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Feature selection (FS) may improve the performance, cost-efficiency, and understandability of supervised
machine learning models. In this paper, FS for the recently introduced distance-based supervised
machine learning model is considered for regression problems. The study is contextualized by first pro-
viding an umbrella review (review of reviews) of recent development in the research field. We then pro-
pose a saliency-based one-shot wrapper algorithm for FS, which is called MAS-FS. The algorithm is
compared with a set of other popular FS algorithms, using a versatile set of simulated and benchmark
datasets. Finally, experimental results underline the usefulness of FS for regression, confirming the utility
of certain filter algorithms and particularly the proposed wrapper algorithm.
� 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Dissimilarity has a central role in unsupervised learning, but the
increased popularity of using distance-based models for super-
vised problems (e.g., [1–4]) illustrates how the gap between unsu-
pervised and supervised learning tasks is diminishing. In fact the
dissimilarities among a set of prototypical observations can be
used as features with any predictive model [5,6]. Further, the his-
tory of distance-based supervised models can be traced back to the
radial basis function networks [7,8] with a linear kernel [9,10]. The
latter references, as noted in [Remark 1] [4], provide proof for the
universal approximation capability of the linear distance-
regression model. The scope of this article is to consider dimension
reduction, specifically feature selection (FS) for this distance–based
learning machine [4]. Compared to its sibling method, feature
extraction (FE), FS keeps the features as they are while removing
those considered unnecessary. FE, on the other hand, aims to
reduce the number of features for example, through projections
[11]. In this way, FE mixes information of the original features.

The need for FS stems from increasingly complex and demand-
ing datasets where the number of features may become detrimen-
tal to the practical operation of a machine learning model [12–14].
FS refers to the identification and selection of a subset of relevant
features for a data-based model. Therefore, it is basically a search
problem, which can generally be addressed using many techniques
(e.g., forward or backward search, exhaustive search, branch-and-
bound, evolutionary approaches) and multiple feature assessment
criteria (information, distance, dependency, consistency, and accu-
racy measures) [15]. The FS process has three main goals [16]:
improve the model performance, provide faster and more cost-
effective models, and improve the understanding of the data gen-
eration process. However, the last goal cannot be fully addressed
when working with an already featurized, secondary dataset. The
classical division of the main types of features is given in [17,18]:
irrelevant, weakly relevant, and strongly relevant. The weakly rele-
vant features were further categorized in [19] as redundant or
non-redundant.

The main branches of FS techniques are filter and wrapper
approaches [17], depending on whether the intended machine
learning model itself is used in the FS process. Usually, this means
that a filter approach is faster, and a wrapper approach is more
accurate [18]. Filters usually contain two main steps [20]: 1Þ rank-
ing of features according to importance scoring; and 2Þ selection of
most important features based on step 1Þ. Hybrid [21–24] or
embedded methods [25,26] perform FS by using another model
or an untrained model to assess feature relevancy. Embedded
methods that rank and select features during the construction of
the predictive model include decision trees [27] and ensemble
learning methods, most prominently, random forests [28,29].

For wrappers, the search phase of the used features means mul-
tiple repetitions of training, i.e., the estimation of the model’s
parameters. Therefore, one aspect of categorizing different wrap-
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Table 1
List of abbreviations used in the umbrella review.

ANN Artificial Neural Network Mb Markov blanked
BNS Bi-Normal Separation MB Markov boundary
CBM Correlation-Based Methods MCO MultiCriteria Optimization
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pers is given by the number of model trainings needed during the
search of the final feature subset. This number can be very large,
for instance, when optimization-based methods and metaheuris-
tics are used to search the features (see Section 2.4). Here, we pro-
pose a one-shot wrapper: rank the features using scores computed
from a trained distance-based model with the full feature set and,
through a threshold, select the most important ones for the
reduced model. The entire endeavor to determine the final model
then requires two training rounds — initially with the original fea-
ture set and finally with the selected feature set. In between, the
full feature set model is used to compute feature importances for
the thresholding. It should be noted that if the feature ranking
based on the full model is computationally not more expensive
than training the model, then this one-shot approach does not
add any computational complexity to the (unavoidable) model
training.

Feature scoring and ranking is actually a specific technique to
quantify and improve the understandability of a model, to explain
its behavior [30]. Indeed, interpretable machine learning refers to
the ability to understand the work logic of machine learning mod-
els and algorithms [31]. A branch of techniques for this purpose
uses the saliency of features to rank their explanatory power as a
post hoc explainability approach [32,33]. For neural networks
(NN), one measure of saliency is the input sensitivity, i.e., the par-
tial derivative of the network’s output with respect to its input. For
shallow networks, feature assessment originating from this idea
was proposed in [34] and, since then, many similar FS techniques
have been considered [35]. Use of a partial derivative method
was rediscovered within the context of deep neural networks in
[36], where the first-order Taylor’s expansion was used to generate
an image-specific saliency map for visual interpretation of a convo-
lutional neural network classifier.

In this work, we provide a wide-ranging overview of earlier FS
research, noting that explorations of FS for distance-based regres-
sion methods have been scarce. Thus, we aim to fill this gap by
proposing and evaluating a new FS algorithm for this learning task.
Our main contributions are as follows:

� an umbrella review of recent reviews on FS
� derivation of a one-shot FS approach for distance-based
regression

� extensive experimental comparison of filter and wrapper FS
algorithms, ensuring the viability of the proposed algorithm
and its building blocks.

The rest of the paper is organized as follows. Section 2 presents
the umbrella review. Section 3 introduces the proposed FS algo-
rithm and the necessary mathematical foundations. Section 4
describes the used synthetic datasets as well as presents the used
open access datasets. In addition, it presents the evaluation criteria
used in measuring the gained results. Section 5 details the experi-
ments and results while also presenting the related discussion. The
data tables with the results discussed in Section 5 are in the appen-
dix. Finally, Section 6 discusses and concludes the work.
DBM Deep Boltzmann Machine MD Maximum Discrimination
DF Document Frequency MH MetaHeuristic
DT Decision Tree MI Mutual Information
ELM Extreme Learning Machine MLM Minimal Learning Machine
EMLM Extreme MLM MLP MultiLayered Perceptron
FS Feature Selection NB Naive Bayes
GA Genetic Algorithm RBFN Radial Basis Function

Network
IG Information Gain RF Random Forest
kNN k-Nearest Neighbors SVM Support Vector Machine
LR Linear Regression

techniques
SVR Support Vector Regression

LRR Logistic Ridge Regression TF-
IDF

Term Frequency-Inverse DF
2. Umbrella review on FS techniques

FS is a particular instance of model selection for which a consid-
erable number of techniques have been depicted and experi-
mented with over the years [37]. Therefore, the full coverage of
the development and current status of the FS field of research from
primary studies, after the influential classical works like
[38,39,15,16], is out of the scope of this article. However, in order
to position our work in the research field, the recent developments
of FS research will be summarized through an umbrella review, the
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purpose of which is to locate and consider different views and per-
spectives on a broad area of interest [40]. Here, instead of address-
ing the primary studies in the field, the already undertaken surveys
and reviews and their summarization are considered [41]. Further,
the umbrella review is a common practice in the medical research
domain where summarizing the vast amount of knowledge from
primary articles is a tedious task. However, while this type of
review is rarely used in the machine learning field, there was one
such recent study related to deep learning [42]. Similar to the deep
learning field, there exist many recent reviews for FS, which indi-
cates the need for conducting an umbrella review for FS as well.

For this purpose, we used Google Scholar on December 9–10,
2021, with the search term ”feature selection review” and checked
the first 500 returned links. Of these links, 32 high-quality reviews
and summaries on FS for supervised learning, published since 2013
in journals by leading publishers (IEEE, ACM, Elsevier, Springer,
Wiley), were identified to be summarized next. The final paper of
the search that was included in the summary, [43], had an entry
number of 475. This was the only hit for the last 50 checked papers.
The annual number of reviews and summaries identified was as
follows: one paper from 2013, three from 2014, two from 2015,
three from 2016, three from 2017, seven from 2018, four from
2019, seven from 2020, and two from 2021. The numbers indicate
an increasing trend in summarizing the overall research achieve-
ments of the research field.

The narrative review of the papers is primarily organized in a
chronological order. From the first paper [44] onward, we have
not repeated the shared contents but tried to provide only new,
relevant information from the chronologically subsequent papers.
However, reviews addressing a common topic are presented
together, and this defines the subtitle structure used below. The
subtitles are ordered according to the publication year of the first
review article of the topic, although a review of general FS reviews
is presented first. Due to the abundance of abbreviations in the
umbrella review, we have included Table 1, in which they are
listed.

2.1. General reviews

A general review on FS in classification was provided in [43].
Correlation criterion and MI-based criteria were depicted for filter
methods. Wrapper methods were classified into Sequential Selec-
tion Algorithms (backward search) and Heuristic Search Algo-
rithms (use of a GA) to identify a subset of features. For
embedded methods, MI and weights of a classifier were depicted
as feature assessment criteria. As classifiers, SVM and RBFN were
introduced. Experiments with six datasets (Breast cancer, Diabetes,
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Ionosphere, Liver disorder, Medical, Fault mode) demonstrated
the usefulness of FS but did not provide any methodological
rankings.

The second general review encountered was [45]. However,
after introducing eight different algorithms for FS including
maximum variance, Laplacian score, spectral regression, sparsity
favoring, etc. approaches, the experiments were only performed
for unsupervised FS. Therefore, we did not consider this work
further.

In [46], a large and very comprehensive FS review organized
from a data perspective, mainly for ranking the features or identi-
fying feature subsets through sparsity-favoring linear learning, was
given. The different cases for FS were defined as follows: tradi-
tional FS and FS with structured features for conventional data;
FS with linked data, multi-source FS, and multi-view FS for
heterogenous data; and FS with streaming data or streaming fea-
tures for streaming data. For conventional data, five similarity-
based score criteria (Laplacian Score, SPEC, Fisher Score, Trace
Ratio, and ReliefF) were introduced. Then, nine information theory
-based methods (IG, MI, Minimum Redundancy Maximum Rele-
vance, Conditional Infomax, Joint MI, Conditional MI, Interaction
Capping, Double Input Symmetrical Relevance, and a Correlation-
Based Filter) were depicted. Third category of methods for conven-
tional data favored sparsity. Their construction was based on a
suitable loss function with nonconvex regularization using the
k � kp-norm for 0 6 p 6 1 or k � kp;q-norm for p > 1 and 0 6 q 6 1
with both vector- or matrix-valued unknowns. The Actual formula-
tions for different methods are given in [Section 2.3][46]. In statis-
tical methods, the features with low variance or t-score or Chi-
square score or with a high Gini index are eliminated. In
Correlation-based FS (CFS), one searches a feature subset which
has a strong correlation with class labels but weak inter correla-
tions. FS with structured features included Group Lasso, and its
sparse and overlapping variants. For tree structured features, a
Tree-guided Group Lasso was introduced, and for graph structure,
a Graph-Lasso with two additional variants (GFLasso and GOSCAR)
was defined. For linked data, FS using graph regularized least-
squares, user-post relationship regularizer, and unsupervised tech-
niques encoding latent and low-rank representations were
depicted. Multi-source FS could be addressed using Geometry-
Dependent Covariance Analysis and multi-view scenarios, which
refer to FS from different feature spaces simultaneously by using
linear least-squares with specially constructed desired outputs,
constraints, and sparsity favoring regularizers [Section 4.3] [46].
For streaming data with feature streams, assuming a constant
number of instances for e.g., Grafting Algorithm (Lasso-like
method) and Alpha-Investing Algorithm (a statistical threshold
technique) were described. For actual data streams, a particular
online FS algorithm and an unsupervised least-squares approach
were introduced. Entire sections in the review were dedicated to
the evaluation of different FS approaches and open problems in
the field. This paper was clearly one of the most comprehensive
reviews that was found, even though it should be noted that the
linkage between a particular FS technique and the form of data is
not a function but a relation: many FS techniques are suitable or
modifiable for use with many forms of data.

A general FS review was provided in [47], where the techniques
were not directly introduced but discussed through a Problem–S
olution-Discussion contents presentation model. Many of its
themes coincided with those in [46] as summarized in the previous
paragraph, so we only depict the additional topics covered: dis-
tributed algorithms for FS (utilizing, e.g., MPI, MapReduce, and
peer-to-peer networks), multi-label FS (of which a dedicated
review was provided in [48] and summarized in Section 2.6),
privacy-preserving FS (where the overall privacy degree of the cho-
sen features is controlled), and adversarial techniques for FS (based
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on currently popular adversarial network architectures and attacks
on the classification model).

In [49], FS in machine learning was addressed on a general level.
However, this high quality review was superseded by the even
more extensive exposure in [46] summarized above. Nevertheless,
in relation to wrappers, clustering-based unsupervised techniques,
GAs, and particle swarm optimization methods were presented, for
which a thematic overview is given below in Section 2.4. Semi-
supervised FS, which was more thoroughly summarized in [50]
as depicted in Section 2.5, was also examined. Future challenges
were linked to the properties of data (small, large, imbalanced)
and ensemble or online FS techniques.

The FS for ensemble-based machine learning models was
reviewed in [51]. The basic relation between ensembles and FS is
composed on the triplet of {base learners}� {feature subsets}�
{observation subsets}. Clearly, we can link filters, wrappers, or
embedded FS methods to all learners or perform FS individually
in the base learners. Interestingly, RF, which is truly a prototypical
feature-subset based FS method, was not addressed explicitly in
this review. However, a comprehensive depiction of the existing
FS tools and techniques that are available on the commonly used
software platforms was presented.

In [52], causality-based FS was reviewed, and a new open-
source library was proposed and tested. Instead of co-
occurrences and correlations within a set of features and targets
(usually labels), causality refers to the identification of cause-
and-effect relationships typically using graph-based graphical
models such as the Bayes/Bayesian Networks with Markov blanket
(Mb) or Markov boundary (MB). For MB, which is the minimal set
of Mb referring to a subset of variables containing all necessary
information to infer a random variable, this review first classified
(into five categories of learning) and described 30 different
constraint-based FS algorithms. Similarly, three categories with
eight algorithms for score-based (scoring or the actual cost func-
tion and how it is searched) identification of MB were described.
Furthermore, four categories of 18 algorithms to separate features
of direct causes (parents) from those with only direct effects (chil-
dren) were depicted. The new toolbox, CausalFS, was then pre-
sented with a list of future challenges regarding form and quality
of data (see Section 2.3), causal effect estimation, and causal FS
for NNs.

The most recent review in our umbrella review was [53], which
provided a clear introduction to search methods and mechanisms
in FS. The measures which originated from four categories (statis-
tics, probability, similarity, and sparsity) were a proper subset of
those provided in [46]: evolutionary FS algorithms are described
in the individual reviews in Section 2.4, and the additional SVM-
RFE method mentioned is already part of the first review in here
[44]. However, compared to Section 2.5, the body of domains
where FS is needed was enlarged to cover natural language pro-
cessing, emotion recognition, speech processing, sentiment analy-
sis, and biometrics. These and other domains were carefully linked
to primary publications, datasets, evaluation measures, and future
challenges.

2.2. Filter methods

One of the most popular class of methods for FS filters are the
information-theoretic methods that utilize MI. These techniques
were reviewed in [54]. The basics of information theory and key
concepts of filters (relevance, redundancy, and complementarity)
were presented. The main results of the work were a unifying
framework and a list of open problems without any empirical
experiments.

The similarity of the FS techniques, especially the rankings they
provided were compared using the Kuncheva index averaged over
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all pairwise comparisons in [55]. Five univariate (v2, IG, Symmetri-
cal Uncertainty, Gain Ratio, and OneR) and three multivariate
(ReliefF, SVM-ONE, and SVM-RFE, the latter two both with linear
kernel) FS methods were considered for 16 classification datasets
with the number of features ranging from 1559 to 10 458. Similar
behavior was observed for the three first univariate methods,
whereas different behavior of Gain Ratio was witnessed. Difference
of multivariate methods compared to the univariate ones was also
observed, together with the sensitivity of SVM-related methods on
their internal parameters concerning the number/portion of fea-
tures discarded at each iteration. In this respect, ReliefF had the
most stable and consistent behavior.

In [56], structured, sparsity-inducing methods are presented by
separating vector-based and matrix-based FS. However, even
though the work provides a comprehensive survey, it is superseded
by the even more extensive exposure [46] already summarized
above.

One of the most commonly used filters, as also demonstrated by
this umbrella review, are Relief-based algorithms (RBAs), which
were comprehensively depicted and reviewed in [57]. Altogether,
21 variants of RBAs from four general branches were presented,
and among them, from our perspective, the most important being

the regression-oriented ReliefF with O N2n
� �

computational costs

for the number of observations N and the number of features n.
Because feature scoring in Relief is based on the feature value dif-
ferences between a target and its neighboring observations, this fil-
ter is particularly relevant to our experiments presented in
Sections 4 and 5.

A large comparison of filters for classification, utilizing 16 high-
dimensional datasets and a specific R-package mlr, was presented
in [58]. The 22 filters, also visible in other papers of this umbrella
review, originated from statistical tests, feature variance, univari-
ate predictive performance, feature importance with RF, and MI.
The classifiers were kNN, LRR, and SVM. In the analysis, similarity
of feature scores for ranking was first assessed, by identifying three
groups of similar filter methods. The actual comparison for (data,
model,filter)-triplets was generally concluded as follows ‘‘no filter
method is better than all the other methods on all data sets,” and
‘‘there is no subset of filter methods that outperforms all other fil-
ter methods.” Because of these conclusions, it was recommended
to test all filters in a particular context if computational resources
suffice.
2.3. FS for particular forms of data

The use of synthetic data allows for rigorous comparison
between the selected features and accuracies of the reduced fea-
ture models. In [44], FS for synthetic data classification was
reviewed. Altogether, seven filters (correlation-based method,
consistency-based filter, the Interact algorithm, IG, ReliefF-
algorithm, the mRMR method, and the Md filter), two embedded
methods (SVM-RFE for SVM and FS-P for Perceptron), and two
wrappers (Wrapper-C4.5 and Wrapper-SVM using the Wrap-
perSubsetEval algorithm) were applied over eleven synthetic data-
sets (CorrAL, CorrAL-100, XOR-100, Parity3 + 3, LED-25, LED-100,
Monk3, SDI1–3, and Madelon), which included irrelevant and
redundant features, noise, and various interaction patterns. More-
over, four classifiers were used (NB and IB1 in addition to C4.5 and
SVM). In this work, the challenges were pointed out in the thresh-
old selection for methods that produce feature importance values
and, therefore, allow ranking of individual features. They con-
cluded that ReliefF and SVM-RFE with nonlinear kernel were the
best methods, and recommended the former because of its inde-
pendence on the classification model and computational efficiency.
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Additionally, the difficulties in comparing and ranking wrapper
methods were also noted.

Online settings provide a special context on the availability of
data for feature construction. In [59], FS for streaming data classi-
fication was considered, with the full or only a partial subset of fea-
tures being accessible for each arriving new instance (decided by
the learner). Next, three novel algorithms, a truncated perceptron,
a sparse projection approach, and learning with partial inputs,
were presented. The experimental comparison was performed
using nine smaller datasets (magic04, svmguide3, german, splice,
spambase, a8a, RCV1, and two topic pairs from 20Newsgroup)
and five larger datasets (KDDCUP08, ijcnn1, codrna, covtype, and
KDDCUP99), focusing on the average number of mistakes made
by the algorithms. Further, real word applications of image classi-
fication in computer vision and microarray gene expression analy-
sis in bioinformatics were also demonstrated. The overall
conclusion was that the proposed online algorithms turned out
to be scalable and more efficient than some state-of-the-art batch
FS techniques. However, upon taking a closer look, this paper
turned out to be a primary study.

A particular focus on online FS with streaming features — a sub-
topic also covered in the extensive review [46] summarized in Sec-
tion 2.1 — was undertaken in [60]. The additional FS techniques
compared to [46] contained MI-based SAOLA and Group-SAOLA
(Scalable and Accurate OnLine Approach), uncertainty-
minimizing GFSSF (Group FS with Streaming Features), and
Lasso-oriented OGFS (Online Group FS). Experiments with several
(over 10) benchmark data sets did not provide methodological con-
clusions or rankings but, instead, generated a list of challenges
related to multi-label cases (reviewed separately, e.g., in [48] as
summarized in Section 2.6), quality of data in real-world applica-
tions, and the need to distribute computational efforts.

2.4. Optimization-based FS techniques and metaheuristics

A general approach for FS is to cast the problem of identifying a
subset of features as an optimization problem. Such an approach
needs the definition of a cost function that measures the goodness
of a feature subset, typically through the accuracy of a classifier.
However, the strict convexity and differentiability of such cost
functions might be difficult to establish, so derivative free opti-
mization methods provide a natural family of optimizers in these
settings. Clearly, both the necessity of the metalevel fitness and
the search that finds arguments of its extremums causes a signifi-
cant increase in the computing time.

In [61], nature-inspired metaheuristics including GAs and ant
colony optimization were reviewed for FS. Further, a taxonomy
of such approaches consisting of stochastic algorithms, physical
methods, evolutionary approaches, immune systems, and swarm
intelligence were also depicted. Then, the elements and basic con-
stituents of population-based approaches, memetic algorithms
incorporating local searchers, clonal selection, harmony search,
simulated annealing, tabu search, and swarm algorithms (artificial
bee colony, ant colony, firefly algorithm, and particle swarm) were
given. Experiments with 12 UCI datasets and C4.5 and NB classi-
fiers concluded the capabilities of all tested algorithms in finding
good solutions. Similar to [44] as shown above, in some cases,
filter-based evaluators had better results as compared to the more
complex FS approaches.

Years 2020–2021 were characterized by multiple FS reviews
addressing optimization-based techniques. The latest is [62],
which focused on nature-inspired MH techniques from both map-
ping (how much and what kind of publications) and review (what
techniques and results) perspectives. Among others, the large
number of nature-inspired MH techniques was summarized: 29
were inspired by insects and reptiles, 15 by birds, 13 by animals,
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seven by sea creatures, five by plants, six by humans, and 25 other
techniques. Altogether, 21 actual FS-MH algorithms were then
listed, which were further divided into chaotic (utilizing various
forms of randomness) and binary (strict inclusion/exclusion of fea-
tures) variants. Moreover, the review [62] superseded a few other
recent, more specific FS reviews: the grey wolf optimizer treated in
[63,64] which considered the Dragonfly algorithm. Moreover,
swarm optimization, which was examined in [65], introduced six
different algorithms, which were all contained in five categories
and 12 instances of ”swarm” presented in [62]. Differently from
[62], the chaotic category there was replaced with continuous rep-
resentation of features. The review in [65] was summarized with
the observation that MHs are typically applied to identify both
the features and predictive model’s parameters, and that FS prob-
lems with binary presentation need further studies.

Another perspective on optimization-based FS was detailed in
[66], where a systematic review on the use of MCO was presented.
In all the introduced cases, the multiple criteria were reduced to
two basic objectives: minimal number of features with maximal
classification performance. Contents of 38 papers were summa-
rized, where the twofold nature noted above meant that most of
the papers depicted wrappers and only five filters. Because of the
computational costs of MCO algorithms, the mentional classifiers
included rather simple techniques like kNN, NB, DT, and linear
SVM, but also SVM, RF, ELM, MLP (i.e., shallow feedforward net-
work), DBM, and Deep NN. Notably, this review also summarized
38 different datasets that were used to evaluate the methods.
2.5. FS in particular application domains

Gene expression data, which was focused on in [50], is charac-
terized by a high ratio of the number of features to that of samples:
there can be up to hundreds of thousands of features but only a
small sample size. In this paper, a thorough introduction to feature
evaluation and selection methods was given along with compre-
hensive summaries of the prediction accuracy vs. number of
selected features for dozens of studies with five popular datasets.
Expectedly for such problems, the usefulness of filters and the
potential of semi-supervised FS methods integrating unsupervised
FS from larger unlabelled data with supervised construction of
classifiers was concluded. Similarly, the potential of hybrid FS
methods combining multiple filter and/or wrapper approaches
was emphasized.

FS in the multimedia context, covering, for example, texts,
images, videos, audios, animations, etc. as formats and forms of
data, was reviewed in [67]. The basics of FS methods and search
strategies were depicted with summaries of their use in super-
vised, semi-supervised, and unsupervised FS techniques for multi-
media data based on 70 original papers in 2001–2017.
Interestingly, compared to our paper, years 2013 and 2014 were
identified as the most active times of publications especially
through the emergence of various heuristics. A special emphasis
in the current review was given to interactive, active learning -
based approaches. However, with both these techniques as well
as in the whole research field, several open issues and challenges
were identified. Additionally various metrics to evaluate the per-
formance of FS methods with multimedia data were presented.

FS in the application domain of renewable energy was consid-
ered in [68]. This was chronologically the first study where regres-
sion problems had an explicit role. This was illustrated in the more
detailed FS reviews on the following: iÞ Wind Energy Prediction
using NN, Gaussian Process, kNN, ELM, SVR, RF, Boosting machine,
and Nonlinear Auto-Regressive models, where FS was performed
via optimization-based methods (see Section 2.4), and Empirical
Mode Decomposition, iiÞ Solar Energy Prediction using correlations,
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Lasso, and optimization-based but mainly intrinsic (i.e., domain
and data-specific) FS methods for NNs, Deep NNs, SVMs, and ELMs;
iiiÞ Marine Energy Prediction using rule- and optimization-based FS
methods mainly for ELMs, and ivÞ Energy-Related Problems in gen-
eral using, again, optimization-based FS methods with ELMs and
SVMs, RReliefF with NNs, and entropy-based filters with, for e.g.,
RF and NNs. Over half (18) of the 32 reviewed papers used wrap-
pers for FS.

Genomic big data, similar to [50] as shown above, was
addressed in the systematic review in [69]. Most of the identified
papers proposed new methods, architectures, and tools for pro-
cessing genomic data, thus overlapping with other reviews men-
tioned in this paper. A terminological exception was the
Integrative FS methods, which depicted multiple hybrid
approaches with different datasets and/or FS methods as a prepro-
cessing step before the actual training of a model (with or without
FS).

A systematic review on FS for forecasting spatiotemporal traffic
data (how much traffic, where) was presented in [70]. From the FS
perspective, the categorization of the identified literature followed
the normal model except for the division of filters into so-called
Exogenous and Endogenous feature filtering methods. The latter
encapsulated the typical filters like correlation and sparse linear
regression-based methods. Whereas the former referred to the
use of external data and knowledge to limit possibilities and useful
features, such as, knowing that a car is moving in a specific direc-
tion at a certain speed. Additionally, optimization-based wrappers,
and embedded methods using, for e.g., deep learning techniques
were listed. In 211 papers from 1984–2018, a versatile pool of
prediction methods were found including the following: Feedfor-
ward shallow and deep ANNs; time-delayed, recurrent, long
short-term memory, convolutional, autoregressive exogenous
ANNs; Deep belief and Bayesian networks; kNN; autoregres-
sive models; Gaussian Process regression; RF and Regression tree;
and Tensor decomposition models. It was concluded that urban
traffic forecasting in particular needs further empirical FS
studies.

Text classification and FS were the scope of the review in [71].
In this application domain, the starting point is the numerical
encoding of texts and documents by using, for instance, the classi-
cal bag-of-words representation. This is a particularly interesting
domain from the point of view of the distance-based methodology
because of the key role of similarity of documents especially in
unsupervised scenarios. The classifiers summarized in the review
are the common ones: kNN method, NB, relevance-based Rocchio,
multivariate regression models, DTs, SVMs, NNs, graph
partitioning-based approach, and GA-based methods to train the
models. From the FS perspective, the text domain is very similar
to the genomic data due to the number of features being large
when compared to the number of observations in both. Filters in
the field result from preprocessing-like techniques such as DF
and TF-IDF, as well as more tradional CBM, MI, IG, Term-
Relatedness, v2, MD, LR techniques, BNS along with a few special
filters. However, wrappers and embedded methods were only
briefly addressed in this review. Interestingly and independently,
the review was concluded with summarizing some recent FS cate-
gories using almost the same topical division as in our umbrella
review.

FS in image analysis was considered in [72]. In this domain, one
can distinguish low-level, mid-level, and high-level techniques,
where the first refers to pixel-/voxel-level tasks like classification
and segmentation, the second to the derivation of features and
characteristics from images (typically for low-level tasks), and
the last, for e.g., to image annotation, i.e., identification of objects
and/or their labels. The actual methods and techniques summa-
rized in the review are mostly the same as those already addressed
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in many other papers in this umbrella review, with notable excep-
tions concerning multiple mentions of fuzzy-rough set FS. Out of c.
50 papers reviewed, more than half referred to the use of filters, 13
to embedded techniques, and 11 to wrappers. This review also
depicted the main available datasets for FS and performed a small
(four datasets times four methods) experiment with the following
overall conclusions: results were dependent on all aspects, the
classifier, the FS method, and the dataset, with the recommenda-
tion to use the subset FS methods with SVM or RF.
2.6. FS in multi-label classification problems

FS in multi-label classification (MLC) problems that are poten-
tially characterized by many simultaneously active labels per
instance was presented in [48] using a systematic literature review
process. The authors first noted that the use of the straightforward
Binary Relevance (BR) method allows for the usage of all single-
label FS methods in MLC cases. In the paper, another feature con-
struction method to build binary variables taking into account cor-
relations between multiple labels was depicted. Experiments with
10 MLC datasets, a multi-label extension and the adaptation of
kNN-classifier as well as the IG -based filter with BR were pre-
sented. The proposed method showed competitive performance
with slightly increased computational costs. Finally, the literature
review of 99 papers concluded that 70 applied a filter approach
in FS.

Another review that focused solely on FS in MLC problems
(MLC-FS) was [73]. The MLC-FS was considered from a taxonomy
of four perspectives: label, search strategy, interaction with the
learning algorithm, and data format. As a whole, this review basi-
cally linked the different problem transformation and algorithm
adaptation methods of MLC problems with different existing clas-
sification models and FS techniques already covered above (for
instance, the supervised, semi-supervised, and unsupervised treat-
ment in [67]). In conclusion, the popularity of filters was observed.

Additionally, another review on MLC-FS was undertaken in [74].
Again, the characteristics of addressing MLC problems and a large
catalog of existing FS methods were addressed through the analy-
sis of primary publications. The developed taxonomy embeds the
known triplet of filter, wrapper, and embedded FS methods into
a MLC-specific hierarchy, consisting of direct and transformation-
based approaches; the latter was further divided into single and
internal/external BR categories.
2.7. Summary

Let us briefly summarize our findings. First, the years covered in
different reviews varied substantially, naturally depending on
when particular techniques (search- and optimization techniques,
classifiers, etc.) actually emerged: for e.g., [70] covered years
1984–2018 and [62] 1983–2019, whereas [63] covered 2012–
2020.

Next, we did not find any reviews even mentioning distance-
based ML models or focusing solely on FS in regression problems,
although [68] mainly considered regression tasks. Regarding clas-
sification tasks (see, e.g., [45]), as compared to regression prob-
lems, the existence of labels opens up possibilities for both filter
methods (e.g., statistical tests to assess how strongly features sep-
arate the classes) and for embedded and hybrid methods (e.g.,
using one classification model for FS and another one as the actual
classifier [75]).

Interestingly, many papers noted the existence of cases where
filter methods performed either equally or even better than the
more complex approaches (e.g., [44,61,50]). Further, for filters,
the importance of threshold detection was emphasized in [76].
349
In general, FS using optimization means the generation of a
higher-level search process, which inevitably increases the compu-
tational complexity. Other forms of filter and wrapper methods can
be more direct: if they can provide a ranking on the importance of
the given set of features, then the FS problem reduces to finding a
rule that identifies the ranks that are large enough to be included
and those that should be omitted from the final model. This is
the exact method that is proposed next: Through construction
and analysis of the feature importances of the predictive model
(one feature sensitivity formula) and the direct generation of the
inclusion/exclusion rule means no increase in the overall computa-
tional complexity and no addition, iterative search procedure.

To conclude this umbrella review — as readily stated in the first
included article, [44], and confirmed (for filters) in one of the last
reviewed papers [58] — there does not exist one, single ‘‘best meth-
od” for FS as different methods have their own strengths and weak-
nesses [61]. Therefore, identifying a good method for a specific
problem setting drives the development of the research field, and
in this article, our focus is on FS for regression problems. Our
umbrella review shows a major research gap in recent years relat-
ing to FS for regression when compared to FS for classification.
Therefore, our contributions in this paper seem timely and essen-
tial towards filling this gap.

3. Distance-based one-shot wrapper

In this section, we summarize the essence of the distance-based
regression model and derive the one-shot wrapper.

3.1. EMLM

EMLM is a supervised distance-based machine learning method.
It combines the regularized ridge regression-type learning charac-
teristics of the ELM [77,78] with the distance-based feature map
used in the MLM [1,79]. It was proposed by Kärkkäinen [4] and
due to its origins, this technique is referred to as EMLM. This model
has a structural resemblance to RBFNs with a linear kernel [9,10].
However, the algorithms that select most or even all observations
as reference points for the distance-based kernel [4,79] differenti-
ate the overall technique from the RBFNs: reference points for
MLM and EMLM are always selected from among observations;
not, e.g., as cluster centers. Therefore, the EMLM incorporates only
one metaparameter — the number of reference points — and when
used with the RS–maximin [79] reference point selection algorithm,
it provides a deterministic and simple-to-use supervised learning
method [4].

The RS-maximin method has its origin in the K-means seeding
approach [80] known as maximin or the furthest point selection.
This seeding approach, in turn, originated from the traveling sales-
man problem, where it is known as the greedy permutation [81].
The RS-maximin approach selects the first reference point as the
closest point to the input data mean and then adds the rest of
the reference points deterministically with the farthest-first-
traversal algorithm. For regression problems, maximizing the input
space reference points’ pairwise distances is known to improve the
MLM’s generalization performance [79]. MLM was also found to
have the tendency not to overlearn [4,79,82,83].

The training phase of the EMLM is depicted in [Algorithm 3] [4].
Construction of the distance-based regression model starts by
computing the distance matrix H 2 Rm�N as

Hð Þij ¼ jjri � xjjj2; i ¼ 1; . . . ;m; j ¼ 1; . . . ;N; ð1Þ

where ri 2 Rn is the i:th selected reference point and xj 2 Rn

denotes the j:th observation. Here, n is the number of features, m
denotes the number of selected reference points, and N specifies
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the number of observations in the training set. Distance regression
weights W 2 Rp�m are then solved from the linear problem

W HHT þ aN
m

I
� �

¼ YHT ; ð2Þ

where Y 2 Rp�N (in the datasets used in this paper, p ¼ 1) contains
the desired output vectors in its columns, and I 2 Rm�m is the iden-
tify matrix whose multiplier includes the fixed regularization
parameter a ¼ ffiffiffi

e
p

corresponding to the square root of machine
epsilon e. The predicted output y� of a trained EMLM for a given
input x� is y� ¼ WH�, where H�ð Þi1 ¼ kri � x�k2; i ¼ 1; . . . ;m. The
usage of a trained EMLMmodel consists of computing the distances
between new inputs and fixed reference points as shown in (1) and
multiplying by the weight matrix W to calculate the predicted out-
put. The dimensions of W depend on the number of targets in a
dataset. In this paper, we use datasets with single targets, so W is
a row vector of length m.

3.2. Feature scoring using mean absolute sensitivity

Next, we delineate the wrapper approach for the distance-based
model. It should be noted that a sampling-based technique for fea-
ture scoring and selection with EMLM, similar to [28,29], was pro-
posed and tested in [84].

One form of the classical Taylor’s formula as given in [Lemma
4.1.5] [85] reads as follows: in the neighborhood of a point
x0 2 Rn, there exists z 2 l x;x0ð Þ (a line segment connecting the
two points) such that for y ¼ x� x0,

f xð Þ ¼ f x0ð Þ þ rf x0ð ÞTy þ 1
2
yTr2f zð Þy; ð3Þ

where rf x0ð Þ denotes the gradient vector at x0 and r2f zð Þ the Hes-
sian matrix at z, respectively. Usually, this formula is used to under-
lay a linear approximation or second-order optimization algorithm.
Analogous to the latter case, we note that a small value of an indi-
vidual gradient component rif x0ð Þ is linked to the weak relevance
of the ith feature in depicting the function’s local behavior. This
observation suggests the inclusion of a feature importance criterion
FI 2 Rn in [35,86], which was based on Mean Absolute Sensitivity
(MAS) of the training data:

FI ¼ 1
N

XN
j¼1

@M

@xj

����
����; ð4Þ

where M denotes the output of the distance-based regression
model. Note that the use of the Cityblock distance makes FI both
robust and independent between the features (see [87]). The ana-
lytic derivative of the output with respect to the input vector xj is
straightforward to compute, yielding a penalized expression similar
to that of the unsupervised case in [formula (3)] [88]:

@M

@xj
¼ WDT ;

where the i:th column di of D is defined as

di ¼ ri � xj

max e; jri � xjj
� 	 ; i ¼ 1; . . . ;m:

Remark 1. It should be noted that it is not completely clear,
especially in the context of FS, whether a distance-based feature
map would benefit from a separate bias term. The theoretical basis
behind EMLM does not require this [Remark 1] [4], and its
omission has also been recommended for the ELM [89]. However,
a separate bias is known to enforce an unbiased regression
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estimate [90], and it could be included in the model simply by

enlarging H into 1

H

� �
where 1 denotes the unit matrix of size

R1�N . We conducted a brief experimental pursuit of the question—
which has not been reported here—and concluded that a separate
bias term added no value. Therefore, the use of the original
formulation was confirmed.
Remark 2. MAS-formula (4) to quantify feature importance is
independent of the model M; one only needs the model’s deriva-
tive with respect to features. Basically, this can be obtained using
finite differences or automatic differentiation but here we confine
ourselves to analytic formulae. A preliminary work with MAS and
the analytic derivative of a feedforward neural network (FNN)
model, with two transformation layers, was presented in [35]. In
order to enable more extensive testing of the MAS-based wrapper
approach, we include here the MAS formula for FNNs with any
number of layers. The calculus is omitted because it can be per-
formed similarly to [90]. For convenience and building from the
previous remark, we assume that the training data has been scaled
into �1;1½ �, the FNN does not contain bias nodes, and that tanh-
functions tanh xð Þ ¼ 2

1þexp �2xð Þ � 1 are used as the activation func-

tions throughout (note that the activation functions need to be dif-
ferentiable which rules out the use of ReLU). Then, a layerwise
formalism for the input–output mapping of any FNN with weights

Wl
n oL

l¼1
(i.e., weights of layers stored in matrices from the first

layer W1 up to the last layer WL) can be represented using a diag-
onal function matrix F ¼ F �ð Þ ¼ Diag f i �ð Þf gmi¼1, where f i � tanh, as
follows

o ¼ oL ¼ M xð Þ ¼ WLo L�1ð Þ; ð5Þ
where o0 ¼ x (a given input vector) and

ol ¼ Fl ¼ F Wlo l�1ð Þ
� �

forl ¼ 1; . . . ; L� 1. The analytic derivative of

such mapping with respect to the input features reads as

@M

@x
¼ WL

Y1
l¼L�1

F0ð ÞlWl: ð6Þ

Algorithm1 Distance-based one-shot wrapper

Input: Input data xj 2 Rnjj ¼ 1; . . . ;N

 �

, target data

yj 2 Rjj ¼ 1; . . . ;N
n o

Output: Indices of most important features
1: Train EMLM model using (2) with the full set of features
2: Compute FI using (4)
3: Sort FI

4: Using Kneedle, find kneepoint of sorted FI at feature
index k

5: Keep features that satisfy i jFIi P FIk; 1 6 i 6 nf g
3.3. Threshold selection

Once the features are ranked according to their score, there
needs to be a way to decide how many of them are retained and
on what basis. Because the scores, sorted according to their rank,
define a 1D curve, the classical knee-point could be used to identify
a change in the characteristic behavior [91]. A widely used tech-
nique for knee-point detection is to maximize the curvature, for
which explicit formula is given in [92]. This is realized in a readily



Fig. 1. Example of the cutoff point given by MAS kneepoint (in green) using the
synthetic dataset YA1 and the computed and sorted MAS values. The MAS-kneepoint
provided the correct set of features that minimized the validation error.

Table 2
Synthetic datasets. Column FT represents the number of true features, while column
FF represents the number of false features.

Function FT FF

YA1 ¼ P99
i¼0 99� ið Þxi þN 0;1ð Þ 100 100

YA2 ¼ P99
i¼0 sin 2p 99� ið Þxið Þ þN 0;1ð Þ 100 100

YA3 ¼ P99
i¼0 99� ið Þx2i þN 0;1ð Þ 100 100

YA4 ¼ P99
i¼0 99� ið Þx6i þN 0;1ð Þ 100 100

YA5 ¼ P99
i¼0 99� ið Þexi þN 0;1ð Þ 100 100

YA6 ¼ P99
i¼0 99� ið Þ log 1� xið Þ þN 0;1ð Þ 100 100

YR1 ¼ �2 sin 2x0ð Þ þ x21 þ x2 þ ex3 þN 0;1ð Þ 4 196

YR2 ¼ x0e2x1 þ x22 þN 0;1ð Þ 3 197

YR3 ¼ sin 2px0ð Þ þN 0;0:1ð Þ 1 199
x0 ¼ YR4 sin YR4ð Þ þN 0;1ð Þ
x1 ¼ YR4 cos YR4ð Þ þN 0;1ð Þ

8<
:

2 198

Table 3
Benchmark datasets.

Dataset #Obs. #Feat. #Trgt. #Un.Trgt. T. Src

StudentTest 258 5 1 4 C [95]
ATP1D 337 411 6 83 R [96]
COIL 1800 21 1 100 C [95]
Madelon 2000 500 1 2 C [95]
Outdoor 2400 21 1 40 C [95]
ThyroidAnn 3772 21 1 3 C [95]
OptDigits 3823 64 1 10 C [95]
SatImage 4435 36 1 6 C [95]
COIL2000 5822 85 1 2 C [95]
RF2 7679 576 8 515 R [96]
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implemented kneepoint detection algorithm, Kneedle [93], which

identifies the cutoff point of a smoothed curvature f 00 xð Þ
1þf 0 xð Þ2ð Þ1:5.

The proposed one-shot FS algorithm is detailed in Algorithm1.
Fig. 1 illustrates the use of a kneepoint and Kneedle for FS with
the EMLM and the MAS formula (4). In the figure, the mean valida-
tion error and the standard deviation for it is shown using blue,
while the MAS-values representing each number of features is
shown in orange. The simulated dataset for the demonstration is
defined in Section 4.1.

4. Experimental setup

In this section, we detail our experimental design related to
selected datasets, compared methods, and evaluation metrics.
We also compare our proposal 1 with popular FS methods using a
representative set of synthetic and benchmark datasets. We utilize
the area under the receiver operating characteristic curve as an eval-
uation metric with the synthetic datasets and the root-mean-square
error with the benchmark datasets.

4.1. Datasets

Here, we present the datasets used in the experiments. The use
of readily available benchmark datasets is augmented by the use of
synthetic data, which is similar to [94].

Synthetic. We created a set of synthetic datasets to analyze the
goodness of feature importance scoring. We can utilize ranking-
based evaluation metrics when the ground truth features are avail-
able. Therefore, with the synthetic datasets, we can focus on the
primary problem of FS independently from the thresholding of
the feature importance score. We used two sets of synthetic data-
sets: one (denoted YRx) that has already been used in other studies
[94] and a set inspired by the first (denoted YAx). The functions
used to generate the synthetic datasets are presented in Table 2.
The last row containing YR4 consists of two equations forming a
spiral equation. The datasets YA1;YA3;YA4;YA5, and YA6 have pro-
gressive complexity. The YA2 dataset is the most challenging, since
it mostly represents incoherent noise. However, it can show if a
feature ranking algorithm will find results that are not practically
there. Thus, it functions as a sanity check. For the YA1-YA6 datasets,
half of the features are true ones, while for the YR1-YR4 datasets,
there are only one to four true features. For each synthetic dataset,
we generated 1000 observations with 200 features
(N ¼ 1000;n ¼ 200). For datasets YA1-YA6 and YR1-YR3, the features
were randomly generated as defined in

xi ¼ U 0;1½ Þ i 2 0; � � � ;n� 1½ �: ð7Þ
For dataset YR4; Y ¼ U 0;20½ Þ. After the target of a synthetic data-

set has been calculated, the dataset target is augmented with Gaus-
sian noise of zero mean and unit variance, which is augmented by
normalizing it with the maximum difference to prevent egregious
”measurement errors.”

Benchmark datasets. A group of openly available datasets, also
mentioned in the umbrella review in Section 2, were used to get
comparable results. The benchmark datasets’ characteristics are
presented in Table 3, where the column headers #Obs., #Feat.,
#Trgt. refer to the numbers of observations, features and targets,
respectively. Column #Un.Trgt. refers to the number of unique val-
ues found in the target vector, while header T. refers to the dataset
type (regression R, classification C) and Src to the source of the
dataset. We have used the first target when the dataset had more
than one target.
1 Source codes available at: https://gitlab.jyu.fi/hnpai-public/extreme-minimal
learning-machine/

ComputerActivity 8192 21 1 56 R [97]
SCM1D 9803 280 16 1092 R [96]
Census 22784 8 1 2045 R [97]
-
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It should be noted that due to a lack of benchmark regression
datasets for FS, we also used a set of classification datasets (see
Table 3) in a separate experiment. The aim was to observe how
our proposed FS algorithm would function with datasets for which
it was not designed.
4.2. Compared ranking and FS method

The quality of the MAS score was first compared to the most
common ranking algorithms of filters and embedded methods.

https://gitlab.jyu.fi/hnpai-public/extreme-minimal-learning-machine/
https://gitlab.jyu.fi/hnpai-public/extreme-minimal-learning-machine/
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Here, we used RreliefF, SpearmanR, Mutual-Info, Fisher-score and
Mean Absolute Difference (MAD) as non-model-based comparisons.
We also included model-based comparisons, namely DT and RF.
Both model based ones were used only to gain a rank for each fea-
ture in the feature ranking experiment.

The quality of the distance-based regression model after feature
ranking and one-shot selection was then compared to a selected
group of well-known reference models, which have commonly
been referenced in the literature. The selected group consisted of
linear models, Linear Regression, Ridge Regression, and Lasso as well
as tree-based models, Decision Tree and Random Forest and finally
SVR. The methods are all readily available in the Python library
Scikit-Learn [98].
4.3. Evaluation criteria

The quality of feature ranking and selection were assessed with
multiple evaluation criteria, which are discussed next. The starting
point for the evaluation is the existence of a separate validation
dataset that can be used to assess FS performance and the resulting
data-driven models. Moreover, since the specific true features of
the synthetic datasets are known, we can directly count the num-
ber of true and false features. However, due to random number
generation being involved in data generation, these counts may
differ from the intended ground truth in rare occasions, which
must be considered when looking at evaluation results. The used
evaluation criteria are as follows:

Root Mean Square Error (RMSE) is a standard way to compute
the validation error of a regression model [99]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

i¼0
y�
i
�yið Þ2

P

r
,where P is the number of observations in

the validation set, y�i is the predicted validation target, and yi is
the true validation target.

Kruskal–Wallis H test is a well-known statistical significance
test between two data groups [100]. Because the test is non-
parametric, data does not need to be from a normal distribution.
We used significance level 0:05 for the H test. Any p-value lower
than 0:05 indicates that the two tested groups have significant dif-
ferences. In our results, we took the best achieved result and com-
pared the other results to it in a pairwise manner.

According to Table 3 of the review by Solorio-Fernández et al.
[14], there is no proper consensus on how to verify that a feature
ranking algorithm works. Consequently, we have opted to use a
couple of different measures for verification purposes. Area under
receiving operating characteristic (AUROC) is another way to
measure and quantify the quality of a feature ranking, when the
true features are known for a dataset. Teisseyre [101] defined the
receiving operating characteristic curve (ROC) as
FPR kð Þ; TPR kð Þð Þ;wherek ¼ 1; . . . ;m refers to the top k selected fea-
tures, FPR = false positive rate among the top k selected features
and TPR = true positive rate among the top k selected features.
When the ROC is paired with the area under curve, we get a single
number describing the performance of a feature ranking algorithm.
The measurement intuitively explains a performance. The more
correctly the features are ranked, the closer the score is to 1. Scores
close to 0:5 indicate random selection, while scores close to 0 mean
that correct features are specifically not selected.

Number of features for best validation error, nsel, is what the
name implies. The number of features in the subset of features that
provide the lowest validation error is taken, and the mean is calcu-
lated from the achieved numbers of features. This allows the obser-
vation of what portion of features are required by a feature ranking
algorithm to reach its best-achieved result. Since the goal of FS is to
remove as many features as possible, a smaller feature subset is
preferable.
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4.4. Feedforward Neural Networks

In addition to comparing EMLM–based MAS-FS to the popular
feature selection methods, we also performed experiments with
the MAS for FNNs (see Remark 2). We used two versions of Sequen-
tial model from Tensorflow [102]: A single hidden layer + linear
output layer (denoted as FNN-2) and three hidden layers + linear
output layer (denoted as FNN-4). Sizes of the Tensorflow’s dense-
layers were fixed to:

FNN� 2 ¼ dns=2e;1ð Þ;
FNN� 4 ¼ dns=2e; dns=4e; dns=8e;1ð Þ;

where ns is the number of features (after dataset preprocessing (re-
moval of constant features).
5. Experiments and results

In this section, we present the experiments and their results
based on the datasets and evaluation criteria depicted in the previ-
ous section. The discussion follows the steps of the overall MAS-
based FS algorithm (MAS-FS) for the distance-based EMLM as fol-
lows: feature ranking component, testing against commonly
known algorithms, and finally testing against RF.

The experiments were run on a local computation cluster on a
single node (2x Intel Xeon Gold 6148) using Python 3.8. We used
the following library versions: iÞ NumPy: 1.20.1 [103]; iiÞ SciPy:
1.6.1 [104]; iiiÞ Scikit-learn: 0.24.1 [98]; and ivÞ Kneed: 0.7.0 [93].
5.1. Assessing the quality of feature scores and rankings

Our first step was to compare the MAS scoring with a represen-
tative set of other techniques depicted in Section 4.2. Using the
synthetic datasets presented in Table 2, we compared the FS algo-
rithms’ ability to generate feature scores and the corresponding
ranking to correctly order the features.

We randomly split each synthetic dataset 30 times into training
and validation partitions, where 33% of the generated dataset com-
posed the validation set. Each of the 30 training partitions were
input to a feature ranking algorithm. The features were scored
and ordered, which with the known ground truth allowed us to
then use AUROC (presented in Section 4.3) to compute a quality
measure.

In addition, we computed the validation error for each subset of
the ordered features in each of the 30 splits. Specifically, we used
EMLM (85% of data used as reference points) to compute the val-
idation error Eval 1ð Þ for the rank #1 feature, Eval 2ð Þ for rank #1 and
#2 features, . . . ; Eval nð Þ for all features. Then, we found the number
of features for min Evalð Þ. Finally, we reported the mean and stan-
dard deviation for each AUROC value and each min Evalð Þ. The
results are shown in Table A.4.

The best values, the highest AUROC (denoted in table as AUC),
and the lowest nsel, are in bold for each dataset. In addition, we
used r to show that a value is statistically close to the designated
best value (using the Kruskal–Wallis H test).

We will discuss the results presented in Table A.4 in the order of
feature ranking algorithms.

MASvec achieved the lowest number of features in seven cases
out of 10 and the lowest mean validation errors in eight cases
out of 10. With these results, it had the best performance among
the tested feature ranking algorithms. Further, it is the only algo-
rithm that did not select extra features for datasets A1� A6 from
the false feature pool, as it did not return more than 100 features.
However, it slightly missed the intended number of features with
datasets R1;R2, and R4.
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RreliefF is a traditional feature ranking algorithm that is often
praised. However in our experiments, RreliefF failed to impress.
Regarding datasets A1� A6 and R3, RreliefF performed as if it was
a random selector. While the algorithm found better results with
datasets R1;R2 and R4, overall its performance was found lacking.
Thus, it can concluded that the algorithm is not suited for datasets
where the input features closely resemble each other.

SpearmanR performed best in datasets R1� R4 and relatively
well in datasets A1� A6, excluding A2. This indicates that it is bet-
ter suited to datasets where there are relatively few correct
features.

MI is a popular ranking algorithm. In our experiments, it per-
formed better than RreliefF, but was still surprisingly close to a ran-
dom selector with datasets A1� A6. However, MI is one of the
three tested algorithms that managed to find the correct number
of features with dataset R4. Dataset R4 has spiral-like data, and
we expect the form of the dataset to play a role in the performance
of MI.

Based on the AUROC values, DT performed in a similar manner
to MI: it was surprisingly close to random selection with datasets
Table A.4
Feature-ranking algorithm results for the eight feature ranking algorithms and for the 10 s
results where the population median is the same as for the best mean value according to

Algorithm MASvec Rrelief

Dataset Var x d x

A1 AUC 0:93 0:01 0:50
nsel 86:67 3:57 198:00

A2 AUC 0:49 0:03 0:49

nsel 78:83r 80:62 51:03r

A3 AUC 0:91 0:01 0:50
nsel 80:20 3:96 198:57

A4 AUC 0:87 0:02 0:50
nsel 65:53 5:00 197:17

A5 AUC 0:93 0:01 0:50
nsel 85:27 3:93 197:87

A6 AUC 0:86 0:01 0:49
nsel 74:87 10:26 197:63

R1 AUC 0:99 0:00 0:80

nsel 4:93r 1:06 98:50

R2 AUC 0:99 0:00 0:79

nsel 3:13 0:34 20:13

R3 AUC 0:99 0:00 0:44

nsel 1:00 0:00 69:80

R4 AUC 0:95 0:03 0:90
nsel 5:37 4:21 7:83

Algorithm DecisionTree RandomFo

Dataset Var x d x

A1 AUC 0:58 0:04 0:74
nsel 195:13 8:07 174:00

A2 AUC 0:51r 0:04 0:52

nsel 62:00r 49:82 61:93r

A3 AUC 0:56 0:04 0:76
nsel 197:13 3:19 161:40

A4 AUC 0:57 0:03 0:76
nsel 195:37 5:38 80:80

A5 AUC 0:56 0:03 0:74
nsel 196:03 6:13 167:40

A6 AUC 0:57 0:04 0:74
nsel 195:67 6:19 134:33

R1 AUC 0:99r 0:00 0:99r

nsel 4:87 0:88 5:00r

R2 AUC 0:99r 0:00 0:99r

nsel 3:30r 0:64 3:27r

R3 AUC 0:99r 0:00 0:99r

nsel 1:03r 0:18 1:00r

R4 AUC 0:99r 0:00 0:99r

nsel 2:00r 0:00 2:00r
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A1� A6 and performed significantly better with datasets R1� R4.
As DT is an iterative method, it may require more training time
than what is provided by the default settings to be able to properly
handle a situation with more than a few correct features.

RF is the third of the three that found the correct number of fea-
tures with dataset R4, and it performed similar to MI and DT. We
expect that RF Ranker has the same needs as DT and would require
changes to the default settings.

Fisher-score was the worst–performing feature ranking algo-
rithm that we tested. Unlike other methods that resembled ran-
dom selection at their worst, it actively selected wrong features
in the A1� A6 datasets. However, the same effect was not present
with datasets R1��R4, even though Fisher-scorewas closer to ran-
dom selection with datasets R1 and R2. Thus, we must conclude
that Fisher-score is not suitable for datasets like A1��A6 and
R1��R4.

Mean Absolute Difference (MAD) mostly resembled a random
selector, with the exceptions being with datasets R1� R4. Espe-
cially of note is the result for dataset R4, since it completely failed
ynthetic datasets. The best mean value per dataset has been highlighted in bold. The
the Kruskal–Wallis H test are marked using r.

F SpearmanR Mutual-Info

d x d x d

0:05 0:80 0:02 0:57 0:05
2:21 141:13 18:67 169:63 30:47
0:03 0:50r 0:04 0:51r 0:05

41:12 54:07r 48:60 49:57r 35:36

0:04 0:79 0:01 0:58 0:04
1:94 131:53 20:87 142:77 20:22
0:03 0:79 0:02 0:59 0:04
3:53 77:50 17:43 144:93 19:59
0:04 0:81 0:02 0:55 0:04
2:80 145:37 27:68 167:93 27:99
0:04 0:77 0:02 0:57 0:05
2:66 106:27 20:69 147:90 25:73
0:10 0:99r 0:00 0:97 0:03

57:89 5:00r 0:97 23:00 21:29

0:11 0:99r 0:00 0:99 0:00

28:71 3:13r 0:43 3:93 1:39

0:27 0:99r 0:00 0:99r 0:00

52:54 1:00r 0:00 1:00r 0:00

0:09 0:96 0:01 0:99 0:00
5:77 5:17r 4:89 2:00 0:00

rest Fisher-score MAD

d x d x d

0:03 0:21 0:05 0:48 0:03
21:21 197:07 4:87 199:80 0:40
0:03 0:19 0:04 0:50 0:02

55:80 57:60r 47:92 42:13 27:41

0:02 0:20 0:05 0:46 0:02
21:66 197:67 4:56 198:90 1:14
0:02 0:22 0:08 0:52 0:02
18:67 194:53 7:01 197:40 5:09
0:02 0:19 0:06 0:49 0:02
22:49 197:70 4:09 198:53 1:61
0:03 0:20 0:04 0:50 0:02
34:96 196:30 4:38 197:37 4:59
0:00 0:52 0:05 0:35 0:07

1:03 128:53 7:66 179:00 17:40

0:00 0:58 0:07 0:40 0:10

0:51 126:33 16:63 132:53 40:06

0:00 0:86 0:22 0:64 0:24

0:00 27:40 46:68 71:00 50:85

0:00 0:66 0:10 0:00 0:00

0:00 11:00 32:60 52:83 37:17



Table B.5
Comparison of MAS-FS to reference ML models using regression datasets. Header e
denotes the mean validation error calculated with RMSE and header d its standard
deviation. Best mean validation error per dataset has been marked with bold text.
Results where the population median is the same as for the best mean value (Kruskal–
Wallis H test) are marked with r.

Dataset ATP1D RF2

Algorithm e d e d

MAS-FS, 65% 9:42e� 2 4:02e� 3 7:70e� 2r 6:21e� 3

MAS-FS, 85% 9:40e� 2 4:40e� 3 7:68e� 2 6:17e� 3
DecisionTree 8:65e� 2 2:28e� 3 1:16e� 1 1:45e� 2
Lasso 1:06e� 1 1:00e� 4 1:76e� 1 3:62e� 3
LinearRegression 5:13e2 2:76e3 4:39e� 1 1:07e� 1
RandomForest 5:97e� 2 1:33e� 3 8:10e� 2 6:42e� 3
Ridge Regression 8:55e� 2 5:63e� 4 8:80e� 2 7:55e� 3
SVM 7:67e� 2 7:58e� 4 9:25e� 2 5:06e� 3

Dataset SCM1D ComputerActivity

Algorithm e d e d

MAS-FS, 65% 3:32e� 3r 3:45e� 4 2:69e� 2 3:41e� 3

MAS-FS, 85% 3:29e� 3 3:51e� 4 3:33e� 2 1:28e� 2
DecisionTree 1:12e� 2 3:62e� 3 3:74e� 2 2:09e� 3
Lasso 2:09e� 1 1:16e� 4 1:86e� 1 3:80e� 5
LinearRegression 1:79e� 2 1:14e� 3 9:80e� 2 3:07e� 3
RandomForest 7:84e� 3 2:26e� 3 2:53e� 2 9:24e� 4
Ridge Regression 2:27e� 2 6:58e� 4 9:80e� 2 2:20e� 3
SVM 5:29e� 2 6:98e� 4 4:76e� 2 2:00e� 3
Dataset Census

Algorithm e d

MAS-FS, 65% 3:70e� 2r 1:27e� 3

MAS-FS, 85% 3:64e� 2 1:35e� 3
DecisionTree 5:64e� 2 1:97e� 3
Lasso 1:46e� 1 1:07e� 3
LinearRegression 5:05e� 2 1:07e� 3
RandomForest 4:00e� 2 1:17e� 3
Ridge Regression 4:94e� 2 1:07e� 3
SVM 5:20e� 2 1:02e� 3
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to find the correct feature. We can conclude that MAD does not
work well with a spiral-like dataset.

Based on the results, we can conclude that MAS-FS ranked first
in the test. This confirms its basic utility to be used for feature
ranking with the distance-based EMLM. Moreover, it should be
noted that all ranking methods had problems with the YA2 dataset.
This was expected as it mostly resembles random noise and is the
most difficult of the synthetic datasets.

5.2. Comparison of Algorithm1 to reference algorithms with regression
datasets

In order to assess the entire FS algorithm given in Algorithm1,
we compared it to other approaches using publicly available
regression datasets, which are presented in Section 4.1. Similar to
experiments in Section 5.1, each dataset had 30 different training/-
validation splits (with validation partition using 33% of the whole
data). Because the number of reference points has a quadratic
effect on the computational effort of EMLM, we provide results
with two reference point percentages for the results presented in
Appendix B, 65% and 85%, and additionally with 100% for the
results presented in Appendix C. We were interested in observing
how much accuracy might be lost with a reduced number of refer-
ence points.

Results of these experiments are given in Table B.5. MAS-FS was
included with two reference point percentages. In almost all cases,
the results between 65% and 85% were close to each other based
on the Kruskal–Wallis test, the exception being ComputerActivity
dataset, where the result for 65% was better than it was for 85%.
This indicates that between the two, the higher reference point
percentage did not have a meaningful effect on the outcome of
the FS. This indicates that for the purposes of FS, MAS-FS is robust
enough that a lower reference point percentage is recommended.
This is also because the lower reference point percentage requires
fewer computations. We point out that this conclusion is given in
the context of FS: after selecting the final feature set, the portion of
reference points for the corresponding EMLM model can be
selected independently. MAS-FS had either the best RMSE value
or was close to the best RMSE value based on the Kruskal–Wallis
test in four datasets out of five, thus coming out on top of the
tested FS methods. Altogether, MAS-FS was the best or statistically
equally good as the best in 3/5 cases. RF had the best value or was
statistically similar to the best value in two datasets out of five.
Lasso did not receive the best RMSE values, but it is noteworthy
that Lasso had the lowest standard deviation in the RMSE values
in four datasets out of five, indicating that it was the most consis-
tent of the tested FS methods. Of the tested methods, no other clear
noteworthy results were gained.

5.3. Algorithm1 with FNN on synthetic and regression datasets

Next we conclude the experiments where FNN and the corre-
sponding feature sensitivity formula were used in Algorithm1. This
simply means that the EMLM and the FI formula in Steps 1 and 2
of Algorithm 1 were replaced with the FNNs as defined in Sec-
tion 4.4 and the sensitivity formula given in (6). Each dataset had
30 different training/validation splits (with validation partition
using 33% of the whole data). The results of these experiments
are given in Tables C.6 and C.7. As can be seen from Table C.6
and Table C.7, the mean RMSE validation errors (e in tables) indi-
cates that the EMLM-based MAS-FS is able to achieve lower errors
than either of the tested FNN version. Another noteworthy obser-
vation, although expected, is that the deeper model FNN-4
achieves better accuracy than FNN-2 in all cases. We can also point
out that the result for FNN-4 begins to approach the result for
EMLM with Census dataset. From the data-driven model construc-
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tion perspective, use of FNN and EMLM have significant differences.
Whereas selection of the portion of reference points is sufficient for
EMLM, with FNN one could tune the number of epochs and the size
of batches per epoc in training, the number of hidden layers, the
number of neurons in each layer, the activation function in each
neuron etc. In addition, EMLM is fully deterministic but FNN is
not and may require multiple training rounds in the hopes of
improving the model. Thus, we assume that the FNN results could
be improved by significantly increasing the amount of time used in
hyperparameter optimization and assessing different models.
However, these results show that the feature sensitivity based FS
can be generalized to completely different models compared to
the kernel-like EMLM and that the generalization capability of
the EMLM-MAS-FS algorithm compared to FNN-based versions is
promising.

5.4. Comparison of Algorithm 1 to reference algorithms with
classification datasets

For our last experiment, we compared the MAS-FS-based FS to
the available implementation of RF for a regression task. Similar
to experiments in Section 5.1, each dataset had 30 different train-
ing/validation splits (with validation partition using 33% of the
whole data). Some of the classification datasets came with their
own validation dataset. For these, the provided validation dataset
was first combined with the rest of the data and then split into
train/validation sets as was done with the other datasets.

The results for the mean RMSE validation error are given in
Table D.8. The table contains results for three different reference
point percentages for MAS-FS, as RF does not have the same
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parametrization, it has one result per dataset. Additionally for
MAS-FS, we show the remaining number of features after FS as a
percentage as well as the standard deviation for it. Of the eight
classification datasets, MAS-FS has the best RMSE error in five
cases. In general, the three different reference point percentages
for MAS-FS produced similar mean validation errors, leading to
Table C.6
Comparison of FNN-based ranking to EMLM-based ranking using regression datasets. Head
deviation. Best mean value per dataset has been marked with bold text. Results where the
marked with r.

EMLM 85%

Dataset e d e

A1 4:51e� 2 1:20e� 2 1:91e�
A2 8:48e� 2 2:84e� 3 1:84e�
A3 4:14e� 2 8:96e� 3 1:84e�
A4 5:75e� 2 4:49e� 3 1:84e�
A5 4:52e� 2 1:07e� 2 1:91e�
A6 5:57e� 2 7:14e� 3 1:93e�
R1 7:42e� 2 6:45e� 3 1:93e�
R2 6:63e� 2 8:77e� 3 1:83e�
R3 1:59e� 1 3:69e� 3 2:26e�
R4 1:53e� 1 3:03e� 3 2:20e�

Table C.7
Comparison of FNN-based ranking to EMLM-based ranking using regression datasets. Head
deviation. Best mean value per dataset has been marked with bold text. Results where the
marked with r.

EMLM 85%

Dataset e d e

ATP1D 3:85e� 2 2:98e� 3 2:3
RF2 1:71e� 3 2:34e� 4 5:0
SCM1D 1:78e� 2 6:22e� 4 3:3
ComputerActivity 1:45e� 2 3:78e� 3 1:4
Census 3:56e� 2 4:64e� 3 5:1

Table D.8
Results of the comparison between MAS-FS and RF. The same notations from the tables abo
(standard deviation for n%).

Algorithm MAS-FS

Dataset RefP e d

StudentTest 65 6:55e� 2r 8:74e� 3

85 6:56e� 2r 8:31e� 3

100 6:48e� 2 7:31e� 3

COIL 65 7:67e� 2 3:10e� 3
85 7:53e� 2 3:37e� 3
100 7:46e� 2 3:22e� 3

Madelon 65 5:18e� 1 4:81e� 3
85 5:18e� 1 5:18e� 3
100 5:19e� 1 5:32e� 3

Outdoor 65 9:52e� 2 8:24e� 3
85 8:84e� 2 8:59e� 3
100 8:90e� 2 7:70e� 3

OptDigits 65 8:10e� 2 1:74e� 3
85 7:93e� 2r 1:89e� 3

100 7:88e� 2 1:82e� 3

ThyroidAnn 65 1:00e� 1 4:69e� 3
85 1:00e� 1 4:68e� 3
100 1:00e� 1 4:67e� 3

SatImage 65 1:04e� 1r 3:10e� 3

85 1:03e� 1r 3:57e� 3

100 1:03e� 1 4:00e� 3

COIL2000 65 2:58e� 1 4:41e� 3
85 2:65e� 1 6:28e� 3
100 2:71e� 1 4:83e� 3
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the same conclusion as was made with MAS-FS in Section 5.2.
The dataset properties as well as the number of observations, fea-
tures, and unique features do not provide indications on whether
there is a pattern to the observed differences in terms of the mean
validation errors betweenMAS-FS and RF. The type of the input (in-
teger/float) did not provide any insight either. Thus, n% was added
er e denotes the mean validation error calculated with RMSE and header d its standard
population median is the same as for the best mean value (Kruskal–Wallis H test) are

FNN-2 FNN-4

d e d

1 2:82e� 2 1:10e� 1 1:52e� 2
1 2:16e� 2 1:04e� 1 1:31e� 2
1 2:06e� 2 1:05e� 1 1:52e� 2
1 2:45e� 2 1:08e� 1 1:64e� 2
1 3:20e� 2 1:14e� 1 1:41e� 2
1 2:61e� 2 1:07e� 1 1:43e� 2
1 2:86e� 2 1:06e� 1 1:16e� 2
1 2:33e� 2 1:07e� 1 1:26e� 2
1 1:94e� 2 1:67e� 1 9:23e� 3
1 1:99e� 2 1:65e� 1 9:55e� 3

er e denotes the mean validation error calculated with RMSE and header d its standard
population median is the same as for the best mean value (Kruskal–Wallis H test) are

FNN-2 FNN-4

d e d

1e� 1 8:65e� 2 1:52e� 1 6:78e� 2
6e� 2 1:50e� 2 2:38e� 2 4:32e� 3
5e� 2 3:65e� 3 2:95e� 2 1:68e� 3
9e� 1 3:84e� 2 8:99e� 2 2:31e� 2
6e� 2 4:81e� 3 4:86e� 2 4:35e� 3

ve are used with the addition of n% (percentage of features remaining after FS) and dn%

RandomForest

n% dn% e d

47% 9% 7:19e� 2 7:44e� 3

43% 7% - -

41% 5% - -

57% 10% 7:30e� 2 3:23e� 3
59% 13% - -
57% 10% - -

88% 5% 3:94e� 1 5:78e� 3
89% 6% - -
87% 6% - -

66% 17% 1:06e� 1 4:97e� 3
70% 18% - -
65% 20% - -

91% 5% 1:05e� 1 3:93e� 3
91% 5% - -

91% 5% - -

10% 0% 3:93e� 2 6:25e� 3
10% 0% - -
10% 0% - -

70% 20% 1:14e� 1 3:71e� 3

70% 19% - -

71% 18% - -

83% 26% 2:61e� 1 3:32e� 3
77% 31% - -
82% 27% - -
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in a bid to provide an explanation for the results, but a clear corre-
lation was not found. However, as some of the results indicate (see
Madelon), the kneepoint detection algorithm Kneedle can behave
conservatively, leaving a large set of features to the obtained
model. This suggests that, in some cases, it could be beneficial to
repeat the algorithm to the once-reduced feature set. On the other
hand, this works to the strengths of the distance-based EMLM
since it is robust and is capable of handling extra features without
a loss of accuracy.
5.5. Summary of the experimental results

Here we discuss the experimental results as a whole. Overall,
our proposed FS algorithm performed well. On a more specific
note, the feature ranking component in MAS-FS was able to deter-
mine the feature importance rather accurately, which then allowed
the kneepoint detection algorithm to perform the actual FS. In the
extensive experimental comparison, it was shown that the pro-
posed method was better than the RF with both regression and
classification datasets. Moreover, MAS-FS with EMLM can deter-
mine the scores and rankings of features for both the original, full
set of features as well as the final, selected feature subset.

Of the synthetic datasets, YA2 was the most problematic for all
tested feature ranking algorithms, which we expected due to
how the dataset is formed. Further, the AUROC-score revealed that
except for the Fisher-score, the features in YA2 were basically
selected randomly. For the YA1 � YA6 datasets, the AUROC values
for the Fisher-score are below 0:25, implying that reversing the fea-
ture ranking would improve performance.

We included two versions of our algorithm for the regression
dataset tests, for which we used two different reference point per-
centages and three versions for the classification dataset tests.
Based on the results, that show that the performance between
the reference point percentages was so similar, we recommend
using 65% for feature ranking and selection as it is computationally
lighter than 85%. After the ranking process, we recommend select-
ing as high a reference point percentage as possible due to the ten-
dency of EMLM to not overlearn [4]. The comparison betweenMAS-
FS using EMLM vs. FNN provided the knowledge that using our
MAS-FS algorithm performs better with EMLM at its core at similar
levels of researcher setup.
6. Conclusions

In FS, filters are used due to their speed and simplicity even if
they often do not possess the best possible accuracy. Meanwhile,
wrappers are used for their accuracy, but they require a search
component that makes them slow and computationally expensive.
A common practice is to combine the two by first applying a filter
to quickly reduce the workload and then finishing with a wrapper.
Our FS algorithm is a wrapper since it uses the distance-based
model of EMLM, but it is a wrapper without a search component.
This makes our algorithm simple, straightforward, and efficient.
Since there is no search component, there is no iterative compo-
nent either, implying that the feature importance scoring is con-
ducted using a one-shot procedure.

We discovered that regression benchmark datasets for FS (espe-
cially with the ground truth features) are rarely available in the lit-
erature. Therefore, we presented a group of synthetic datasets
(YA1 � YA6), which were designed to have easily understandable
relations between the feature importances. This allows them to
function as a sanity check for a FS algorithm and as an assurance
that the algorithm works properly. Moreover, the availability of
ground truth features allows for the usage of feature ranking based
performance measures. Indeed, current literature seldom discusses
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FS in the regression context and has not discussed it in relation to
distance-based ML models. We have positioned our umbrella
review to provide a thorough background into the topic of this
paper.

This paper proposed a new FS approach for a distance-based
supervised machine learning model referred to as the EMLM. Sub-
sequently, we evaluated the proposed method with an extensive
set of synthetic and real datasets and compared it to popular
approaches. In addition, we presented a thorough umbrella review,
which is the first, on the topic of FS.

Our experimental results for a representative set of synthetic
datasets showed that the regression model sensitivity-based fea-
ture importance scoring outperformed other methods in terms of
feature ranking quality. Further, the proposed method can identify
underlying non-linear, input–output data relations hidden in a
large set of noisy features. The experimental results for the real
datasets also showed that the proposed one-shot wrapper
approach, which straightforwardly utilizes the model’s
sensitivity-based feature ranking outperformed (although with a
slight margin) the popular methods like the RF.

In order to adapt the proposed FS method to other machine
learning models, we derived a general MAS-FS formula for those
FNN architectures which are differentiable with respect to fea-
tures. We performed an experimental comparison with two off-
the-shelf DL architectures, which demonstrated the adaptability
of the proposed FS approach. However, the experimental results
showed that the distance-based method with the one-shot wrap-
per outperformed these DL architectures. These results indicate
that the DL architectures require more fine-tuning of parameters
and data to obtain the same level of accuracy as this distance-
based method.

As for future work, a natural extension of our study would be
the application of the FS techniques to reduce features from the
distance regression model in the first phase of the MLM [1,79].
Similarly, the encouraging initial assessment of MAS-based feature
scoring and ranking for classification tasks, as given in [86], is to be
extended to the full FS framework along the lines of this article.
This is a prime example of a multi-output problem [105] where
use of the MAS technique can produce individual sensitivities for
each output variable. This would then allow for the usage of dedi-
cated and different feature subsets for each output.
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Appendix A. Comparison of feature ranking algorithms

See Table A.4.

Appendix B. MAS-FS comparison to reference methods

See Table B.5.

Appendix C. EMLM-MAS-FS comparison to FNN-MAS-FS

See Tables C.6 and C.7.

Appendix D. Tests with classification datasets

See Table D.8.
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