
Miko Kiiski

UTILIZING AGILE METHODS IN CONTINUOUS
SOFTWARE DEVELOPMENT

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2022

TIIVISTELMÄ

Kiiski, Miko
Utilizing agile methods in continuous software development
Jyväskylä: Jyväskylän yliopisto, 2022, 59 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Abrahamsson, Pekka

Ohjelmat ja järjestelmät ovat osa kaikkien päivittäistä elämää. Teknologiat muut-
tuvat kiihtyvällä tahdilla, uusia innovaatioita syntyy ja toimintatavat voivat
muuttua yhdessä yössä maailman tilanteen mukaan. Ihmisten ja organisaatioi-
den tarpeet muuttuvat nopealla syklillä. Muutokset markkinoilla ja liiketoimin-
taympäristöissä vaikuttavat siihen, että organisaatioiden on reagoitava nopeasti
ja pystyttävä vastaamaan muutoksiin. Organisaatioiden on pystyttävä ylläpitä-
mään ja parantamaan omia sovellus- ja ohjelmistokehitysprosessejaan, mikäli ai-
kovat pysyä kilpailijoiden edellä. Organisaatiot pyrkivät vastaamaan muutoksiin
hyödyntämällä ketteriä menetelmiä ohjelmistokehityksessä. Ketterien ohjelmis-
tokehitysmenetelmien hyödyntämiseen on tarjolla useita erilaisia viitekehyksiä
ja käytänteitä. Haasteita tuottaakin oikeiden tapojen valinta ja niiden hyödyntä-
minen käytännössä ohjelmistokehityksessä. Uusimpien menetelmien joukossa
on jatkuva ohjelmistokehittäminen, jonka tarkoitus on tehdä ohjelmistotuotan-
nosta yksi yhtenäinen sykli, joka kulkee organisaation läpi.

Tutkielmassa toteutetaan laadullinen tutkimus, jonka on tarkoitus selvittää
ketterien menetelmien hyödyntämistä jatkuvan ohjelmistokehityksen saavutta-
miseksi organisaatiossa. Empiirinen aineisto kerättiin teemahaastatteluilla.
Haastateltavat työskentelivät eri rooleissa ohjelmistokehitystiimeissä.

Tutkimuksen tulokset osoittavat, että ketterien menetelmien suurimpia
haasteita on niiden konseptien ja termien määrittely sekä kouluttaminen. Havait-
tiin myös, että vaikka viitekehykset tunnetaan hyvin, niin niiden hyödyntäminen
käytännössä on haastavaa.

Asiasanat: ketterät ohjelmistokehitysmenetelmät, ketteryys, jatkuva
ohjelmistokehitys, haasteet

ABSTRACT

Kiiski, Miko
Utilizing agile methods in continuous software development
Jyväskylä: University of Jyväskylä, 2022, 59 pp.
Information Systems, Master’s Thesis
Supervisor: Abrahamsson, Pekka

Software and systems are part of everyday life. Technologies change at an accel-
erating pace, new innovations are born and operating methods can change over-
night depending on the world situation. The needs of people and organizations
change in a fast cycle. Changes in the market and business environment mean
that organizations must react quickly and be able to respond to changes. Organ-
izations must be able to maintain and improve their own application and soft-
ware development processes if they intend to stay ahead of the competition. Or-
ganizations strive to respond to changes by utilizing agile methods in software
development. Several different frameworks and practices are available for utiliz-
ing agile software development methods. Choosing the right methods and using
them in practice in software development creates challenges. Among the latest
methods is continuous software development, the purpose of which is to turn
software production into one coherent cycle that runs through the organization.
 In the thesis, a qualitative study is carried out, which is intended to investi-
gate the utilization of agile methods to achieve continuous software development
in the organization. Empirical data was collected through thematic interviews.
The interviewees worked in different roles in software development teams.
 The results of the study show that the biggest challenges of agile methods
are defining their concepts and terms and training them. It was also observed
that although the reference frameworks are well known, their utilization in prac-
tice is challenging.

Keywords: agile software development, agile, continuous software
development, challenges

FIGURES

Figure 1 Scrum Framework according to Schwaber & Sutherland (2017) 15

Figure 2 Kanban board according to Kniberg & Skarin (2010) 17

Figure 3 Full SAFe configuration. (Scaled Agile Framework, 2022) 20

Figure 4 Essence Kernel Activity spaces (Ivar Jacobson International, 2022) 23

Figure 5 The Essence Cards (Ivar Jacobson International, 2022) 24

Figure 6 Essence Scrum cards (Jacob et al., 2022) ... 26

Figure 7 DevOps lifecycle (Alnafessah, 2021) ... 28

Figure 8 DevOps and BizDev (Fitzgerald & Stol, 2017) ... 29

TABLES

Table 1 Lean Principles (Poppendieck & Cusumano, 2012) 12

Table 2 SAFe Competencies (Scaled Agile Framework, 2022) 18

Table 3 Scrum essentialization categories (Jacob et al., 2022) 25

Table 4 Title and work experience of the interviewees .. 32

Table 5 Primary empirical conclusions... 46

Table 6 Primary empirical conclusions and relation to existing research 48

Table 7 Practical implications .. 50

TABLE ON CONTENTS

TIIVISTELMÄ
ABSTRACT
FIGURES & TABLES

1 INTRODUCTION ... 7

1.1 Motivation ... 7

1.2 Research questions .. 8

1.3 Structure of thesis .. 9

2 AGILE SOFTWARE DEVELOPMENT .. 10

2.1 Agile and lean... 10

2.1.1 Scrum ... 13

2.1.2 Kanban ... 16

2.2 Scaled agile ... 17

2.2.1 SAFe ... 18

2.2.2 LeSS .. 20

2.3 Challenges ... 21

2.4 Essence... 22

2.4.1 The Kernel ... 23

2.4.2 The language ... 23

2.4.3 Essence for Scrum... 25

3 CONTINUOUS SOFTWARE ENGINEERING ... 27

3.1 DevOps .. 27

3.2 BizDev ... 28

4 RESEARCH DESIGN .. 31

4.1 Goals of the empirical research .. 31

4.2 Data collection .. 32

4.3 Data analysis ... 33

4.4 Realiability and validity .. 33

5 EMPIRICAL FINDINGS .. 35

5.1 Development process .. 35

5.2 Agile teams ... 42

5.3 Software quality ... 44

5.4 Summary ... 46

6 DISCUSSION ... 48

6.1 Theoretical implications .. 48

6.2 Practical implications .. 50

7 CONCLUSIONS .. 52

7.1 Answers to the research questions .. 52

7.2 Limitations .. 53

7.3 Further research ... 53

REFERENCES .. 55

APPENDIX 1 ... 58

The agile methods in software development have been a topic of conversation for
a long time. Various methods, frameworks and practices have been created to
support software development. New methods are also constantly emerging, as
the ways of using software and the needs of customers and society change at an
accelerating pace. It is difficult for organizations to choose the right methods and
tools to support their own operations. We live at time where software is an in-
creasingly important part of everyday life. However, software are getting bigger
and more complicated to develop, this brings challenges to everyone working
around software development (Jacobson et al., 2022).

1.1 Motivation

Agile and Lean software development methods have grown in popularity
after release of the Agile manifesto in 2001. Organizations have taken steps to
improve their processes in software and product development. The benefits of
agile methods are beginning to be clear to all, however, their implementation and
utilization is not easy. Successful use of agile methods allows an organization to
improve productivity, accelerate the pace of development, and prepare the or-
ganization to face changes in a rapidly changing business environment. (Conboy,
Coyle, Wang & Pikkarainen, 2011.)

Based on agile and lean, many practices and frameworks have developed,
from which the organization and development teams have to choose the ones
that suit them best. Scrum framework is one of the most used agile methodology.
Elements of Scrum are to do software development in sprints. Activities that the
Scrum team implements are always repeated within the sprint, such as daily
scrum, sprint review and sprint retrospective. (Agh & Ramsin, 2021.) Scrum as
such is intended for a small software development team. For scaling agile meth-
ods to a larger group, different frameworks are also available.

1 INTRODUCTION

8

Scaled Agile Framework is one of the most used framework for scaling ag-
ile, it tries to bring all best practices together. (Ebert & Paasivaara, 2017.) Scaled
Agile Framework collects the best practices, tools and principles for organiza-
tions to use. The basic idea of the framework is built based on lean software de-
velopment, agile product development and system thinking. (Kalenda, Hyna &
Rossi, 2018).

Although there are many options available, organizations and the develop-
ment team do not find it easy to choose the right methods. Even if there was a
certain popular method like Scrum in use, it is not easy to use it in practice. Es-
sence has been developed to facilitate the selection of different methods and to
enhance the selection of the necessary elements. (Jacobson et al., 2022.) If the or-
ganization succeeds in software development and chooses the best methods, then
it is on its way to continuous software engineering. Continuous software devel-
opment and engineering includes different aspects like continuous integration,
delivery, testing and deployment (Fitzgerald & Stol, 2017).

1.2 Research questions

The goal of this study is to investigate utilizing agile development meth-
ods in continuous software development and try to find best practices to ensure
continuous software development. The goal is to investigate what challenges are
encountered when trying to use agile methodology in software development and
what are the ways to overcome those challenges. This forms the first research
question:

• How to adapt agile methods in continuous software development?

This research question is answered with the empirical part of the research.

In addition to this, the research aims to understand what different methods,
frameworks and practices are available to support agile software development.
This forms the second research question:

• Which agile development methods can be used in continuous software

development?

This research question is answered in the theoretical part of the research, by

examining existing previous studies and scientific publications.
In addition to this, the aim is to understand what challenges there are in

utilizing agile methods. This forms the third research question:

• What are the challenges in applying Agile methods?

9

This research question is answered in the theoretical part of the research, by
examining existing previous studies and scientific publications.

1.3 Structure of thesis

This chapter reviews the structure of the thesis. Chapters two and three re-
view the theoretical background of the research, this part of the research reviews
previous studies and scientific publications that are relevant to answering the
research questions. The research mainly tried to use peer-reviewed studies.

First we go through the background and history of Agile and lean software
development. Then some of the most used frameworks are introduced. Next,
scaled agile methods and their best-known frameworks will be reviewed. In ad-
dition, the challenges encountered in the utilization of the methods are described.
After that, through ways to improve the methods used. Finally, we go through
the elements of continuous software development and ways to succeed with
them. The fourth chapter presents the research goals, research methods, data
analysis and data collection and justifies them. In addition, the reliability and va-
lidity of the research is evaluated. The fifth chapter presents the empirical find-
ings of the study and the conclusions drawn from them. The primary empirical
conclusions are separated from the conclusions.

The sixth chapter discusses of the primary empirical conclusions from the-
oretical and practical view. The chapter seven reviews the conclusions and an-
swers the research questions.

10

Agile practices and methods have grown in popularity with companies that want
to produce working high quality programs and products, but at the same time
improve the company's speed and agility to respond to changes. A lot of different
methods, practices, frameworks, tools, and models are built around agile devel-
opment. This chapter describes how Agile and Lean appear in the software de-
velopment. The chapter also presents the most popular frameworks for agile and
lean development and their benefits. The challenges associated with the organi-
zations transfer towards agile models are also discussed. This chapter also pre-
sents DevOps and BizDev.

2.1 Agile and lean

Agile and lean software development methodologies are both made to increase
flexibility and speed up the development process to ensure that delivered prod-
ucts are high quality and working. The objectives and principles are very similar
in both methodologies, so comparing them can be confusing. Agile and lean
methods do not exclude each other, they can be part of the same production chain
but operate in different stages.
 Agile software development methods emerged after the publication of the
Agile Manifesto in 2001 (Beck et al., 2001). The software development industry
was already in great need of more customer-oriented and efficient methods and
previous methods had long been criticized. Agile methods offer more flexible
and efficient software development. Agile methods also emphasize customer-
centricity.

The Agile Manifesto defines four values for agile development:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negation

2 AGILE SOFTWARE DEVELOPMENT

11

• Responding to change over following the plan.

These values are the background for many agile methodologies. (Beck et al.,
2001.)
The Agile Manifesto also presents twelve supporting principles that guide the
nature of all agile methodologies:

1. Customer satisfaction through early and continuous software deliv-
ery

2. Changing requirements are welcome
3. Frequent delivery of working software
4. Collaboration of business and development teams
5. Motivated and trusted team works better and more efficiently
6. Information should be shared face-to-face
7. Working software is the main measure of progress
8. Agile processes support sustainable development
9. Attention to technical excellence and design enhances agility
10. Simplicity, developing just enough for this stage
11. Self-organizing teams emerge best architectures and designs
12. Regular reflections on how to be more effective and process im-

provements

All the values and principles aim to one result, that is delivering a working soft-
ware for the customer.
 The traditional software development includes extensive planning, heavy
documentation, and well-defined processes and schedules. Agile software devel-
opment focuses on the product and making the solution. The focus is on team-
work together with the customer. Changes and customer wishes can be re-
sponded quickly because time is not wasted on documenting and lengthy pro-
cesses. The information is shared within the team and the relationship with the
customer is strengthened. (Coleman, 2016.) Common to all agile methods is the
use of iterative development and repeated deliveries of the product to the cus-
tomer. Agile methods also aim to keep customer satisfaction high with early de-
liveries of the final product, instead of just delivering finished product (Misra et
al., 2011). Other differences to traditional non-agile methods are self-directed
teams which must remain small enough, continuous improvement of design and
continuous integration. Agile methodology believes in motivated individuals
that only need the right environment and support to succeed (Misra et al., 2011).
Agile methods also prefer direct communication between team members and all
the information should be shared conveniently face-to face, avoiding unneces-
sary heavy documentation. (Greer & Hamon, 2011.)
 The customer collaboration enhances that the customer is sure to get the
product they wanted. If the specification document is followed without cooper-
ation and interaction with the customer, it can easily happen that the end product
is something completely different from what the customer wanted. The custom-
er's feedback during the project is one of the most important aspects in agile

12

development. Feedback reduces unnecessary work and makes it possible for cus-
tomers to receive the desired end result. Often software project requirements also
change during the project, the ability to quickly respond to changes is one of the
benefits of agile software development. (Coleman, 2016.)
 Agile methods are changing and evolving all the time. Organizations can
follow the latest best practices, when striving to improve their own performance.
Agile methods offer challenges and opportunities. There are also situations and
projects where agile methods are not the best ones to use. The use of agile meth-
ods is most effective in a changing business environment where organizations
need to react quickly to changes and stay ahead of competitors.

The roots of Lean thinking are in Toyota’s automotive industry (Poppend-
ieck & Poppendieck, 2003). The Toyota Production System was the basis for the
lean thinking tool Kanban, that is used when an organization wants to develop
its operations towards Lean. Kanban is explained in more detail in chapter 2.1.2.

Lean software development methodology was built to increase productiv-
ity and eliminate waste (Poppendieck & Poppendieck, 2003). The principles and
practices of agile development described earlier fit into Lean Software Develop-
ment. Lean Software Development also emphasizes the importance of customer
focus and continuous improvement of the development process (Poppendieck &
Poppendieck, 2003). However, there may be too heavy elements in Agile devel-
opment when compared to Lean. Focus on Lean Development is to produce
workflow that allows flexible and efficient development phases. (Poppendieck &
Poppendieck, 2003.) According to Poppendieck and Poppendieck (2007) there
are seven principles that can be applied to Lean Software Development. Pop-
pendieck and Cusumano (2012) modified these principles that are used to frame
the ongoing discussion about software and product development and how prin-
ciples fit in unique situations. Lean Principles are shown in Table 1.

Table 1 Lean Principles (Poppendieck & Cusumano, 2012)

Lean Principle Summary

Eliminate Waste Waste is anything that is not adding value to a product or is
not useful for delivering working and high quality products
to customers. Waste in software development can be unnec-
essary requirements or codes that are not useful right now
and are slowing down the whole project.

Build Quality In Quality cannot be overemphasized in software develop-
ment. However, ensuring this is not always clear. Popular
Lean development tools to ensure quality: Pair program-
ming, enough testing, incremental development, workflow
and automation. Every individual should also be responsi-
ble for quality.

Optimize the
Whole

Optimizing means that a value stream to customers is the
only thing that matters. Every action and business should
be optimized to produce as much value as possible.

13

Identifying the flow of value between teams is the first step
to optimizing.

Learn Cons-
tantly

Development aims to create knowledge and make a product
of it. Lean development approaches learning in two differ-
ent ways. The first is to delay critical decisions to the last
moment so that decisions can be made with the best
knowledge and minimize change related costs. The second
approach is the continuous learning, where frequent deliv-
ery and customer feedback are used to minimize unneces-
sary features and costs.

Deliver Fast Faster delivery highlights the idea that software develop-
ment should not be seen only as projects, but instead as a
flow that goes through design, development and release of
product. To ensure speed it is fundamental to deliver simple
solutions that can be easily changed according to feedback.

Engage Eve-
ryone

The different departments and units should not be kept too
separate. It should be possible for everyone who is respon-
sible for the value development of the product to interact.
Encouraging collaboration and driving the idea of self-or-
ganizing teams are elements of Lean thinking.

Keep Getting
Better

Look for opportunities to be better. Every working method
should be researched using scientific methods and if possi-
ble make improvements.

2.1.1 Scrum

Agile software development consists of different software development methods
and frameworks. One of the most popular and widely practiced is Scrum. At least
75% of respondents of the 14th annual State of Agile report (2020) announce that
they are practicing Scrum or a hybrid that includes Scrum (State of Agile, 2020).
Scrum was first introduced in 1986 by Takeuchi and Nonaka in the context of
product development. Takeuchi and Nonaka (1986) argue that this holistic ap-
proach consists of features: self-organizing teams, overlapping development
phases, light control and transfer of learning. In the context of software develop-
ment it was introduced and modified by Schwaber and Sutherland in 1995. The
literature defines Scrum as a framework or methodology. Scrum offers tools for
people to deal with complex problems, while delivering valuable products effec-
tively (Schwaber & Sutherland, 2017). It is mainly used in product and software
development. However, tools and practices that Scrum offers also work with
other industries. (Gonçalves, 2018.) According to the 14th annual State of Agile
report (2020), the five industries that used scrum the most: technology (27%), fi-
nancial services (17%), professional services (7%), government (7%) and insur-
ance (6%). Scrum works best in environments where organizations and teams
have to respond quickly to changing situations. Organizations using scrum are

14

able to deliver products of high quality at a fast pace (Gonçalves, 2018). Scrum
helps teams and organizations to make adaptive solutions to complex problems.

At the center of Scrum is The Scrum Team. Scrum Teams must contain in-
dividuals who are able to self-organize and have the necessary skills for devel-
opment. These practices enable the team to produce quality and functional prod-
ucts. The goal is also to deliver a partially finished product to the customer for
feedback. When the team has the necessary skills, it is easy to respond to feedback
and improve or correct the product based on the feedback. Agility, flexibility and
productivity are optimized by this model. Scrum team has different roles: Prod-
uct Owner, Scrum Master and Development Team (Gonçalves, 2018). The Prod-
uct Owner is responsible for the value of the product. Product Owner must take
care that the customer's requirements for the product are followed and the cus-
tomer gets the product they ordered. The Product owner is only one person and
the other team members must listen and implement the features that the Product
Owner prioritizes. Scrum Masters role is to offer guidance and training for the
Scrum Team that everyone understands and follows the values, principles and
rules of the framework. The Scrum Team works under the requirements that the
Product Owner has set. Team consists of a small group of experts that are able to
work without leaders. Team reports on progress to Product Owner and Scrum
Master. The size of the Scrum Team recommended to be at its maximum of nine,
any larger team will produce too much coordination. (Schwaber & Sutherland,
2017.)

The Scrum is a framework that contains development iterations that are
called “Sprints” and every Sprint includes “Events”(Figure 1). Sprint is a short
period, normally a month or less, any longer time period would threaten the pro-
ject. Shorter time periods increase predictability through inspections and meet-
ings. Sprints should be seen as small projects and a new sprint begins immedi-
ately after the end of the sprint. Each Sprint the team should deliver an increment
of software, that ensures the achievement of the goal of delivering working soft-
ware. Schwaber and Sutherland (2017) argue that during the Sprint: changes
should not be done, especially if they risk the project, quality does not decrease
and scope can be redesigned with the Product Owner as more is learned. Product
Owners can also cancel Sprints if goals have become obsolete due to changes and
start planning new Sprint. (Schwaber & Sutherland, 2017.)

15

Figure 1 Scrum Framework according to Schwaber & Sutherland (2017)

As mentioned, each sprint includes four events that are precisely set to last a cer-
tain amount of time. Sprint starts with the Sprint Planning, the entire Scrum
Team participates and for a one month Sprint the maximum duration should be
only eight hours. Scrum master is responsible for planning the event and ensur-
ing the timeframe. (Schwaber & Sutherland, 2017.) The goal of this event is to
plan, what is the expected outcome for the Sprint and what parts of the product
can be delivered? It is also necessary to plan how the goal will be achieved and
whether the team has all the necessary resources. Another event that belongs to
the Scrum is Daily Scrum. Every day during the Sprint includes a short meeting
that takes 15 minutes. The Development Team is responsible for organizing the
meeting and Scrum Master only gives guidance for the meetings. The goal of it
is to plan tasks for the next 24 hours. Meetings should always be at the same time
to reduce misunderstandings and clarify the process. At the end of the Sprint is
an event called Sprint Review, this event will be attended by the entire Scrum
Team. The purpose of the meeting is to discuss and inspect that is the goal of the
Sprint achieved and what should be done next. It is also highlighted if problems
or other issues were encountered and the event also looks at a possible completed
part of the product. Timeframe for the Sprint Review should be four hours if the
Sprint lasted a month. (Schwaber & Sutherland, 2017.) The last event before start-
ing a new Sprint is Sprint Retrospective. The entire Scrum Team will also be par-
ticipating in this event. The idea of this event is to offer an opportunity to all
participants to inspect what went well and what could be improved. The Scrum
Master is also responsible for events taking place and that everyone understands
the purpose behind the event. Based on the development suggestions found, it is
intended to ensure that the same situations are not encountered in the next
Sprint. The Scrum Team is responsible for implementing the agreed improve-
ments. (Schwaber & Sutherland, 2017.)

16

Scrum Artifacts are tools to manage the project and keep all the information
transparent. Most important Artifacts are Product Backlog and Sprint Backlog.
The Product Backlog contains everything from the features, requirements and
fixes needed to finish and the product. It is also dynamic and evolves as require-
ments, markets, or technology causes changes, and the Product Owner is respon-
sible for updating the Product Backlog. Features in Product Backlog are named
user stories that describe the usefulness of features to the customer. Product
Backlog can be described as a living artifact due to its nature. The Sprint Backlog
contains a list of items that are selected from The Product Backlog by The Product
Owner. These items are planned to be completed during the Sprint. Sprint Back-
log presents all the work that is needed to be done to achieve the goal of the
Sprint. Only The Development Team can make changes to the Sprint Backlog
within a Sprint. (Schwaber & Sutherland, 2017.)

2.1.2 Kanban

The previous chapters introduced how Lean has become more popular and has
influenced software development. This chapter introduces the tool and method
Kanban at the heart of lean. Kanban was developed by Taiichi Onho in the 1940s,
at the time he was working for Toyota. Kanban is a tool to reduce costs, increase
productivity and improve management. Kanban in software development was
introduced by David Anderson in 2004, at the time Anderson was working for
Microsoft. Kanban can be described as a change management tool and it is not
connected only to software development.

According to Anderson (2010) Kanban uses five core elements, which are
needed to successfully implement Kanban in organization. These elements guide
organization to Lean-thinking:

• visualize the workflow
• limit the work in progress
• measure and manage the flow
• make policies explicit
• use models to identify development opportunities

Kanban is based on an idea that work should be limited and new phases or pro-
jects should not be started before finishing the ongoing ones. The Kanban board
helps to visualize the situation. A visual signal is produced to inform that new
phases can be started. Kanban board can be digital or for example traditional
whiteboard with sticky notes. The common practice is to produce both versions.
Kanban provides transparency to all stakeholders and helps the development
team to understand what is the next phase or work task. There are different var-
iations of the Kanban board. Therefore, organizations should experiment, cus-
tomize, recreate and optimize it to better fit in different situations that best suits

17

organization’s practices and work environment. The team is responsible for up-
dating the Kanban board and they decide what new tasks to fill in. All Kanban
boards should have a section that includes work to do. These tasks can be trans-
ferred through different sections in the Kanban board. Other sections should
show what tasks are under development and what is already done. The Kanban
board can also show challenges and problems that projects face. Challenges and
problems should be marked with different colors that will help them to pop out
so that they are quickly responded to. Figure 2 shows variation of Kanban board.

Figure 2 Kanban board according to Kniberg & Skarin (2010)

Studies have shown that Kanban changes the work environment to be more
open, when everyone can see the stages of projects. Collaboration increases and
the team is able to spot slowdowns and problem areas faster. Kanban evolves
organization work culture to more agile ja lean. (Anderson, 2010.)

Anderson (2010) argues that Kanban should not be used as a project man-
agement tool, instead Kanban should be adapted to the already ongoing process
of the organization which can be improved with Kanban.

2.2 Scaled agile

The agile methods presented in the previous chapters do not work as such on a
large scale, so scaled methods are needed for organizations to use agile and lean
practices efficiently.

Scaled Agile Framework (SAFe) is one of the most popular frameworks
for scaling Agile (Remta & Buchalcevova, 2021). According to the 14th Annual
State of Agile report (2020), 35% of respondents are practicing Scaled Agile
Framework to scale agile. Other popular frameworks for scaling agile are Scrum
of Srums (SoS), Disciplined Agile (DA) and Large-Scale Scrum (LeSS) (Kalenda,
Hyna & Rossi, 2018). This chapter introduces SAFe and LeSS in more detail.

18

2.2.1 SAFe

The Scaled Agile Framework was first released in 2011 and since then five ver-
sions have been released. The Scaled Agile Framework is a collection of agile and
lean practices (Kalenda, Hyna & Rossi, 2018). The scaling agile frameworks are
made for large organizations to manage agile and lean practices. Scaled Agile
Framework helps organizations to reduce the time it takes to go to new markets
and improves productivity and quality of services and products. (Remta &
Buchalcevova, 2021.) SAFe has been built on the principles of agile and integrat-
ing them with lean best practices, to create scalability through products, teams
and solutions in the organization. (Sreenivasan & Kothandaraman, 2019). Scaling
in the context of agile means the continuous process that happens in the organi-
zation when knowledge is transferred, translated and transformed across differ-
ent teams and persons. This also puts a lot of pressure on good communication
between communities and units. (Kalenda, Hyna & Rossi, 2018).
 SAFe is built around seven competencies which are: enterprise solution
delivery, lean portfolio management, organizational agility, continuous learning
culture, lean-agile leadership, team and technical agility and agile product deliv-
ery. (Scaled Agile Framework, 2022.) The core elements of the competencies are
presented in the table 2.

Table 2 SAFe Competencies (Scaled Agile Framework, 2022)

Lean Port-
folio Mana-
gement

Describes how to coordinate with portfolio’s value streams that
are specific for business domains. Lean Portfolio Management
is a modernized version to support the Lean-Agile way of
working.

Organizati-
onal Agi-
lity

One competitive advantage is the speed that organization can
respond to needs of its customers. Organizational agility must
be built to ensure this capability.

Continuous
Learning
Culture

Continuous learning should be organization-oriented. Continu-
ous improvement is also everyone's responsibility, because oth-
erwise it is difficult to keep up with the pace of the market.

Lean-Agile
Leadership

Describes how leaders can ensure that teams and individuals
reach their full potential. Leaders must have a Lean-Agile
mindset to succeed and lead by example. Adoption, success
and improvement of Lean-Agile development in organization
is the responsibility of leaders.

Team and
Technical
Agility

The focus is on agile teams that are cross-functional and high-
performing. Teams should be able to use the best agile methods

19

to produce solutions. Agile teams together with business teams
strengthen the organization's business agility.

Agile Pro-
duct Deli-
very

At the center of the product strategy is the customer-centric ap-
proach to decision making. All the decisions should be based
on the customer, and decision-making is continuous through-
out the entire development process. This enables continuous
delivery ready for market demands.

Enterprise
Solution
Delivery

Describes how to adapt Lean-Agile methods to the largest and
complicated softwares and systems. Coordinating and aligning
the full supply chain.

 SAFe evolves with new technology trends and offers the latest information for
the organizations. SAFe version 5.0 was released in January 2020. SAFe 5.0
highlights the business agility even more than earlier versions of the SAFe.
Business agility means organizations skills to respond to market changes and
compete with innovative solutions. To deliver solutions organizations must
participate in all the parties including development, IT operations, marketing,
finance, support and others. The lean and agile practices are not only for the de-
velopment teams. SAFe 5.0 highlights even more than previous versions the
customer centricity and design thinking. Emphasizing customer centricity can
be a big change in mindset that needs to be implemented throughout the organ-
ization. Organizations must understand the needs of the customer and make
products and services to ensure that the customer receives value. SAFe offers
four different configuration models for different sizes of organization and pro-
jects. Configurations fit in specific environments (Remta & Buchalcevova, 2021).
Depending on configuration different levels and tools are added to SAFe. The
Essential SAFe configuration is the basic version of SAFe. Essential SAFe con-
tains the main practices of Agile Product Delivery and Technical Agility. It also
includes key concepts like the Agile Release Train (ART). The Large Solution
SAFe configuration offers the Enterprise Solution delivery ability that is needed
for large projects that will need more than one ART and dozens of teams to de-
liver. Large Solution SAFe is mainly used in aerospace, defense, banking sys-
tem, automobile and medical device projects with the government industries.
One of the key concepts is the Solution Train that coordinates multiple ARTs
and makes it possible to produce complex solutions that in failure could lead to
economic or social effects. The Portfolio SAFe configuration is a collection of
practices that makes possible the organization to reach Business Agility. It pro-
vides abilities that are Organizational Agility and Portfolio Management. Meas-
ure and Grow is the one of the key concepts to way portfolios evaluate their
progress to the full business agility and decide the steps how to get there. The
Portfolio SAFe also offers methods and strategies for lean budgeting. Full SAFe
configuration includes all the abilities that are needed for business agility. Full

20

SAFe is mainly used by large organizations that need to manage large solutions.
(Remta & Buchalcevova, 2021.)

Figure 3 Full SAFe configuration. (Scaled Agile Framework, 2022)

2.2.2 LeSS

Large-scale Scrum (LeSS) is a version of Scrum that has been developed for large
groups. With the help of Less, the strengths of Scrums agile development can also
be used for larger teams. Less also tries to stay simple and includes the same
elements as Scrum, such as sprints. The idea is that less is Scrum scaled. (The
LeSS Company B.V., 2022.)
 LeSS tries to bring out the deepest ideas of the Agile manifesto, which are
that individuals and encounters are more important than tools and processes
(Kalenda, Hyna & Rossi, 2018). There are two different versions of LeSS. LeSS,
which is intended for management between a maximum of eight teams (eight
people each team) and LeSS Huge, which can be used to manage several thou-
sand teams and employees that work with the same product. There are many
elements in common between LeSS and Scrum. Both have one product backlog
because the teams work on one product, because of this LeSS removes the need
for portfolio management (Almeida & Espinheira, 2022). Both include Sprints,
but the difference in LeSS regarding sprints is that there is only one product-level
sprint and no individual sprints for each team. Like Scrum, each team holds a
daily scrum meeting, where the team organizes its tasks for the day. Other team
members can participate in other teams dailys to ensure information sharing.
(The LeSS Company B.V., 2022.)

21

 In addition to the product owner, members of other teams also participate
in the sprint planning meeting. Together, the teams decide the priorities of the
product backlog and plan cooperation. After this first sprint planning meeting,
team-specific planning meetings are held, which are almost similar to Scrum. A
Product Backlog Refinement meeting is held halfway through the sprint. The
purpose is to ensure that big things are shared, the situation of things is clarified,
the work situation, risks and other essential factors are assessed. The meeting is
carried out between several teams, it would be good to have people from all
teams involved. Customers, experts and users can also be involved. At the end
of the sprint, there is a sprint review, which again includes people from all the
different development teams. The customer, user or other stakeholders are also
usually involved. They review the part produced during the sprint and decide
the next development directions for the project. (The LeSS Company B.V., 2022.)
 Finally after the sprint, each team holds its own retrospective, in which it
is estimated what challenges were encountered during the sprint and how they
will be overcome in the future. Less presents yet another meeting, which is an
overall retrospective. Its purpose is to discuss challenges at the organizational
level, assess how teams work together and share the necessary information at the
organizational level. (The LeSS Company B.V., 2022.)

2.3 Challenges

Scaling Agile in large organizations can be challenging. Recent studies have
shown that coordination and communication are in an important position, to
scale to be successful. The process needs the right people to be part of it. When
implementing new scaling practices many different challenges can be met. The
most common challenges are resistance to change and poor leadership skills.
Adopting new practices means a major organizational change and the flow of
information must be ensured for all parties. The training of personnel and in-
volvement during change is key. (Kalenda, Hyna & Rossi, 2018). Resistance to
change is one of the major challenges when transferring organizations methods
to more scaled agile. The resistance can be also found in any levels of the organ-
ization, from development teams to the management level. Resistance in the
higher levels is also even more complex, and it needs a professional change man-
agement to support it. The missing change management in described situations
can lead to major problems. (Kalenda, Hyna & Rossi, 2018.)
There can be several reasons behind resistance. Agile methods often increase
transparency through tools that are used, for example the Kanban board. While
it is much easier for everyone to monitor the progress of work, some workers
may experience it as negative because they feel that they are being watched more
than before. Conboy et al,. (2011) also recognize the fear of transparency among
developers that it will reveal level of competence. Agile methods for sure make
it easier for the team to find out if someone faces problems, but team help is also
available faster. Another reason for resistance can be that, Agile methods also

22

prefer self-organizing teams, some employees may experience it as challenging
because they feel that responsibility is accumulating too much and problems
need to be solved independently. (Inayat et al., 2015.) This challenge highlights
the point mentioned earlier about the importance of finding the right people to
use agile methods.
 Agile development methods prefer face to face communication and inex-
haustible collaboration between team members. It would be good for the team to
work close to each other and allow for encounters. An overly decentralized team
can cause problems and slow development. Sharing knowledge and learning
from each other can be challenging if work is only done through online meetings.
(Inayat et al., 2015.)
 New ways of working can cause workload to increase and that can lead to
pressure in the teams. The change of working habits should be scheduled at the
right time. In rapidly changing environments that can be challenging. Problems
can also show up when the whole transfer to Agile methods is not done properly.
Developers do not have motivation to use new methods, because they feel learn-
ing new ways is too overwhelming. (Conboy et al., 2011.)
 It is easy for people to misunderstand the responsibilities from new meth-
ods and critical testing or work phases can be missed. Agile transformation needs
enough training, planning and coaching. If the transformation is done too quickly
without support management , the lack of knowledge can be spread through
teams. Teams that do not get enough information are not going to change their
old habits and the whole transformation failed. Change is also difficult to imple-
ment if teams do not value Agile principles and find them futile. (Inayat et al.,
2015.)

2.4 Essence

There are many different frameworks, methods and practices for software devel-
opment. Previous chapters introduced some of the most used ones such as Scrum
and SAFe. At best, different frameworks and practices improve the agility, qual-
ity and success of software development in the organization. Even though there
is plenty of choice, organizations and development teams still find it difficult to
choose the right practices. It is particularly challenging to utilize them in software
development. One of the biggest challenges even today is developing really high-
quality softwares and maintaining it. However, the problem is not that there are
many practices, but that choosing the right practices for your own development
team is difficult and there are few tools for making choices. These challenges
were identified in 2009 when the research community decided it was time to ex-
pand people's understanding of software development. As a result of many years
of hard work by the SEMAT (Software Engineering Method and Theory) com-
munity, a new framework called Essence was born in 2014, which allows us to
look at development methods from new perspectives. (Jacobson et al., 2019)

23

2.4.1 The Kernel

From Essences point of view, all practices used contain some reusable parts.
These can be, for example, a backlog, user stories, continuous development or a
motivated self-directed team. With Essence, all of these parts should be able to
be used effortlessly. The challenge was that many of the methods used are tied
to the framework from which they originally came. They use a vocabulary that
makes it difficult to combine different practices. The first goal of Essence was to
standardize the vocabulary used in terms of how different practices are utilized.
Based on these, the common ground of software development methods was cre-
ated in Essence. This common ground is called the Kernel. (Jacobson et al., 2022.)
 Utilizing the Kernel makes learning, using and evaluating the best methods
much easier. The software development team is able to constantly monitor its
own performance and change it based on practices. The Kernel consists of three
activity spaces. These activity spaces are: customer, solution and endeavor. The
customer activity space includes things related to exploring opportunities, un-
derstanding the needs of stakeholders, meeting the needs of stakeholders and
using the system to observe benefits. The solution activity spaces include things
related to achieving requirements and development. It includes understanding
the requirements, modifying the system to support easy use and maintenance,
system implementation, testing, deployment and future maintenance. Endeavor
activity space contains things related to development teams and ways of working.
There is team building, work planning, support and monitoring. (Ivar Jacobson
International, 2022.)

Figure 4 Essence Kernel Activity spaces (Ivar Jacobson International, 2022)

2.4.2 The language

Essence consists of two things: The Kernel and the language. Essence's language
aims to describe the methods in software production in the most general way
possible. Essence is a standard, so it cannot contain concepts that are too tied to

24

specific methods. Everything must be repeatable and clear for all. The language
of Essence makes use of various easily recognizable forms that can be used to
describe practices. According to Jacobson et al. (2022) the elements of Essence:

• Alphas, the key elements to monitor the progress of the develop-
ment

• Work Products, the actual results of work
• Activities, a task or activity that needs to be performed
• Patterns, for describing other things and their relationships

With the Kernel and the language different methods can be Essentialized, this
means that they are described using Essence. This enables the described practices
to be enriched and mixed with new methods. New methods are available
through Essence's common ground. This enables the developers to choose the
development methods they feel are best for them, or actually the Essential parts
of practices. (Jacobson et al., 2019)
 The purpose of Essence is to be as approachable and easy to visualize
as possible. Essence components are used in the form of cards. Each card de-
scribes the card's goals, status, checklists and prompts to complete the activities.
These cards can be used in daily development work. The cards do not contain
any difficult concepts, which is the whole idea of Essence. Even new employees
can quickly get to where we are going and what their own goals are. (Jacobson et
al., 2012.)

Figure 5 The Essence Cards (Ivar Jacobson International, 2022)

Using cards as part of development is not a new idea. Learning demanding meth-
ods is not very popular, that's why Essence offers a new kind of user experience
based on the use of cards. The cards can be used to play games that help the
development team get a better idea of where the development is going. Playing
games with cards is the natural use of Essence.

25

2.4.3 Essence for Scrum

Essence contains a number of elements and terms, the learning of which is nec-
essary for the utilization of Essence. SEMAT community emphasizes that Essence
is not a new method among thousands of others, but a way to combine best prac-
tices. Essence provides tools and a library for this. Essence is still a fairly un-
derused tool in agile development methods. Compared to other methods, quite
a few studies have been published. In 2022, Jacobson et al., published the article
"Better Scrum through Essence" on combining Scrum and Essence. The article
describes the process of how to get the most out of Scrum with the help of Es-
sence, Scrum is one of the most used methods in software development. Under-
standing the benefits of Essence in practice is easier when they are applied to the
Scrum that everyone knows. Scrum and its elements were already discussed in
earlier chapters. Next, the different elements of Scrum are described in the style
of Essence.
 The processing of Scrum starts with forming four categories with the
help of cards. These four categories are: Alpha cards, the key elements of devel-
opment, work product cards that describe the wanted results, activity cards that
describe tasks and pattern cards that describe relationships and roles. The fol-
lowing table shows how the different scrum elements fit into these categories.

Table 3 Scrum essentialization categories (Jacob et al., 2022)

Alpha Work product Activity Pattern
-Product
backlog item
-Sprint
-Improvement

-Product backlog
-Definition of done
-Sprint backlog
-Increment
-Sprint goal

-Product backlog
refinement
-Sprint planning
-Sprint review
-Sprint retrospective
-Daily scrum

-Self organization
-Scrum values
-Scrum team
-Scrum master

Based on these different elements of Scrum, each can be made into its own card.
The card can include a description, relationships, impact and work status. Es-
sence scrum cards presented in figure 6.

26

Figure 6 Essence Scrum cards (Jacob et al., 2022)

When all the necessary elements of Scrum have been identified and the cards
have been formed, the team can start reviewing its own practices. The cards are
reviewed and an effort is made to place them on a scale with the most important
things at the top and the less important at the bottom. Scale also includes infor-
mation on how the team performs on them. If the cards have for example check-
lists, the team will discuss their status and goals. With the help of the scale, it is
possible to identify the things that need to be prioritized. Prioritization is espe-
cially important in a situation where a lot of cards have been found to be im-
portant for the team, but at the same time it is challenging to perform them. Based
on these, the team decides on measures to improve things. (Jacob et al., 2022)
Everyone who participated in that process will probably get a good idea of the
team's situation, even if they haven't been involved for a long time.
 Essence offers Scrum ways to improve practices. Essence offers op-
portunities for many stakeholders. Employees understand the software develop-
ment process better when it is described more clearly and down to earth. Appli-
cation development teams can combine and modify existing methods by lever-
aging the guidelines, methods and elements compiled by Essence. With the help
of cards, the whole team can be included in the development process. A common
language facilitates the coordination and formation of groups. the entire sector
also benefits as a whole from the fact that it has a common basis for bringing
practices to the fore and their comparison is easy. (Jacob et al., 2022)

27

Chapter describes the goals and elements of continuous software engineering.
DevOps is also presented, the goal of which is to combine the activities of devel-
opment and IT teams, which traditionally work very separately. After DevOps,
BizDev is also introduced, which aims to combine business strategy and software
development.
 Agile methods provide the organization with a framework for software de-
velopment, which can be used to improve the flexibility, efficiency and especially
speed of the development work. Software must create value for its users, to create
value the software or system must work, meet the requirements criteria and be
up and running quickly. Because of this, organizations want to be able to produce
new software quickly and efficiently. According to Dornenburg (2018) the popu-
larity of DevOps rose at the point when technology became business.
 Continuous software engineering is an emerging trend in research and prac-
tice (Shahin, Ali Babar & Zhu, 2017). The organization must take into account
areas other than development in order to be able to operate with a continuous
software engineering model. (Fitzgerald & Stol, 2017.) Around continuous soft-
ware engineering, there is also a reflection on how security matters are handled
when development is done at a fast pace (Rajapakse et al., 2022). Continuous soft-
ware engineering refers to an organization's ability to develop software or its
parts in several parallel processes. Continuous software engineering involves
various development activities such as continuous integration, continuous de-
ployment, continuous delivery and continuous testing. (Johanssen et al., 2019.)

3.1 DevOps

DevOps is a software development and delivery framework (Forsgren, 2018) and
it was introduced in 2009 (Banica et al., 2017). It includes practices that enhance
collaboration between software development and IT operations. DevOps ap-
proach increases organizations to deliver faster with higher quality products.

3 CONTINUOUS SOFTWARE ENGINEERING

28

The idea of DevOps is to break barriers between teams that should communicate
with each other. Many problems in software development are caused through
poor communication that could be avoided. (Ebert et al., 2016.) The goal of
DevOps is to speed the delivery of business value for customers (Lopez-Fernan-
dez et al., 2021).
 DevOps aims to bring the knowledge from end-users to development teams,
so that teams can respond to changes rapidly. DevOps is all about flexibility and
speed. DevOps can be described as an extension to Agile methods due to the
efficiency and agility that it brings to organization. (Banica et al., 2017.)
DevOps tools and methods have reduced the old cultural divide between soft-
ware development and IT operations. The new organizational structures have
had a chance to be born. One example is virtual teams, that can be formed easily
to include people from both teams. (Alnafessah et al., 2021.)
The DevOps practices highlight the importance of automation. DevOps aims to
release products, applications and updates at a faster pace, because of this, many
processes should be automated. Continuous development, continuous integra-
tion, continuous testing, continuous deployment and continuous monitoring are
the key concepts of the DevOps lifecycle. (Alnafessah et al., 2021.)
 The two basic pillars of DevOps are automation and interaction with people
(Leita et al., 2020). According to Lwakatare et al. (2019), one of the challenges of
implementing DevOps was identified as the situation where DevoOps is pro-
moted from the bottom up. That is, the developers have to convince the managers
of its benefits. DevOps lifecycle is presented in figure 7.

Figure 7 DevOps lifecycle (Alnafessah, 2021)

3.2 BizDev

The purpose of DevOps is to combine software development and IT operations.
However, the idea of DevOps must be expanded to cover a larger part of the
organization if the goals of software engineering are to be achieved. The frame-
work BizDev has been developed for this purpose. (Fitzgerald & Stol, 2017.)

29

Continuous software engineering contains the full software development life-cy-
cle, that can be divided into three different phases: Business Strategy & Planning,
Development, and Operations. All phases contain different continuous activities.
(Fitzgerald & Stol, 2017.)
Fitzgerald and Stol (2017) introduce the term BizDev to describe the link between
business strategy and software development. Development or business strategy
cannot take place in silos, the transparency of everything improves the success of
continuous software engineering. Today's softwares and systems are becoming
so complex that the traditional model of software development is not functional.
There will always be changes, both through the market, the law, and customers.
Communication and cooperation between the teams must be enabled in the ini-
tial phase of the application development life-cycle and must continue through-
out the entire life-cycle. BizDev complements the mindset of DevOps by expand-
ing it to include business strategy and development. The continuous activities of
business strategy, development and operations described in figure 8.

Figure 8 DevOps and BizDev (Fitzgerald & Stol, 2017)

The business strategy activities identified by BizDev are continuous planning
and continuous budgeting. A characteristic of continuous planning is that the
plans are constantly under review. Changes are made to justify what changes are
happening in the market or business area. Plans should be dynamic and trans-
parent. It is not worth making plans too far into the future that are challenging to
change. Continuous budgeting means that budgeting should be as flexible as
possible, so that it is easier to prepare for changes. Resources should be able to
be distributed during the year as well. Combining these activities with develop-
ment activities improves the business team's understanding of the software de-
velopment requirements and helps development teams understand the reasons
why development is done from a customer and market perspective. The main

30

thing in everything is effective communication between teams. (Fitzgerald & Stol,
2017.)
 According to Fitzegrald and Stol (2017), with the success of BizDev
and DevOps, the end result is continuous improvement and then continuous in-
novation. Continuous improvement refers to the fact that in development one
knows how to critically examine the points that act as slow-downs to rapid de-
velopment and aims to prevent them. If the processes and operating methods are
correct, operations should improve continuously. With the help of sustainable
procedures, the organization can respond to changes effectively and remain com-
petitive. Continuous innovation describes when an organization has opportuni-
ties to design ways to produce added value for customers. The possibility of con-
tinuous innovation requires that all phases of DevOps and BizDev work.

31

This chapter reviews the goals of the study and chosen research method. In ad-
dition, the selected data collection method and background information about
the interviewees are presented. The chapter also explains how the interviewees
were selected and how the material was analyzed. Finally, the reliability and va-
lidity of the study will also be reviewed.

4.1 Goals of the empirical research

Today's software development is fast-paced and those who fear change cannot
keep up with the competitors. Many different methods have been developed to
support agile software development and surely many of them know at least the
name. Current methods differ from those previously used in that they make it
easier to react to changes. The publication of the Agile manifesto in 2001, started
the change (Beck et al., 2001).

This research aims to investigate agile development methods in the con-
tinuous software development and identify which frameworks are in use and
identify the challenges associated with utilizing them. The benefits of agile meth-
ods are already becoming clear to everyone, but how to implement them in prac-
tice is difficult.

The case company of the study provides SaaS-based systems for organi-
zations of various sizes. With the help of systems, organizations manage payroll,
human resources and accounting. The company wants to improve the processes
between software development and business operations. Both units contain
many different teams from different areas of expertise. Every team is needed to
ensure that the journey of a new feature or product in an organization is always
successful from the design stage to the end product for the customer. Successful
processes also ensure that the customer feels that they have gained added value.

A qualitative case study was chosen as the research method. The choice of
research methods was influenced by the fact that the research focuses on the

4 RESEARCH DESIGN

32

activities of one organization. In qualitative research, the aim is to understand
the phenomenon under investigation, it aims to understand the meaning and
purpose of the phenomenon. With the help of a case study it is possible to obtain
more detailed information about the phenomenon under investigation. (Guest at
el., 2012.)

4.2 Data collection

The empirical data for the study were gathered from semi-structured interviews.
The interviews used a predefined questionnaire, which was built between differ-
ent themes. Themes must be based on the theoretical framework of the study,
and they must contain what is already known about the studied phenomenon.
(Tuomi & Sarajärvi, 2002.) When using semi-structured interviews, the inter-
viewer can ask more specific questions about themes, if things come up from the
interviewee that you want to open up in more detail. In the semi-structured in-
terviews the questions are the same for all the interviewees but there is also room
for improvisation. In semi-structured interviews, it must be remembered that the
interviewees are quite capable of choosing what to tell and what to leave unsaid.
The interviewees also think much more about what the interviewer is aiming for
with the questions. (Alasuutari & Alasuutari, 2011.) The advantage of an inter-
view is that the interviewer can ask more detailed questions if the answers do not
immediately answer the questions (Tuomi & Sarajärvi, 2018).
 The goal of the study was to investigate the phenomenon of the use
of agile methods in continuous software development. For this reason, the inter-
viewees were chosen from roles that worked mainly in software development. In
the selection of the interviewees, the aim was to ensure that the selected inter-
viewees would comprehensively represent the entire development group. Some
of the employees refused the interview and suggested another colleague for the
interview. All interviewees work on the same product, but in slightly different
positions based on the job description. More experienced and also newer employ-
ees were selected. There are also different roles, from software developers to team
managers and scrum master. Background information of eight interviewees pre-
sented in table 4.

Table 4 Title and work experience of the interviewees

Interviewee Work title Work experience

Interviewee 1 System Analyst 30 years

Interviewee 2 UI Developer 5 years

Interviewee 3 Team Manager 8 years

Interviewee 4 Solution Architect 8 years

33

Interviewee 5 Scrum Master 24 years

Interviewee 6 Team Manager 25 years

Interviewee 7 Software Developer 10 years

Interviewee 8 Product Owner 20 years

All interviews were conducted remotely using the organization's own tools. The
interviewees had moved to work from home, due to the COVID-19 pandemic.
The interviewees were asked their favorite way to conduct the interview, and for
all of them it was remotely. The interviews took place in June 2021. The inter-
views were conducted in Finnish and 50 minutes were reserved for each inter-
view. The interviews were recorded for transcription.

4.3 Data analysis

The analysis of the interview material starts when the recorded interviews
are transcribed. The transcribed material forms the research material. The accu-
racy of transcription is affected by the goal of the study and the method of anal-
ysis. It is not necessary to transcribe all pauses or sounds in every study.
(Hyvärinen et al., 2017.) In this study, no filler words were included in the tran-
scription. A total of 48 pages of transcribed material were collected.
The challenge of qualitative research is that many interesting things often emerge
from the material that the researcher did not even expect. That is why it is im-
portant to be able to accurately choose what to focus on when analyzing the ma-
terial. (Tuomi & Sarajärvi, 2002.) Thematic analysis was used to analyze the data.
It can be used to study themes based on qualitative data. Thematic analysis is a
frequently used method in qualitative research. Based on thematic analysis, the
aim is to identify recurring themes and patterns in the data. Categorization and
coding were utilized in the thematic analysis and also in this study. Themes can
be based on a literature review or appear completely new. (Guest at el., 2012.) In
this study, most of the themes were obvious and expected.

4.4 Realiability and validity

The quality of scientific research is often evaluated through reliability and valid-
ity. Reliability describes the repeatability of research and plays an important role
in the evaluation of research results, and its function is to describe the research's
ability to give similar, non-random results. Can the results be independently re-
peated, a reliable study has been conducted in such a way that a study based on
the original study gives the same result. (Tuomi & Sarajärvi, 2002.) In this study,

34

an effort has been made to improve reliability by accurately describing the phases
of the thesis, such as the selection of the interviewees, data collection and analy-
sis. Also the questionnaire used in the interviews has been added to the appen-
dices.

The validity of the research, on the other hand, means the validity of the
research, it describes the ability of the research method to study exactly the sub-
ject area or characteristic that is intended to be studied. Results and conclusions
are evaluated on the basis of validity. (Tuomi & Sarajärvi, 2002.) The interviewees
for the study were chosen in such a way that the material collected based on it is
well suited to answering the research questions. The interviews were also con-
ducted within a short period of time, so that the results cannot be influenced too
much by the researchers own goals.

35

This chapter presents and reviews the empirical findings of the study. The most
important findings are reported as empirical conclusions (EC) and primary em-
pirical conclusions (PEC). Data were collected by interviewing eight employees
utilizing semi-structured interviews. The goal is to understand what are the best
practices for continuous software development, with an emphasis on agile and
lean. The results are presented according to the themes of the thematic interview.

5.1 Development process

The first theme in the interviews was the development process. Interviewees
were asked about the development process and how it is planned to take place.
The purpose was also to find out if the interviewees could name the different
methods they use on a daily basis. Interviewees were also asked about strengths
and challenges based on their development process. Six out of eight interviewees
were able to somehow define which methods or frameworks were used.

We don't have any kind of real scrum. In a way, however, we use the same style, deliveries
dictate the schedule of what is ever done. For bigger things, for example, interfaces then
have their own schedules. It is intended to operate within delivery cycles. We do not have
daily Scrum meetings, but every day is a team meeting. And that is where I go through
open questions and what the pool has. -Interviewee 1

There is talk of scrum, but it is not pure scrum. More Kanban spiced with scrum-related
dailies and sprint changes. There is really no kanban and no scrum. Methods will be visible
in such a way that it will be possible to roughly handle the activities that are to be devel-
oped. -Interviewee 7

The answers show that some of the interviewees do not know how to name the
actual methods, but are aware that they use elements of the Scrum, for example.
These findings form empirical conclusion EC1.

5 EMPIRICAL FINDINGS

36

EC1: Used methods and frameworks are known, but their use is not systematic.

However, some of the interviewees were also able to describe very precisely the
elements of Scrum and what is in use.

We have Scrum, done in three-week cycles, so that the development process stays on
schedule. Every other month another app delivery and every other month another app.
We have daily meetings every morning for half an hour. There are a few more people out
there for what Scrum's recommendation is. We have about 15 participants every morning.
Two minutes for everyone to speak for themselves. The speeches are short and concise.
After the sprint, the breakpoint will go through the previous sprint and plan whether the
same thing will continue for the next sprint. If it is a larger whole then it will not be com-
pleted in three weeks and it will take many months and several sprints. -Interviewee 2

These findings show that the use and know-how of processes and methods is
possessed by only a few. This forms the empirical conclusion EC2.

EC2: The knowledge of the practices used has been emphasized only for the leaders of the
processes.

Although the knowledge of the practices seems to be concentrated in a few peo-
ple, the other interviewees were also able to praise Scrum and how it fits the cur-
rent situation well. The interviewee 5 described that Scrum is suitable for the cur-
rent work situation because the backlogs used are long. Kanban for example
would not be useful.

Scrum has been right for us because we have long backlogs and it is useful to take things
in a different order. That is, Kanban would not work for us as such. There is always an
assessment of that next episode and what kind of entities there are. The Agile world and
from there Scrum has been the frame of reference where it is delivered. -Interviewee 5

These findings form the third empirical conclusion EC3.

EC3: Scrum is well suited for development when used backlogs are long.

It is clear from the responses that the interviewees do a lot of work over teams.
Interviewee 3 described that back and front end development teams are using
Scrum or its variation. Cloud team uses mainly Kanban related methods.

The development partly uses Scrum for the back and front End. Daily meetings (daily
Scrum) are in use, so some parts of Scrum. In the cloud, we have a Kanban that works
better because the deliveries are not actually sprints. However, the work is guided by de-
velopment requests and cases coming through tickets. -Interviewee 3

Teams are formed for projects, so different practices of operation are also depend-
ent on them. This can partly explain why there are differences between the inter-
viewees in terms of how familiar they are with different methods like Scrum.

PEC1: The currently used frameworks of agile methods are known, but use in develop-
ment is not clear to all involved.

37

Interviewee 6 described that they do not use Scrum, but they will be involved in
the Scrum team if there is going on larger projects.

We do not have Scrum, but we will be involved in Scrum if we have larger projects ahead.
However, there are team sessions, always in the mornings, where things related to imple-
mentations are reviewed. Get answers to open questions quickly. The aim is to go through
things on a daily basis, so that there will be no meeting in a week's time where you can go
through things. Let’s see what is urgent and what is going on. -Interviewee 6

EC4: People get involved in scrum when they are added to the project team.

Respondents were also asked how long the current methods have been in use
and the answers were a bit difficult to interpret. In general, based on the re-
sponses, Scrum ideology has been in use for years, but in fact, Scrum has only
been used for a few years. That is, the teams are quite young in the use of Scrum,
who may also be involved in explaining why not everyone has an idea of what
Scrum is and how it is reflected in the use of the methods.

Scrum ideology has been in use for years, Sprint design has been in use. Whenever the
sprint ends, there is a demo that introduces the products internally to different teams. After
the sprint there are retros and we go through what went well and where to develop it then
the next round starts. A lot of dealing with customers, weekly meetings with customers. -
Interviewee 8

Scrum has been in use for a few years mainly in development. There are retros after the
sprint and it looks at what went well and what should be developed. -Interviewee 3

There is a way we applied for Scrum. We have been introduced to agile, sometime in 2008.
We have been working on this collaboration for so long, inevitably there will be points
where we deliver to the team's advantage. -Interviewee 5

These findings form the fifth empirical conclusion EC5.

EC5: The elements of Scrum have been in use for a long time, but the actual Scrum ideology
has only been around for a few years.

Interviewees were also asked about the other frameworks and whether they were
used. Some of the interviewees mentioned and recognized SAFe, but have not
really used it with this current work team. Three interviewees out of eight recog-
nized SAFe. Interviewee 7 had previously used SAFe and could say that Scrum
is not enough for enterprise level development and SAFe includes elements that
would help to work more efficiently. The current Scrum is not enough because
things have been picked out that are not really part of Scrum. With SAFe they
could manage bigger projects more efficiently.

We have challenges, the basic Scrum is no longer suitable for this kind of enterprise level
development. There should be some other tools, for example Scaled Agile framework.
SAFe should be picked for their delivery slices. In the previous company, I used it and
worked well when the outputs of several organizations had to be ready and tested. There
is no person who will handle all the teams delivered by a non-release train engineer.

38

However, SAFe is a pretty large package, but if you picked them up a few good ideas for
this one. -Interviewee 7

SAFe has not been talked about much, and it has not even been considered in
terms of development, these findings provide the sixth empirical conclusion
EC6.

EC6: There are challenges with Scrum and it is not completely suitable for enterprise level
of work. However, there is no mention of other options, such as SAFe.

Interviewees were also asked about Agile and Lean. All eight interviewees rec-
ognized terms and had sometimes heard about them. When asked in more detail
how they appear at work, there was a lot of scatter in the answers. Half of the
respondents could not say whether Agile and Lean show up in their daily work.
The other half of the respondents indicated that it appears this way because
Scrum is enabled. There were also mentioned by three interviewees that the
teams work approach is inherently agile.

There has been talk, but it has not been taken into account. However I think that way we
work is inherently Agile. -Interviewee 4

Big development projects are when it is known that there are Scrum meetings. The idea is
to strive for rapid development and to bring new things to the interim deliveries. -Inter-
viewee 6

It seems that the terms Agile and lean were very familiar, but when asked in more
detail how they are seen at work, one cannot directly answer. These findings form
the seventh empirical conclusion EC7.

EC7: Agile and lean were well known as terms, but describing them in development work
was difficult.

Interviewees were also asked about the roadmap and how much it affects devel-
opment. All interviewees could tell that larger entities come through the
roadmap. However, following a roadmap on a schedule is not always easy, as
production often becomes another busy task. It reportedly had no effect on daily
activities. The roadmap is also visible to customers, so customers can also wait
for certain features to come into production. That is why it is important to stay
on schedule for the roadmap as well. However, one avoids putting overly precise
schedules in the roadmap, because unpredictable things in the development can
always affect them.

Larger entities we are moving towards. The roadmap tells you what you want the product
to do in the future. The vision is far into the future and we will move towards it with the
help of a roadmap, however, there will be a lot of things outside of the roadmap that will
go beyond it. However, something new for customers is always desired for every delivery.
From the backlog you can pick up bigger and smaller things for development. -Interviewee
8

39

The purpose of the roadmap is to show the direction of development and does
not show exact dates or schedules. This forms empirical conclusion EC8.

EC8: The roadmap influences the development, but its purpose is to act more as a direction
towards which we want to go. Little effect on daily work.

Almost all interviewees recognized the term DevOps, only one interviewee could
not describe it. It is clear from the answers that although the term is familiar, it is
not included in the daily work, even if some of the interviewees felt that it could
be useful. It was also noticeable that there were some differences in the interpre-
tation of the term DevOps and what it really meant. Interviewees were also well
aware that current work habits do not support DevOps. It was felt that everyone
is working in silos and the skills are very limited to certain people. Everyone has
their own things to do and knows things that others hardly know.

The term is familiar, not present in the work of our team. We have our own cycle to move
forward with. Within our team, everyone works alone with their own area of strength. -
Interviewee 4

Traditionally, there has been a lot of separation between product development and pro-
duction. Product development does something and then production takes over. That is, it
completely jumps out of product development. The production team will then support the
software in future production. However, we should go towards DevOps. -Interviewee 3

According to Ebert et al. (2016), the purpose of DevOps would be to dismantle
these silos and improve cooperation between different teams. Bad communica-
tion or the lack of it altogether is one of the most common challenges in software
development. Interviewees felt that they should go more in the direction of
DevOps. These findings form the following empirical findings EC9 and EC10.

 EC9: Current work methods do not support DevOps.

 EC10: The work is done in silos and it would be important to dismantle them.

Interviewee 5 also said that there is need for DevOps in the development, but it
would need so much work to change current work habits that it will take time to
achieve.

Our readiness is not at that level at the moment. It is traditionally done to have delivery
dates announced to customers and developers to test and testers to test. We are packaged
and exported to the world at pre-arranged intervals. DevOps would require a lot from us
and the process, you will be able to evolve and change your operations. Efforts would be
needed at the moment, but we are moving towards that. -Interviewee 5

PEC2: Current working methods do not support DevOps, everyone has their own ar-
eas of expertise, which affects the fact that work takes place in silos.

40

The weaknesses of the current methods are known, but based on the answers,
changing the current methods is perceived as such a heavy process that there is
no motivation for it.

EC11: Changing current methods is perceived as such a heavy process that there is no mo-
tivation for it.

Even though DevOps seemed like a very familiar term among the respondents,
it was felt that not enough is known about it and that there would be a need for
a new role that would be able to guide the teams work towards DevOps. Inter-
viewee 7 felt that there is not enough information about DevOps.

It is a familiar concept for a few people, but we do not have any DevOps engineers. There
is no designated person to use DevOps, so its use is quite limited. It would be useful, be-
cause now you have to manually move all the delivery packages, why even need to man-
ually move them could be automated. -Interviewee 7

EC12: There is no defined responsible person or role that would be responsible for DevOps.

It seemed that there were many differences between individuals in how they per-
ceive current methods to work in the development process. Some think the cur-
rent methods are good and have always been. On the other hand, there is a need
for change to make it more effective. According to the interviewees, there were
many strengths in the current methods. Flexibility was highlighted and the fact
that when monitoring the work situation on a daily basis it is transparent and
allows for a quick response to changes.

Flexibility, on a daily basis when looking at work situations and being able to react to what-
ever comes, is perhaps the biggest thing that comes to mind. Teamwork, it can then be
done by a group when you look at it so you can find help and opinions when everyone is
clearly aware of things. -Interviewee 1

EC13: Flexibility and transparency in working methods were perceived as the most im-
portant strengths.

According to Misra et al. (2011), agile methods need self-directed and motivated
people to work successfully and efficiently. Interviewee 2 explained that the team
is highly skilled and everyone knows their role, that is why it is easy to agree on
things. Also there is not too much pressure from the managers and there is no
hierarchical setup and everyone will get along well.

Skilled and motivated team. The team knows their job, what they do is monitored daily, a
morning meeting of what everyone is doing and the project manager and scrum master
see how things are going. There is no pressure at the supervisor level and no hierarchical
setup and we get along well. -Interviewee 2

PEC3: The need to break down silos and change working methods has been identified,
but the change is perceived as too difficult to implement and no one is responsible for
it.

41

Based on the answers, it seems that the organization relied on the skills and high
motivation of individuals. A good and motivated team can produce results even
if the methods themselves are not clearly defined. These findings form empirical
conclusion EC14.

EC14: A skilled and motivated team was perceived to be able to produce good results, even
if the practices were not clear and functional.

Interviewees said they would like to guide development more into way of Scrum
ideology. However, development suggestions and repairs from customers often
clutter the schedule. Interviewees recognized many challenges, four out of eight
interviewees raised these same challenges regarding insufficient resources.
Based on the roadmap, everyone has long-term development targets that need to
be completed. Every day, however, there are urgent production cases that must
also be handled by the same people. Means that issues that need to be fixed or
other bugs or development suggestions emerge from the production with the
tickets. Developers do not have time to focus only on new development, but time
is spent on a lot of other things.

We are involved in many things and there are big development tasks coming from the
roadmap that take up work time and planning and other things. Then there is also every-
day life that needs to be produced. - Interviewee 1

It is challenging when product development cannot focus only on development. When it
is noticed that production needs to be taken care of, it must be decided immediately
whether the developer will stop his own work and start working on a new case. -Inter-
viewee 5

A solution to the resource challenge was needed, some of the interviewees
pointed out that some kind of division or process was needed. Which could be
used to clearly determine how the development items according to the roadmap
and the cases from the production side would be handled. These findings form
empirical conclusion EC15.

EC15: The most significant challenge was felt to be that when product development can't
focus only on development instead, time and resources are spent on repairs coming from
production.

According to Schwaber & Sutherland (2017), the scrum teams size should be a
maximum of nine, so that there is enough time and meetings do not become too

PEC4: A motivated and skilled team can achieve results as long as the working methods
are transparent and flexible. Although the development framework is not clearly defined.

PEC5: Bug fixes and improvements from production related to system maintenance pre-
vent continuous development and improvement. There is no clear practice for prioritiz-
ing and using resources.

42

heavy. Some of the interviewees identified the large size of the Scrum team as a
challenge. Meetings may have up to 15 people and there is not always enough
time for everyone.

I have sometimes thought about that when there are 15 people in the daily scrum and it
takes half an hour, so it's not quite optimal. You have to listen to the things of 14 other
people that don not concern you. If there were fewer people in the daily, it could be good.
-Interviewee 2

EC16: A Scrum team with too many people involved was perceived as difficult and a
smaller team would work more efficiently.

5.2 Agile teams

The one most important goal of all Agile and Lean methods is to improve an
organizations ability to respond to change. According to Misra et al. (2011) for
example, the flexibility of roles and operating methods improves responsiveness.
Therefore, the interviewees were asked how the current methods can help react
to changes. The answers show that changes are coming from several different
directions. A change in the law can cause a lot of reforms and changes in the rules.
New orders and repair requests from customers also cause a need for resourcing.
The system is also constantly being developed to work better and include more
functions. Changes in third parties can also have a significant impact on ongoing
developments. A lot of interfaces have been made to communicate with these
third party applications. Prioritizing and implementing all of these changes is a
daily challenge, which all interviewees recognized. For five out of eight inter-
viewees, it was clear who is responsible for decision-making in prioritization sit-
uations. Interviewee 2 described that the product owner or scrum master is re-
sponsible for deciding the delivery schedule.

The priority question for the product owner or scrum master is whether to make an inter-
mediate delivery if, for example, something is not successful at all in production. It is clas-
sified as a high priority bug for the next delivery. If it is a matter of customer wishes, then
they will be included in the plan for next sprints. -Interviewee 2

EC17: In terms of resourcing, prioritization was the task of either the Scrum master or the
product owner.

Interviewees said that customers can report bugs and make orders through the
ticketing system. Ticketing is closely monitored and quickly noticed if one needs
to react. Especially after the new version release, tracking is even more accurate.
When it is noticed that there are things in production that need to be addressed,
a quick meeting with developers and other experts is held. The meeting divides
the tasks and evaluates how quickly the change or fix can be implemented. Some-
times, of course, there may be situations where you are not immediately sure
where the situation is and a lot of work needs to be done before the situation can

43

be fixed. It is important that everyone is aware of their own job responsibilities.
Interviewee 3 said that sometimes it is more important to prioritize things that
are more visible for the customers.

The response varies. Prioritization should be improved, we invest in everything that is vis-
ible to the customer. There is a clear division of which areas go to the different teams. -
Interviewee 3

It depends on how quickly if something comes into production, it will be determined im-
mediately who will start doing it. Critical issues are fixed and tested quickly. -Interviewee
8

It seems that with the current methods teams were able to solve the prioritization issues.

Especially the most important cases could be dealt with quite quickly. However,
a clear process is missing in decision-making and it was clearly needed for peo-
ple. These findings form an empirical conclusion EC18.

EC18: Current methods have worked in urgent situations. However, the process should be
improved so that everyone knows for sure how to act when it is a really important case.

Interviewee 6 explained that backgrounds must be known before any changes are
made to the system. Changes that are too fast can cause even more problems, so
you need to know the nature of the case. Even if this would result in a delay in
repair or delivery.

Whether it is a change in the law or a customer order, there must be information about
what it is based on. The changes can cause major changes in resourcing and work tasks,
for example, changes in the law in particular. -Interviewee 6

EC19: The identification of changes and their impact on many different entities must be
clarified in cooperation with other teams.

In the case of a change proposed by the customer, the customer is also involved
in the development process. The customer is contacted several times and they go
through exactly how they want the new subscription to work, for example. Prod-
uct users are often best placed to tell what all the different cases can be encoun-
tered when testing.

When an order comes to us, a specification has been made for it to be submitted to the
customer for approval. It may be shared several times and clarified questions will be sent.
Big changes also involve customers in piloting, which is really good because in production
there is not enough imagination for all that can be met and it is good when piloting already
gets something out of it. -Interviewee 1

EC20: Customers were included in the development process.

It seems that interviewees considered they have a good ability to respond to
changes. When changes are noticed from the ticketing system or other channels
it is clear what happens next. However, there is no specific formula or operating
model that all interviewees could have explained. However, the responses

44

indicated that a team would be assembled fairly quickly to determine the severity
of the situation in the event of a bug or system error, for example. If there is more
time for changes, the process is also clearer in many people's words, i.e. it is time
to plan for which sprint the change will be implemented.

5.3 Software quality

The DevOps practices recommend automation in all possible stages of software
development, with the help of automation it is possible to improve the quality of
the software. With automation, the organization can release products, applica-
tions and updates at a faster pace. (Alnafessah et al., 2021.)
Interviewees were about the quality management of the continuous development
in their teams and organization. The purpose was to find out how to keep the
quality of the system and the work high. In the case organization the develop-
ment is continuous and new versions of the system are delivered monthly, some-
times smaller deliveries are made even weekly. However, all deliveries must be
designed, developed and tested before they can be put into production. Almost
all of the interviewees, seven out of eight, mentioned that there should be more
testing, but its design and implementation are still challenging. The system being
developed has become so demanding over the years that testing is also hard and
time consuming. It is not possible to verify all test cases.

The system is so complicated. This side where there are accounting rules. Testing is hard,
one should know a lot of things that can make a difference. Testing is the first step. When
something is done then you should be able to test that it works properly in every situation.
-Interviewee 1

Based on the answers of the interviewees, the software is very large and contains
many different rules that affect each other. All this makes testing and quality as-
surance difficult. These findings form following empirical conclusions EC21 and
EC22.

EC21: The size and complexity of the system affected the success of testing and quality
assurance.

EC22: Making even small changes to the system is challenging, because everything has to
be tested for several different scenarios.

Five interviewees also recognized that automated testing could help to improve
quality. Automated testing was already in use, but respondents felt it should be
increased considerably. However, the testing cannot be based on automated

PEC6: When development has to react quickly to things coming from production, eve-
ryone has to know their role and the process has to be clear throughout the organization.
Otherwise, it is impossible to solve the problems.

45

testing alone, because the situation of customers is so different that manual test-
ing is needed. Automated test cases must be created manually and their aging is
also rapid.

Investments have been made in test automation, not everything needs to be tested manu-
ally. However, all automation tests have been manually coded, customers have such dif-
ferent situations. There can be a lot of situations that go unnoticed. Test automation ensures
quality and even more for manual testing. -Interviewee 2

Testing is done by manual testing. Automated testing should be increased and it would
improve quality. An automated test could be run at all times to detect broken spots. At the
very least, it would make it easier to monitor quality. -Interviewee 3

Automated tests were partially in use, but their utilization was perceived as chal-
lenging. Automated tests need a lot of manual maintenance to work. with new
version updates, the tests should also always be reviewed. These findings form
empirical conclusion EC23.

EC23: The maintenance of automatic tests was perceived as challenging, because they al-
ways have to be updated manually before they are actually useful.

 Interviewee 5 explained that in addition to testing, code reviews are also used to
ensure the quality of deliveries. Code reviewing usually means reviewing the
code with at least one other developer. Reviewing helps to share knowledge and
unify developing styles. Furthermore, Interviewee 5 explained that developers
also make unit tests in their code.

There is a review, the codes are viewed through other eyes and in layers. The aim is to
ensure quality through testing. Unit tests, encoders perform unit tests on their own codes.
- Interviewee 5

Interviewee 5 also described that when delivery approaches there will be the sys-
tem testing phase that includes double checking of the tests and regression test-
ing.

As delivery approaches, there will also be a separate system test phase during which du-
plicate checks will be performed. That is, we check the things that have been coded and do
regression testing. The tests go through different functionalities in different browsers than
what is being done now. -Interviewee 5

Interviewee 7 explained that more of the functions should be tested automatically
and robot tests would help to ensure quality. However tests do not last long and
tests would need to be updated often.

There should be a greater proportion of functions automatically tested.
Robot tests or integration tests and regression tests. However, the tests are technically ob-
solete and they no longer test what they should. -Interviewee 7

46

It seems that all of the interviewees understood the importance of the testing.
Testing should not be forgotten, indeed, the challenges lie more in how to in-
crease the number of tests and at the same time improve their quality. It is diffi-
cult to model all test cases because the system to be developed is extensive and
some of the entities work differently between customers. Automated testing
emerged from the responses several times. Increasing automated testing would
affect the quality of product according to responses. However, tests become rap-
idly old with new versions of the product and would take a long time to update.
In addition to this, manual testing should be at least as much as it is today.

5.4 Summary

This chapter summarizes all the empirical conclusions and primary empirical
conclusions based on them. Based on the interview data, a total of 23 empirical
conclusions and seven primary empirical conclusions were formed, that are pre-
sented in the table 5.

Table 5 Primary empirical conclusions

Identifier Primary empirical conclusion

PEC1 The currently used frameworks of agile methods are known, but
use in development is not clear to all involved.

PEC2 Current working methods do not support DevOps, everyone has
their own areas of expertise, which affects the fact that work takes
place in silos.

PEC3 The need to break down silos and change working methods has
been identified, but the change is perceived as too difficult to im-
plement and no one is responsible for it.

PEC4 A motivated and skilled team can achieve results as long as the
working methods are transparent and flexible. Although the de-
velopment framework is not clearly defined.

PEC5 Bug fixes and improvements from production related to system
maintenance prevent continuous development and improvement.
There is no clear practice for prioritizing and using resources.

PEC6 When development has to react quickly to things coming from pro-
duction, everyone has to know their role and the process has to be
clear throughout the organization. Otherwise, it is impossible to
solve the problems.

PEC7: Testing is key to ensuring quality. Automated and continuous testing improves
consistency, but also requires a lot of manual work to work correctly, when changes
are constantly made to the system.

47

PEC7 Testing is key to ensuring quality. Automated and continuous test-
ing improves consistency, but also requires a lot of manual work
to work correctly, when changes are constantly made to the sys-
tem.

48

This chapter discusses the theoretical and practical implications of the study.
Theoretical implications are derived from the research results, which are com-
pared to the theoretical framework. Practical implications are also reviewed, and
suggestions are tried to be found for them.

6.1 Theoretical implications

The most important empirical findings of the study and their relation to existing
research are presented in the table 6.

Table 6 Primary empirical conclusions and relation to existing research

Identifier Primary empirical conclusion Relation to existing research

PEC1 The currently used frameworks
of agile methods are known,
but use in development is not
clear to all involved.

There are many challenges in ag-
ile transformation, enough train-
ing and planning is needed so
that everyone understands the
agile methods (Inayat et al.,
2015).

PEC2 Current working methods do
not support DevOps, everyone
has their own areas of exper-
tise, which affects the fact that
work takes place in silos.

Working in silos is a recognized
challenge (Ebert et al., 2017).
Cross-functional teams ensure
high-performance (Remta &
Buchalcevova, 2021).

PEC3 The need to break down silos
and change working methods
has been identified, but the
change is perceived as too

Meets the challenges that occur
in the implementation of contin-
uous software engineering (Fitz-
gerald & Stol, 2017).

6 DISCUSSION

49

difficult to implement and no
one is responsible for it.

PEC4 A motivated and skilled team
can achieve results as long as
the working methods are trans-
parent and flexible. Although
the development framework is
not clearly defined.

Meets the challenges that occur
in the implementation of contin-
uous software engineering (Fitz-
gerald & Stol, 2017).

PEC5 Bug fixes and improvements
from production related to sys-
tem maintenance prevent con-
tinuous development and im-
provement. There is no clear
practice for prioritizing and us-
ing resources.

Meets the challenges that occur
in the implementation of contin-
uous software engineering (Fitz-
gerald & Stol, 2017). The goals of
DevOps is to ensure continuous
software development lifecycle
(Alnafessah et al., 2021).

PEC6 When development has to react
quickly to things coming from
production, everyone has to
know their role and the process
has to be clear throughout the
organization. Otherwise, it is
impossible to solve the prob-
lems.

Meets the challenges that occur
in the implementation of contin-
uous software engineering (Fitz-
gerald & Stol, 2017).

PEC7 Testing is key to ensuring qual-
ity. Automated and continuous
testing improves consistency,
but also requires a lot of man-
ual work to work correctly,
when changes are constantly
made to the system.

Lean development tools to en-
sure quality: enough testing, in-
cremental development, work-
flow and automation. (Poppend-
ieck & Cusumano, 2012).

The first primary empirical conclusion (PEC1) states that the teams understand
and know the frameworks. Almost everyone was familiar with Scrum and Kan-
ban and had also worked with them. however, their use in own development
work is unclear. It is felt that it is not certain which methods and their parts are
actually in use. The findings are in line with previous scientific literature and
research. There are many challenges in Agile transformation, enough training
and planning is needed so that everyone understands the Agile methods (Inayat
et al., 2015). One of the biggest challenges in using agile methods is describing
concepts and terms in a way that everyone can understand them (Conboy & Car-
roll, 2019).
The second primary empirical conclusions (PEC2) states that the current operat-
ing methods of the teams do not support the DevOps operating model, every-
one has their own specific skills. Competence in certain areas is concentrated in
a few or even one team member and because of this work is done in silos. The

50

findings are in line with previous scientific literature and research. Working in
silos has been identified as a challenge in several different studies and theories.
Working in silos is a recognized challenge (Ebert et al., 2017).
The third primary empirical conclusion (PEC3) states that dismantling the silos
has been identified as a goal, but the measures and tools to implement it are
missing. The fourth primary empirical conclusion (PEC4) states a motivated
and skilled team can succeed in development even if the frameworks, practices
and operating models are incomplete. The fifth primary empirical conclusion
(PEC5) states that, maintaining production and developing new features creates
challenges. Resourcing is not clear and there is no operational model for it. The
sixth primary empirical conclusion (PEC6) states that the organizations success
in responding to change is significantly influenced by how the processes and
operating models are planned in advance. These four primary empirical conclu-
sions are in line with previous scientific literature and research. Meets the chal-
lenges that occur in the implementation of continuous software engineering
(Fitzgerald & Stol, 2017). The goals of DevOps is to ensure continuous software
development lifecycle (Alnafessah et al., 2021).The Adaption of DevOps needs
cultural and technical transformations in the organization (Zhu & Champlin-
Scharff, 2016).
The seventh primary empirical conclusion (PEC7) states that testing is one of
the most effective ways to ensure the quality of applications. Automatic and
continuous testing are at the core, but their implementation and maintenance is
largely manual work. The findings are in line with previous scientific literature
and research. One of the tools of lean development is built-in quality. Lean de-
velopment tools to ensure quality: enough testing, incremental development,
workflow and automation. (Poppendieck & Cusumano, 2012).

6.2 Practical implications

Based on the findings of the study, the practical implications are presented in
table 7. The practical implications are based on previous research and theory.

Table 7 Practical implications

Identifier Implication for practice

PEC1 Clarifying the used methods such as Scrum with the help of Es-
sence.

PEC2 Changing the structure of teams, sharing expertise more widely in
the organization. Cross-functional teams to ensure high-perfor-
mance

PEC3 Organizational working methods towards DevOps, responsibility
to the team, instead of one person.

51

PEC4 With the right methods of operation, the possibility of further im-
provement.

PEC5 The elements of continuous software engineering are missing.

PEC6 DevOps and BizDev to support the organization's ability to react
quickly.

 Practical implications have been formed on the basis of primary empirical con-
clusions. First found that even though teams use popular methods such as Scrum.
The elements of Scrum are certainly very familiar to the Scrum master, but it may
still be unclear to the other participants why the current method is used and
which method it is. It is always necessary to clarify the goals and the frames to
be used. Essence has been used for this purpose in previous studies.

The second and third practical implications relate to team work in silos.
Even if the challenges in terms of silos are recognized, and one would like to get
rid of them, measures are still not taken. This is certainly related to the fact that
the team does not know how to dismantle them. The team recognizes the need
for a role that would make the necessary changes to working methods. However,
the core of DevOps is the team's central operation and decision-making.

The fourth practical implication relates to skilled and motivated team. It is
felt that even though the practices, frameworks and methods of operation are not
exactly in order, the team is able to produce results. Behind the success of many
agile models is often a motivated and skilled self-managing team. This provides
a good starting point for continuous improvement.

The fifth and sixth practical implications relate to guiding working methods
in the direction of DevOps and BizDev. The teams should produce programs and
features whose maintenance would also be possible easily and partially by the
same people who have been developing them. If the organization wants to be
quick to react to changes, the entire structure must be built around it.

52

The purpose of this chapter is to compile the theoretical and empirical part of the
thesis. This chapter presents the results of the thesis by answering the research
questions. In addition, the chapter considers the limitations of the thesis and
possible topics for further research.

7.1 Answers to the research questions

The goal of the research was to find out the utilization of agile methods in soft-
ware development, the goal of which is continuous software engineering. In ad-
dition to the main research question, two research questions were formed, the
answers to which were to be found in previous studies and to examine what can
be found on the subject in the scientific literature. The first research question to
which the study is trying to find an answer from the scientific literature was:

• Which agile development methods can be used in continuous software
development?

Answer to this research question were found in previous studies and sci-

entific publications. The theoretical part described the most used methods such
as Scrum, Kanban, SAFe and LeSS. In addition, the benefits of Essence were de-
scribed.

The second research question tried to understand the challenges of agile
methods:

• What are the challenges in applying Agile methods?

Answer to this research question were found in previous studies and sci-

entific literature. The answer described the most relevant challenges that organi-
zations and teams can face when using agile methods.

The goal of the study was to answer the main research question:

7 CONCLUSIONS

53

• How to adapt agile methods in continuous software development?

This question was answered with the empirical part of the study, where

members of the development teams were interviewed. Based on empirical con-
clusions, several different challenges were identified. Mainly the challenges have
already been identified in existing literature and research. It is important to note
that those involved in software development are well aware of the different mod-
els and frameworks available.

The goals and elements of successful software development are also known.
However, the biggest problem is how to use these in practice. In terms of the
success of continuous software development, it is important that practices are
effective from the first planning meetings all the way to production. It is also
important to identify areas for development and strive to improve operations in
the next cycle.

7.2 Limitations

The research was carried out for one software development unit of one organi-
zation, this limits the generalizability of the results. When comparing the results,
it must be noted that there would be a similar unit in the comparison. A thematic
interview was used for data collection, which gave the interviewees some space
to tell about things that interest them. The roles of the interviewees were very
central to software development, however, the number of interviewees could
have been increased so that different roles could have been included even more
comprehensively.

7.3 Further research

There is a lot of research on agile methods. Scaled agile development methods,
on the other hand, are a fairly new phenomenon and research is still minimal.
Regarding Essence, there are also very few studies. The theoretical part of the
research dealt with the utilization of Essence with Scrum. The research topic of
this seemed interesting and there are not many studies about it. However, sev-
eral examples have been found in the literature where organizations used Es-
sence to develop training and software implementation (Park, Jang & Lee, 2018).
As a follow-up study for the organization, the benefits of Essence could be re-
viewed and how its use really helps teams. This style of research has been done
before. (Ng, 2015.) The research could be carried out so that Essence tools, such
as cards, would be offered to the team for use and observations would be col-
lected based on it.

54

55

REFERENCES

Agh, H., & Ramsin, R. (2021). Scrum metaprocess: A process line approach for cus-
tomizing Scrum. Software quality journal, 29(2), 337-379.

Alasuutari, P. & Alasuutari, P. (2011). Laadullinen tutkimus 2.0. 4. uud. p. Tampere:
Vastapaino.

Al-Baik, O. & Miller, J. (2015). The kanban approach, between agility and leanness: A
systematic review. Empirical Software Engineering, 20(6), 1861-1897.

Almeida, F., & Espinheira, E. (2022). Adoption of Large-Scale Scrum Practices
through the Use of Management 3.0. Informatics (Basel), 9(1), 20.

Alnafessah, A., Gias, A. U., Wang, R., Zhu, L., Casale, G. & Filieri, A. (2021). Quality-
Aware DevOps Research: Where Do We Stand? IEEE access, 9, 44476-44489.

Banica, L., Radulescu, M., Rosca, D. & Hagiu, A. (2017). Is DevOps another Project
Management Methodology? Informatica Economica, 21(3), 39-51.

Coleman, G. (2016). Agile Software Development. Software Quality Professional,
19(1), 23-29.

Conboy, K., & Carroll, N. (2019). Implementing Large-Scale Agile Frameworks: Chal-
lenges and Recommendations. IEEE software, 36(2), 44-50.

Conboy, K., Coyle, S., Wang, X. & Pikkarainen, M. (2011). People over Process: Key
Challenges in Agile Development. IEEE Software, 28(4), 48-57.

Dornenburg, E. (2018). The Path to DevOps. IEEE software, 35(5), 71-75.

Ebert, C., Gallardo, G., Hernantes, J. & Serrano, N. (2016). DevOps. IEEE Software,
33(3), 94-100.

Ebert, C. & Paasivaara, M. (2017). Scaling Agile. IEEE Software, 34(6), pp. 98-103.

Fitzgerald, B. & Stol, K. (2017). Continuous software engineering: A roadmap and
agenda. The Journal of systems and software, 123, pp. 176-189.

Forsgren, N. (2018). DevOps delivers. Communications of the ACM, 61(4), 32-33.

Gonçalves, L. (2018). Scrum. Controlling & Management Review, 62(4), 40-42.

Greer, D. & Hamon, Y. (2011). Agile Software Development. Software-Practice & Ex-
perience, 41(9), 943-944.

Guest, G., MacQueen, K. M., & Namey, E. E. (2012). Applied thematic analysis. SAGE
Publications.

Hyvärinen, M., Nikander, P., Ruusuvuori, J., Aho, A. L., & Granfelt, R. (2017). Tutki-
mushaastattelun käsikirja. Vastapaino.

Inayat, I., Salim, S. S., Marczak, S., Daneva, M. & Shamshirband, S. (2015). A system-
atic literature review on agile requirements engineering practices and chal-
lenges. Computers in Human Behavior, 51, 915.

56

Ivar Jacobson International. (2022). Essence Activity Spaces. Retrieved on 3.8.2022
from: https://www.ivarjacobson.com/publications/articles/essence-activity-
spaces

Jacobson, I., Ng, P-W., McMahon, PE., Spence, I., Lidman, S. (2012). The essence of
software engineering: the SEMAT kernel. Commun ACM.

Jacobson, I., Ng, P-W., McMahon, P. E., & Goedicke, M. (2019). The essentials of
modern software engineering: free the practices from the method prisons!

Jacobson, I., Sutherland, J., Kerr, B., & Buhnova, B. (2022). Better Scrum through Es-
sence. Software, practice & experience, 52(6), 1531-1540.

Johanssen, J. O., Kleebaum, A., Paech, B., & Bruegge, B. (2019). Continuous software
engineering and its support by usage and decision knowledge: An interview
study with practitioners. Journal of software : evolution and process, 31(5),
e2169-n/a.

Kalenda, M., Hyna, P. & Rossi, B. (2018). Scaling agile in large organizations: Prac-
tices, challenges, and success factors. Journal of Software: Evolution and Pro-
cess, 30(10), n/a.

Kniberg, H. & Skarin, M. (2010). Kanban and Scrum-making the most of both.

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2020). A Survey of DevOps
Concepts and Challenges. ACM computing surveys, 52(6), 1-35.

Lopez-Fernandez, D., Diaz, J., Garcia-Martin, J., Perez, J., & Gonzalez-Prieto, A.
(2021). DevOps Team Structures: Characterization and Implications. IEEE trans-
actions on software engineering, 48(10), 1.

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., . . .
Lassenius, C. (2019). DevOps in practice: A multiple case study of five compa-
nies. Information and software technology, 114, 217-230.

Misra, S., Kumar, V., Kumar, U., Fantazy, K. & Akhter, M. (2012). Agile software de-
velopment practices: Evolution, principles, and criticisms. International Journal
of Quality & Reliability Management, 29(9), 972-980.

Ng, P. (2015). Integrating software engineering theory and practice using essence: A
case study. Science of computer programming, 101, 66-78.

Park, J. S., Jang, J., & Lee, E. (2018). Theoretical and empirical studies on essence-
based adaptive software engineering. Information technology and manage-
ment, 19(1), 37-49.

Poppendieck, M. & Cusumano, M. (2012). Lean Software Development: A Tutorial.
Software, IEEE. 29. 26-32. 10.1109/MS.2012.107.

Poppendieck, M. & Poppendieck, T. (2003). Lean software development: An agile
toolkit. Addison Wesley, Boston, Massachusetts, USA.

Poppendieck, M. & Poppendieck, T. (2007). Implementing Lean Software Develop-
ment: From Concept to Cash. Addison-Wesley, Boston, Massachusetts, USA.

https://www.ivarjacobson.com/publications/articles/essence-activity-spaces
https://www.ivarjacobson.com/publications/articles/essence-activity-spaces

57

Rajapakse, R. N., Zahedi, M., Babar, M. A., & Shen, H. (2022). Challenges and solu-
tions when adopting DevSecOps: A systematic review. Information and soft-
ware technology, 141,106700.

Remta, D. & Buchalcevova, A. (2021). Product Owner’s Journey to SAFe®—Role
Changes in Scaled Agile Framework®. Information, 12(3), 107.

Scaled Agile. (2021) What is SAFe? Retrieved on 10.4.2021 from:
https://www.scaledagile.com/enterprise-solutions/what-is-safe/create-a-
learning-culture/

Scrum. (2020). What is Scrum? https://www.scrum.org/resources/what-is-scrum

Schwaber, K. & Sutherland, J. (2017). The Scrum Guide. The Definitive Guide to
Scrum: The Rules of the Game.

Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous Integration, Delivery and De-
ployment: A Systematic Review on Approaches, Tools, Challenges and Prac-
tices. IEEE access, 5, 3909-3943.

Sreenivasan, S. & Kothandaraman, K. (2019). Improving processes by aligning Capa-
bility Maturity Model Integration and the Scaled Agile Framework®. Global
Business and Organizational Excellence, 38(6), 42-51.

State of Agile. (2020). 14th annual State of Agile report. Retrieved on 12.3.2021 from:
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-re-
port/7027494

Takeuchi, H. & Nonaka, I. (1986). The new product development game. Harvard
business review, 64(1), 137-146.

The LeSS Company B.V. (2022). Why LeSS Framework. Retrieved on 20.9.2022 from:

https://less.works/

Tuomi, J. & Sarajärvi, A. (2002). Laadullinen tutkimus ja sisällönanalyysi. Helsinki:
Tammi.

Tuomi, J., & Sarajärvi, A. (2018). Laadullinen tutkimus ja sisällönanalyysi (Uudistettu
laitos.). Kustannusosakeyhtiö Tammi.

Valli, R. & Aarnos, E. (2018). Ikkunoita tutkimusmetodeihin: 1, Metodin valinta ja ai-
neistonkeruu : virikkeitä aloittelevalle tutkijalle (5., uudistettu painos.).
Jyväskylä: PS-Kustannus.

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). DevOps and Its Practices. IEEE soft-
ware, 33(3), 32-34.

https://www.scaledagile.com/enterprise-solutions/what-is-safe/create-a-learning-culture/
https://www.scaledagile.com/enterprise-solutions/what-is-safe/create-a-learning-culture/
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://less.works/

58

APPENDIX 1

Themes and interview questions:

1. Theme: Background information

• What is your role/work title/job description in the organization?

• How much do you have work experience?

2. Theme: Development process

• How is the development process planned to be realized?

• What methods are used?

• How long have the current methods been used?

• How do the plans (roadmap) guide the work?

3. Theme: Responding to changes

• How to consider changing requirements?

• How are changes communicated?

• What would you improve in the current operating model?

4. Theme: Challenges and strengths

• What strengths do you see in current practices?

• What challenges do you see in current practices?

5. Theme: Quality of software

• How is it considered that the system remains of high quality?

• What factors do you think enable the quality to remain high?

• How would you improve the quality?

	1 INTRODUCTION
	1.1 Motivation
	1.2 Research questions
	1.3 Structure of thesis

	2 AGILE SOFTWARE DEVELOPMENT
	2.1 Agile and lean
	2.1.1 Scrum
	2.1.2 Kanban

	2.2 Scaled agile
	2.2.1 SAFe
	2.2.2 LeSS

	2.3 Challenges
	2.4 Essence
	2.4.1 The Kernel
	2.4.2 The language
	2.4.3 Essence for Scrum

	3 Continuous software engineering
	3.1 DevOps
	3.2 BizDev

	4 Research design
	4.1 Goals of the empirical research
	4.2 Data collection
	4.3 Data analysis
	4.4 Realiability and validity

	5 Empirical findings
	5.1 Development process
	5.2 Agile teams
	5.3 Software quality
	5.4 Summary

	6 Discussion
	6.1 Theoretical implications
	6.2 Practical implications

	7 Conclusions
	7.1 Answers to the research questions
	7.2 Limitations
	7.3 Further research

	REFERENCES
	APPENDIX 1

