JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): Immonen, Riku; Himaldinen, Timo

Title: Tiny Machine Learning for Resource-Constrained Microcontrollers

Year: 2022

Version: pyblished version

Copyright: © 2022 Riku Immonen and Timo Hamilsinen.
Rights: ccay 4.0

Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Immonen, R., & Haméldinen, T. (2022). Tiny Machine Learning for Resource-Constrained
Microcontrollers. Journal of Sensors, 2022, Article 7437023.
https://doi.org/10.1155/2022/7437023

Hindawi

Journal of Sensors

Volume 2022, Article ID 7437023, 11 pages
https://doi.org/10.1155/2022/7437023

Review Article

Tiny Machine Learning for Resource-

Constrained Microcontrollers

Riku Immonen ® and Timo Himilidinen

Faculty of Information Technology, University of Jyviskyld, P.O. Box 35, FI-40014, Finland

Correspondence should be addressed to Riku Immonen; riku.j.immonen@jyu.fi

Received 27 April 2022; Revised 18 September 2022; Accepted 3 November 2022; Published 10 November 2022

Academic Editor: Jiacheng Yang

Copyright © 2022 Riku Immonen and Timo Héamaéldinen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We use 250 billion microcontrollers daily in electronic devices that are capable of running machine learning models inside them.
Unfortunately, most of these microcontrollers are highly constrained in terms of computational resources, such as memory usage
or clock speed. These are exactly the same resources that play a key role in teaching and running a machine learning model with a
basic computer. However, in a microcontroller environment, constrained resources make a critical difference. Therefore, a new
paradigm known as tiny machine learning had to be created to meet the constrained requirements of the embedded devices. In
this review, we discuss the resource optimization challenges of tiny machine learning and different methods, such as
quantization, pruning, and clustering, that can be used to overcome these resource difficulties. Furthermore, we summarize the
present state of tiny machine learning frameworks, libraries, development environments, and tools. The benchmarking of tiny
machine learning devices is another thing to be concerned about; these same constraints of the microcontrollers and diversity
of hardware and software turn to benchmark challenges that must be resolved before it is possible to measure performance
differences reliably between embedded devices. We also discuss emerging techniques and approaches to boost and expand the
tiny machine learning process and improve data privacy and security. In the end, we form a conclusion about tiny machine

learning and its future development.

1. Introduction

Globally, Internet of Things (IoT) devices are sending data
to the cloud at an accelerating rate because the number of
such devices is increasing, and the capacity of network con-
nections is improving all the time. At the same time, the
number of different cloud service platforms has grown, and
these platforms have become more accessible for all users.
International Data Corporation estimates that 79.4 zetta-
bytes of data will be generated by 41.6 billion IoT devices
in 2025 [1]. However, it is not necessary to transfer all these
data to the cloud when we can take advantage of the edge
computing capabilities of the IoT devices instead of using
cloud computing, which burdens networks and radio bands.
Furthermore, applications may also need to be geographi-
cally dispersed, higher bandwidth, ultralow latency, and
privacy-sensitive features [2]. Hence, a computing paradigm
that happens closer to the edge is needed. Therefore, the use

of IoT devices as comprehensive edge computers is an impor-
tant issue to address. The authors of [2] explained a taxon-
omy of different computing paradigms such as fog, edge,
extreme edge, and mist computing that can be found in the
literature. In this review, for clarity, we use cloud-fog-edge
taxonomy, with the common term ‘edge’ to mean edge com-
puting that happens in the cloud or fog-connected sensor
nodes or IoT devices themselves. Edge computing—or, more
specifically, Edge artificial intelligence (Edge AI)—means the
computation of a machine learning (ML) algorithm on an
edge device or node [3] that can be as tiny as a single micro-
controller with integrated IoT radio. Today, the term
TinyML [4] is widely used in the context of a lightweight
ML for embedded devices. In addition, these edge devices
are now located more often at the edge of the physical world,
measuring some physical quantity. When defining TinyML
hardware or devices, ultralow power consumption is the
most defining characteristic, typically below 1mW [5]. In

https://orcid.org/0000-0002-0559-1634
https://orcid.org/0000-0002-4168-9102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7437023

this way, the processor range includes 32-bit Arm Cortex-M7
and RISC-V PULP processors and below. TinyML is a vast
research topic, and its main elements can be divided roughly
into datasets, use cases, hardware, framework and algo-
rithms, and models [6]. In the end, all these main elements
focus more or less on the technological improvement of
products.

Edge AI is also changing sensors when sensor manu-
facturers have recently started implementing AI features
in sensors’ application specific integrated circuits (ASIC)
such as STMicroelectronics’ Intelligent Sensor Processing
Units (ISPU) [7]. In addition, STMicroelectronics intro-
duced a new generation of microelectromechanical system
(MEMS) sensors in 2022, including ISPUs and support for
on-device learning. Another self-learning AI sensor manu-
facturer is Bosch Sensortec, which promises always-on
data processing algorithms at ultralow power consumption
in their new MEMS-integrated 32-bit Fuser2 microcontrol-
lers [8]. TinyML is a promising technology for soft sensors
and sensor data fusion, and it has been recently studied in
articles [9, 10, 11].

2. Challenges and Opportunities

TinyML has big challenges, such as the microcontroller’s
limited computational resources, lack of a unified frame-
work [12], and absence of open-source TinyML datasets
[5]. TinyML also has huge potential because microcontrol-
lers are cheap and widespread. TinyML can potentially
decrease the IoT device’s energy consumption, lifetime costs,
and inference latency. Same time it increases IoT device’s
data privacy and intelligence level. Table 1 summarizes the
advantages and disadvantages of application features in
IoT devices.

Edge computing requires a great deal of resources from
an IoT device, as the computational resources of its micro-
controller are typically limited. This computational chal-
lenge becomes overwhelming if the standard neural
networks- (NN-) based ML algorithms are used. For this
reason, light software frameworks, tools, and libraries have
recently been created, especially for use with microcontrol-
lers, that can be used to build the TinyML model. After the
model is created, it can be used within the source code to
implement ML features in IoT devices. Nevertheless, one
of the great challenges in TinyML is the lack of a unified
framework that can be used across a wide range of hardware
[12]. The fundamental difference between normal ML and
TinyML procedures is that with the latter, the model is usu-
ally created on a more efficient computer and then ported to
a microcontroller, which begins to perform inference based
on the model [13-15]. The edge inference throughput
should be robust without frame drops [16]. Another thing
is, that the microcontroller running the ML algorithm in a
loop is not the only process that consumes energy and com-
putational resources on an edge IoT device. Raw data mea-
surement and communication with the cloud services and
the other IoT devices are also resource-expensive processes
that the edge device must typically perform. Resource opti-
mization becomes even more important to IoT devices that

Journal of Sensors

TasLE 1: TinyML application features in IoT devices.

Feature Increased Decreased
Energy usage CPU Radio, overall
Processor Throughput Latency
Memory Allocation complexity Footprint
Data Security, privacy Transfer need
ML model Optimization demand Size, accuracy
Costs Software dev. Hardware

are battery-powered. Therefore, computational resource
optimization is a rising topic that has been addressed in
recent TinyML and edge computing articles using different
techniques. Another challenge is the absence of TinyML-
focused open-source datasets that are large enough for
TinyML benchmarking and academic research [5]. Addi-
tionally, it would be good if the data in the datasets corre-
sponded to the data sent by external sensors in terms of
temporal and spatial resolution [17].

TinyML has enormous potential because there are 250
billion microcontrollers in our printers, TVs, cars, and pace-
makers that are capable of running the ML model on the
edge [18]. It is also estimated that 2.5 billion IoT devices will
be shipped with a TinyML chipset in 2030 [19]. These huge
estimations lean on the fact that microcontrollers are aston-
ishingly cheap, and that the world has only just started its
digital transformation and will need much more data in
the future. For this reason, TinyML has been defined as a
fast-growing field among machine learning technologies
[4]. In addition, cloud-sourced ML inference could cost a
lot during an Al application’s lifetime because some applica-
tions are very data-centered. Therefore, ML inference and
data pruning are much cheaper to perform at the data origin
[3]. This approach also saves energy because the use of IoT
radio is a more energy-expensive operation than edge com-
puting. Moreover, when ML inference is made in an IoT
device itself, it reduces latency and increases data privacy
and security [20].

3. Methods for Resource Optimization

Different approaches and methods can be used to save
microcontrollers’ computational resources, such as memory
and processor usage, when used in TinyML devices. One of
the most commonly used methods to reduce the computa-
tional load on basic edge devices is simply to send heavy
computational tasks forward to edge gateways, as was done
by the authors in [21]. Nevertheless, this approach could
lead to rising power consumption in TinyML devices
because sending and receiving data is a more energy-
consuming process than powering an on-device neural net-
work (NN) [22], and this can be critical, at least for
battery-operated devices. Therefore, it is better to resolve a
resource problem by computational means within the edge
device itself. This can be done through quantization, prun-
ing, and clustering methods that reduce ML model size
and processor usage. The downside with the use of these

Journal of Sensors

tradeoff methods is that the prediction or classification accu-
racy usually decreases.

3.1. Quantization. One of the vital computational capabili-
ties of a microcontroller, which is usually needed for run-
ning NN, is performing floating-point operations. Neural
networks typically use high-precision 32-bit floating-point
data in the production and inference mode [23]. However,
these floating-point NN operations require a great deal of
memory, system throughput, and clock speed from a micro-
controller [24]. In some cases, microcontrollers are not even
capable of performing hardware floating-point operations;
e.g., in the Arm Cortex-M processor series, the hardware
floating-point unit (FPU) is included, starting with M4F
processors [25]. Still, this problem can be solved by compu-
tational means by using the Arm software floating-point C
library, software floating-point emulation (FPE), or convert-
ing floating-point data to fixed-point data format [26, 27].
Quantization of 32-bit floating-point data to 8-bit fixed-
point data lowers the model’s memory footprint by 75%,
and integer operations make the microcontroller run much
faster [28]. In [29], the authors tested fine-tuned convolu-
tional neural network (CNN) quantization with the
CIFAR-10 dataset, 30 epochs, and different weight and acti-
vation bit-width combinations. The results showed that by
using 4-bit fixed-point weight and activation values, the clas-
sification error rate gained only from 6.98% to 8.30%, com-
pared to floating-point values. The authors of [30] also
reported good results when testing 4-bit precision quantiza-
tion with different datasets; they reported 50% memory and
75% computation savings with only a 5% accuracy drop.
However, the results also showed that the accuracy starts
to fall more rapidly when using 3-bit or 2-bit ultralow preci-
sion, although this is partly task-dependent. Alternatively,
mixed-precision quantization is a method that can be used
to optimize a model’s weights and activation bit widths sep-
arately to the target of the microcontroller’s memory and
CPU constraints [31]. Furthermore, this method can be used
for quantizing each layer separately to different bit widths to
maximize accuracy and avoid data loss [32]. Nevertheless,
searching for optimal bit widths for all layers is a major com-
putational challenge.

3.2. Binarization. Binarization is another form of quantiza-
tion, whereby the bit-width compression level is maximized
by reducing all operands, weights, and activations to a single
bit [33, 34]. In binarized neural networks (BNNs), the arith-
metic operations are swapped to bit-wise, and XNOR oper-
ations, and only the binarized values (+1 or -1) of the
weights and activations are used in all calculations [34]. As
a result, 1-bit operations reduce memory need (32) and the
number of memory accesses (32) and ultimately lead to
increased power efficiency. In [35], the authors introduced
embedded binarized neural networks (eBNNs) specially
designed for constrained embedded devices. eBNN and
BNN have the same network structure, and their model
parameters are identical, but they differ in computation
order. Computation reordering is needed because original
BNNs need a large intermediate pool for storing temporary

convolution results in floating-point format, and this pool
consumes a large portion of the embedded device’s available
memory. In eBNN, this is solved with a pool block that can
store only one convolution result at a time, and then a max-
pooled result is sent through batch normalization and a
binary activation function to the result matrix.

3.3. Pruning. An NN’s computational complexity can be
lowered by pruning its unused features. Pruning techniques
can be divided into two main categories: structured and
unstructured pruning [36]. Structured pruning means
removing entire channels or filters, and unstructured prun-
ing means removing individual weight connections by set-
ting them to zero [37]. In addition, it is possible to
combine different pruning approaches. For example, in
[38], the authors presented a method whereby unstructured
and structured pruning approaches were combined with
neural architecture search, which automatically finds accu-
rate, lightweight, and sparse CNN architecture.

The process of zeroing out the NN model’s weights is
also called magnitude-based pruning, and it leads to a sparse
model and can bring a sixfold improvement in model com-
pression [39]. The downside of this method is that it also
leads to sparse matrix multiplications that need extra com-
putation power and the use of sparse convolution libraries
[40, 41]. Still, by weight pruning the deep neural network
(DNN) model’s internal redundancy, the model can be
downsized, and its performance can be increased without a
decrease in the prediction accuracy [40]. The weight pruning
method suits the use of microcontrollers in particular
because the benefits of model size reduction are more signif-
icant than the extra computational load from sparse
multiplications.

Structured pruning changes the shapes of layers and
weight matrices by removing groups of weight connections
[37]. When whole channels or filters are removed, the net-
work’s inference speed increases, and the model size
decreases. A channel-level pruning produces a lightweight
network, but it can lower the model’s performance and accu-
racy when the width of the entire network is reduced. Hence,
it is recommended that unstructured pruning methods are
used whenever possible. In [40], the authors reported a
3.54-fold mean performance speedup and 88% size reduc-
tion in the model when they tested the different weight
and node pruning combinations with Arm Cortex-M4
microcontroller with a two-way SIMD (single instruction,
multiple data) unit for 16-bit fixed-point mathematics,
128kB SRAM, and 512kB flash storage. In addition, their
proposed pruning technique, named Scalpel, a mixture of
SIMD-aware weight pruning and node pruning, gained bet-
ter efficiency and a smaller memory footprint for the model
than basic pruning techniques.

3.4. Clustering. The number of individual weight values can
be reduced using a process known as clustering, whereby
the model’s weight values are replaced with a smaller number
of centroid weight values that are calculated from the original
model’s grouped weights [39]. Weight clustering reduces
memory usage via model compression, and the compressed

CNN model can be five times smaller than the original.
When weight clustering and quantization processes are com-
pared to each other, weight clustering brings higher accuracy
and compression ratio, but the two can still be used effec-
tively together [42]. The weight clustering process is typically
done with the k-means clustering algorithm [42, 43].

4. Frameworks and Libraries

In real TinyML applications, in addition to the ML model,
there is system logic and sometimes a real-time operating
system (RTOS) that consumes already limited memory
resources [44]; however, in most used cases, the TinyML
application does not require RTOS. Nevertheless, RTOSs
might sometimes be useful for TinyML applications too, as
they are capable of running multithreaded and concurrent
software executions [45]. In this kind of multithreaded
TinyML application, RTOSs, such as Miosix [46], Zephyr
OS [47], Riot OS [48], and Arm Mbed OS can be used [45].

The lack of a unified TinyML framework has led to the
use of custom frameworks. Furthermore, custom frame-
works, which have limited availability, require complicated
manual optimization when used with different hardware.
Nevertheless, in the past few years, the TinyML framework
development has begun to progress. Among the first frame-
works was Arm uTensor, an open-source ML framework for
microcontrollers, and then in 2019, uTensor and Google’s
TensorFlow began to build the TensorFlow Lite for micro-
controllers framework together [49]. In recent years, Arm
has also released a comprehensive set of network kernels in
the software library known as Cortex Microcontroller Soft-
ware Interface Standard-NN (CMSIS-NN) [50]. Apache,
too, has extended its open-source ML framework TVM to
cover microcontrollers in yTVM [51]. Another edge ML
framework is PyTorch Mobile, which extends the PyTorch
ecosystem [52]. In addition to these more versatile frame-
works, there is the emlearn library, which is an open-
source ML inference engine for microcontrollers starting
from 8-bit architecture [53].

4.1. TensorFlow Lite. TensorFlow Lite (TFLite) is an open-
source deep learning (DL) framework and set of tools for
deploying and running ML models on Android, iOS, embed-
ded Linux devices, and microcontrollers [54]. It supports
multiple programming languages, such as Java, Swift, Objec-
tive-C, C++, and Python. Nevertheless, when using highly
constrained microcontrollers and with only some hundreds
or dozens of kilobytes of RAM, TensorFlow Lite for Micro-
controllers (TFLM) is an efficient tool to use together with
TFLite. TFLM can be used for running ML inference on a
device, but it does not yet support on-device training. Its
core runtime requires only 16kB of memory, and it can be
used with many Arm Cortex-M architecture microcontrol-
lers. It has also been tested with Espressif ESP32 and differ-
ent digital signal processors (DSP) [12]. Furthermore, TFLM
does not require an operating system, and it can be down-
loaded as an Arduino library.

The TensorFlow Model Optimization Toolkit can be
used to minimize the model’s latency, memory utilization,

Journal of Sensors

and power consumption. These tools include methods such
as post-training quantization (PTQ), quantization aware
training (QAT), pruning, and clustering [39]. In addition,
TFLite includes TensorFlow Lite converter, which can be
used to postquantize an already trained model and convert
it to device-optimized TFLite format [55]. Posttraining inte-
ger quantization best suits constrained microcontrollers, and
the method converts the weight and activation bit-width of
32-bit floating-point numbers to 8-bit fixed-point numbers.

4.2. Cortex Microcontroller Software Interface Standard-NN.
The CMSIS-NN library is built for NN development on Arm
Cortex-M processors, and inference based on its functions
achieves a 4.6-fold speedup in throughput, and a 4.9-fold
cut-back in energy consumption [56]. The CMSIS-NN
library contains a specific category of NN functions and sup-
port functions such as convolution, activation, fully con-
nected layer, pooling, softmax, basic math, activation table,
and data-type conversation functions [50]. The functions
use either 8-bit or 16-bit integers as parameters, but most
of the functions still use 16-bit multiply and accumulate
(MAC) instructions for operations such as matrix multipli-
cations [56]. These 16-bit SIMD instructions require an
Arm processor with a SIMD unit, but it is possible to use
the CMSIS-NN library with older Arm processors such as
Arm Cortex-M0 without the SIMD unit [57]. However,
Arm Cortex-MO0’s performance lags behind that of the
Arm Cortex-M4, M7, M33, and M35P when using the
CMSIS-NN.

4.3. Apache TVM. In recent years, Apache TVM infrastruc-
ture has been extended with yTVM, which is software that
can manage the host-driven execution of tensor programs
on microcontrollers that run without OS [51]. yTVM run-
time offers a C-code generator, cross-compiler interface,
and uDevice interface as well as interoperability between
UTITVM runtime and TVM’s AutoTVM, an automatic tensor
program optimizer. yTVM uses the JTAG (Joint Test Action
Group) connection and Open On-Chip Debugger (Open-
OCD) control between the target device’s processor and
the host, ie, a desktop computer. This setup allows
AutoTVM’s autotuning process, through which it generates
candidate kernels round after round and executes them in
the target device; at the end, it uses timing results for auto-
tuning the model parameters. As the results in [51] show,
AutoTVM tuning increases performance by lowering the
program’s execution time from 294 ms to 157 ms, and it is
almost the same as the TFLite+CMSIS-NN model.

4.4. PyTorch Mobile. PyTorch Mobile provides simplified
end-to-end workflow and execution of ML models on edge
devices [52]. It can be used with more powerful mobile oper-
ating systems such as iOS, Android, and Linux. PyTorch
Mobile includes XNNPACK floating point and QNNPACK
8-bit quantized kernel libraries for mobile-optimized NN
inference. PyTorch Mobile cannot be used with the most
constrained microcontrollers at this point, but it is possible
to use PyTorch models on microcontrollers through Open
Neural Network Exchange (ONNX) format conversion with

Journal of Sensors

other software, including TensorFlow, STM32Cube.Al, and
Cainvas [58-60].

4.5. emlearn. The emlearn library contains a Python-C
model converter and inference engine for microcontrollers
and other devices that use C-code [53]. It can be used for
converting classic ML and NN models such as random for-
ests (RF), decision trees (DT), naive Bayes (NB), multilayer
perceptron (MLP), and sequential models built with Keras
and scikit-learn frameworks. It supports fixed-point math
and does not use dynamic memory allocations. Most of the
other discussed frameworks can be mainly used with 32-bit
computer architecture, but emlearn can be used with 8-bit
AVR processors, as was done by authors in [61]. The
emlearn library is similar to MicroMLgen [62], FogML
[63], and sklearn-porter [64] libraries.

5. Development Environments

The Edge Impulse, Qeexo AutoML, and Imagimob provide
TinyML as a service. The Edge Impulse is an open-source
software development kit (SDK) that enables ML on micro-
controllers [13], and Qeexo AutoML is an automated ML
platform [14]. Another lite toolkit for embedded systems,
which we will discuss later in this review, is STMicroelectro-
nics STM32Cube.AI [15]. The Cartesiam NanoEdge AI Stu-
dio includes lightweight ML libraries that can be used with
all Arm Cortex-M family microcontrollers [65].

5.1. Edge Impulse Studio. The Edge Impulse (EI) SDK can be
used for implementing neural networks on embedded
devices and includes real sensor data collection and live sig-
nal processing, testing, and code deployment to the target
device [13]. Furthermore, the actual data can be collected
by sensors in IoT devices and mobile phones, and an existing
dataset can be uploaded to the EI SDK with an uploader tool
in JSON, CBOR, JPG, and WAV formats [66].

The authors in [67] tested the EI SDK in their research to
develop a means to triage COVID-19 suspected cases. The
authors created a wrist-wearable IoT device based on a 32-
bit Espressif ESP8266EX microcontroller. The device was
used to measure and process raw photoplethysmogram
(PPQG) data. These data were extracted to vital components
and eventually to 22 NN input features wirelessly transferred
to the EI SDK. The patient triage was formed by combining
vital PPG components and the EI SDK NN classification
toolchain, whereby the classification was made into three
classes: slow breathing (bradypnea), normal breathing, and
heavy breathing. The selected densely connected pyramid
NN architecture gave the model 95.1% accuracy and
138 ms inference time estimation for on-device inference.

5.2. Qeexo AutoML. Qeexo AutoML provides an automated
ML platform for Arm Cortex processors and even highly
constrained M0 and MO+ processors [14]. Deploying ML
on the M0+ can be pretty difficult compared to doing so
on an M4 because the M0+ can only calculate 32-bit fixed-
point mathematics and has lower memory capacity, lower
CPU speed, and no support for saturation arithmetic and
DSP [68]. Because of all this, Qeexo AutoML has developed

a highly optimized Arm Cortex M0+ fixed-point ML pipe-
line, including sensor data handling, feature computation,
and inference, all with fixed-point data. With the M0+, the
pipeline uses tree-based ML algorithms such as gradient
boosting machine (GBM), RF, and eXtreme Gradient Boost-
ing (XGBoost). Qeexo AutoML’s comprehensive ML algo-
rithm portfolio also includes NB, DT, Isolation Forest (IF),
support vector machine (SVM), local outlier factor (LOF),
logistic regression (LR), CNN, convolutional recurrent neu-
ral network (CRNN), recurrent neural network (RNN), and
artificial neural network (ANN) [14]. Qeexo AutoML uses
intelligent pruning and posttraining quantization methods
resulting in 90% model size compression. Additional 8-bit
quantization can shrink the model size by up to 75% com-
pared to models using 32-bit precision [68].

5.3. STM32Cube.Al. STMicroelectronics STM32Cube.Al is
an NN and ML toolkit for STM32 developers to run opti-
mized inferences in microcontrollers [15]. STM32Cube.Al
tools contain the most common deep learning libraries and
decision-making processes with more resource-optimized
algorithms such as a DT classifier. The STM32Cube.Al can
be expanded with the X-CUBE-AI package, including auto-
matic conversion of pretrained NN and classic ML models.
X-CUBE-AI supports all frameworks that use ONNX for-
mat, including PyTorch, Microsoft Cognitive Toolkit, and
MATLAB, and has support for well-known DL and ML
frameworks such as TFlite, Keras, Caffe, Lasagne, Convnet]S,
scikit-learn (IF, SVM, k-means clustering (kMC), etc.), and
XGBoost package [58, 69, 70]. In addition, X-CUBE-AI
can optimize networks by 8-bit quantization and save weight
and activation parameters in external Flash and RAM mem-
ories if more extensive networks are used.

5.4. NanoEdge AI Studio. Cartesiam NanoEdge AI Studio
comprises software and a collection of Al libraries for
embedded developers that can be used as a search engine
for choosing an optimal ML algorithm [65]. It includes
signal preprocessing, hyperparametrization, anomaly detec-
tion, and classification models such as k-nearest neighbor
(kNN), SVM, and NN [71]. The NanoEdge AI Studio
allows application-specific ML library development, and
it enables unsupervised learning, inference, and a predic-
tion that can be run inside a microcontroller [72]. The
program automatically tests, optimizes, and calculates the
best algorithmic combination as a C library. After the
NanoEdge AI Studio has chosen the best library in the
project, the library will be able to learn normal behaviors
and figure out what an anomaly is [73]. It can perform
iterative learning in 30msecs in an Arm Cortex-M4
80 Mhz and consumes only 4kB RAM in a typical config-
uration [74]. It is also worth mentioning that Cartesiam
AT has been used in one of the first commercial TinyML
products, a sensor called Bob Assistant, which uses auto-
mated on-device learning techniques for monitoring
machines online [75]. This sensor prepares and sends pre-
dictive maintenance reports automatically once the period
of learning the machine’s normal behavior ends.

5.5. Imagimob. Imagimob has two software products that
can be used for building Edge AI applications. The Imagi-
mob Al software suite is an end-to-end development solu-
tion for building Edge AI and TinyML applications [76]. It
can be used with all types of time-series data, and it focuses
on deep learning. Imagimob AI development follows five
steps: (1) data capture and labeling, (2) data management
in one place, (3) automatic model building with AI training
service, (4) model verification with visualization of all
models and predictions, and (5) edge optimization and
application packaging. Imagimob supports quantization of
LSTM (long short-term memory) layers, which is challeng-
ing but essential when using time-series data [77]. Edge is
the easy-to-operate SaaS solution that can be used for sim-
plifying complex Edge AI and TinyML development [78].
It can convert TensorFlow and Keras h5 file formats into
the highly performing C code used in edge devices. This con-
version might be a challenging task for even a proficient pro-
grammer, but when using Imagimob Edge, it can be done
automatically in seconds. The suite is suitable for running
DL models on highly constrained embedded devices such
as Arm Cortex-M0 microcontrollers with a RAM memory
size as small as 10kB [78, 79].

5.6. TinyML Development Tools Summary. This section
summarizes TinyML development tools’ features in
Table 2, showing the available ML algorithms, supported
interoperable frameworks, and the minimum architecture
and type of the target processor.

6. TinyML Benchmarking

When discussing the design of a TinyML performance
benchmarking test, there are four primary challenges to
overcome: (1) varying power consumption across the range
of devices; (2) limited and varying memory resources across
the range of devices; (3) lack of hardware heterogeneity,
which makes it hard to normalize performance results; (4)
lack of software heterogeneity because major vendors have
their proprietary tools and compilers [5]. In addition to this,
the benchmark toolset should cover various ways for model
deployment. Today, benchmarking tests are designed to
benchmark either ML inference or microcontroller perfor-
mance rather than the intersection of these technologies.
One of the unsuitable benchmarking methods is the MLPerf
Inference Benchmark [80], which is targeted at more power-
ful computers. Recently, the authors of [81] have introduced
the MLPerf Tiny Benchmark Suite to meet the requirements
of TinyML. This open-source suite [82] can be used to mea-
sure the accuracy, latency, and energy consumption of
TinyML inference. The MLPerf Tiny v0.5 provides visual
wake words, keyword spotting, anomaly detection, and
image classification tasks for benchmarking, including refer-
ence implementations, which are provided using TFLite and
TFLM [81]. The suite can be used for evaluating embedded
devices that have clock speed in the range of 10 MHz-
250 MHz and which typically consume less than 50 mW
per inference [82].

Journal of Sensors

The authors in [61] tested emlearn, sklearn-porter, and
MicroMLgen classic ML libraries with an extremely con-
strained Arduino Uno microcontroller that had only an
8-bit processor, a clock speed of 16 MHz, 32kB of flash
memory, and 2kB of SRAM. Their work selected DT,
RF, SVM, and MLP algorithms for the test, and the
benchmark showed that DT and RF gave the best accu-
racy, lowest memory footprint, and fastest classification
speed. The MLP algorithm benchmark test showed good
0.97 accuracy with one hidden layer with four neurons,
but its weights and biases did not continue to fit Arduino
Uno’s SRAM when the network complexity grew. Micro-
MLgen’s SVM was the weakest performing algorithm in
the benchmark in terms of accuracy and memory
footprint.

7. Emerging Techniques of TinyML

Among the latest emerging TinyML techniques is federated
learning (FL), which was introduced and defined in [83].
FL is a large-scale machine learning technique, whereby
ML models are trained in remote devices while keeping
training data localized [84]. Therefore, FL enables data pri-
vacy and security when the attack surface is limited only to
the IoT devices themselves [83]. FL architectures can be
divided into centralized and decentralized ones [85]. In the
centralized approach, there is a server between end devices,
and in the decentralized approach, end devices can exchange
data between themselves. For example, when centralized
edge devices collaboratively train a prediction model, they
first update new parameters locally to the shared prediction
model, then send updates to the server and finally receive the
aggregated model back from the server [86]. In the typical
decentralized approach, each device can perform local
updates to ML model parameter gradients after the device
has received gradient updates directly from all other
nodes [87].

One key challenge when combining FL and TinyML
techniques is model on-device training, usually not sup-
ported in TinyML frameworks. Still, on-device training and
evaluation can be implemented with programming lan-
guages such as Java, Swift, and C/C++ [86]. Furthermore,
FL resource optimization can be done using a technique
known as transfer learning (TL), which uses older models
to generate a new one [88]. This procedure reduces the com-
putational resources required to train a new model. In [89],
the authors presented a method named federated transfer
learning on tiny devices (TinyFedTL), whereby they imple-
mented their own fully connected layer inference and back-
propagation update between an Arduino Nano 33 BLE Sense
microcontrollers and a local server. As a result, they man-
aged to train an ML model without sending raw data to
the server; only the weights and bias data had to be sent
between the client nodes and the server. Nevertheless, as in
any other ML model training procedure, also in the FL
approach, the training efficiency and model accuracy depend
on the data set quality and computing power [90]. The TL
approach is also an effective method to use by itself. Like
in [91], the Tiny Transfer Learning (TinyTL) reduced

Journal of Sensors

TaBLE 2: TinyML development tools’ features.

Development tool

Algorithms and support

Target processor

Edge Impulse Studio

Qeexo AutoML

STM32Cube.Al (+X-CUBE-AI)

NanoEdge AI Studio
Imagimob

emlearn

Proprietary NNs

GBM, RF, XGBoost, NB, DT, IF, LR, LOF, SVM,
CNN, CRNN, RNN, ANN

Scikit-learn (IF, SVM, kMC, etc.), XGBoost,
Keras, TFLite, Caffe, Lasagne, Convnet]S

NN, kNN, SVM, proprietary ML
Proprietary NNs
RF, DT, NB, MLP, Keras, scikit-learn

32-bit (Cortex-M0+-M7)

32-bit (Cortex-M0-M4)

32-bit (Cortex-M0—>)

32-bit (Cortex-M0—>)
32-bit (Cortex-M0—>)
8-bit (ATmega328P—)

TABLE 3: Summary of emerging techniques of TinyML.

Technique Main features
Edge devices collaboratively train an ML model
Federated Improved data privacy and security
learning E.g., TinyFedTL [89], centralized, and
decentralized approaches
Transfer Uses older ML models to generate a new one
learning E.g., TinyTL [91]
. Uses streaming data for training ML models in a
On-d.ev1ce microcontroller
learning))
E.g., TinyOL [22] and NanoEdge AI Studio[7]
Long-range, low power, and low data rate
LPWAN

E.g., LoRaWAN, Sigfox, NB-IoT, and LTE-M

memory footprint up to 6.5-fold. TinyTL uses pretrained
models to save the microcontroller’s memory resources by
not storing activations, learning only biases, and freezing
the weights.

Another recent article proposed a method known as
TinyML with Online-Learning (TinyOL), which can use
streaming data for posttraining and upgrading of the existing
on-device NN model [22]. In this method, an extra TinyOL
training layer is used interleaved with the prediction phase.
After new data first flow through the existing TinyML model
to the inference phase and the result label is found, the eval-
uation metrics and weights are updated according to the new
data. When TinyOL uses an incremental learning process, it
decreases the microcontroller’s memory and processor usage
compared to batch learning because new data can be handled
one by one, and in the end, the data can be erased when the
update is finished. Besides modern NN models, traditional
ML algorithms such as NB, SVM, LR, and DT are even better
suited for resource-constrained on-device training because
their resource demands are typically low [92]. In addition,
as in TinyML overall, lowering model complexity with
dimensionality reduction and pruning and lowering compu-
tational load with quantization helps achieve better on-
device training performance.

One of the most attractive emerging technology combi-
nations is the integration of low-power wide-area networks
(LPWANSs) with TinyML. Energy efficiency and large cover-

age are the foremost defining characteristics of LPWANS,
although they have a low data rate [93]. Therefore, LPWAN
radio technologies such as LoRaWAN, Sigfox, NB-IoT, and
LTE-M are ideal technology partners for TinyML; this is
because in TinyML, the inference is made inside a con-
strained microcontroller, and in most cases, only a com-
pressed inference result is needed to send to the server.
Today, when national LPWAN networks and their coverage
are becoming more widespread worldwide, it is even more
tempting to avoid separate gateway devices and build
stand-alone end-node applications. This makes sense
because it is also easier to set up one device than a complex
combination of separate end-nodes and gateways. Electron-
ics manufacturers have also discovered this, and they have
started to integrate 32-bit Arm Cortex processors and sub-
GHz radios in system-on-chip (SoC) and system-in-
package (SiP) units [94, 95]. In [85], the author built a wear-
able TinyML device whereby he integrated the MLP model
and peripherals such as a LoRaWAN transceiver, GPS mod-
ule, and inertial sensor. The results showed that the periph-
erals’ libraries and MLP model’s memory footprint were
below 2kB SRAM, which is small enough even for the tiniest
microcontrollers. Table 3 summarizes the advantages of
emerging techniques of TinyML.

8. Conclusion

TinyML has recently been continuously studied by different
organizations, which have in turn created various frame-
works, tools, and methods for applying ML on microcon-
trollers. In these studies, overcoming the microcontrollers’
resource constraints has been the main research topic; as
presented in many articles, this is typically done through
computational means by lowering the memory footprint of
an ML model, which also has a positive effect on micropro-
cessors’ CPU usage and power consumption. However, the
downside in this is the tradeoff between model size and
accuracy, as it has an accuracy-lowering impact, although
this is at a reasonable level in most cases. Anyhow, TinyML
is still in its early stages, and commercial products, for exam-
ple, are mainly still to be realized. Therefore, the future of
TinyML evolution depends on how companies and the aca-
demic community focus their resources for testing and
benchmarking various TinyML applications and algorithms.
A comprehensive benchmark tool that can be used with a

range of microcontrollers is a vital first step for creating a
continuum for research.

9. Future Application Areas

Overall, when considering the technical evolution of small
IoT devices from a broader perspective, there have not yet
been any megatrend products that everybody should own.
Those tiny IoT devices that are available are used mainly
for controlling purposes and for perhaps sending data over
the internet. Nevertheless, in the future, TinyML is likely to
change the evolution and demand of tiny IoT devices, and
we will see many new must-have products in this category.
The main reason for this is that new intelligent products
are at the center of a digital, data-orientated, energy-efficient,
and resource-optimized lifestyle. An excellent example of this
product category is wearable technology, which combines
health, personal safety, and communication technology.
Hence, the future use of TinyML is not limited just to areas
where microelectronics are now present, but it will also
extend to new fields and inexpensive products. One example
of this product category comprises condition monitoring
solutions that are currently used only with critical and expen-
sive machinery. Therefore, low-cost TinyML sensors will be
likely to extend condition monitoring applications to less
critical and mobile machinery that does not even need elec-
tricity since the sensor can use a battery. In addition, these
kinds of machines are also good targets for FL applications
because they are typically mass-produced, and so they could
join together to produce an ML model that could be general-
ized to different situations. Another thing worth considering
is how techniques such as TinyML, FL, on-device learning,
and LPWAN could influence research in different fields of
natural science so that the behaviors of geographically dis-
tributed study objects can be classified and observed on-
device, and then the inference results or even upgraded
parameters of the ML model are sent to the server. In addi-
tion, this improves data privacy and security because no sen-
sitive raw data are sent to cloud servers. Inference engine on
edge also reduces inference time and network usage, which
can be critical features for some applications. From a negative
point of view, TinyML may be used for ethically controversial
solutions such as military, surveillance, and hacking devices.
Thus, it is essential to remember the ethical aspect when
building TinyML applications. Finally, TinyML is likely to
cement its position among other ML techniques, and its
maturity will quickly multiply over time.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work has been done under the eAlytelli and coADDVA
funded by the European Regional Development Fund and
the Regional Council of Central Finland.

Journal of Sensors

References

[1] M. Shirer and C. MacGillivray, The Growth in Connected IoT

Devices is Expected to Generate 79.4 ZB of Data in 2025,

According to a New IDC Forecast, IDC, 2019.

A. Yousefpour, C. Fung, T. Nguyen et al., “All one needs to

know about fog computing and related edge computing para-

digms: a complete survey,” Journal of Systems Architecture,

vol. 98, pp. 289-330, 2019.

[3] E.Raj, “What is edge computing and EdgeAlI?,” 2021, https://
www.tietoevry.com/en/blog/2020/03/what-is-edge-
computing-and-edgeai/.

~
s

(4] tinyML Foundation, “TinyML,” 2021, https://www.tinyml.org.

[5] C.R. Banbury, V.]J. Reddi, M. Lam et al., “Benchmarking
TinyML systems: challenges and direction,” 2021, http://
arxiv.org/abs/2003.04821.

[6] H. Han and J. Siebert, “Tinyml: a systematic review and syn-
thesis of existing research,” in 2022 International Conference
on Artificial Intelligence in Information and Communication
(ICAIIC), pp. 269-274, Jeju Island, Korea, 2022.

[7] STMicroelectronics, “The Onlife era of MEMS: integrating Al

in sensors for decision-making in the edge,” 2022, https://www

.st.com/content/st_com/en/campaigns/ispu-ai-in-sensors

html.

Bosch, “BHI260AP ultra-low power, high performance, self-

learning AI smart sensor with integrated accelerometer and

gyroscope,” 2022, https://www.bosch-sensortec.com/media/
boschsensortec/downloads/datasheets/bstbhi260ap-ds000

.pdf.

[9] P. Andrade, I. Silva, M. Silva, T. Flores, J. Cassiano, and D. G.
Costa, “A TinyML soft-sensor approach for low-cost detection
and monitoring of vehicular emissions,” Sensors, vol. 22,
no. 10, p. 3838, 2022.

[10] T. Flores, M. Silva, P. Andrade et al., “A TinyML soft-sensor
for the internet of intelligent vehicles,” in 2022 IEEE Interna-
tionalWorkshop on Metrology for Automotive (MetroAutomo-
tive), pp. 18-23, Modena, Italy, 2022.

[11] S. A. Manzano, V. Sundaram, A. Xu et al., “Toward smart
composites: small-scale, untethered prediction and control
for soft sensor/actuator systems,” 2022, http://arxiv.org/abs/
2205.10940.

[12] R.David,]. Duke, A. Jain et al., “Tensorflow lite micro: embed-
ded machine learning for tinyml systems,” Proceedings of
Machine Learning and Systems, vol. 3, pp. 800-811, 2021.

(8

_—

[13] Edge Impulse, “TinyML for all developers with Edge Impulse,”
2020, https://www.hackster.io/news/tinyml-for-alldevelopers-
with-edge-impulse-2cfbbec14b90.

[14] Qeexo, “Enabling the new era of machine learning at the edge,”
2021, https://qeexo.com/.

[15] STMicroelectronics, “STM32Cube.Al: convert neural net-
works into optimized code for STM32,” 2020, https://blog.st
.com/stm32cubeaineural-networks/.

[16] Y.-L.Lee, P.-K. Tsung, and W. Max, “Techology trend of edge
AL” in 2018 International Symposium on VLSI Design, Auto-
mation and Test (VLSI-DAT), pp. 1-2, Hsinchu, Taiwan, 2018.

[17] Partha Pratim Ray, “A review on TinyML: stateof-the-art and
prospects,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 4, pp. 1595-1623, 2022.

[18] F. Ventures and H. Collins, “Why TinyML is a giant opportu-
nity,” 2021, https://venturebeat.com/2020/01/11/why-
tinymlis-a-giant-opportunity/.

https://www.tietoevry.com/en/blog/2020/03/what-is-edge-computing-and-edgeai/
https://www.tietoevry.com/en/blog/2020/03/what-is-edge-computing-and-edgeai/
https://www.tietoevry.com/en/blog/2020/03/what-is-edge-computing-and-edgeai/
https://www.tinyml.org
http://arxiv.org/abs/2003.04821
http://arxiv.org/abs/2003.04821
https://www.st.com/content/st_com/en/campaigns/ispu-ai-in-sensors.html
https://www.st.com/content/st_com/en/campaigns/ispu-ai-in-sensors.html
https://www.st.com/content/st_com/en/campaigns/ispu-ai-in-sensors.html
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bstbhi260ap-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bstbhi260ap-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bstbhi260ap-ds000.pdf
http://arxiv.org/abs/2205.10940
http://arxiv.org/abs/2205.10940
https://www.hackster.io/news/tinyml-for-alldevelopers-with-edge-impulse-2cfbbcc14b90
https://www.hackster.io/news/tinyml-for-alldevelopers-with-edge-impulse-2cfbbcc14b90
https://qeexo.com/
https://blog.st.com/stm32cubeaineural-networks/
https://blog.st.com/stm32cubeaineural-networks/
https://venturebeat.com/2020/01/11/why-tinymlis-a-giant-opportunity/
https://venturebeat.com/2020/01/11/why-tinymlis-a-giant-opportunity/

Journal of Sensors

(19]

[20

(21]

(22]

(23]

(24

[29]

(30

(31]

(33]

ABI Research, “Global shipments of TinyML devices to reach
2.5 billion by 2030,” 2020, http://www.abiresearch.com/press/
global-shipmentstinyml-devices-reach-25-billion-2030/.
TechAheadCorp, “How TinyML can transform IoT applica-
tions across industries,” 2021, https://www.techaheadcorp
.com/blog/tinymltransform-iot-applications/.

J. Pena Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund,
“Edge-Al in LoRabased health monitoring: fall detection
system with fog computing and LSTM recurrent neural net-
works,” in 2019 42nd International Conference on Telecom-
munications and Signal Processing (TSP), pp. 601-604,
Budapest, Hungary, 2019.

H. Ren, D. Anicic, and T. Runkler, “TinyOL: TinyML with
online-learning on microcontrollers,” in 2021 International
Joint Conference on Neural Networks (IJCNN), Shenzhen,
China, 2021.

K. Dokic, M. Martinovic, and D. Mandusic, “Inference speed
and quantisation of neural networks with tensorflow lite for
microcontrollers framework,” in 2020 5th South-East Europe
Design Automation, Computer Engineering, Computer Net-
works and Social Media Conference (SEEDACECNSM),
pp- 1-6, Corfu, Greece, 2020.

Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: key-
word spotting on microcontrollers,” 2017, http://arxiv.org/
abs/1711.07128.

Wikipedia, “ARM Cortex-M,” 2020, https://en.wikipedia.org/
wiki/ARM_Cortex-M.

A. Developer, “Arm software development toolkit reference
guide,” 2022, https://developer.arm.com/documentation/
dui0041/c/Floating-point-Support/About-floating-point-
support?lang=en.

M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep
neural networks with low precision multiplications,” 2015,
http://arxiv.org/abs/1412.7024.

C. Zhang, “How to run deep learning model on microcontrol-
ler with CMSIS-NN (part 3),” 2018, https://www.dlology.com/
blog/howto-run-deep-learning-model-on-
microcontrollerwith-cmsis-nn-part-3/.

D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” in Proceedings of The
33rd International Conference on Machine Learning,
pp. 2849-2858, New York, New York, USA, 2016.

S. Zhuo, H. Chen, R. K. Ramakrishnan et al., “An empirical
study of low precision quantization for TinyML,” 2022,
http://arxiv.org/abs/2203.05492.

M. Rusci, M. Fariselli, A. Capotondi, and L. Benini, “Leverag-
ing automated mixed-low-precision quantization for tiny edge
microcontrollers,” in IoT Streams for Data-Driven Predictive
Maintenance and IoT, Edge, and Mobile for Embedded
Machine Learning. ITEM IoT Streams 2020, vol. 1325 of Com-
munications in Computer and Information Science, pp. 296-
308, Springer, Cham, 2020.

H.-A. Rashid, P. R. Ovi, C. Busart, A. Gangopadhyay, and
T. Mohsenin, “Tinym2net: a flexible system algorithm code-

signed multimodal learning framework for tiny devices,”
2022, http://arxiv.org/abs/2202.04303.

L. Mocerino and A. Calimera, “Fast and accurate inference
on microcontrollers with boosted cooperative convolutional
neural networks (BC-Net),” IEEE Transactions on Circuits
and Systems I. Regular Papers, vol. 68, no. 1, pp. 77-88,
2021.

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

(43]

[44]

[45]

(46]

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks: training deep neural
networks with weights and activations constrained to +1 or
-1,” 2016, http://arxiv.org/abs/1602.02830.

B. McDanel, S. Teerapittayanon, and H. T. Kung, “Embedded
binarized neural networks,” 2017, http://arxiv.org/abs/1709
.02260.

S. Anwar, K. Hwang, and W. Sung, “Structured pruning of
deep convolutional neural networks,” ACM Journal on Emerg-
ing Technologies in Computing Systems (JETC), vol. 13, no. 3,
pp- 1-18, 2015.

M. Kurtz, “Part 1: what is pruning in machine learning?,” 2020,
https://neuralmagic.com/blog/pruning-overview/.

I. Fedorov, R. P. Adams, M. Mattina, and P. N. Whatmough,
“Sparse: sparse architecture search for CNNs on resource-
constrained microcontrollers,” Advances in Neural Informa-
tion Processing Systems, vol. 32, 2019.

Google, “TensorFlow model optimization,” 2020, https://www
.tensorflow.org/model_optimization/guide.

J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and
S. Mahlke, “Scalpel: customizing DNN pruning to the underly-
ing hardware parallelism,” SIGARCH Computer Architecture
News, vol. 45, no. 2, pp. 548-560, 2017.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” 2017, http://arxiv.org/
abs/1608.08710.

S. Ye, T. Zhang, K. Zhang et al., “A unified framework of DNN
weight pruning and weight clustering/quantization using
ADMM,,” 2018, http://arxiv.org/abs/1811.01907.

L. Meng and N. Suda, “Optimizing Power and Performance
for Machine Learning at the Edge: Model Deployment Over-
view,” ARM AI - Al Virtual Tech Talks Series, pp. 1-35, 2020.
C. Banbury, C. Zhou, I. Fedorov et al., “Micronets: neural net-
work architectures for deploying tinyml applications on com-
modity microcontrollers,” in Proceedings of machine learning
and systems, pp. 517-532, San Jose, CA, USA, 2021.

O. S. Mbed, “Features and benefits of Mbed OS,” 2021, https://
os.mbed.com/mbed-os/.

F. Alongi, N. Ghielmetti, D. Pau, F. Terraneo, and
W. Fornaciari, “Tiny neural networks for environmental pre-
dictions: an integrated approach with Miosix,” in In 2020 IEEE
International Conference on Smart Computing (SMART-
COMP), pp. 350-355, Bologna, Italy, 2020.

Zephyr, “Introduction,” 2022, https://docs.zephyrproject.org/
latest/introduction/index.html.

O. S. Riot, “Welcome to the friendly operating system for the
Internet of Things,” 2021, https://www.riot-o0s.org.

N. Tan, P. Warden, and Z. Shelby, “uTensor and TensorFlow
announcement,” 2019, https://os.mbed.com/blog/entry/
uTensor-and-Tensor-Flow-Announcement/.

Arm, “CMSIS NN software library,” 2021, https://arm-
software.github.io/CMSIS_5/NN/html/index.html.

L. Weber and A. Reusch, “TinyML -How TVM is taming tiny,”
2021, https://tvm.apache.org/2020/06/04/tinyml-how-tvm-is-
taming-tiny.

PyTorch, “PyTorch Mobile,” 2021, https://pytorch.org/
mobile/home/.

J. Nordby, emlearn: Machine Learning Inference Engine for
Microcontrollers and Embedded Devices, GitHub, 2019,
https://github.com/emlearn/emlearn.

http://www.abiresearch.com/press/global-shipmentstinyml-devices-reach-25-billion-2030/
http://www.abiresearch.com/press/global-shipmentstinyml-devices-reach-25-billion-2030/
https://www.techaheadcorp.com/blog/tinymltransform-iot-applications/
https://www.techaheadcorp.com/blog/tinymltransform-iot-applications/
http://arxiv.org/abs/1711.07128
http://arxiv.org/abs/1711.07128
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://developer.arm.com/documentation/dui0041/c/Floating-point-Support/About-floating-point-support?lang=en
https://developer.arm.com/documentation/dui0041/c/Floating-point-Support/About-floating-point-support?lang=en
https://developer.arm.com/documentation/dui0041/c/Floating-point-Support/About-floating-point-support?lang=en
http://arxiv.org/abs/1412.7024
https://www.dlology.com/blog/howto-run-deep-learning-model-on-microcontrollerwith-cmsis-nn-part-3/
https://www.dlology.com/blog/howto-run-deep-learning-model-on-microcontrollerwith-cmsis-nn-part-3/
https://www.dlology.com/blog/howto-run-deep-learning-model-on-microcontrollerwith-cmsis-nn-part-3/
http://arxiv.org/abs/2203.05492
http://arxiv.org/abs/2202.04303
http://arxiv.org/abs/1709.02260
http://arxiv.org/abs/1709.02260
https://neuralmagic.com/blog/pruning-overview/
https://www.tensorflow.org/model_optimization/guide
https://www.tensorflow.org/model_optimization/guide
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1811.01907
https://os.mbed.com/mbed-os/
https://os.mbed.com/mbed-os/
https://docs.zephyrproject.org/latest/introduction/index.html
https://docs.zephyrproject.org/latest/introduction/index.html
https://www.riot-os.org
https://os.mbed.com/blog/entry/uTensor-and-Tensor-Flow-Announcement/
https://os.mbed.com/blog/entry/uTensor-and-Tensor-Flow-Announcement/
https://arm-software.github.io/CMSIS_5/NN/html/index.html
https://arm-software.github.io/CMSIS_5/NN/html/index.html
https://tvm.apache.org/2020/06/04/tinyml-how-tvm-is-taming-tiny
https://tvm.apache.org/2020/06/04/tinyml-how-tvm-is-taming-tiny
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://github.com/emlearn/emlearn

10

(54]
[55]

(56]

(57]

(58]

(59]

[61]

(62]

(63]

[64]

[65]

Google, “TensorFlow Lite: deploy machine learning models on
mobile and IoT devices,” https://www.tensorflow.org/lite.
Google, “Model optimization,” 2020, https://www.tensorflow
.org/lite/performance/model_optimization.

L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: efficient neural
network kernels for ARM Cortex-M CPUs,” 2018, http://arxiv
.org/abs/1801.06601.

Arm, “Image recognition on ARM Cortex-M with CMSIS-
NN,” 2021, https://developer.arm.com/solutions/machine-
learning-on-arm/developermaterial/how-to-guides/image-
recognition-onarm-cortex-m-with-cmsis-nn/single-page.
STMicroelectronics, “Artificial intelligence (AI) software
expansion for STM32Cube,” 2020, https://www
.stmicroelectronics.com.cn/resource/en/data_brief/x-cube-ai
.pdf.

R. Sharma and P. Jain, “Bringing PyTorch models to ARM
Cortex-M processors,” 2021, https://developer.arm.com/
solutions/machinelearning-on-arm/community/ai-virtual-
techtalks.

A. Singh, “Converting a model from Pytorch to Tensorflow:
guide to ONNX,” 2021, https: //http://analyticsindiamag
.com/converting-a-modelfrom-pytorch-to-tensorflow-guide-
to-onnx/.

R. Sanchez-Iborra and A. F. Skarmeta, “TinyML-enabled fru-
gal smart objects: challenges and opportunities,” IEEE Circuits
and Systems Magazine, vol. 20, no. 3, pp. 4-18, 2020.
“MicroMLgen,” 2021, https://github.com/eloquentarduino/
micromlgen.

T. Szydlo, J. Sendorek, and R. Brzoza-Woch, “Enabling
machine learning on resource constrained devices by source
code generation of the learned models,” in International Con-
ference on Computational Science, vol. 10861 of Lecture Notes
in Computer Science, , pp. 682-694, Springer, 2018.

D. Morawiec, “sklearn-porter,” 2021, https://github.com/nok/
sklearn-porter.

Cartesiam, “Cartesiam: leader in edge Al market, with proven
industrial reference,” 2020, https://cartesiam.ai.

[66] Edge Impulse, “Documentation,” 2021, https://docs

[67]

(68]

[69]

.edgeimpulse.com/docs.

B. Fyntanidou, M. Zouka, A. Apostolopoulou et al., “IoT-based
smart triage of COVID-19 suspicious cases in the emergency
department,” in 2020 IEEE Globecom Workshops (GC
Wkshps), pp. 1-6, Taipei, Taiwan, 2020.

R. Bhatt and T. Shyuan, “Building effective IoT applications
with TinyML and automated machine learning,” 2021,
https://www.embedded.com/building-effective-iot-
applications-withtinyml-and-automated-machine-learning/.
STMicroelectronics, “Al expansion pack for STM32CubeMX,”
2020, https://www.st.com/en/embedded-software/x-cube-ai
html.

STMicroelectronics, “X-CUBE-AI documentation,” 2022,
https://wiki.st.com/stm32mcu/wiki/AI: X-CUBE-AI_
documentation.

STMicroelectronics, “NanoEdge Al Studio,” 2022, https://
wiki.st.com/stm32mcu/wiki/Al:NanoEdge_AI_Studio.

M. Vetrano, “Cartesiam Al development environment brings
artificial intelligence, learning and inference to everyday
objects,” 2020, https://www.prweb.com/releases/cartesiam_
ai_development_environment_brings_artificial_
intelligence_learning_and_inference_to_everyday_
objects/prweb16933237.htm.

(73]

(74]

(80]

(84]

(85]

(86]

(87]

(88]

(89

[90]

Journal of Sensors

Cartesiam, “Frequently asked questions:input data and for-
matting,” 2020, https://cartesiam-neaidocs. http://
readthedocs-hosted.com/faq.html.

Design and Reuse, “Cartesiam transforms edge AI develop-
ment for industrial IoT,” 2020, http://www.design-reuse
.com/news/49170/cartesiamnanoedge-ai-studio-ide-arm-
cortex-m-mcu.html.

nkeWATTECO, “BoB Assistant,” 2021, https://bobassistant.-
com/en/offer/#talents.

Imagimob AB, “Imagimob AI” 2021, https://developer
.imagimob.com/#/./imagimob-ai.

J. Malm, “Quantization of LSTM layers- a technical white
paper,” 2022, https://www.imagimob.com/blog/
quantizationof-Istm-layers-a-technical-white-paper.
Imagimob AB, “Introducing Imagimob Edge: Making Tensor-
flow AT models edge device ready at the click of a button,”
2020, https://www.imagimob.com/news/
introducingimagimob-edge-making-tensorflow-ai-
modelsedge-device-ready-at-the-click-of-a-button.

EDGE Computing World, “Edge startup of the year CXO
interviews: Anders Hardebring, CEO and co-founder Imagi-
mob AB,” 2020, https://www.edgecomputingworld.com/
2020/09/01/startup-of-the-year-finalist-anders-hardebring/.
V. J. Reddi, C. Cheng, D. Kanter et al., “Mlperf inference
benchmark,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 446-459,
Valencia, Spain, 2020.

C. Banbury, V. J. Reddi, P. Torelli et al., “MLPerf tiny bench-
mark,” 2021, http://arxiv.org/abs/2106.07597.

N. Jeffries, C. Kiraly, C. Banbury et al., “MLPerf tiny deep
learning benchmarks for embedded devices,” 2021, https://
github.com/mlcommons/tiny.

H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson,
and B. Aguera y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Proceedings of the
20th International Conference on Artificial Intelligence and
Statistics, pp. 1273-1282, Fort Lauderdale, FL, USA, 2017.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: challenges, methods, and future directions,” IEEE
Signal Processing, vol. 37, no. 3, pp. 50-60, 2020.

R. Sanchez-Iborra, “Lpwan and embedded machine learning
as enablers for the next generation of wearable devices,” Sen-
sors, vol. 21, no. 15, p. 5218, 2021.

A. Mathur, D. J. Beutel, P. P. B. de Gusmao et al., “On-device
federated learning with flower,” 2021, http://arxiv.org/abs/
2104.03042.

Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Commu-
nication-efficient edge Al algorithms and systems,” IEEE
Communications Surveys ¢ Tutorials, vol. 22, no. 4,
pp. 2167-2191, 2020.

M. M. Grau, R. P. Centelles, and F. Freitag, “On-device train-
ing of machine learning models on microcontrollers with a
look at federated learning,” in Proceedings of the Conference
on Information Technology for Social Good, pp. 198-203,
New York, NY, USA, 2021.

K. Kopparapu and E. Lin, “TinyFedTL: federated transfer
learning on tiny devices,” 2021, http://arxiv.org/abs/
2110.01107.

Q. Miao, H. Lin, X. Wang, and M. M. Hassan, “Federated deep
reinforcement learning based secure data sharing for Internet
of Things,” Computer Networks, vol. 197, article 108327, 2021.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/performance/model_optimization
https://www.tensorflow.org/lite/performance/model_optimization
http://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1801.06601
https://developer.arm.com/solutions/machine-learning-on-arm/developermaterial/how-to-guides/image-recognition-onarm-cortex-m-with-cmsis-nn/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developermaterial/how-to-guides/image-recognition-onarm-cortex-m-with-cmsis-nn/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developermaterial/how-to-guides/image-recognition-onarm-cortex-m-with-cmsis-nn/single-page
https://www.stmicroelectronics.com.cn/resource/en/data_brief/x-cube-ai.pdf
https://www.stmicroelectronics.com.cn/resource/en/data_brief/x-cube-ai.pdf
https://www.stmicroelectronics.com.cn/resource/en/data_brief/x-cube-ai.pdf
https://developer.arm.com/solutions/machinelearning-on-arm/community/ai-virtual-techtalks
https://developer.arm.com/solutions/machinelearning-on-arm/community/ai-virtual-techtalks
https://developer.arm.com/solutions/machinelearning-on-arm/community/ai-virtual-techtalks
http://analyticsindiamag.com/converting-a-modelfrom-pytorch-to-tensorflow-guide-to-onnx
http://analyticsindiamag.com/converting-a-modelfrom-pytorch-to-tensorflow-guide-to-onnx
http://analyticsindiamag.com/converting-a-modelfrom-pytorch-to-tensorflow-guide-to-onnx
https://github.com/nok/sklearn-porter
https://github.com/nok/sklearn-porter
https://cartesiam.ai
https://docs.edgeimpulse.com/docs
https://docs.edgeimpulse.com/docs
https://www.embedded.com/building-effective-iot-applications-withtinyml-and-automated-machine-learning/
https://www.embedded.com/building-effective-iot-applications-withtinyml-and-automated-machine-learning/
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.prweb.com/releases/cartesiam_ai_development_environment_brings_artificial_intelligence_learning_and_inference_to_everyday_objects/prweb16933237.htm
https://www.prweb.com/releases/cartesiam_ai_development_environment_brings_artificial_intelligence_learning_and_inference_to_everyday_objects/prweb16933237.htm
https://www.prweb.com/releases/cartesiam_ai_development_environment_brings_artificial_intelligence_learning_and_inference_to_everyday_objects/prweb16933237.htm
https://www.prweb.com/releases/cartesiam_ai_development_environment_brings_artificial_intelligence_learning_and_inference_to_everyday_objects/prweb16933237.htm
https://cartesiam-neaidocs
http://readthedocs-hosted.com/faq.html
http://readthedocs-hosted.com/faq.html
http://www.design-reuse.com/news/49170/cartesiamnanoedge-ai-studio-ide-arm-cortex-m-mcu.html
http://www.design-reuse.com/news/49170/cartesiamnanoedge-ai-studio-ide-arm-cortex-m-mcu.html
http://www.design-reuse.com/news/49170/cartesiamnanoedge-ai-studio-ide-arm-cortex-m-mcu.html
https://developer.imagimob.com/#/./imagimob-ai
https://developer.imagimob.com/#/./imagimob-ai
https://www.imagimob.com/blog/quantizationof-lstm-layers-a-technical-white-paper
https://www.imagimob.com/blog/quantizationof-lstm-layers-a-technical-white-paper
https://www.imagimob.com/news/introducingimagimob-edge-making-tensorflow-ai-modelsedge-device-ready-at-the-click-of-a-button
https://www.imagimob.com/news/introducingimagimob-edge-making-tensorflow-ai-modelsedge-device-ready-at-the-click-of-a-button
https://www.imagimob.com/news/introducingimagimob-edge-making-tensorflow-ai-modelsedge-device-ready-at-the-click-of-a-button
https://www.edgecomputingworld.com/2020/09/01/startup-of-the-year-finalist-anders-hardebring/
https://www.edgecomputingworld.com/2020/09/01/startup-of-the-year-finalist-anders-hardebring/
https://github.com/mlcommons/tiny
https://github.com/mlcommons/tiny

Journal of Sensors

[91] H. Cai, C. Gan, L. Zhu, and S. Han, “Tiny transfer learning:

[92]

(93]

[94]

[95

]

towards memory-efficient on-device learning,” 2020, http://
arxiv.org/abs/2007.11622.

S. Dhar, J. Guo, J. Liu, S. Tripathi, and U. Kurup, On-DeviceA
Survey of On-Device Machine Learning: An Algorithms and
Learning Theory Perspective, 2020.

Z.Ahmad, S. Jahari, F. Zaman, S. A. R. Al-Haddad, and A. Sali,
LPWAN State of the Art: Trends and Future Directions,
ResearchGate, 2021.

STMicroelectronics, “Ultra-low power multi-modulation
wireless STM32WLE5x microcontrollers,” 2020, https://www
.st.com/en/microcontrollersmicroprocessors/stm32wlex.html.
Microchip, “ATSAMR34J18,” 2020, https://www.microchip
.com/wwwproducts/en/ATSAMR34]18.

11

http://arxiv.org/abs/2007.11622
http://arxiv.org/abs/2007.11622
https://www.st.com/en/microcontrollersmicroprocessors/stm32wlex.html
https://www.st.com/en/microcontrollersmicroprocessors/stm32wlex.html
https://www.microchip.com/wwwproducts/en/ATSAMR34J18
https://www.microchip.com/wwwproducts/en/ATSAMR34J18

	Tiny Machine Learning for Resource-Constrained Microcontrollers
	1. Introduction
	2. Challenges and Opportunities
	3. Methods for Resource Optimization
	3.1. Quantization
	3.2. Binarization
	3.3. Pruning
	3.4. Clustering

	4. Frameworks and Libraries
	4.1. TensorFlow Lite
	4.2. Cortex Microcontroller Software Interface Standard-NN
	4.3. Apache TVM
	4.4. PyTorch Mobile
	4.5. emlearn

	5. Development Environments
	5.1. Edge Impulse Studio
	5.2. Qeexo AutoML
	5.3. STM32Cube.AI
	5.4. NanoEdge AI Studio
	5.5. Imagimob
	5.6. TinyML Development Tools Summary

	6. TinyML Benchmarking
	7. Emerging Techniques of TinyML
	8. Conclusion
	9. Future Application Areas
	Conflicts of Interest
	Acknowledgments

