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Abstract
We prove a local Hölder estimate for any exponent 0 < δ < 1

2 for solutions of the dynamic
programming principle

uε(x) =
n∑

j=1

αj inf
dim(S)=j

sup
v∈S
|v|=1

uε(x + εv) + uε(x − εv)

2

with α1, αn > 0 and α2, · · · , αn−1 ≥ 0. The proof is based on a new coupling idea from
game theory. As an application, we get the same regularity estimate for viscosity solutions
of the PDE

n∑

i=1

αiλi(D
2u) = 0,

where λ1(D
2u) ≤ · · · ≤ λn(D

2u) are the eigenvalues of the Hessian.
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1 Introduction

1.1 Main results

In this paper, we show local Hölder regularity for solutions of the following Dynamic
Programming Principle (DPP)

uε(x) =
n∑

j=1

αj inf
dim(S)=j

sup
v∈S|v|=1

uε(x + εv) + uε(x − εv)

2
(1.1)

in a bounded domain � ⊂ R
n, where α1, ..., αn ≥ 0, min(α1, αn) > 0, and

∑n
j=1 αj = 1.

Our main result is the following, restated as Theorem 4.1.

Main Theorem Let uε be a function satisfying the DPP (1.1) in a bounded domain �. Then
for any 0 < δ < 1

2 and x, z ∈ Br with B2r ⊂ �, there exists a constant C = C(δ, α1, αn) >

0 such that

|uε(x) − uε(z)| ≤ C||uε||L∞(B2r )

( |x − z|δ
rδ

+ εδ

rδ

)
. (1.2)

That the above theorem holds for any 0 < δ < 1
2 is explicitly obtained in the proof in

Eq. 3.14.
The DPP (1.1) has a connection to a certain PDE involving eigenvalues of the Hessian.

Indeed, under certain regularity assumptions for the boundary of the domain, when ε → 0,
solutions of Eq. 1.1 converge uniformly to the unique viscosity solution of the following
PDE,

n∑

i=1

αiλi(D
2u) = 0, (1.3)

where λ1(X) ≤ · · · ≤ λn(X) are the ordered eigenvalues of X ∈ S(n), the set of n × n real
symmetric matrices.

As a consequence of our main result, we obtain the same Hölder estimate for any 0 <

δ < 1
2 for viscosity solutions of this PDE. For the proof of the following corollary, see

Section 2.3.

Corollary 1.1 Let u be the viscosity solution of Eq. 1.3 in a bounded domain �. Then for
any 0 < δ < 1

2 and x, z ∈ Br with B2r ⊂ �, there exists a constant C = C(δ, α1, αn) > 0
such that

|u(x) − u(z)| ≤ C||u||L∞(B2r )

|x − z|δ
rδ

.

We remark that
∑n

i=1 αiλi = 0 satisfies Pucci type inequalities, and thus we can get
Hölder regularity from the general theory directly, even though the exponent is not explicitly
given (see the beginning of Section 4).
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For this equation with lower order terms, Ferrari and Vitolo [11] used methods from the
viscosity theory to study ABP, Harnack and Hölder estimates, and later Ferrari and Galise
[10] showed C0,δ-regularity for δ = 1 − α1+αn

(
√

α1+√
αn)2 ∈ (0, 1

2 ]. We note that δ = 1
2 holds if

and only if α1 = αn. Also observe that min(α1, αn) > 0 is necessary in [11] as well as in
our main result.

The DPPs of type (1.1) model competition of two players, and one can relate these games
to different applications. For example, in the context of related tug-of-war games, they have
been suggested in connection to the option pricing problem with market manipulation [17].
To be more precise, for a given boundary data, the solution of the DPP (1.1) is also the
value function of a two-player zero-sum stochastic game, the rules of which can be read
from the DPP. We will describe the game in more detail in the next section, but informally,
a token is placed at x ∈ �, αj is the probability that the number j is chosen. Then the
player aiming to minimize the value chooses a j -dimensional subspace of Rn, and finally,
the player aiming to maximize the value chooses a unit vector from that subspace. Then
the token is moved an ε-step either to the direction or the opposite direction of the vector,
with equal probabilities. The game continues until the token is moved outside of �, and the
player choosing subspaces pays the amount given by the boundary payoff function to the
other player.

To the best of our knowledge, there are no prior works studying local regularity of DPPs
or games related to fully nonlinear PDEs involving eigenvalues of the Hessian.

The game that we just described is connected to the PDE (1.3). This connection has been
studied in detail by Blanc and Rossi [5] for the PDE λj (D

2u) = 0, where j ∈ {1, ..., n}.
See also [7] for a game associated to the Dominative p-Laplacian and [3, 13] for games
associated to parabolic versions of these equations.

The rest of the paper is organized as follows. In the following subsection, we give a more
detailed idea of our proof method. In Section 2 we give some preliminary definitions and
results for viscosity solutions. In Section 3 we prove the main result for the special case
α1 = αn = 1

2 . In Section 4 we prove the main theorem.

1.2 Method of the Proof

Although the ideas behind the proof of our main theorem stem from games, we do not use
methods from stochastic game theory. Instead, our starting point is the coupling method
introduced by Luiro and Parviainen [15] in the context of tug-of-war games. However, a
direct application of their method does not seem to work in our case, so we need a new type
of coupling, which is the main novelty of this work.

To give an idea of the proof, for simplicity we will discuss a special case α1 = αn = 1
2 ,

in which case the DPP (1.1) can be written as

uε(x) = 1

2
sup
|v|=1

{
uε(x + εv) + uε(x − εv)

2

}
+ 1

2
inf|w|=1

{
uε(x + εw) + uε(x − εw)

2

}
.

The starting point of the coupling is to define a 2n-dimensional game related to the DPP.
Notice that the function g : � × � → R given by

g(x, z) = uε(x) − uε(z)
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can be written as a solution of a suitable DPP in R
2n as follows,

g(x, z) = uε(x) − uε(z)

= 1

2
sup
|v|=1

{
uε(x + εv) + uε(x − εv)

2

}
+ 1

2
inf

|ṽ|=1

{
uε(x + εṽ) + uε(x − εṽ)

2

}

−1

2
sup

|w̃|=1

{
uε(z + εw̃) + uε(z − εw̃)

2

}
− 1

2
inf|w|=1

{
uε(z + εw) + uε(z − εw)

2

}

= 1

2
sup
|v|=1
|w|=1

{
uε(x + εv) + uε(x − εv) − uε(z + εw) − uε(z − εw)

2

}

+1

2
inf

|ṽ|=1
|w̃|=1

{
uε(x + εṽ) + uε(x − εṽ) − uε(z + εw̃) − uε(z − εw̃)

2

}
.

The potential of this DPP is to transform the question of regularity of uε to the question of
the absolute size of g. The heuristic idea is to introduce a suitable stochastic game in �×�,
where we aim to move the two tokens to the diagonal set

T := {(x, z) ∈ � × � : x = z},
where g = 0, before our opponent can move the tokens outside of the set � × �. Observe
that

uε(x + εv) + uε(x − εv) − uε(z + εw) − uε(z − εw)

2

= g((x, z) + ε(v,w)) + g((x, z) − ε(v,w))

2
.

Following the idea of Luiro and Parviainen, we could consider a 2n-dimensional game
where each player (both with probability 1

2 ) gets to choose v and w and then the tokens
move to (x, z)+ ε(v,w) or to (x, z)− ε(v, w), each possibility with probability one half. If
we set the boundary values of our game to be 0 on T and 2 sup uε in R

2n\(�×�) and could
prove that |g(x, z)| ≤ C|x−z|δ , we would get a desired Hölder estimate for the function uε .

Unfortunately, these rules for the 2n-dimensional game do not seem to be suitable to
obtain regularity estimates in our case. The problem is that our opponent can force the
tokens away by choosing w = −v normal to x − z. Observe that if the new position of the
tokens is given by (x̃, z̃) = (x, y) + ε(v,w), we get |x̃ − z̃|2 = |x − z|2 + 4ε2. The same
holds for (x̃, z̃) = (x, y) + ε(−v,−w).

Observe that it also holds
uε(x + εv) + uε(x − εv) − uε(z + εw) − uε(z − εw)

2

= g((x, z) + ε(v,−w)) + g((x, z) − ε(v, −w))

2
.

Again the rules that follow from this formula allow our opponent to force the tokens away
from each other, in this case by choosing w = v normal to x − z.

In conclusion, with the rules that we have described, we do not get a suitable coupling.
Our new idea is to couple the moves in one way or the other depending on the choice of the
vectors v and w. When the tokens are placed at x and z, given v and w we define two rules
moving the token:

(i) the token moves to (x, z) + ε(v,w) or to (x, z) − ε(v, w), each possibility with
probability one half.
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(ii) the token moves to (x, z) + ε(v,−w) or to (x, z) − ε(v,−w), each possibility with
probability one half.

Let us define the 2n-dimensional game. We toss a coin and the winner of the toss chooses
two unitary vectors v and w. Set y = x − z. We also write vy⊥ = v − 〈v,y〉

〈y,y〉y and wy⊥ =
w − 〈w,y〉

〈y,y〉 y. If |vy⊥|2 + |wy⊥|2 > 1 and 〈vy⊥ , wy⊥〉 < 0, then the tokens move according to
rule (ii). In any other case the tokens move according rule (i).

Define

F(x, z, v, w, g)

=
{

g((x,z)+ε(v,−w))+g((x,z)−ε(v,−w))
2 if |vy⊥|2 + |wy⊥|2 >1 and 〈vy⊥ , wy⊥〉 < 0,

g((x,z)+ε(v,w))+g((x,z)−ε(v,w))
2 otherwise.

(1.4)

Then we obtain the DPP for our 2n-dimensional game

g(x, z) = 1

2
sup
|v|=1
|w|=1

F(x, z, v, w, g) + 1

2
inf|v|=1

|w|=1

F(x, z, v, w, g). (1.5)

Observe that in the case of Fig. 1A, that is when a player selects w = −v normal to
x − z, we have to move the tokens accordingly to rule (ii). We have x + εv − (z − εw)) =
x − εv − (z + εw)) = x − z, and therefore the distance between the tokens is preserved.

Now, we consider the case in Fig. 1B, that is, v and w are normal to x − z and also to
each other. If the new position of the tokens is given by (x̃, z̃) = (x, z) + ε(v, w), we get
|x̃ − z̃|2 = |x − z|2 + 2ε2. We get the same if (x̃, z̃) = (x, z) + ε(v,−w). Then, the tokens
are forced away from each other independently of what rule we select. But still, observe that
this growth is smaller than the one we were getting in the case of Fig. 1A when applying
rule (i), since |x̃ − z̃|2 = |x − z|2 + 4ε2 in that case. We claim that our choice of when to
apply (i) or (ii) reduces the ability of the players to push the tokens away from each other,
and this is the key of the matter.

2 Preliminaries

In this section, we include some preliminary results concerning solutions to the equation
and the game.

Fig. 1 Two choices of vectors when the tokens are at (x, z)
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2.1 Viscosity Solutions

Let us begin by recalling the definition of viscosity solutions for Eq. 1.3. We denote by
USC(�) (resp. LSC(�)) the set of all upper (resp. lower) semicontinuous functions defined
on �.

Definition 2.1 Let u : �̄ → R be a function.

(a) We say that u ∈ USC(�) is a viscosity subsolution to Eq. 1.3 if for all x ∈ � and
φ ∈ C2(�) such that u(x) = φ(x) and u(y) < φ(y) for y �= x we have

n∑

i=1

αiλi(D
2φ) ≥ 0.

(b) We say that u ∈ LSC(�) is a viscosity supersolution to Eq. 1.3 if for all x ∈ � and
φ ∈ C2(�) such that u(x) = φ(x) and u(y) > φ(y) for y �= x we have

n∑

i=1

αiλi(D
2φ) ≤ 0.

If u is continuous and satisfies both of (a) and (b), we say that u is a viscosity solution to
Eq. 1.3.

Next, we prove comparison and thus uniqueness to our operator. It would follow from
[2], but here we give a simple alternative proof for this particular operator.

Remark 2.2 If M is a Hermitian matrix, it is diagonalizable with real eigenvalues and by
the Min-max Theorem those eigenvalues verify

λj (M) = inf
dim(S)=j

sup
|v|=1

〈Mv, v〉

for j = 1, . . . , N , and we can use this identity for the Hessian matrix.

Theorem 2.3 Let u1 ∈ USC(�) be a viscosity subsolution (1.3), and u2 ∈ LSC(�) a
viscosity supersolution to Eq. 1.3.

If u1 ≤ u2 on ∂�, then u1 ≤ u2 on �.

Proof First, we make a counter proposition

sup
�

(u1 − u2) =: θ > 0.

Then observe that the equation can be written as
n∑

i=1

αiλi(D
2u1) =

n∑

i=1

αi inf
dim(S)=j

sup
|v|=1

〈D2u1(x)v, v〉.

Moreover, ũ1(x) = u1(x) + δ |x|2 is a subsolution to
n∑

i=1

αi inf
dim(S)=j

sup
|v|=1

〈D2ũ1(x)v, v〉 =
n∑

i=1

αi inf
dim(S)=j

sup
|v|=1

〈D2(u1(x) + δ |x|2)v, v〉

= 2Cδ.
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Let


(x, y) = ũ1(x) − u2(y) − ϕ(x, y)

:= ũ1(x) − u2(y) − 1

2ε
|x − y|2 ,

and let (xε, yε) be the maximum point on � × �. The points xε, yε are not at the boundary
in a bounded domain � for small enough δ by the standard theory. Then by the theorem of
sums [9] we have

(Dxϕ(xε, yε),X) ∈ J
2,+

ũ1(xε), (−Dyϕ(xε, yε), Y ) ∈ J
2,−

u2(yε),

and X ≤ Y . Furthermore, let η > 0, Sj be a j -dimensional subspace of Rn and vj ∈ Sj

with
∣∣vj

∣∣ = 1 be such that

sup
v∈Sj ,|v|=1

〈Yv, v〉 ≤ inf
dim(S)=j

sup
|v|=1

〈Yv, v〉 + η

and
η + 〈Xvj , vj 〉 ≥ sup

v∈Sj ,|v|=1
〈Xv, v〉.

Then we have

2Cδ ≤
n∑

i=1

αi

(
inf

dim(S)=j
sup
|v|=1

〈Xv, v〉 − inf
dim(S)=j

sup
|v|=1

〈Yv, v〉
)

≤
n∑

i=1

αi

(
inf

dim(S)=j
sup
|v|=1

〈Xv, v〉 − sup
v∈Sj ,|v|=1

〈Yv, v〉
)

+ η

≤
n∑

i=1

αi

(
sup

v∈Sj ,|v|=1
〈Xv, v〉 − sup

v∈Sj ,|v|=1
〈Yv, v〉

)
+ η

≤
n∑

i=1

αi

(
〈Xvj , vj 〉 − sup

v∈Sj ,|v|=1
〈Yv, v〉

)
+ 2η

≤
n∑

i=1

αi(〈Xvj , vj 〉 − 〈Yvj , vj 〉) + 2η

≤
n∑

i=1

αi〈(X − Y )vj , vj 〉 + 2η ≤ 2η,

which is a contradiction for small enough η > 0.

It might also be instructive to think some special cases. For example, for the first
eigenvalue equation λ1(D

2u)(x) := inf|v|=1〈D2u(x)v, v〉 = 0, choosing 〈Yv0, v0〉 =
inf|v|=1〈Yv, v〉, the key computation above reads as

2δ ≤ inf|v|=1
〈Xv, v〉 − inf|v|=1

〈Yv, v〉
≤ inf|v|=1

〈Xv, v〉 − 〈Yv0, v0〉 + η

≤ 〈Xv0, v0〉 − 〈Yv0, v0〉 + η

≤ 〈(X − Y )v0, v0〉 + η ≤ η,

a contradiction.
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Observe that uniqueness immediately follows from the comparison principle for the
viscosity solutions of the boundary value problem

{∑n
i=1 αiλi(D

2u) = 0 in �,

u = g on ∂�,

with given continuous boundary values g : ∂� → R. Also, observe that if the domain is
strictly convex, we have that a plane can act as a barrier. Then, the solution obtained by
Perron’s method turns out to be continuous up to the boundary. A weaker condition for the
existence of continuous solutions for smooth domains can be found in [12].

2.2 Games

A game associated with the equation λj (D
2u) = 0 was introduced in [5]. Here we modify

the game so that it is associated with Eq. 1.3. Next, we give the precise formulation of the
game.

It is a two-player zero-sum game. Fix a domain � ⊂ R
N , ε > 0 and a final payoff

function G : RN \ � 
→ R. The rules of the game are the following: the game starts with a
token at an initial position x0 ∈ � and develops in several rounds. At the beginning of each
round j ∈ {1, . . . , n} is chosen at random such that P(j = i) = αi for each i = 1, . . . , n.
With this given value, Player I chooses a subspace S of dimension j and subsequently
Player II a unitary vector v ∈ S. Then the position of the token is moved to x ± εv with
equal probabilities. The game continues until the token leaves the domain. At this time that
we call τ , Player I pays G(xτ ) to Player II. When the two players fix their strategies SI and
SII , we can compute the expected outcome as

E
x0
SI,SII

[G(xτ )].
Then the value of the game for any x0 ∈ � is defined as

uε(x0) = sup
SI

inf
SII

E
x0
SI,SII

[G(xτ )] = inf
SII

sup
SI

E
x0
SI,SII

[G(xτ )] ,

and verifies the DPP (1.1), that is

uε(x) =
n∑

j=1

αj inf
dim(S)=j

sup
v∈S|v|=1

uε(x + εv) + uε(x − εv)

2
(2.1)

for x ∈ � and uε(x) = G(x) for x �∈ �, see [4]. Intuitively, the rules of the game can be
seen from the DPP. When Player I, who aims to minimize the value, chooses a subspace,
she knows that Player II aims to choose from that subspace a unitary vector maximizing the
average ‘ε-step value’.

2.3 Application to the PDE (1.3)

We give a brief explanation of the relation between Eqs. 1.1 and 1.3, and how to prove
Corollary 1.1 using the result of our main theorem.

If we assume that the domain is strictly convex, we obtain that

uε → u (2.2)

uniformly as ε → 0 where u is the unique solution to Eq. 1.3. Observe that in [5] a condition
over the boundary is given for each j . This condition is used to prove that the game value
is asymptotic continuous near the boundary. It is in this step that we use that the domain to
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be strictly convex. Then the convergence is obtained following the usual path, see [4, 16,
18]. We use the asymptotic version of Arzela-Ascoli to pass to the limit, and using the DPP
combined with the definition of viscosity solutions allows us to deduce that the limit is the
unique viscosity solution. Observe that a weaker condition on the domain may be enough
depending on αi but we are not going to address this question here.

The connection between the DPP and the PDE can be intuitively seen by recalling that

λj (M) = inf
dim(S)=j

sup
|v|=1

〈Mv, v〉

and observing that

uε(x + εv) + uε(x − εv)

2
≈ ε2〈D2u(x)v, v〉.

Assume that the estimate (1.2) is provided for any ε > 0. We observe that since a ball is
strictly convex we obtain the convergence (2.2) in there. By passing to the limit as ε → 0
in the main theorem, we obtain a Hölder estimate for the limit function u. That is what we
stated as Corollary 1.1.

3 Regularity for a DPP Related to 1
2λ1(D2u) + 1

2λn(D2u) = 0

We first focus on the case given by α1 = αn = 1
2 . Note that in this case α2 = · · · = αn−1 =

0, since we assumed
∑n

j=1 αj = 1. Then the DPP (1.1) is simplified to

uε(x)= 1

2
sup
|v|=1

{
uε(x+εv)+uε(x − εv)

2

}
+ 1

2
inf|w|=1

{
uε(x+εw)+uε(x − εw)

2

}
. (3.1)

The game starts with a token at an initial position x0 ∈ �. At every round, a fair coin is
tossed and the winner of the toss chooses a vector v ∈ R

n with |v| = 1. Then the position
of the token is moved to either x0 + εv or x0 − εv, with equal probabilities. The game ends
when the token leaves the domain and we define the game value as before. Our game value
satisfies the DPP (3.1) for x ∈ �, and uε(x) = G(x) for x �∈ �.

In this section, we will obtain the regularity result for solutions to the DPP (3.1). As we
have mentioned, we employ the method introduced in [15]. For the readers’ convenience,
we will provide a full proof.

Theorem 3.1 Let uε be a function satisfying the DPP (3.1) in a bounded domain �. Then
for any 0 < δ < 1

2 and x, z ∈ Br with B2r ⊂ �, there exists a constant C = C(δ) > 0 such
that

|uε(x) − uε(z)| ≤ C||uε||L∞(B2r )

( |x − z|δ
rδ

+ εδ

rδ

)
.

Proof By considering ũ(x) = u(rx) we can assume that r = 1. Also, without loss of
generality, we assume that

sup
(x,z)∈B2×B2

(uε(x) − uε(z)) = sup
(x,z)∈B2×B2

g(x, z) ≤ 1 (3.2)

by a suitable renormalization.
To obtain the desired estimate for the function, we will use the comparison function

f = f1 − f2 with
f1(x, z) = C|x − z|δ + |x + z|2
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and

f2(x, z) =
{

C2(N−i)εδ if (x, z) ∈ Ai ,
0 if |x − z| > Nε/10,

where C > 1, δ ∈ (0, 1), and

Ai = {(x, z) ∈ R
2n : (i − 1)ε/10 < |x − z| ≤ iε/10}

for i = 0, 1, ..., N , where N is a sufficiently large number to be determined later.
The first term in f1 will give us the desired regularity estimate, and the second term

ensures that the estimate holds at (B2 ×B2) \ (B1 ×B1). It is typical for the solutions of ‘ε-
DPPs’ that they are discontinuous at the ε-scale. That is why we need a correction function
f2, designed to handle the case where the distance |x − z| ≈ ε.

We first observe that

uε(x) − uε(z) − f (x, z) = uε(x) − uε(z) − f1(x, z) + f2(x, z)

≤ max f2 ≤ C2Nεδ . (3.3)

for (x, z) ∈ (B2 ×B2)\((B1 ×B1)\T ), where we are using that f1 ≥ 1 in (B2 ×B2)\(B1 ×
B1). If we prove that

sup
(x,z)∈B2×B2

(uε(x) − uε(z) − f (x, z)) ≤ C2Nεδ, (3.4)

the result follows as we can assume without loss of generality with a suitable translation
that x = −z since in this case we can obtain

uε(x) − uε(−x) ≤ 2C2N(|x|δ + εδ)

from f (x, −x) ≤ C(2|x|)δ .
We assume, for the sake of contradiction, that

M := sup
(x,z)∈(B1×B1)\T

(uε(x) − uε(z) − f (x, z)) > C2Nεδ . (3.5)

In this case, we have

M = sup
(x,z)∈B2×B2

(uε(x) − uε(z) − f (x, z)). (3.6)

Consider an arbitrary small number η > 0. Then we can choose (x1, z1) ∈ (B1 × B1)\T
such that

M ≤ uε(x1) − uε(z1) − f (x1, z1) + η.

Recall Eq. 1.4. From Eq. 3.6, we observe that

uε(x) − uε(z) = g(x, z) ≤ M + f (x, z)

for any (x, z) ∈ B2 × B2. If two unit vectors v and w satisfy |vy⊥|2 + |wy⊥|2 > 1 and
〈vy⊥ , wy⊥〉 < 0, we have

F(x1, z1, v, w, g) = g((x1, z1) + ε(v,−w)) + g((x1, z1) − ε(v,−w))

2

≤
(
M + f ((x1, z1) + ε(v,−w))

) + (
M + f ((x1, z1) − ε(v,−w))

)

2

= M + f ((x1, z1) + ε(v,−w)) + f ((x1, z1) − ε(v,−w))

2
≤ M + F(x1, z1, v, w, f )
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since x1 ± εv, z1 ± εw are still in B2. We can also obtain the same inequality for the other
case with the same argument. Then, we get

sup
|v|=1
|w|=1

F(x1, z1, v, w, g) ≤ M + sup
|v|=1
|w|=1

F(x1, z1, v, w, f )

and

inf|v|=1
|w|=1

F(x1, z1, v, w, g) ≤ M + inf|v|=1
|w|=1

F(x1, z1, v, w, f ).

Now from Eq. 1.5, we deduce that

uε(x1) − uε(z1) = 1

2
sup
|v|=1
|w|=1

F(x1, z1, v, w, g) + 1

2
inf|v|=1

|w|=1

F(x1, z1, v, w, g)

≤ M + 1

2
sup
|v|=1
|w|=1

F(x1, z1, v, w, f ) + 1

2
inf|v|=1

|w|=1

F(x1, z1, v, w, f )

≤ uε(x1) − uε(z1) − f (x1, z1) + η

+1

2
sup
|v|=1
|w|=1

F(x1, z1, v, w, f ) + 1

2
inf|v|=1

|w|=1

F(x1, z1, v, w, f ),

that is,

f (x1, z1) ≤ 1

2
sup
|v|=1
|w|=1

F(x1, z1, v, w, f ) + 1

2
inf|v|=1

|w|=1

F(x1, z1, v, w, f ) + η.

Thus, we can derive a contradiction if we show

f (x, z) >
1

2
sup
|v|=1
|w|=1

F(x, z, v, w, f ) + 1

2
inf|v|=1

|w|=1

F(x, z, v, w, f ) (3.7)

for every (x, z) ∈ B1 × B1.
The case |x − z| ≈ ε follows from the fact that the steps are of size ε. We include the

details later. Now we focus on the case |x − z| > N
10ε. In this case, since f2 = 0, we need

to prove that

f1(x, z) >
1

2
sup
|v|=1
|w|=1

F(x, z, v,w, f1) + 1

2
inf

|ṽ|=1
|w̃|=1

F(x, z, ṽ, w̃, f1). (3.8)

We will use the following Taylor’s expansion for the function f1,

f1(x + hx, z + hz) = f1(x, z) + Cδ|x − z|δ−1(hx − hz)V + 2〈x + z, hx + hz〉
+C

2
δ|x − z|δ−2((δ − 1)(hx − hz)

2
V + (hx − hz)

2
V ⊥

)

+|hx + hz|2 + Ex,z(hx, hz), (3.9)

where V is the space spanned by x − z, (hx − hz)V refers to the scalar projection onto V

i.e. 〈hx−hz,x−z〉
|x−z| , and (hx − hz)V ⊥ onto the orthogonal complement (see also [1, 15]).

By Taylor’s theorem, the error term satisfies

|Ex,z(hx, hz)| ≤ C|(hx, hz)|3(|x − z| − 2ε)δ−3 , (3.10)
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if |x − z| > 2ε . Especially, if we choose

N ≥ 100C

δ
, (3.11)

then in the case |x − z| > N ε
10 and |hx |, |hz| ≤ ε, we can see that |x−z|−2ε ≥ |x−z|

2 since

|x − z| >
10Cε

δ
> 10ε,

and thus we have

|Ex,z(hx, hz)| ≤ C(2ε)3
( |x − z|

2

)δ−3

≤ 64Cε2|x − z|δ−2 ε

|x − z|
≤ 64ε2|x − z|δ−2 δ

10
≤ 10ε2|x − z|δ−2. (3.12)

Observe that when considering the Taylor expansions, all the first order term will be
canceled.

Now we are ready to proceed to the core of the matter, that is to prove Eq. 3.8. Here is
where the precise definition of when to apply the rule (i) or (ii) plays the main role. We will
estimate the infimum of F by considering

ṽ = x − z

|x − z| and w̃ = − x − z

|x − z| .

Observe that in this case, vy⊥ = wy⊥ = 0, hence, the rule (i) applies. Recall that

F(x, z, ṽ, w̃, f ) = f ((x, z) + ε(ṽ, w̃)) + f ((x, z) − ε(ṽ, w̃))

2
in this case. From Eq. 3.9, we have

F(x, z, ṽ, w̃, f ) − f (x, z)

= C

2
δ|x − z|δ−2((δ − 1)(ṽ − w̃)2

y + (ṽ − w̃)2
y⊥

) + |ṽ + w̃|2 + Ex,z(ṽ, w̃).

Therefore, we obtain

inf
|ṽ|=1
|w̃|=1

F(x, z, ṽ, w̃, f ) − f (x, z)

≤ C

2
δ|x − z|δ−2((δ − 1)(ṽ − w̃)2

y + (ṽ − w̃)2
y⊥

) + |ṽ + w̃|2 + Ex,z(ṽ, w̃)

≤ C

2
δ|x − z|δ−2(δ − 1)(2ε)2 + 10ε2|x − z|δ−2.

To bound the supremum, we have to separate the cases depending on whether rule (i) or rule
(ii) applies. The key point here is to bound (hx − hy)

2
V ⊥ by strictly less than (2ε)2.

When the rule (ii) is applied, we have

(v − (−w))2
y⊥ = v2

y⊥ + w2
y⊥ + 2〈vy⊥ , wy⊥〉,

and if 〈vy⊥ , wy⊥〉 < 0, then (v − (−w))2
y⊥ ≤ 2. If rule (i) is applied and 〈vy⊥ , wy⊥〉 ≥ 0 the

same calculation can be performed. It remains to check the case where |vy⊥|2 +|wy⊥|2 ≤ 1.
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In this case we have

(v − w)2
y⊥ = v2

y⊥ + w2
y⊥ − 2〈vy⊥ , wy⊥〉 ≤ 2(v2

y⊥ + w2
y⊥) ≤ 2

since 2|〈vy⊥ , wy⊥〉| ≤ v2
y⊥ + w2

y⊥ . Hence we can see that

F(x, z, v,w, f ) − f (x, z)

≤ C

2
δ|x − z|δ−2((δ − 1)(v ± w)2

y + (v ± w)2
y⊥

) + |v ± w|2 + Ex,z(v, ±w)

≤ C

2
δ|x − z|δ−22ε2 + (2ε)2 + 10ε2|x − z|δ−2.

Finally, we obtain

sup
|v|=1
|w|=1

F(x, z, v,w, f ) + inf
|ṽ|=1
|w̃|=1

F(x, z, ṽ, w̃, f ) − f (x, z)

≤ C

2
δ|x − z|δ−22ε2 + (2ε)2 + 10ε2|x − z|δ−2

+C

2
δ|x − z|δ−2(δ − 1)(2ε)2 + 10ε2|x − z|δ−2

≤ C

2
δ|x − z|δ−2((δ − 1)4ε2 + 2ε2) + 4ε2 + 20ε2|x − z|δ−2

≤ ε2|x − z|δ−2(2Cδ2 − Cδ + 20) + 4ε2.

Now it is enough to show that

ε2|x − z|δ−2(2Cδ2 − Cδ + 20) + 4ε2 < 0. (3.13)

For 0 < δ < 1
2 , we have

δ − 2δ2 > 0. (3.14)

Therefore, given C̃ > 0 we can take C =
C̃+4
4δ−2 +20

δ−2δ2 > 0 so that

2Cδ2 − Cδ + 20 = − C̃ + 4

4δ−2
.

Observe that this is where we explicitly fix δ.
Recalling that |x − z| < 4, we obtain

|x − z|δ−2
(

− C̃ + 4

4δ−2

)
+ 4 ≤ −C̃.

We have proved that

1

2
sup
|v|=1
|w|=1

F(x, z, v,w, f ) + 1

2
inf

|ṽ|=1
|w̃|=1

F(x, z, ṽ, w̃, f ) − f (x, z) < −C̃ε2. (3.15)

Now we consider the case |x − z| ≤ N
10ε. We remark that the counterassumption of

Eq. 3.4 cannot occur when x = z, since

u(x) − u(x) − f (x, x) = C2Nεδ − 4|x|2 ≤ C2Nεδ .



P. Blanc et al.

Thus it is sufficient to show Eq. 3.7 when 0 < |x − z| ≤ N
10ε. We first observe that

∣∣|a|δ − |b|δ∣∣ ≤ |a − b|δ
for any a, b ∈ R

n since 0 < δ < 1. This yields
∣∣|(x + εv) − (z + εw)|δ − |x − z|δ∣∣ ≤ εδ|v − w|δ .

Therefore, we see that

|f1((x, z) + ε(v,w)) − f1(x, z)| ≤ Cεδ|v − w|δ + 2ε|〈x + z, v + w〉| + ε2|v + w|2
≤ 2Cεδ + 8ε + 4ε2

≤ 3Cεδ

for any unit vectors v and w, and sufficiently large C. Then we obtain

sup
|v|=1
|w|=1

F(x, z, v, w, f1) − f1(x, z) ≤ 3Cεδ

in both cases. Since f2 ≥ 0 and f = f1 − f2, we have

sup
|v|=1
|w|=1

F(x, z, v, w, f ) ≤ sup
|v|=1
|w|=1

F(x, z, v,w, f1).

Observe that

inf|v|=1
|w|=1

F(x, z, v,w, f ) ≤ sup
|v|=1
|w|=1

F(x, z, v, w, f1) − sup
|v|=1
|w|=1

F(x, z, v, w, f2).

Since, given (x, z) ∈ Ai , we can choose unit vectors v, w such that (x, z)+ε(v, w) ∈ Ai−1,
we see that

sup
|v|=1
|w|=1

F(x, z, v,w, f2) ≥ 1

2

(
f2((x, z) + ε(v,w))

)

= 1

2
C2(N−i+1)εδ

= 1

2
C2(N−i)εδ(C2 − 4) + 2f2(x, z).

By choosing a large constant C, we get

sup
|v|=1
|w|=1

F(x, z, v,w, f2) > 6Cεδ + 2f2(x, z). (3.16)

Combining the previous estimates, we see that

1

2
sup
|v|=1
|w|=1

F(x, z, v, w, f ) + 1

2
inf

|ṽ|=1
|w̃|=1

F(x, z, ṽ, w̃, f )

< sup
|v|=1
|w|=1

F(x, z, v, w, f1) − 3Cεδ − f2(x, z)

≤ (f1(x, z) + 3Cεδ) − 3Cεδ − f2(x, z)

= f (x, z).

This yields Eq. 3.7.
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4 The General Case

In this section, we consider the DPP (1.1) related to the PDE (1.3). We rewrite the equa-
tion and present the rules of the game in a slightly different way. We assume α =
2 min{α1, αn} > 0. We define β = 1 − α, βi = αi/β for i = 2, . . . , n − 1 and
βi = (αi − α/2)/β for i = 1, n. We can rewrite Eq. 1.3 as

α
λ1 + λn

2
+ β

n∑

i=1

βiλi = 0. (4.1)

We remark that one can derive Hölder regularity for Eq. 4.1, since a viscosity solution to
Eq. 4.1 satisfies

(
1 − α

2

) ∑

λi<0

λi + α

2n

∑

λi>0

λi ≤
(

1 − (n − 1)α

2n

)
λ1 + α

2n

n∑

i=2

λi

≤ α
λ1 + λn

2
+ β

n∑

i=1

βiλi

≤
(

1 − (n − 1)α

2n

)
λn + α

2n

n−1∑

i=1

λi

≤
(

1 − α

2

) ∑

λi>0

λi + α

2n

∑

λi<0

λi .

These Pucci type inequalities are what is required to use [8, Proposition 4.10].
Now the game for αi can be presented in the following way: at every round with proba-

bility α we play the game for 1
2λ1 + 1

2λn and with probability β we play the game according
to βi . In this case, the related DPP is

uε(x) = α

2
sup
|v|=1

uε(x + εv) + uε(x − εv)

2
+ α

2
inf|w|=1

uε(x + εw) + uε(x − εw)

2

+β

n∑

i=1

βi inf
dim(S)=j

sup
v∈S|v|=1

uε(x + εv) + uε(x − εv)

2
. (4.2)

This is equivalent to Eq. 1.1.
In order to define the 2n-dimensional game related to Eq. 4.2, first we define a 2n-

dimensional game related to λj . Fix j ∈ {1, ..., n}. We consider the game related to λj and
write uj for its value function. It satisfies the following DPP

uj (x) = inf
dim(S)=j

sup
v∈S|v|=1

uj (x + εv) + uj (x − εv)

2

for any x ∈ �.
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Set gj (x, z) = uj (x) − uj (z). We have

inf
dim(S)=j

sup
v∈S|v|=1

uj (x + εv) + uj (x − εv)

2
− inf

dim(S̃)=j

sup
ṽ∈S̃|ṽ|=1

uj (z + εṽ) + uj (z − εṽ)

2

= sup
dim(S̃)=j

inf
dim(S)=j

sup
v∈S|v|=1

inf
ṽ∈S̃|ṽ|=1

{
uj (x+εv)+uj (x−εv)

2
− uj (z+εṽ)+uj (z−εṽ)

2

}

= sup
dim(S̃)=j

inf
dim(S)=j

sup
v∈S|v|=1

inf
ṽ∈S̃|ṽ|=1

gj (x + εv, z + εṽ) + gj (x − εv, z − εṽ)

2
.

We can read the rules of the 2n-dimensional game as follows: Player II selects S̃, Player I
the subspace S and then Player II a unitary vector v ∈ S and Player I a vector ṽ ∈ S̃. Then,
the token moves to (x, z) ± ε(v, ṽ) each with probability one half.

Combining the above observation for each gj with the 2n-dimensional DPP for the game
associated with 1

2λ1 + 1
2λn, for the function g(x, z) = uε(x) − uε(z), we have

g(x, z) = α

2
sup
|v|=1
|w|=1

F(x, z, v,w, g) + α

2
inf

|ṽ|=1
|w̃|=1

F(x, z, v,w, g)

+β

n∑

i=1

βi sup
dim(S̃)=j

inf
dim(S)=j

sup
v∈S|v|=1

inf
ṽ∈S̃|ṽ|=1

g(x + εv, z + εṽ) + g(x − εv, z − εṽ)

2
,

where F is the function given by Eq. 1.4.
Now we state and prove the Hölder regularity result for Eq. 1.1.

Theorem 4.1 Let uε be a function satisfying the DPP (1.1) in a bounded domain �. Then
for any 0 < δ < 1

2 and x, z ∈ Br with B2r ⊂ �, there exists a constant C = C(δ, α) > 0
such that

|uε(x) − uε(z)| ≤ C||uε||L∞(B2r )

( |x − z|δ
rδ

+ εδ

rδ

)
.

Proof Recall the barrier function f in the proof of Theorem 3.1. By a similar argument as
in the previous section, it is enough to show that

f (x, z) >
α

2
sup
|v|=1
|w|=1

F(x, z, v, w, f ) + α

2
inf|v|=1

|w|=1

F(x, z, v, w, f )

+β

n∑

i=1

βi sup
dim(S̃)=j

inf
dim(S)=j

sup
v∈S|v|=1

inf
ṽ∈S̃|ṽ|=1

f (x + εv, z + εṽ) + f (x − εv, z − εṽ)

2
.

(4.3)

We first consider the case |x − z| > N
10ε. For the terms involved in the game associated

with 1
2λ1 + 1

2λn we can recall the estimate Eq. 3.15. Meanwhile, for the game associated to
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λj , we observe that by taking S = S̃ and ṽ = v we get

sup
dim(S̃)=j

inf
dim(S)=j

sup
v∈S|v|=1

inf
ṽ∈S̃|ṽ|=1

f (x + εv, z + εṽ) + f (x − εv, z − εṽ)

2

≤ sup
dim(S̃)=j

sup
ṽ∈S|ṽ|=1

f (x + εṽ, z + εṽ) + f (x − εṽ, z − εṽ)

2
. (4.4)

Moreover, we observe that

sup
dim(S̃)=j

sup
ṽ∈S|ṽ|=1

f (x + εṽ, z + εṽ) + f (x − εṽ, z − εṽ)

2
= f (x, z) + 4ε2. (4.5)

We conclude that
α

2
sup
|v|=1
|w|=1

F(x, z, v, w, f ) + α

2
inf

|ṽ|=1
|w̃|=1

F(x, z, v, w, f )

+β

n∑

i=1

βi sup
dim(S̃)=j

inf
dim(S)=j

sup
v∈S|v|=1

inf
ṽ∈S̃|ṽ|=1

f (x + εv, z + εṽ) + f (x − εv, z − εṽ)

2

< f (x, z) − αC̃ε2 + 4βε2,

where C̃ is the constant in Eq. 3.15. Thus, if we take C̃ large enough such that

−C̃α + 4β < 0,

we obtain Eq. 4.3.
Next we assume that |x − z| ≤ N

10ε. From Eqs. 4.3, 4.4 and 4.5, it is enough to show that

f (x, z) >
α

2
sup
|v|=1
|w|=1

F(x, z, v, w, f ) + α

2
inf|v|=1

|w|=1

F(x, z, v, w, f ) + β

n∑

i=1

βi(f (x, z) + 4ε2).

This can be rewritten as

f (x, z) >
1

2
sup
|v|=1
|w|=1

F(x, z, v, w, f ) + 1

2
inf|v|=1

|w|=1

F(x, z, v, w, f ) + 4(1 − α)

α
ε2. (4.6)

We use a similar argument in the proof of Theorem 3.1, but we choose C sufficiently large
such that

sup
|v|=1
|w|=1

F(x, z, v, w, f2) ≥
(

8(1 − α)

α
+ 6

)
Cεδ + 2f2(x, z)

in Eq. 3.16. Then we get Eq. 4.6, which completes the proof.

4.1 The Dominative p-Laplacian

Recently, there has been some interest to the Dominative p-Laplacian

Dpu := λ1 + · · · + λn−1 + (p − 1)λn,

where 2 ≤ p < ∞, see [6]. It explains a superposition of p-superharmonic functions, which
was studied in [14].
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The dominative p-Laplacian can be regarded as a special case of the operator
∑n

i=1 αiλi ,
which has been considered so far. Observe that the equation Dpu = 0 is equivalent to the

equation (1.3) when αi = 1
n+p−2 for i = 1, · · · , n − 1, and αn = p−1

n+p−2 . Therefore, by
plugging these values in Eq. 1.1 we obtain the following DPP

uε(x) = 1

n + p − 2

n−1∑

j=1

inf
dim(S)=j

sup
v∈S|v|=1

uε(x + εv) + uε(x − εv)

2

+ p − 1

n + p − 2
sup
v∈S|v|=1

uε(x + εv) + uε(x − εv)

2
.

Since min{α1, αn} > 0, our result, Theorem 4.2, covers the solutions to this DPP.
We also remark here that the operator Dp is uniformly elliptic, and thus we can obtain

C1,δ-regularity for viscosity solutions of the equation Dpu = 0 (see [8, Section 5.3]).
A different game associated to the Dominative p-Laplacian was presented in [7] (see

also [13]). Their DPP reads as follows

uε(x) = q

∫

Bε(x)

uε(y)dy + (1 − q) sup
|v|=1

{
uε(x + εv) + uε(x − εv)

2

}
, (4.7)

where q = n+2
n+p

. This is a control problem. Let x0 be the starting point. The player first
chooses a unit vector v, and then the token is moved according to the following rules: x1
is randomly selected in Bε(x0) with probability n+2

n+p
, and x1 = x0 ± εv with probability

p−2
2(n+p)

, respectively. This stochastic process is repeated until the token leaves �. The player
tries to maximize the expected value of G(xτ ), and thus he/she chooses the direction v for
this purpose.

We can also obtain the following regularity result for this DPP with a slightly worse
upper bound for δ.

Theorem 4.2 Let uε be a function satisfying the DPP (4.7) in a bounded domain �. Then
for any 0 < δ < 1

10 and x, z ∈ Br with B2r ⊂ �, there exists a constant C = C(δ) > 0
such that

|uε(x) − uε(z)| ≤ C||uε||L∞(B2r )

( |x − z|δ
rδ

+ εδ

rδ

)
.

Proof We first observe that

sup
|v|=1

{
uε(x + εv) + uε(x − εv)

2

}
− sup

|w|=1

{
uε(z + εw) + uε(z − εw)

2

}

= sup
|v|=1

inf|w|=1

{
uε(x + εv) + uε(x − εv) − uε(z + εw) − uε(z − εw)

2

}
.

Like before, we again consider

g(x, z) = uε(x) − uε(z).
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Then we have

g(x, z) = uε(x) − uε(z)

= q

( ∫

Bε(x)

uε(y)dy −
∫

Bε(z)

uε(y)dy

)

+(1 − q) sup
|v|=1

inf|w|=1

{
uε(x + εv) + uε(x − εv) − uε(z + εw) − uε(z − εw)

2

}

= q

( ∫

Bε(x)

uε(y)dy −
∫

Bε(z)

uε(y)dy

)

+(1 − q) sup
|v|=1

inf|w|=1

{
g((x, z) + ε(v,w)) + g((x, z) − ε(v,w))

2

}

≤ q

( ∫

Bε(x)

uε(y)dy −
∫

Bε(z)

uε(y)dy

)

+(1 − q) sup
|v|=1

{
g((x, z) + ε(v, v)) + g((x, z) − ε(v, v))

2

}
.

Again, we recall the auxiliary function f and the ideas explained before. In [15, Section
4], we can find the following observation

∫

Bε(x)

uε(y)dy −
∫

Bε(z)

uε(y)dy = 1

|Bε|
(∫

Bε(0)\Bε(z−x)

(
u(x+h) − u(z + Px,z(h))

)
dh

)
,

where Px,z is a map to send a point to its mirror point with respect to span(x − z)⊥, the
orthogonal complement of the subspace generated by x − z. Repeating a similar calculation
in the proof of Theorem 3.1, we see that it is enough to deduce a contradiction to Eq. 3.5 if
we prove

f (x, z) > q · 1

|Bε|
( ∫

Bε(0)\Bε(z−x)

f (x + h, z + Px,z(h))dh

+
∫

Bε(x)∩Bε(z)

f (y, y)dy

)

+(1 − q) sup
|v|=1

{
f ((x, z) + ε(v, v)) + f ((x, z) − ε(v, v))

2

}
(4.8)

for every (x.z) ∈ B1 × B1 (see also (4.25) in [15]).

Assume δ < 1/10 and set C = 1010

δ2ω
, where ω is to be determined. We refer to the

following estimate in [15, Section 4]:

1

|Bε|
(∫

Bε(0)\Bε(z−x)

f (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

f (y, y)dy

)
− f (x, z)

< Kεδ,
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where

K =
{

|x − z|δ−2
(
10 − Cδ

4(n+2)

)
if |x − z| > Nε/10,

( − C2

4n + 3C + 1
)

if |x − z| ≤ Nε/10.

Thus, by choosing ω ≤ 4−n, we get

1

|Bε|
(∫

Bε(0)\Bε(z−x)

f (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

f (y, y)dy

)
− f (x, z)

< −C̃εδ (4.9)

for C̃ = min{ 1
4 ( Cδ

4(n+2)
− 10), C2

4n − 3C − 1}. Nothe that C̃ is strictly positive because

C = 1010

δ2ω
. We also observe that

sup
|v|=1

{
f ((x, z) + ε(v, v)) + f ((x, z) − ε(v, v))

2

}
= f (x, z) + 4ε2

for any (x, z) ∈ B1 × B1. Combining this with Eq. 4.9, we have

q · 1

|Bε|
(∫

Bε(0)\Bε(z−x)

f (x + h, z + Px,z(h))dh +
∫

Bε(x)∩Bε(z)

f (y, y)dy

)

+(1 − q) sup
|v|=1

{
f ((x, z) + ε(v, v)) + f ((x, z) − ε(v, v))

2

}
− f (x, z)

< −qC̃εδ + 4(1 − q)ε2

<
( − qC̃ + 4(1 − q)

)
εδ .

Now we can complete the proof if we choose ω small such that

−qC̃ + 4(1 − q) < 0.

Combining the above estimates, we obtain Eq. 4.8.
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