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Abstract. Many inverse problems are known to be ill-posed. The ill-posedness

can be manifested by an instability estimate of exponential type, first derived
by Mandache [29]. In this work, based on Mandache’s idea, we refine the

instability estimates for two inverse problems, including the inverse inclusion

problem and the inverse scattering problem. Our aim is to derive explicitly the
dependence of the instability estimates on key parameters.

The first result of this work is to show how the instability depends on
the depth of the hidden inclusion and the conductivity of the background

medium. This work can be regarded as a counterpart of the depth-dependent

and conductivity-dependent stability estimate proved by Li, Wang, and Wang
[28], or pure dependent stability estimate proved by Nagayasu, Uhlmann, and

Wang [31]. We rigorously justify the intuition that the exponential instabil-

ity becomes worse as the inclusion is hidden deeper inside a conductor or the
conductivity is larger.

The second result is to justify the optimality of increasing stability in de-

termining the near-field of a radiating solution of the Helmholtz equation from
the far-field pattern. Isakov [16] showed that the stability of this inverse prob-

lem increases as the frequency increases in the sense that the stability estimate
changes from a logarithmic type to a Hölder type. We prove in this work
that the instability changes from an exponential type to a Hölder type as the

frequency increases. This result is inspired by our recent work [25].

1. Introduction. Many inverse problems are known to be ill-posed. Even the
uniqueness holds in most cases, the continuous dependence of the unknown on the
measurements is very weak. For some inverse problems, two estimates have been
proved to quantify this ill-posedness. For example, in Calderón’s problem, a loga-
rithmic stability estimate was proved by Alessandrini [1] and an exponential insta-
bility was derived by Mandache [29]. The estimate obtained in [29] guarantees that
the logarithmic stability estimate in Calderón’s problem is optimal. More refined
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2 PU-ZHAO KOW AND JENN-NAN WANG

stability estimates involving parameters of the equations, such as the frequency, the
depth of the unknown, or the conductivity, etc. were derived for many cases, not
just in inverse problems, but also in the unique continuation. Following Mandache’s
idea, exponential instability estimates containing the effect of the frequency in some
inverse problems were proved in [42] (for the transport equation) and in [25] (for
the Schrödinger equation). Inspired by the results in [25], in this paper, we derive
exponential instability estimates emphasizing on the effect of the parameters for
two inverse problems, the inverse inclusion and the inverse scattering problems. We
will explain our main results in detail below.

In a recent article [23], Koch, Rüland, and Salo investigated the mechanisms that
cause the instability for some linear and nonlinear inverse problems. The instability
mechanisms were categorized by three smoothing properties – strong global smooth-
ing, only weak global smoothing, and microlocal smoothing for the corresponding
forward operators. They derived instability estimates in more general geometries
and coefficients. Here we are interested in how instability estimates depend on some
key parameters. We achieve this by refining Mandache’s approach and, therefore,
work in the situation of symmetric geometries and constant coefficients. In order to
present the phenomena cleanly, we choose not to explore the possibility of extending
the results to more general settings.

We dedicate this paper to the memory of Victor Isakov, who made numerous
fundamental contributions in the development of inverse problems. His original
research on the phenomenon of increasing stability gives us a better understanding
of the ill-posedness in inverse problems. This paper is largely influenced by his
results.

1.1. Depth-dependent and conductivity-dependent instability of the elec-
trical impedance tomography (EIT). We first study the exponential instability
of the EIT. Different from early woks [7, 8, 29], here we would like to refine the
previous estimates in which one can understand the influence of other a priori fac-
tors of the conductivity in instability. Precisely, we consider the inverse inclusion
problem with the information of boundary data. We now describe the problem in
more detailed. Let Ω ⊂ R2 be a domain with smooth boundary and γ(x) > 0 (with
a sufficient regularity) represent the conductivity of Ω. Due to the conservation
law, the electric potential u satisfies the conductivity equation

∇ · (γ(x)∇u) = 0 in Ω. (1)

It is known that given any f ∈ H1/2(∂Ω), there exists a unique solution u to (1)
with u|∂Ω = f . The boundary data is given in the form of the Dirichlet-to-Neumann
map (DN-map):

Λγ(f) := γ∂νu

∣∣∣∣
∂Ω

, (2)

where ν is the unit exterior normal vector of ∂Ω. The information of the con-
ductivity is encoded in Λγ and the EIT is to determine γ from the knowledge of
Λγ .

This inverse problem was proposed by Calderón [5] where he showed that the
linearized DN-map at the constant conductivity is injective. The global uniqueness
of the EIT was proved by Sylvester and Uhlmann [37] (for dimensions higher than
two) and by Nachman [30] (for dimension two). The EIT is known to be ill-posed. A
log-type stability estimate was first established by Alessandrini [1], while Mandache
[29] confirmed that Alessandrini’s result is optimal by showing that the problem of
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exponentially unstable. In several practical situations, the conductivity coefficient
γ takes the following form:

γ(x) = γ0(x) + γ1(x)χD,

where χD is the characteristic function of the domain D. Here, D represents an
inclusion in Ω having a different conductivity γ1. In [13], Isakov showed that, if
γ0(x) is known, then both γ1(x) and D can be uniquely determined by the DN-
map (2). A log-type stability estimate was obtained in [2] for this inverse inclusion
problem, i.e. determination of D from Λγ .

We now consider the inverse inclusion problem with γ0(x) = 1 and γ1(x) = κ 6= 1,
that is,

∇ · ((1 + (κ− 1)χD)∇u) = 0 in Ω (3)

and the DN-map ΛD is defined by

ΛD : H
1
2 (∂Ω)→ H−

1
2 (∂Ω), ΛD(u|∂Ω) := ∂νu|∂Ω. (4)

The exponential instability for the inverse inclusion problem described above was
proved in [2]. However, the estimate obtained in [2] did not show that influence of
the depth of D on the instability. In [31], they obtained a depth-dependent stability
estimate by studying the linearized DN-map. Recently, the stability estimate of [31]
was extended to the multi-layer medium in [28] where the effect of the conductivity
of each layer on the stability was also discovered. To simplify the discussions, we
consider the medium which has 3-layer structure (the ideas can be easily extended to
multi-layer structure). Let Ω′ be Lipschitz domains such that D ⊂ Ω′ and Ω′ ⊂ Ω.
In this work, we study the inverse inclusion problem with

γ(x) = κ1χD + κ2χΩ′\D + χΩ\Ω′ ,

where κi > 0 are different with κi 6= 1 (i = 1, 2). We define the following operator:

LDu := ∇ · ((κ1χD + κ2χΩ′\D + χΩ\Ω′)∇u) in Ω.

Likewise, we can define the DN-map ΛD by (4).
One of the main theme of this work is to investigate how the depth of the inclusion

D and the conductivity κ2 affect the instability of the inverse problem. To formulate
our problem precisely, we consider Ω = B1, Ω′ = B 3

4
, and D = Br with 0 < r < 1

4 .

We introduce a smooth function

ψ : ∂D → R

and the perturbed boundary ∂Ds of the inclusion Ds is described by the image of

y = Fs(x) := x+ sψ(x)νx(x), x ∈ ∂D.

Now the linearized DN-map of ΛDs at s = 0, denoted by dΛBr (ψ), is formally
defined by

dΛBr (ψ) := lim
s→0

1

s
(ΛDs − ΛD). (5)

Indeed, dΛBr (ψ) : H
1
2 (∂B1) → H−

1
2 (∂B1) is a bounded linear operator, see [28,

Lemma 2.3]. A log-type stability estimate with dΛBr including the effect of the
depth r of the inclusion Br and the conductivity κ2 was proved in [28]. Precisely,
under some apriori assumptions, the following estimate holds:

‖ψ‖L2(∂B1) ≤ C(κ2 + 1) log(r−1)| log ‖dΛBr (ψ)‖∗|−1, (6)
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where

‖ • ‖∗ = ‖ • ‖
H

1
2 (∂B1)→H−

1
2 (∂B1)

.

Estimate (6) clearly indicates that the stability becomes worse as the depth of the
inclusion increases, i.e. r becomes smaller, or the conductivity κ2 becomes larger.
It was also showed in [31] that, given any ε > 0, there exists no positive constant
C ′ such that

‖ψ‖L2(∂Br) ≤ C ′| log ‖dΛBr (ψ)‖∗|−1−ε,

that is, the logarithmic stability (6) is optimal. The deterioration of the stabil-
ity of reconstructing a deeply hidden inclusion by the DN-map was also observed
numerically in [12, 39, 40].

By combining the ideas of [28] and [29], we proved the following depth-dependent
and conductivity-dependent exponential instability for the linearized DN-map dΛBr :

Theorem 1.1. Fixing any 0 < r < 1
4 and κ2 > 1 + κ1. There exists an absolute

constant 0 < E < 1 such that, given any 0 < ε < E, there exists a function
ψ ∈ C∞(∂Br) with

‖ψ‖L∞(∂Br) ≥ ε
such that

‖dΛBr (ψ)‖∗ ≤ C
1

κ2 + 1
exp(−| log r| 23 ε− 1

3α ) (7)

for some absolute constant C which is independent of κ1, κ2, r, ε.

Estimate (7) corresponds to the statement that the depth-dependent and
conductivity-dependent stability obtained in [28], as well as the depth-dependent
stability obtained in [31], are optimal from the instability perspective. We want to
point out that, since dΛBr is a linear operator, a norm estimate was derived in [28,
Corollary 1], precisely,

‖dΛBr (ψ)‖∗ ≤
C|κ1 − κ2|
|κ1 + κ2|

1

κ2 + 1
r

1
2 ‖ψ‖L2(∂Br) (8)

for some constant C. The norm estimate (8) holds for all perturbations of the
inclusion ψ. It gives us only an upper bound of the size of dΛBr (ψ) in terms of ψ.
The merit of (7) is that it provides a fact that the size of dΛBr (ψ) could be much
smaller (exponentially small) in terms of some perturbation ψ. The derivation of
(7) is more delicate that that of (8).

We now mention some other results related to our work. Besides considering the
linearized map dΛBr , there are other ways to formulate the depth-dependence of
the inverse problem, see, for example, [9, 10]. Let 0 ≤ ρ < 1, 0 < r < 1 and κ > −1.
In [9, Theorems 2.6 and 4.4], Garde and Hyvönen proved that

1− ρ
1 + ρ

≤
‖Λ1+κχBr(0)

− Λ1‖L2(∂B1)→L2(∂B1)

‖Λ1+κχBR(z)
− Λ1‖L2(∂B1)→L2(∂B1)

≤ 1− ρ2

1 + ρ2
, (9)

where Λγ is the DN-map given by (2),

z =
ρ(1− r2)

1− ρ2r2
x̂ and R =

r(1− ρ2)

1− ρ2r2
,

provided that |x̂| = 1, and the estimate (9) is optimal in the sense of

inf
0<r<1

‖Λ1+κχBr(0)
− Λ1‖L2(∂B1)→L2(∂B1)

‖Λ1+κχBR(z)
− Λ1‖L2(∂B1)→L2(∂B1)

=
1− ρ
1 + ρ

,
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sup
0<r<1

‖Λ1+κχBr(0)
− Λ1‖L2(∂B1)→L2(∂B1)

‖Λ1+κχBR(z)
− Λ1‖L2(∂B1)→L2(∂B1)

=
1− ρ2

1 + ρ2
.

Both the upper and lower bounds in (9) converge to zero as ρ→ 1, which indicates
that the reconstruction of BR(z) is more stable when it close to the boundary.

The depth-dependent of the inverse problem can also be described in terms of
the resolution limit. Let K > 0 and the function space

ΓΩ(ρ, q) =
{
γ ∈ L∞(Ω) K−1 ≤ γ ≤ K, γ = 1 + (γ − 1)χBρ(q)

}
,

where the point q is called the center of the perturbation. Fixing a constant ε0 > 0,
and we say that two conductivities γ1, γ2 are ε0-indistinguishable if

‖Λγ1 − Λγ2‖
H

1
2 (∂Ω)/H

1
2
0 (∂Ω)→H−

1
2 (∂Ω)

≤ ε0.

Accordingly, we can define the resolution limit at level ε0 relative to the center
q ∈ Ω by the number

`q = sup
{
ρ > 0 γ1, γ2 ∈ ΓΩ(ρ, q) are ε0-indistinguishable

}
.

Let Ω = B1 ⊂ R2 ∼= C, Alessandrini and Scapin [3, Theorems 3.3 and 3.8] derived
that

`q =
1 + `20 −

√
1 + (4q2 − 2)`20 + `40

2`0
with `0 =

√√√√√4 + ε20 − 2

ε0
K−1
K+1

for all q ∈ [0, 1), where `0 is the resolution limit at the center of the disk B1. From
this, we see that `q increases with respect to the depth 1 − q. In other words, the
resolution in the determination of the inclusion deteriorates as it is hidden deeper
inside a conductor.

1.2. Instability estimate for the determination of the near-field from the
far-field. We now study the instability phenomenon of determining the near-field
of a radiating solution to the Helmholtz equation from the far-field pattern. The
uniqueness follows easily from Rellich’s lemma. Likewise, this inverse problem is
also ill-posed. Nonetheless, it was proved by Isakov [16] that the stability of this
inverse problem increases as the frequency increases. In this work, we want to verify
this increasing stability phenomenon from the viewpoint of instability estimate and
hence shows that the result obtained in [16] is optimal. The increasing stability
phenomena were rigorously proved in other situations [11, 14, 15, 16, 17, 18, 19, 26,
27, 32, 35, 36], not only for inverse problems, but also for the unique continuation
property.

Given any f ∈ H
1
2 (∂B1), there exists a unique u ∈ H1

loc(R3 \ B1) solving the
following exterior problem:

(∆ + κ2)u = 0 in R3 \B1,

u = f on ∂B1,

u satisfies Sommerfeld radiation condition at |x| → ∞,
(10)

and the following estimate holds

‖u‖H1(BR\B1) ≤ C(R, κ)‖f‖
H

1
2 (∂B1)

, (11)
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see, for example, [22, Theorem 1.1] (see also [33, Theorem 2.6.2] for refined inequal-
ity of (11) and [4, Theorem 3.3] for elastic waves). It is well-known that u satisfies
the following asymptotic expansion [6, 22, 38]:

u(x) =
eiκr

r
u∞(x̂) +O(r−2) as r = |x| → ∞

uniformly for all x̂ = x/|x| ∈ S2, where u∞(x̂) is called the far-field pattern. We
use u∞(f) to indicate the dependence of u∞ on f .

It follows from Rellich’s lemma that u∞(f) uniquely determine u in R3 \ B1

and therefore the boundary data f is uniquely also recovered, i.e., the mapping
f → u∞(f) is injective. We now want to remark on the stability estimate of
determining f from u∞(f).

Let
{
Y mn n ≥ 0, |m| ≤ n

}
be the spherical harmonics, which forms a complete

orthonormal basis in L2(S2). Therefore, we can write

u∞ =
∑
n≥0

∑
|m|≤n

u∞nmY
m
n .

Define

ε21 :=

b
√
κc∑

n=0

∑
|m|≤n

|u∞nm|2 and ε22 :=

∞∑
n=b
√
κc+1

∑
|m|≤n

|u∞nm|2

Under some a priori assumptions, it was shown in [16, Theorem 1.1] that

‖f‖2L2(∂B1) ≤
2e2

π
ε21 +

2e2

π
ε2 +

M1

κ+ | log ε2|
, (12a)

‖f‖2L2(∂B1) ≤
2e2

π
ε21 +

√
2

πκ
eM1ε

1
2
2 +

M2
1

κ+ | log ε2|
(12b)

for some constant M1 > 0. The estimates (12a) and (12b) indicate that the log-
arithmic part (κ + | log ε2|)−1 decreases as κ increases, and both estimates change
from a logarithmic type to a Hölder type. In other words, Isakov’s work [16] can
be regarded as a quantitative version of Rellich’s lemma. Moreover, using (11), one
can see that Neumann data can be easily recovered from Dirichlet data, and the
recovery process is stable.

In this work, we will study the counterpart of the increasing stability by investi-
gating how the exponential instability is affected by the frequency. Inspired by the
work [42] and our recent preprint [25], we prove the following theorem.

Theorem 1.2. Fixing any frequency κ > 0, and let κ̃ := (κ2 )exp(κ). There exists
an absolute positive constant E such that for any 0 < ε < E, there exists a function
f ∈ C∞(∂B1) satisfying

‖f‖L∞(∂B1) ≥ ε
and

‖u∞(f)‖
H−

5
2 (S2)

≤ C
[

exp

(
− max{κ̃, 1}

3
ε−

1
α

)
+ min{1, κ̃}ε 1

α

]
(13)

for some absolute constant C which is independent of κ and ε.

Before proceeding further, we would like to mention some interesting results
obtained in [34] where the authors derived a stability of determining the scattered
field from the far-field data and an instability estimate for the inverse scattering
problem in the acoustic equation with a sound-soft obstacle. Similar to the spirit



REFINED INSTABILITY ESTIMATES FOR SOME INVERSE PROBLEMS 7

of our work, results in [34] also emphasize on the dependence of the wave number
in the stability and instability estimates.

Estimate (13) shows that the instability changes from an exponential type to a
Hölder type when κ increases, and vice versa. Such transition of instability was also
established for an inverse problem in the stationary radiative transport equation in
[42] and in the Schrödinger equation in [25]. In addition, this result shows that
Isakov’s result in [16] is optimal.

Our proof relies a well-known expression (43) of u in terms of spherical harmonics
Y mn . The crucial step is the identity, which connects the Bessel function with
Lommel polynomials, given in (45). This gives an explicit lower bound of the
spherical Hankel functions, see Lemma 4.1. It is also interesting to mention that,
using some refined properties of Bessel functions, John [21] constructed an example
showing a logarithmic stability uniformly in κ in the continuation of solution to the
Helmholtz equation from the unit disk into its complement in the plane.

1.3. Organization of the paper. We will follow the general procedure introduced
in [29]. We first discuss the construction of an ε-discrete set in some function space
in Section 2. Using this ε-discrete set, we will prove Theorem 1.1 and Theorem 1.2
in Section 3 and Section 4, respectively.

2. Construction of an ε-discrete set. Let d ≥ 1. We now want to construct an
ε-discrete set (a.k.a. ε-distinguishable set) for some neighborhood which is not too
large. Here we recall that a set Z of a metric space (M, d) is called an ε-discrete set
if d(z1, z2) ≥ ε for all z1 6= z2 ∈ Z. For each ε > 0, we define

N̂ε(B 1
2
) :=

{
ψ ∈ C∞c (Rd) ψ is real-valued, supp (ψ) ⊂ B 1

2
, ‖ψ‖L∞(Rd) ≤ ε

}
.

We now prove the following lemma.

Lemma 2.1. Given any α > 0, there exists µ = µ(d, α) > 0 such that the following
statement holds for any auxiliary parameter β > 0: Given any 0 < ε < µβ, there is
an ε-discrete set Ẑ of (N̂ε(B 1

2
), ‖ • ‖L∞) with

|Ẑ| ≥ exp

[
1

2d+1

(
µβ

ε

) d
α
]
, (14)

where |Ẑ| denotes the cardinality of Ẑ.

Remark 1. When d ≥ 2, Lemma 2.1 is a special case of [29, Lemma 2]. See also [24,
Theorem XIV] for more abstract setting, or [8, Proposition 3.1], [25, Proposition
2.1], [42, Lemma 5.2].

Proof of Lemma 2.1. It remains to prove this theorem for d = 1. We fix ψ0 ∈
C∞c (R1) such that supp (ψ0) ⊂ B 1

2
= (− 1

2 ,
1
2 ) and ‖ψ0‖L∞(R1) = 1. We now define

µ := ‖ψ0‖−1
Cα(R1) and N =

⌊(
µβ

ε

) 1
α
⌋
.

Since 0 < ε < µβ, then µβ
ε > 1. Hence,

N >
1

2

(
µβ

ε

) 1
α

. (15)
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We divide B 1
2

= (− 1
2 ,

1
2 ) into N smaller intervals of length 1/N . Let y1, · · · , yN be

their centers. Defining

Ẑ :=

{
ψ ψ(x) = ε

N∑
j=1

σjψ0(N(x− yj)), σj ∈ {0, 1}
}
.

Note that each element ψ ∈ Ẑ is smooth with ‖ψ‖L∞ ≤ ε and Ẑ ⊂ N̂ε(B 1
2
).

Moreover, we see that

‖ψ1 − ψ2‖L∞ = ε for all ψ1 6= ψ2 ∈ Ẑ.
Finally, we see that

|Ẑ| = 2N = exp(N log 2) ≥ exp

(
N

2

)
. (16)

Combining (15) and (16), we obtain (14).

Let r > 0 and let P : ∂Br → Rd ∪ {∞} be the stereographic projection. Let us
define

Nε(∂Br,P) :=
{
ψ : ∂Br → R ψ ◦ P−1 ∈ N̂ε(B 1

2
)
}
,

Z :=
{
ψ : ∂Br → R ψ ◦ P−1 ∈ Ẑ

}
,

and

Nε(∂Br) :=
{
ψ : ∂Br → R ψ is smooth with ‖ψ‖L∞(∂Br) ≤ ε

}
.

It is clear that Z ⊂ Nε(∂Br,P) ⊂ Nε(∂Br) and |Z| = |Ẑ|. Hence, we can rephrase
Lemma 2.1 as follows:

Proposition 1. Given any α > 0, there exists µ = µ(d, α) > 0 such that the
following statement holds for any auxiliary parameter β > 0: Given any 0 < ε < µβ,
there is an ε-discrete set Z of (Nε(∂Br), ‖ • ‖L∞(∂Br)) with

|Z| ≥ exp

[
1

2d+1

(
µβ

ε

) d
α
]
,

3. Proof of Theorem 1.1. We prove Theorem 1.1 in this section.

3.1. General framework of matrix representation. For each ρ > 0 and γ ∈ R,
we have

‖ψ‖2L2(∂Bρ) =
ρ

2π

∑
k∈Z

∣∣∣∣ ∫ 2π

0

ψ(ρ cos θ, ρ sin θ)e−ikθ dθ

∣∣∣∣2, (17a)

‖ψ‖2Hγ(∂Bρ) =
ρ

2π

∑
k∈Z

(1 + k2)γ
∣∣∣∣ ∫ 2π

0

ψ(ρ cos θ, ρ sin θ)e−ikθ dθ

∣∣∣∣2, (17b)

see [31, (2.1)]. For each n ∈ Z, we define φn : ∂B1 → C

φn(cos θ, sin θ) :=
1√

2π(1 + n2)
1
4

einθ.

Using (17b) with γ = 1
2 and ρ = 1 gives

‖φn‖2
H

1
2 (∂B1)

=
1

2π

∑
k∈Z

(1 + k2)
1
2

∣∣∣∣ ∫ 2π

0

1√
2π(1 + n2)

1
4

einθe−ikθ dθ

∣∣∣∣2
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=
1

2π
(1 + n2)

1
2

∣∣∣∣ √
2π

(1 + n2)
1
4

∣∣∣∣2
=

1

2π
(1 + n2)

1
2

2π

(2 + n2)
1
2

= 1.

That is,
{
φn n ∈ Z

}
forms a complete orthonormal set in H

1
2 (∂B1).

Let A : H
1
2 (∂B1) → H−

1
2 (∂B1) be any bounded linear operator. For any pair

(n,m) ∈ Z× Z, we define the complex number

anm := 〈Aφn, φm〉,

where 〈•, •〉 is the H−
1
2 (∂B1) × H 1

2 (∂B1) duality pair. We consider the Banach
space X, which consists tensors (anm) with

‖(anm)‖X :=
1

4
sup
n,m∈Z

(1 + max{|n|, |m|})2|anm| <∞.

We have the following proposition.

Proposition 2. There exists an absolute constant Cabs > 0 such that

‖A‖∗ ≤ Cabs‖(anm)‖X . (18)

In other words, tensor (anm) can be treated as the matrix representation of the
bounded linear operator A.

Proof. Using the Hilbert-Schmidt norm, we have

‖A‖∗ ≤
( ∑
n,m∈Z

|anm|2
) 1

2

≤ 4

( ∑
n,m∈Z

1

(1 + max{|n|, |m|})4

) 1
2

‖(anm)‖X .

We now compute∑
n,m∈Z

1

(1 + max{|n|, |m|})4

≤
( ∑
n≥0,m≥0

+
∑

n≥0,m≤0

+
∑

n≤0,m≥0

+
∑

n≤0,m≤0

)
1

(1 + max{|n|, |m|})4

= 4
∑

n≥0,m≥0

1

(1 + max{n,m})4

≤ 4

( ∑
n≥m≥0

+
∑

m≥n≥0

)
1

(1 + max{n,m})4

= 8
∑

n≥m≥0

1

(1 + n)4
= 8

∞∑
n=0

n∑
m=0

1

(1 + n)4
= 8

∞∑
n=0

1

(1 + n)3
<∞,

which proves (2).

3.2. Estimating the matrix representation of the linearized DN-map. The
task here is to estimate dΛnmBr (ψ) := 〈dΛBr (ψ)(φn), φm〉. Precisely, we want to prove
the following proposition.

Proposition 3. Given any ε > 0 and 0 < r < 1
4 . If κ2 > 1 + κ1, then there exists

an absolute constant C such that

|dΛnmBr (ψ)| ≤ CR 1

κ2 + 1
`

1
2 r`−1 (19)



10 PU-ZHAO KOW AND JENN-NAN WANG

for all ψ ∈ NR(∂Br), where ` = max{|n|, |m|}.

Remark 2. Observe that dΛnmBr (ψ) = 0 when n = 0 or m = 0, since ΛDs(1) = 0
for all s ≥ 0. Hence, we have

‖(dΛnmBr (ψ))‖X =
1

4
sup

0 6=n,m∈Z
(1 + max{|n|, |m|})2|dΛnmBr (ψ)|

≤ sup
06=n,m∈Z

max{|n|, |m|}2|dΛnmBr (ψ)|. (20)

Given any function g ∈ L2(∂Br) and k ∈ Z, we define the Fourier coefficient of
g as

gk :=

∫ 2π

0

g(r cos θ, r sin θ)e−ikθ dθ.

It is easy to see that

|gk| ≤ 2π‖g‖L∞(∂Br). (21)

For f ∈ L2(∂B1), we abuse the notation and define

fk :=

∫ 2π

0

f(cos θ, sin θ)e−ikθ dθ.

We need the following lemma, which is a special case of [28, (18)] (taking R = 1
in [28, (18)]).

Lemma 3.1. For f ∈ H 1
2 (∂B1), we have

dΛBr (ψ)(f)

∣∣∣∣
∂B1

=
∑
a∈Z

λa(f)eiaθ,

where λ0(f) = 0 and for all a ∈ N

λ−a(f) =
κ1 − κ2

π2
r−1Ta

∞∑
p=1

Sp

[
(κ1 + κ2)ψ−a+pf−p − (κ2 − κ1)ψ−a−pfp

]
,

λa(f) =
κ1 − κ2

π2
r−1Ta

∞∑
p=1

Sp

[
(κ1 + κ2)ψa−pfp − (κ2 − κ1)ψa+pf−p

]
,

where

Ta :=
−a

(κ2 − κ1)ra + (κ1 + κ2)r−a

Sp := 2p

((
3

4

)−p[
(κ2 − κ1)(κ2 − 1)rp

(
3

4

)−p
− (κ1 + κ2)(κ2 + 1)r−p

(
3

4

)p]
+

(
3

4

)p[
− (κ2 − κ1)(κ2 + 1)rp

(
3

4

)−p
+ (κ1 + κ2)(κ2 − 1)r−p

(
3

4

)p])−1

.

Remark 3. When κ2 = 1 and κ1 = κ, that is, the case of 2-layer medium, we have
Sp = Tp, and hence Lemma 3.1 reduces to [31, Lemma 2.2] with R = 1.

The following inequalities can be found in the proof of [28, Lemma 2.3]:

|Tk| ≤
2k

κ1 + κ2
rk, (22a)

|Sn| ≤
1

min{ 1
2 , c0}

2n

(κ1 + κ2)(κ2 + 1)
rn, (22b)
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where

c0 := inf
τ∈N

∣∣∣∣1− κ1 − κ2

κ1 + κ2
r2τ +

κ1 − κ2

κ1 + κ2

κ2 − 1

κ2 + 1
r2τ

(
3

4

)−2τ

− κ2 − 1

κ2 + 1

(
3

4

)2τ ∣∣∣∣.
Since 0 < r < 1

4 and κ2 ≥ 1 + κ1, it is easy to see that c0 ≥ 1
5 , and hence (22b)

becomes

|Sn| ≤
10n

(κ1 + κ2)(κ2 + 1)
rn. (22c)

Now, we are ready to prove Proposition 3.

Proof of Proposition 3. Using (17b), we can estimate

|dΛnmBr (ψ)| ≤ ‖dΛBr (ψ)(φn)‖
H−

1
2 (∂B1)

=

[
1

2π

∑
k∈Z

(1 + k2)−
1
2

∣∣∣∣ ∫ 2π

0

(∑
a∈Z

λa(φn)eiaθ
)
e−ikθ dθ

∣∣∣∣2] 1
2

=

[
1

2π

∑
k∈Z

(1 + k2)−
1
2 |2πλk(φn)|2

] 1
2

=

[
2π
∑
k∈Z

(1 + k2)−
1
2 |λk(φn)|2

] 1
2

. (23)

Note that the Fourier coefficient (φn)p of φn can be explicitly calculated:

(φn)p =

∫ 2π

0

φn(cos θ, sin θ)e−ipθ dθ

=

∫ 2π

0

1√
2π(1 + n2)

1
4

einθe−ipθ dθ =

√
2π

(1 + n2)
1
4

δnp. (24)

Now we consider n > 0. For any R > 0 and ψ ∈ NR(∂Br), we can see that for
k > 0,

|λ−k(φn)|

=

∣∣∣∣κ1 − κ2

π2
r−1Tk

∞∑
p=1

Sp

[
(κ1 + κ2)ψ−k+p(φn)−p − (κ2 − κ1)ψ−k−p(φn)p

]∣∣∣∣
=

∣∣∣∣κ1 − κ2

π2
r−1TkSn

[
(κ2 − κ1)ψ−k−n

√
2π

(1 + n2)
1
4

]∣∣∣∣ (from (24))

= 2π
|κ1 − κ2|2

π2
r−1|Tk||Sn||ψ−k−n|

1

(1 + n2)
1
4

≤ 20(2π)
3
2
|κ1 − κ2|2

π2
Rr−1

(
k

κ1 + κ2
rk
)(

n

(κ1 + κ2)(κ2 + 1)
rn
)

1

(1 + n2)
1
4

(using (21),(22a), and (22c))

=
20(2π)

3
2

π2

∣∣∣∣κ1 − κ2

κ1 + κ2

∣∣∣∣2R 1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

≤ 20(2π)
3
2

π2
R

1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

(25a)
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and

|λk(φn)|

=

∣∣∣∣κ1 − κ2

π2
r−1Tk

∞∑
p=1

Sp

[
(κ1 + κ2)ψk−p(φn)p − (κ2 − κ1)ψk+p(φn)−p

]∣∣∣∣
=

∣∣∣∣κ1 − κ2

π2
r−1TkSn

[
(κ2 + κ1)ψk−n

√
2π

(1 + n2)
1
4

]∣∣∣∣ (from (24))

= 2π
|κ1 − κ2||κ1 + κ2|

π2
r−1|Tk||Sn||ψk−n|

1

(1 + n2)
1
4

≤ 20(2π)
3
2
|κ1 − κ2||κ1 + κ2|

π2
Rr−1

(
k

κ1 + κ2
rk
)(

n

(κ1 + κ2)(κ2 + 1)
rn
)

1

(1 + n2)
1
4

(using (21),(22a), and (22c))

=
20(2π)

3
2

π2

∣∣∣∣κ1 − κ2

κ1 + κ2

∣∣∣∣R 1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

≤ 20(2π)
3
2

π2
R

1

κ2 + 1
r−1 knrk+n

(1 + n2)
1
4

(25b)

From (25a) and (25b), if we define

C̃ :=
20(2π)

3
2

π2
,

we then have

|λk(φn)| ≤ C̃R 1

κ2 + 1
r−1 |k|nr|k|+n

(1 + n2)
1
4

for all k ∈ Z. (26)

Combining (23) and (26), we obtain

|dΛnmBr (ψ)| ≤
√

2πC̃R
1

κ2 + 1
r−1 nrn

(1 + n2)
1
4

[∑
k∈Z

(1 + k2)−
1
2 k2r2|k|

] 1
2

≤
√

2πC̃R
1

κ2 + 1
r−1 nrn

(1 + n2)
1
4

[∑
k∈Z

(1 + k2)−
1
2 k2

(
1

4

)|k|] 1
2

= CR
1

κ2 + 1

n

(1 + n2)
1
4

rn−1 (27)

with

C =
√

2πC̃

[∑
k∈Z

(1 + k2)−
1
2 k2

(
1

4

)|k|] 1
2

<∞.

For n < 0, we can obtain an inequality similar to (27), precisely,

|dΛnmBr (ψ)| ≤ CR 1

κ2 + 1

|n|
(1 + n2)

1
4

r|n|−1.

Since dΛBr (ψ) is self-adjoint, i.e. (dΛnmBr (ψ)) is symmetric, we thus conclude that

|dΛnmBr (ψ)| ≤ CR 1

κ2 + 1

`

(1 + `2)
1
4

r`−1,

which implies (19).



REFINED INSTABILITY ESTIMATES FOR SOME INVERSE PROBLEMS 13

3.3. Construction of a δ-net. Given any ψ ∈ NR(∂Br), (19) implies that

`2|dΛnmBr (ψ)| ≤ CR
1

κ2 + 1
`

5
2 r`−1 (28)

with ` = max{|n|, |m|} and CR depending on R > 0. Here, it suffices to take
CR > 1. Here, from (20), it follows that

‖(dΛnmBr (ψ))‖X ≤ CR
1

κ2 + 1
sup
`≥1

`
5
2 r`−1 <∞. (29)

In other words, we have
(dΛnmBr (NR(∂Br))) ⊂ X. (30)

In view of (30), we want to construct a δ
κ2+1 -net Y for ((dΛnmBr (NR(∂Br))), ‖ • ‖X),

which is not too large. Precisely, we aim to derive the following proposition.

Proposition 4. Let 0 < r < 1
4 , R > 0, and κ2 > 1 + κ1. Given any 0 < δ < 1,

there exists a δ
κ2+1 -net Y for ((dΛnmBr (NR(∂Br))), ‖ • ‖X) such that

log |Y | ≤ C| log r|−2 log3

(
ηR
δ

)
+ C log

(
ηR
δ

)
, (31)

where C is a general constant, and ηR is a constant depending only on R.

Remark 4. A set Y if a metric space (M,d) is called a δ-net for Y1 ⊂M if for any
x ∈ Y1, there is a y ∈ Y such that d(x, y) ≤ δ.

Proof of Proposition 4. Step 1: Initialization. Let CR be the constant given in
Proposition 3. Given any 0 < δ < 1, let τ0 > 1 be the unique positive solution (not
necessarily an integer) to

τ
5
2

0 r
τ0−1 =

δ

CR
. (32)

If we define `∗ = bτ0c (note 1 ≤ `∗ ≤ τ0), then (32) implies

δ

CR
≤ `

5
2
∗ r

`∗−1 ≤ `
5
2
∗

(
1

4

) `∗−1
2

r
`∗−1

2 ≤ C ′r
`∗−1

2 with C ′ = sup
τ≥1

τ
5
2

(
1

4

) τ−1
2

. (33)

Taking the logarithm both sides of (33) gives

log

(
δ

C ′CR

)
≤ log(r

`∗−1
2 ) =

`∗ − 1

2
log r,

and thus

log

(
C ′CR
δ

)
= log

(
− δ

C ′CR

)
≥ −`∗ − 1

2
log r =

`∗ − 1

2
| log r|,

which is equivalent to

`∗ ≤
2

| log r|
log

(
C ′CR
δ

)
+ 1. (34)

Furthermore, we can observe that for any integer ` > `∗, i.e. ` > τ0, it holds

`
5
2 r`−1 ≤ δ

CR
. (35)

Step 2: Construction of a set. For each pair (n,m) ∈ Z × Z with 0 < ` =
max{|n|, |m|} ≤ `∗, (28) implies

|dΛnmBr (ψ)| ≤ CR
1

κ2 + 1
C ′′ with C ′′ = sup

`≥1
`

1
2

(
1

4

)`−1

.
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We set

δ′ :=
δ√

2`2∗(κ2 + 1)
, Y ′ :=

{
a = a1 + ia2 ∈ δ′Z + iδ′Z |a1|, |a2| ≤ CRC

′′

`2∗(κ2+1)

}
,

and

Y :=

{
(bnm)

if ` = max{|n|, |m|} ≤ `∗, then bnm ∈ Y ′,
otherwise, bnm = 0

}
.

Step 3: Verifying that Y is a δ
κ2+1 -net. Given any ψ ∈ NR(∂Br), our goal is

to construct a tensor (bnm) ∈ Y that is close to the tensor (dΛnmBr (ψ)). If 0 < ` =
max{|n|, |m|} ≤ `∗, we choose bnm ∈ Y ′ as the closest element to dΛnmBr (ψ). Then,
we have

`2|bnm − dΛnmBr (ψ)| ≤
√

2`2∗δ
′ =

δ

κ2 + 1
. (36a)

Otherwise, if ` = max{|n|, |m|} > `∗, we choose bnm = 0. For such choice of (bnm),
with the help of (28) and (35), we conclude that

`2|bnm − dΛnmBr (ψ)| = `2|dΛnmBr (ψ)| ≤ CR
1

κ2 + 1
`

5
2 r`−1 ≤ δ

κ2 + 1
. (36b)

Combining (20), (36a), and (36b), we conclude that

‖(bnm − dΛnmBr (ψ))‖X ≤
δ

κ2 + 1
,

which shows that Y is a δ
κ2+1 -net for ((dΛnmBr (NR(∂Br))), ‖ • ‖X).

Step 4: Calculating the cardinality of Y . We see that

|Y ′| =
(

1 + 2

⌊
CRC

′′

`2∗(κ2 + 1)δ′

⌋)2

≤
(

1 + 2
√

2
CRC

′′

δ

)2

. (37)

Let N` be the number of pairs (n,m) ∈ (Z\{0})× (Z\{0}) with max{|n|, |m|} = `.
We want to estimate N`. When n = ±`, then m can be any no-zero integer between
−` and ` (i.e. there are 2` choices). Switching the role of n and m, we hence obtain
that N` ≤ 8`. Consequently, we can estimate

N∗ :=

`∗∑
`=1

N` ≤
`∗∑
`=1

8` = 4`∗(`∗ + 1) and |Y | = |Y ′|N∗ . (38)

Combining (34), (37), and (38), we obtain

log |Y | = N∗ log |Y ′| ≤ 16`2∗ log

(
1 + 2

√
2
CRC

′′

δ

)
≤ 16

[
2

| log r|
log

(
C ′CR
δ

)
+ 1

]2

log

(
1 + 2

√
2
CRC

′′

δ

)
,

which implies (31).

Remark 5. Note that

inf
0<δ<1

| log r|−2 log3

(
ηR
δ

)
= | log r|−2 log3(ηR) <

(
log

1

4

)−2

log3(ηR) := E̊R.

Therefore, given any 0 < ε < E̊−αR , there exists a unique 0 < δ < 1 such that

ε−
1
α = | log r|−2 log3

(
ηR
δ

) (
equivalently, δ = ηR exp(−| log r| 23 ε− 1

3α

)
. (39)
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Therefore, (31) can be rewritten as follows:

log |Y | ≤ C(ε−
1
α + | log r| 23 ε− 1

3α ). (40)

3.4. Proof of the main result.

Proof of Theorem 1.1. Fixing any auxiliary parameters R > 0 and α > 0. For each
0 < ε < min{µβ, E̊−αR , R, 1}, we can construct an ε-discrete Z as in Proposition 1

with d = 1. Then, let δ be the number given in (39), and we can construct a δ
κ2+1 -

net Y as in Proposition 4 such that (40) holds. Since 0 < ε < R, then Z ⊂ NR(∂Br).
Therefore, Y is also a δ

κ2+1 -net of ((dΛnmBr (Z)), ‖ • ‖X).

Now, we choose β = β(α, r,R) such that

1

8
(µβ)

1
α > C| log r| 23 and µβ > ε.

Then it follows from (40), 0 < r < 1
4 , and 0 < ε < 1 that

log |Z| ≥ 1

4

(
µβ

ε

) 1
α

> C(ε−
1
α + | log r| 23 ε− 1

3α ) ≥ log |Y |.

Using the pigeonhole principle, there exist two different ψ1, ψ2 ∈ Z such that

‖(dΛnmBr (ψ1)− ynm)‖X ≤
δ

κ2 + 1
and ‖(dΛnmBr (ψ2)− ynm)‖X ≤

δ

κ2 + 1

for some (ynm) ∈ Y . Letting ψ = ψ1 − ψ2, we obtain that

‖(dΛnmBr (ψ))‖X ≤
2δ

κ2 + 1
=

1

κ2 + 1
CR exp(−| log r| 23 ε− 1

3α ),

which, with the help of Proposition 2, gives

‖dΛBr (ψ)‖∗ ≤
1

κ2 + 1
CR exp(−| log r| 23 ε− 1

3α ). (41)

Finally, since Z is a ε-discrete set, ‖ψ‖L∞(∂Br) ≥ ε and the proof is complete.

Remark 6. One may choose

ε−
1
α = log3

(
ηR
δ

) (
equivalently, δ = ηR exp(−ε− 1

3α )

)
and take β sufficiently large such that

1

8
(µβ)

1
α > C > C| log r|−2 and µβ > ε.

Then it follows from (31) and 0 < ε < 1 that

log |Z| ≥ 1

4

(
µβ

ε

) 1
α

> C(| log r|−2ε−
1
α + ε−

1
3α ) ≥ log |Y |.

Following the same argument as above, we then conclude that there exists ψ with
‖ψ‖L∞ ≥ ε, but

‖dΛBr (ψ)‖∗ ≤
1

κ2 + 1
CR exp(−ε− 1

3α ). (42)

Comparing with (41), the estimate (42) is clearly not optimal.

4. Proof of Theorem 1.2. In this section, we want to prove Theorem 1.2. We
will follow the lines in the proof of Theorem 1.1.
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4.1. Spherical harmonics and series expansion. For each γ ∈ R, the Banach
space Hγ(S2) can be equipped with the following equivalent norm:

‖A‖2Hγ(S2) =
∑
n≥0

∑
|m|≤n

(1 + n)2γ |anm|2 where A =
∑
n≥0

∑
|m|≤n

anmY
m
n .

The following proposition is simple but crucial in our work.

Proposition 5. Let s ∈ R, and we define the following Banach space:

Xs :=

{
(anm) ‖(anm)‖Xs := sup

n≥0,|m|≤n
(1 + n)

3
2−s|anm| <∞

}
.

If A =
∑
n≥0

∑
|m|≤n

anmY
m
n , then there exists an absolute constant Cabs > 0 such that

‖A‖H−s(S2) ≤ Cabs‖(anm)‖Xs .

Proof. Using direct computations, we have

‖A‖2H−s(S2) =
∑
n≥0

∑
|m|≤n

(1 + n)−2s|anm|2 =
∑
n≥0

∑
|m|≤n

1

(1 + n)3
(1 + n)3−2s|anm|2

≤
∑
n≥0

∑
|m|≤n

1

(1 + n)3
‖(anm)‖2Xs

=
∑
n≥0

2n+ 1

(1 + n)3
‖(anm)‖2Xs ,

which proves the proposition with C2
abs =

∑
n≥0

2n+ 1

(1 + n)3
<∞.

4.2. Some elementary computations. Recall from [6, Theorem 2.15 and 2.16]
the following representation of u satisfying (10):

u(x) =
∑
n≥0

∑
|m|≤n

(
κin+1u∞nmh

(1)
n (κr)

)
Y mn (x̂) where u∞ =

∑
n≥0

∑
|m|≤n

u∞nmY
m
n (x̂),

(43)
In view of the boundary condition u = f on ∂B1, we have that

fnm = κin+1u∞nmh
(1)
n (κ) with f(x) =

∑
n≥0

∑
|m|≤n

fnmY
m
n (x̂), (44)

where h
(1)
n (t) is the spherical Hankel function. We can prove the following elemen-

tary lemma.

Lemma 4.1. Let κ > 0 and define κ̃ := (κ2 )exp(κ). Then there exists a constant
C > 0, which is independent of n and κ, such that

|h(1)
n (κ)|−1 ≤

{
Cκ2−n if κ ≤ log(n),

Cκκ̃ if κ ≥ log(n),

for all n = 0, 1, 2, · · · .

Proof. From [41, (4) (5), Sec. 9.61, p.297], it follows

|Jn+ 1
2
(κ)|2 + |J−n− 1

2
(κ)|2 =

2

πκ
(−1)nR2n, 12−n

(κ)
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=
2

πκ

n∑
m=0

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!
(45)

where Jν is the Bessel function of 1st kind and Rn,ν is the Lommel polynomials (see
also DLMF:10.49). From [41, (3), Sec. 3.61, p.74] or [20, p.142], we have

Nn+ 1
2
(κ) = (−1)n+1J−n− 1

2
(κ),

where Nν (some authors denote Yν , see e.g. [41]) is the Bessel function of 2nd kind.

Therefore, the Hankel function H
(1)
ν (κ) = Jν(κ) + iNν(κ) satisfies

|H(1)

n+ 1
2

(κ)|2 = |Jn+ 1
2
(κ)|2 + |Nn+ 1

2
(κ)|2 = |Jn+ 1

2
(κ)|2 + |J−n− 1

2
(κ)|2. (46)

Combining (45) and (46) gives

|H(1)

n+ 1
2

(κ)|2 =
2

πκ

n∑
m=0

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!
.

By the relation

h(1)
n (κ) =

(
π

2κ

) 1
2

H
(1)

n+ 1
2

(κ),

(see e.g. DLMF:10.47), we have

|h(1)
n (κ)|2 =

π

2κ
|H(1)

n+ 1
2

(κ)|2 =
1

κ2

n∑
m=0

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!

and hence,

|h(1)
n (κ)|2 ≥ 1

κ2

(2κ)2m−2n(2n−m)!(2n− 2m)!

((n−m)!)2m!

∣∣∣∣
m=0

=

(
1

κ

(2n)!

(2κ)nn!

)2

. (47)

Note that
(2n)!

n!
=

22n

√
π

Γ

(
2n+ 1

2

)
.

Consequently, we can rewrite the inequality (47) as

|h(1)
n (κ)| ≥ 1

κ

(2n)!

(2κ)nn!
=

1

κ

1

(2κ)n
22n

√
π

Γ

(
2n+ 1

2

)
=

1√
π

1

κ

(
2

κ

)n
Γ

(
2n+ 1

2

)
,

that is,

|h(1)
n (κ)|−1 ≤

√
πκ

(
κ

2

)n
1

Γ( 2n+1
2 )

. (48)

If 0 < κ ≤ log(n), since

lim
n→∞

2n
[(

log(n)

2

)n
1

Γ( 2n+1
2 )

]
= 0,

(48) implies

|h(1)
n (κ)|−1 ≤

√
πκ

(
log(n)

2

)n
1

Γ( 2n+1
2 )

≤ Cκ2−n

for some absolute constant C > 0. Otherwise, if κ ≥ log(n), (48) gives

|h(1)
n (κ)|−1 ≤

√
πκ

(
κ

2

)n[
sup
r> 1

2

1

Γ(r)

]
≤ Cκ

(
κ

2

)exp(κ)

=
√
πκκ̃,

which is our desired lemma.

https://dlmf.nist.gov/10.49
https://dlmf.nist.gov/10.47
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In view of Lemma 4.1, we can express (44) as u∞nm = u
∞,(1)
nm + u

∞,(2)
nm , where

u∞,(1)
nm =

1

κin+1
(h(1)
n (κ))−1χκ≤log(n)fnm, (49a)

u∞,(2)
nm =

1

κin+1
(h(1)
n (κ))−1χκ>log(n)fnm. (49b)

We then estimate u
∞,(1)
nm and u

∞,(2)
nm .

Proposition 6. Let R > 0 and define B∞R :=
{
f : ∂B1 → R |f | ≤ R

}
⊂

L2(S2). Then there exists a constant CR, depending only on R, such that

|u∞,(1)
nm | ≤ CR2−n ≤ CR, (50a)

|u∞,(2)
nm | ≤ CRκ̃, (50b)

where κ̃ is defined in Lemma 4.1.

Proof. Let f =
∑
n≥0

∑
|m|≤n

fnmY
m
n ∈ B∞R . For each n′ ≥ 0 and |m′| ≤ n′, we see that

|fn′m′ | ≤
(∑
n≥0

∑
|m|≤n

|fnm|2
) 1

2

= ‖f‖L2(∂B1) ≤ |∂B1|
1
2R. (51)

Combining (49a) with (51), we obtain

|u∞,(1)
nm | = 1

κ
|h(1)
n (κ)|−1χκ≤log(n)|fnm| ≤

|∂B1|
1
2R

κ
|h(1)
n (κ)|−1χκ≤log(n). (52)

By Lemma 4.1, (50a) follows directly from (52). Similarly, using (49b) and (51), we
have

|u∞,(2)
nm | = 1

κ
|h(1)
n (κ)|−1χκ>log(n)|fnm| ≤

|∂B1|
1
2R

κ
|h(1)
n (κ)|−1χκ>log(n). (53)

Then (50b) is an easy consequence of (53) with the help of Lemma 4.1.

4.3. Construction of a net. If s > 3
2 , from (50a) and (50b), we have

‖(u∞nm(f))‖Xs ≤ CR sup
n≥0

{
(1 + n)

3
2−s(2−n + κ̃)

}
<∞

for all f ∈ B∞R . In other words, (u∞nm(B∞R )) ⊂ Xs. Now, we want to construct
a δ-net Y of ((u∞nm(B∞R )), ‖ • ‖Xs) which is not too large. Precisely, we want to
establish the following lemma.

Lemma 4.2. Let s > 3
2 and CR be the constant given in Proposition 6. If 0 < δ <

CR, then there exists a δ-net Y of ((u∞nm(B∞R )), ‖ • ‖Xs) such that

log |Y | ≤ ηs,R
[

log

(
1 +

CR
δ

)
+
CRκ̃

δ
+

(
CRκ̃

δ

) 2
2s−3

]2

(54)

for some constant ηs,R, which depending only on s and R.

Proof of Lemma 4.2. Step 1: Initialization. Let `1 and `2 be the solution of

(1 + `1)
3
2−s2−`1 =

δ

2CR
and (1 + `2)

3
2−sκ̃ =

δ

2CR
, (55)

respectively. Let n∗ be the smallest non-negative integer such that

(1 + `)
3
2−s(2−`1 + κ̃) ≤ δ

CR
for all ` ≥ n∗. (56)
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Since s > 3
2 , we observe that

(1 + (`1 + `2))
3
2−s(2−(`1+`2) + κ̃)

= (1 + (`1 + `2))
3
2−s2−(`1+`2) + (1 + (`1 + `2))

3
2−sκ̃

≤ (1 + `1)
3
2−s2−`1 + (1 + `2)

3
2−sκ̃

≤ δ

2CR
+

δ

2CR
=

δ

CR

and, therefore,

n∗ ≤ `1 + `2. (57)

Note that ( 3
2 − s) log(1 + `1) < 0. We can see that

−`1 log 2 ≥
(

3

2
− s
)

log(1 + `1)− `1 log 2 = log

[
(1 + `1)

3
2−s2−`1

]
= log

[
δ

2CR

]
,

hence,

`1 ≤ −
1

log 2
log

[
δ

2CR

]
=

1

log 2
log

[
2CR
δ

]
. (58a)

On the other hand, from the definition of `2, it follows

`2 + 1 =

(
δ

2CRκ̃

) 2
3−2s

=

(
2CRκ̃

δ

) 2
2s−3

. (58b)

Combining (57), (58a), and (58b) implies

n∗ + 1 ≤ 1

log 2
log

[
2CR
δ

]
+

(
2CRκ̃

δ

) 2
2s−3

. (59)

Step 2: Construction of sets. Define δ′ = δ
2
√

2
and the sets

Y ′1 :=
{
a = a1 + ia2 ∈ δ′Z + iδ′Z |a1|, |a2| ≤ CR

}
,

Y ′2 :=
{
a = a1 + ia2 ∈ δ′Z + iδ′Z |a1|, |a2| ≤ CRκ̃

}
,

as well as

Y1 :=

{
(bnm)

if 0 ≤ n ≤ n∗, then bnm ∈ Y ′1
otherwise, bnm = 0

}
,

Y2 :=

{
(cnm)

if 0 ≤ n ≤ n∗, then cnm ∈ Y ′2
otherwise, cnm = 0

}
,

and Y = Y1 + Y2.

Step 3: Verifying Y is a δ-net. Our goal is to construct{
(bnm) ∈ Y1, an approximation of (u

∞,(1)
nm (f)),

(cnm) ∈ Y2, an approximation of (u
∞,(2)
nm (f)).

• If n ≤ n∗, we take b′nm ∈ Y ′1 (resp. c′nm ∈ Y ′1) be the closest element to

u
∞,(1)
nm (f) (resp. u

∞,(2)
nm (f)). Hence, we have

|b′nm − u∞,(1)
nm (f)| ≤

√
2δ′

(
resp. |c′nm − u∞,(2)

nm (f)| ≤
√

2δ′
)
.
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Note that (1 + n)
3
2−s ≤ 1 and thus

(1 + n)
3
2−s
(
|b′nm − u∞,(1)

nm (f)|+ |c′nm − u∞,(2)
nm (f)|

)
≤ 2
√

2δ′ = δ. (60a)

• Otherwise, if n > n∗, we simply choose b′nm = c′nm = 0. We have

(1 + n)
3
2−s
(
|b′nm − u∞,(1)

nm (f)|+ |c′nm − u∞,(2)
nm (f)|

)
= (1 + n)

3
2−s
(
|u∞,(1)
nm (f)|+ |u∞,(2)

nm (f)|
)

≤ CR(1 + n)
3
2−s(2−n + κ̃) (using Proposition 6)

≤ δ (using (56)). (60b)

Combining (60a) and (60b), we conclude that Y is a δ-net of ((u∞nm(B∞R )), ‖ • ‖Xs).
Step 4: Estimating the size of Y . We know that

|Y ′1 | =
(

1 +

⌊
2CR
δ′

⌋)2

≤
(

1 +
4
√

2CR
δ

)2

, (61a)

|Y ′2 | =
(

1 +

⌊
2CRκ̃

δ′

⌋)2

≤
(

1 +
4
√

2CRκ̃

δ

)2

, (61b)

and

|Y | = |Y1||Y2| = |Y ′1 |n∗+1|Y ′2 |n∗+1. (62)

Therefore, combining (59), (61a), and (61b), we can compute

log |Y | = (n∗ + 1)

(
log |Y1|+ log |Y2|

)
≤
[

1

log 2
log

[
2CR
δ

]
+

(
2CRκ̃

δ

) 2
2s−3

]
×

×
[
2 log

(
1 +

4
√

2CR
δ

)
+ 2 log

(
1 +

4
√

2CRκ̃

δ

)]
.

Since log(1 + t) ≤ t for all t ≥ 0, we have that

log |Y | ≤ 2

[
1

log 2
log

[
2CR
δ

]
+

(
2CRκ̃

δ

) 2
2s−3

]
×
[

log

(
1 +

4
√

2CR
δ

)
+

4
√

2CRκ̃

δ

]
and (54) is proved.

Choosing s = 5
2 in Lemma 4.2, we immediately obtain the following corollary.

Corollary 1. For any 0 < δ < CR, there exists a δ-net Y of ((u∞nm(B∞R )), ‖ • ‖X 5
2

)

such that

log |Y | ≤ ηR
[

log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]2

(63)

for some constant ηR, depending only on R.
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Remark 7. If κ ≥ 2, then κ̃ ≥ 1. In this case, we see that

inf
0<δ<CR

1

κ̃

[
log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]
=

log 2

κ̃
+ 2 ≤ 2 + log 2.

Therefore, given any ε satisfying

2 + log 2 < ε−
1
α <∞

(
equivalently, ε ∈ (0, (2 + log 2)−α)

)
, (64)

there exists a unique δ ∈ (0, CR) such that

ε−
1
α =

1

κ̃

[
log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]
. (65)

Otherwise, if 0 < κ < 2, then 0 < κ̃ ≤ 1. In this case, we note that

inf
0<δ<CR

[
log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]
= log 2 + 2κ̃ ≤ 2 + log 2.

Similarly, given any ε satisfying (64), there exists a unique δ ∈ (0, CR) such that

ε−
1
α = log

(
1 +

CR
δ

)
+

2CRκ̃

δ
. (66)

Putting together (65) and (66) implies that given any ε satisfying (64), there exists
a unique δ ∈ (0, CR) such that

ε−
1
α =

1

max{κ̃, 1}

[
log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]
. (67)

In view of (63) and (67), we then conclude that

log |Y | ≤ ηR max{κ̃, 1}2ε− 2
α . (68)

4.4. Proof of the main result.

Proof of Theorem 1.2. As above, we take s = 5
2 and fix any auxiliary parameters

R > 0 and α > 0. For each 0 < ε < min{(2+log 2)−α, R, µβ}, let Z be an ε-discrete
set constructed in Proposition 1 with d = 2 and r = 1. Let δ be given in (67). Next,
we construct a δ-net Y described in Corollary 1 and (68) holds. Clearly, Y is also
a δ-net for ((u∞nm(Z)), ‖ • ‖X 5

2

).

We now choose β = β(α,R, κ), which is independent of ε, such that

µβ ≥ R and |Z| ≥ exp

[
1

8

(
µβ

ε

) 2
α
]
> exp

[
ηR max{κ̃, 1}2ε− 2

α

]
≥ |Y |.

Therefore, using pigeonhole principle, we can choose two different smooth functions
f1, f2 ∈ Z such that

‖(u∞nm(f1)− ynm)‖X 5
2

≤ δ and ‖(u∞nm(f2)− ynm)‖X 5
2

≤ δ.

Letting f = f1 − f2 and using Proposition 5, we obtain

‖u∞(f)‖
H−

5
2 (S2)

≤ Cabs‖(u∞nm(f))‖X 5
2

≤ 2Cabsδ and ‖f‖L∞(∂B1) ≥ ε. (69)

To finish the proof, we discuss two cases.
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• Case 1. If CRκ̃
δ ≤ log(1 + CR

δ ), then (67) implies

ε−
1
α =

1

max{κ̃, 1}

[
log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]
≤ 3

max{κ̃, 1}
log

(
1 +

CR
δ

)
≤ 3

max{κ̃, 1}
log

(
2CR
δ

)
,

which gives

δ ≤ 2CR exp

(
− max{κ̃, 1}

3
ε−

1
α

)
. (70)

• Case 2. If CRκ̃
δ ≥ log(1 + CR

δ ), then (67) implies

ε−
1
α =

1

max{κ̃, 1}

[
log

(
1 +

CR
δ

)
+

2CRκ̃

δ

]
≤ 1

max{κ̃, 1}
3CRκ̃

δ
=

3CR min{1, κ̃}
δ

,

that is,

δ ≤ 3 min{1, κ̃}CRε
1
α . (71)

Combining (70) and (71), we obtain

δ ≤ 2CR exp

(
− max{κ̃, 1}

3
ε−

1
α

)
+ 3 min{1, κ̃}CRε

1
α . (72)

Finally, substituting (72) into (69), the proof is completed.
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