0.95 
6 Stayin’ Alive 2 0.74 0.80 0.92 0.86 

mean   0.81 0.79 0.91 0.82 
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Figure 3. Annotated and closest computed segmentation boundaries for each annotator,  

corresponding to Table 3. Full lines indicate confirmed and dotted lines indicate rejected. 
 

Another problem is that most annotators rejected boundaries that they had previously 

annotated, as shown by measure 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑). While these values are fairly high, 

some assessment responses look counter-intuitive. For instance, the third boundary of 

Annotation 4 is evidently close enough to its computed counterpart to be considered an exact 

match. However, the computed boundary was rejected as shown by the dotted line. Another 

example that may cast doubt on the perceptual task is the second and fourth boundaries of 

Annotation 3. These were rejected but their computed counterparts, even being noticeably 

very near, were confirmed. These odd assessment responses are not the norm, but they raise 

questions about the reliability of the perceptual tasks.  

The two aforementioned assessment problems may be solved by a revised questionnaire 

including a task that shows both annotated and computed boundaries in the same time line, 

thus making evident to the annotator the distance between them. In addition, the task would 

require the annotator to explicitly indicate the corresponding annotated boundary for each 

computed boundary and vice-versa, if such correspondence exists. Despite the drawbacks of 

the segmentation and assessment methods, the best-case scenario reveals very high Precision 

and Recall values. This is relevant as the best-case scenario is akin to the best possible re-

tuning that a user could make in a practical application scenario.  

A further limitation of this study is that the annotation and assessment tasks were done at 

different times. This explain the odd responses mentioned above. A possible solution would 

be to integrate annotation, automatic segmentation,  optimization, and assessment, into one 

procedure. 
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CONCLUSIONS 

This article has presented an adaptation, testing and perceptual assessment of a method to 

compute segmentation boundaries in accelerometer data. The method is based on an 

algorithm widely used for segmentation of digital audio (Foote, 2000). Experimental testing 

of the adapted and extended algorithm used accelerometer data of subjects moving their arm 

to music, as a simplistic form of dance, from which segmentation boundaries were computed. 

The fine tuning of the algorithm’s parameters was based on annotators’ responses, using a 

novel measure of distance of paired elements between computed and annotated boundaries, 

combined with penalization for missing or extra boundaries. Perceptual assessment, 

consisting of rejection or confirmation of computed boundaries, resulted in fairly high values 

for measures of relevance Precision and Recall. The segmentation procedure requires a 

context-dependent minimum time to produce a response, which in this study was maximum 

about half a second. This is suitable for systems that do not require an immediate response.  

 Future work on the perceptual assessment of segmentation boundaries should include a 

task to pair computed and annotated boundaries, in combination with the task to reject or 

confirm boundaries. It would also be useful to evaluate more and different input data 

modalities for computing segmentation, as well as manually or automatically learned features 

that might improve effectiveness. Furthermore, after the segmentation and assessment 

methods presented in this article are improved as mentioned, they should be incrementally 

tested on more complex motion and more realistic conditions. Possible next steps might be to 

attempt segmentation of dancing motion using both arms, legs, the full body, allow free 

displacement, different musical stimuli and so forth.  

 

 

IMPLICATIONS FOR RESEARCH AND APPLICATION 
 

This study has developed and tested a system to produce near-real-time segmentation 

sequences of accelerometer data. This system may be useful for proposing segmentation to a 

final user, making the process faster than manually. For example, the system could produce 

several sequences at different granularity levels, out of which the user selects the most 

appropriate. Likewise, a matrix of multigranular segmentation sequences may be used 

without any further screening by the user. As such, the system may see a number of practical 

applications, for example the inspection of data (e.g., identification of daily activity events in 

data recorded by a wearable accelerometer) or mapping the segmentation results to actionable 

processes (e.g., gestural control of music, lights, etc.). An important contribution of this study 

is the formulation of a novel non-parametric similarity measure based on distance and rate of 

paired elements. Although the measure was developed to assess similarity of segmentation 

sequences, it may be used to assess the similarity between any pair of sequences of ordered 

numbers. 
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Jyväskylä, email: juigmend@student.jyu.fi 

 

Human Technology  
ISSN 1795-6889 

https://ht.csr-pub.eu 

 


