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Abstract
In today’s digital society, computer-supported collaborative learning (CSCL) and col-
laborative problem solving (CPS) have received increasing attention. CPS studies have 
often emphasized outcomes such as skill levels of CPS, whereas the action transitions 
in the paths to solve the problems related to these outcomes have been scarcely studied. 
The patterns within action transitions are able to capture the mutual influence of actions 
conducted by pairs and demonstrate the productivity of students’ CPS. The purpose of 
the study presented in this paper is to examine Finnish sixth graders’ (N = 166) patterns 
of action transitions during CPS in a computer-based assessment environment in which 
the students worked in pairs. We also investigated the relation between patterns of action 
transitions and students’ social and cognitive skill levels related to CPS. The actions in 
the sequential processes of computer-based CPS tasks included using a mouse to drag 
objects and typing texts in chat windows. Applying social network analysis to the log file 
data generated from the assessment environment, we created transition networks using 
weighted directed networks (nodes for those actions conducted by paired students and 
directed links for the transitions between two actions when the first action is followed by 
the second action in sequence). To represent various patterns of action transitions in each 
transition network, we calculated the numbers of nodes (numbers of actions conducted), 
density (average frequency of transitions among actions), degree centralization (the dis-
persion of attempts given to different actions), reciprocity (the extent to which pairs revisit 
the previous one action immediately), and numbers of triadic patterns (numbers of differ-
ent repeating formats within three actions). The results showed that pairs having at least 
one member with high social and high cognitive CPS skills conducted more actions and 
demonstrated a higher average frequency of action transitions with a higher tendency to 
conduct actions for different number of times, implying that they attempted more paths 
to solve the problem than the other pairs. This could be interpreted as the pairs having at 
least one student with high social and high cognitive CPS skills exhibiting more produc-
tive CPS than the other pairs. However, we did not find a significant difference across the 
pairs in terms of alternating sequences of two or three actions. Investigating the patterns of 
action transitions of the dyads in this study deepens our understanding of the mutual influ-
ence between the CPS actions occurring within dyads. Regarding pedagogical implication, 
our results offer empirical evidence recommending greater awareness of the students’ so-
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cial and cognitive capacities in CPS when assigning them into pairs for computer-based 
CPS tasks. Further, this study contributes to the methodological development of process-
oriented research in CSCL by integrating an analysis of action transition patterns with a 
skill-based assessment of CPS.

Keywords  Computer-supported collaborative learning · Collaborative problem solving · 
Collaborative problem solving skills · Action transitions · Social network analysis · 
Sixth graders

Introduction

In today’s knowledge-intensive and digitalized society, there is a critical need for learners 
to combine their expertise and ideas in various collaborative situations to solve problems 
together, both in individuals’ working lives and in a variety of learning communities. This 
issue has been addressed by research on computer-supported collaborative learning (CSCL). 
In CSCL, students share and construct knowledge with their group members through vari-
ous interactions. In this way, we may consider collaboration as connections between diverse 
types of entities, such as students, actions, and the digital artifacts that the students create 
(van Aalst, 2009). Relations that are formulated within and/or between these entities are 
associated with effects on CSCL outcomes (Ouyang, 2021), embodying the philosophy of 
CSCL, which states that “relationships matter” (Dado & Bodemer, 2017, p.161).

The present study investigated sequential actions in CSCL, including, for instance, click-
ing buttons, dragging to move objects with a mouse, and typing texts in the chat window. 
Particularly, we studied action transitions to better understand the relations within the 
sequential progressions of actions in dyadic interaction in an online assessment environ-
ment. The progressions of actions that a pair of students enact contribute towards processes 
of understanding, planning, solving, and revising, which are universally applicable across 
tasks in computer-based assessment environments (Care et al., 2015). This conceptual-
ization provides a solid foundation for studying the processes of online assessment tasks 
through the lens of action sequences in the broader context of students’ efforts towards col-
laboration. The actions from two paired participants are interdependent, and their contribu-
tions “mutually build upon each other” (Hesse et al., 2015, p. 38). Therefore, the transition 
patterns between actions in sequences might capture this mutual influence between students 
in a CSCL environment.

Today’s technologies for CSCL are becoming more advanced, and large amounts of 
computer-generated data are available, such as in the form of log files (Jeong et al., 2014). 
In addition to communication data (e.g., the contents of messages), log file data also record 
the sequences of actions that students conduct in CSCL environments. Contributing to 
inter-objective theories referencing networks of students, actions, and artifacts (Stahl & 
Hakkarainen, 2021), social network analyses have been widely applied to analyze the rela-
tions between entities in CSCL research (Dado & Bodemer, 2017). In the current study, 
applying social network analysis allowed us to capture the relations between the sequential 
actions contributed by each student in a dyad setting, here represented by patterns of action 
transitions.
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Taking the form of short-term collaboration in CSCL (Reimann, 2009), collaborative 
problem solving (CPS) has been regarded as an important skill in the twenty-first century 
(Griffin et al., 2012; Ludvigsen et al., 2015; Rummel & Spada, 2005). CPS refers to col-
laboration as “a coordinated, synchronous activity that is the result of a continued attempt 
to construct and maintain a shared conception of a problem” (Roschelle & Teasley, 1995, 
p. 70). The social and cognitive skills of CPS have typically been studied in assessment 
research (Hesse et al., 2015). Administering CPS tasks designed for dyads in a computer-
based assessment environment among sixth graders, we treated students’ social and cog-
nitive skills of CPS as outcomes and worked to disentangle the relations between such 
outcomes and the patterns of action transitions contributed by pairs of students working 
together. This study deepens our understanding of the mutual influence of paired students’ 
actions related to their CPS skills in a computer-based CPS assessment environment. More-
over, our study contributes to the methodological development of process-oriented inves-
tigations in CSCL by integrating an analysis of action transition patterns with a skill-based 
assessment of CPS.

Background

Peer interactions and patterns of action transitions

CSCL inherently involves intensive interaction between peers, which can be very effective 
in promoting learning (for a meta-analysis, see Tenenbaum et al., 2020). Peer interactions in 
CSCL are often mutual and untutored, involving “the use of small groups of students work-
ing together to achieve common goals of learning” (Topping et al., 2017, p. 5). In CSCL, 
peer interactions occur through the contingent, and therefore are in inherently sequential 
order of operational actions (e.g., moving objects with a mouse) and written/oral commu-
nication (Stahl & Hakkarainen, 2021). A given operational action or written/oral utterance 
is typically a response to the previous operational action or discourse move and is “gen-
erally designed to provoke a response and to propel the discourse and inquiry forward” 
(Stahl & Hakkarainen, 2021, p. 37). Intrinsically, contributions of these operational actions 
and written/oral communication exhibit mutual influence (Baker et al., 2007). Mutual influ-
ence between actions operates through the students who produce them. The phenomenon 
of mutual influence between actions is a matter of degree of strength, and it often operates 
within the sequentiality of actions (Stahl & Hakkarainen, 2021). Therefore, the patterns of 
action transitions (i.e., the transition between two actions with the first action followed by 
the second action, Zhu et al., 2016) might contribute towards the degree of mutual influence 
between actions. In the current article, by “actions,” we include operational actions and 
actions of writing messages for communication, though we exclude the specific content of 
messages.

The interwoven progression of operational actions and written contributions leads to suc-
cessful task solutions. However, the sequence of actions that will ultimately lead to a suc-
cessful solution is not obvious to group members at the start of the task (Wieber et al., 2012), 
especially in a setting where individuals do not have identical resources in the online envi-
ronment. Group members or pairs need to actively communicate with one another (e.g., type 
texts in the chat window) and to collectively attempt different operational actions (e.g., drag 
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to move an object) to discover the path to the successful solution, often through trial-and-
error. Accordingly, the action space affords high variability in possible action transitions. 
Based on U.S. data from PISA 2015, De Boeck & Scalise (2019) report that students who 
contribute more actions (e.g., click buttons, excluding actions of oral or written communi-
cation) are less successful. This may be because these PISA interactions are human–agent 
interactions (i.e., a student interacts with the computer-simulated agent rather than with 
another student; He et al., 2017), which results in limited opportunities for communication, 
which in turn may hinder demonstration of CPS skills when compared with the human–
human approach (i.e., a student interacts with another student). In contrast to the findings 
of De Boeck & Scalise (2019), we assume that pairs conducting more actions in CPS tasks 
are likely to demonstrate better outcomes in the human–human approach because tasks in 
the human–human approach often require more actions, including those for the purpose of 
communication between partners. Another impetus for additional actions is that no struc-
tured assistance is offered, as it is for tasks implemented using the human–agent approach. 
Therefore, our study fills a research gap studying the relationship between the quality of 
students’ CPS outcomes and the number of actions conducted by paired students in the 
human–human approach, where the number of actions conducted may be very different than 
that in the prior work related to human–agent collaboration.

On the other hand, Zhu et al. (2016) propose and validate two different patterns of action 
transitions in a computer-based problem solving task for individual students: First, they 
discuss the average frequency of action transitions (e.g., click available buttons, excluding 
actions of oral or written communication). In computer-based assessment environments, 
students need to attempt different paths to solve a problem. The more frequently students 
change actions on average as they engage in more exploration, the longer the total result-
ing sequence of actions. Second, they discuss the dispersion of attempts given to differ-
ent actions. This pattern captures the extent to which students frequently conduct certain 
actions. The more dispersion of attempts given to different actions is present, the more 
students tend to conduct actions for the same number of times.

In addition to studying the patterns of action transitions, Zhu et al. (2016) also relate 
patterns of action transitions to individual students’ problem solving outcomes. In particu-
lar, Zhu et al. (2016) investigate the action transitions in an online problem-solving task 
conducted by individual students whose efficiency scores associated with a scoring rubric 
are related to student outcomes in terms of their problem solving speed. In that case, speed 
is rated higher if students only take the necessary actions in order to reach a solution. The 
systematicity scores are also calculated that are related to how systematic students were at 
solving the problem. Here the systematicity score was rated higher if students follow the 
problem solving routine in the manual provided, meaning checking, fixing the problem, and 
testing the solution, respectively. Zhu et al. (2016) report that eighth graders with higher 
efficiency scores demonstrate a significantly lower average frequency of action transitions 
overall, whereas students with higher systematicity scores exhibit a more even distribution 
of probabilities across action sequences, indicating that they do not show a preference for 
certain action sequences over others.

These findings are understandable given the conditions under which the study has been 
conducted in Zhu et al. (2016). That is, students in that study engaged in individual problem 
solving guided by a manual that provided the needed knowledge for the computer-based 
assessment task. In the work reported in this paper, in contrast, we focus on dyads engaging 
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in human–human collaboration, with no provided structured assistance related to the tasks 
provided for the participants (see details in Methods section). Consequently, we assumed that 
the frequency of action transitions, and dispersion of attempts, demonstrate the productivity 
of paired students’ CPS in computer-based assessment environments because these dimen-
sions bound the space of possible measures of exploration pairs engage in while searching 
for a solution path. Compared with unproductive CPS, productive CPS is assumed in those 
dyads that conduct more actions with a higher frequency of action transitions on average 
and with a higher tendency to conduct actions for different number of times, a pattern that 
would stand in contrast to the findings in Zhu et al. (2016). In expanding from individual 
problem solving to problem solving in dyads, the present study fills a critical knowledge 
gap regarding how students’ CPS outcomes are related to their average frequency of shifts 
in action progressions and the dispersion of their attempts given to different actions, thus 
challenging the interpretation of past findings (Zhu et al., 2016).

Moreover, Zhu et al. (2016) study the extent to which individual students revisit the 
most recent one or two actions during online assessment tasks. Information regarding the 
way students revisit these very recent actions can provide sophisticated insights into action 
design and the common pitfalls in problem-solving tasks (Zhu et al., 2016). For instance, if a 
certain action transition is frequently repeated yet is not a part of the path to the solution, this 
indicates that there might be a potential design problem in the task or that there is a common 
misconception hindering effective problem solving. Zhu et al. (2016) report that students 
who represent a higher level of systematicity scores (i.e., outcomes of individual students’ 
problem solving) to a lesser extent revisit the most recent previous actions right away (the 
repetition of the same actions over and over was not taken into account here). In our setting 
of dyadic human‒human collaboration, we build on past insights by exploring the extent to 
which dyads revisit the most recent one or two actions during a computer-based CPS task as 
an extension of existing knowledge about individual problem solving to dyadic CPS.

CPS skills and group composition

CPS has gained increasing societal interest, especially because of its inclusion in large-scale 
international assessments and in the development of computer-supported learning assess-
ments (Shute & Rahimi, 2017). In 2015, the OECD integrated a CPS framework (OECD, 
2017) into their PISA 2015 computerized assessments, utilizing human–agent tasks. Another 
important initiative to evaluate CPS is the Assessment and Teaching of 21st Century Skills 
(ATC21S) project (Care et al., 2018) that developed human–human computer-based assess-
ment tasks in pairs.

The theoretical framework of CPS in the present study relies on the one developed in the 
ATC21S project (Hesse et al., 2015). In this framework, a distinction is proposed between 
social and cognitive skills, which are further divided into a hierarchy of subskills (Hesse 
et al., 2015). This framework is not identical to the one in PISA 2015 that does not sepa-
rate social skills from cognitive skills in CPS tasks. In Hesse et al.’s (2015) framework, 
social skills refer to the “collaborative” part of CPS that is often enacted through social 
interactions with the paired partner, including participation, perspective taking, and social 
regulation. Cognitive skills, on the other hand, refer to the “problem-solving” part of CPS, 
such as task regulation and knowledge building. The social and cognitive skills of CPS are 
inherently intertwined (Hesse et al., 2015). Establishing a mutual understanding requires 
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members to socially engage in knowledge building and to constantly work to find common 
ground (Clark & Brennan, 1991), which calls for certain cognitive skills, such as collect-
ing the elements of information related to the task. Small groups or pairs often experience 
major difficulties, particularly in establishing common frameworks of references, coming 
to a joint understanding, resolving differences of understanding, and negotiating individual 
and collective actions (Barron, 2000). Communication involving group members with high 
social skills is the key to resolving these challenges (Bause et al., 2018). Consequently, the 
skill composition of the group has been recognized as one contributor to the success of the 
collaborative learning process (Cen et al., 2016).

The benefits of collaborative learning have often been argued as emerging through the 
assistance exchanged between collaborating partners (Stahl et al., 2006). For instance, with 
participants aged from 18 to 68, Dowell et al. (2020) report that groups with more members 
taking social responsibility performed better than those groups with greater proportions of 
less socially engaged partners. In school settings, students with a lower skill level can bene-
fit from a collaborative learning situation more than students with a higher skill level (Saner 
et al., 1994). There are claims that poor group composition is one of the main reasons for 
unproductive collaborative learning (Fiechtner & Davis, 1985; Graf & Bekele, 2006). The 
optimal sharing of resources (e.g., existing skills, learning materials) has been suggested as 
vital for making collaborative learning more effective (Isotani et al., 2009). However, the 
reality in authentic classroom settings is that collaborating groups are often formed on a vol-
untary basis. In some cases, the voluntary selection of group members can result in off-task 
behaviors and resistance to group work (Dillenbourg, 2002). Therefore, there is a need for 
a retrospective investigation into the relationship between a group’s composition in terms 
of heterogeneous skill levels and the productivity of its collaboration. Mapping onto the 
PISA 2015 framework, Herborn et al. (2017) report that seventh graders’ individual profiles 
of social and cognitive skills differed in CPS performance in the human–agent approach. 
That is, students with high social and high cognitive skills demonstrated significantly bet-
ter performance, whereas those with low social and low cognitive skills exhibited poorer 
performance.

Based on Herborn et al. (2017), Andrews-Todd & Forsyth (2020) indicate that students 
with low social/low cognitive skill profiles exhibited the poorest performance in the human–
human approach in triads. Moreover, having at least one high social and high cognitive 
member in a triadic group facilitates performance (Andrews-Todd & Forsyth, 2020). Her-
born et al. (2017) and Andrews-Todd and Forsyth (2020), respectively, have uncovered a 
relationship between students’ performance related to individual skill profiles and the skill 
composition of groups with three members.

Taking all this into account, the present study fills a research gap in the field by examin-
ing how students’ learning outcomes are related to their productive/unproductive CPS in 
human–human dyads. The quality of the solution for a CPS task has been the core criterion 
of interest that is traditionally regarded as the learning outcome (Graesser et al., 2017). 
However, log file data recorded in online CPS environments on students’ problem solv-
ing processes provide rich information on how students conduct various actions to solve a 
problem instead of merely whether the problem is solved or not (Zhu et al., 2016). In our 
study, we utilized CPS skill levels as learning outcomes calculated from log file data in the 
processes emerging from a series of CPS tasks. In line with the findings of Herborn et al. 
(2017) and Andrews-Todd & Forsyth (2020), we hypothesized that in computer-based CPS 
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assessment tasks, pairs having at least one member with high social and high cognitive skills 
might exhibit more productive CPS than other pair compositions. That is, dyads having at 
least one student with high social and high cognitive skills appear to conduct more actions 
with a higher frequency of action transitions on average and with a higher tendency to con-
duct actions for different number of times in CPS.

Social network analysis (SNA) to study processes

Alternative approaches exist for understanding different processes in computer-based learn-
ing environments, for instance, process-oriented content analysis (Isohätälä, 2020), pro-
cess mining (Paans et al., 2019), and lag-sequential analysis (Malmberg et al., 2017). Other 
researchers have utilized Markov models and the item response theory framework (Shu et 
al., 2014) for analyzing process data. For modeling concurrent and sequential features in 
processes, Petri nets have also been utilized (Reisig, 1985). With their complex rules, it 
is claimed that Petri nets are not suitable for CSCL process data because “they are overly 
deterministic” (Reimann, 2009, p. 252). Therefore, heuristic methods that are more algorith-
mically complex and more readily to interpretate results need to be applied after Petri nets 
have been employed (Reimann, 2009).

In addition to the methods mentioned above, SNA encompasses an important array of 
methods for analyzing various processes in CSCL as it allows for the analysis of patterns 
of relationships between two nodes interacting with one another in a relation-based system 
(Wasserman & Faust, 1994). In CSCL settings, nodes could be any entities in the CSCL 
processes: humans (e.g., instructors, students), artifacts (e.g., posts in a discussion forum), 
or types of online learning behaviors (e.g., content analysis with codes representing knowl-
edge-building behaviors), depending on the specifics of target research questions (Dado & 
Bodemer, 2017). A link between two entities might connect entities with identical types 
(e.g., a link between students reveals a student communicates with the other one) or enti-
ties of different types (e.g., a link between a student and an activity reveals that the student 
participates in the activity). Admittedly, the definitions of nodes and of relational links play 
a vital role in the interpretations of analytical outcomes (Fincham et al., 2018). Some previ-
ous SNA research in CSCL has primarily focused on humans as nodes and communication 
between humans as links in the network (e.g., networks regarding communication-based 
interactions between students; Ouyang, 2021; Saqr et al., 2020). Some CSCL studies have 
employed SNA to address the temporality of discourses by utilizing qualitatively extracted 
parts of the participants’ discourse as nodes and interactions among the discourse of indi-
viduals as links (e.g., Swiecki et al., 2020; Zhang et al., 2021). On the other hand, Zhu et 
al. (2016) apply transition networks to analyze the process data generated from an online 
environment among individual students. They define actions (i.e., click a button) as the 
nodes and sequential transitions of actions as links to examine patterns of action transitions 
in individual students’ problem solving processes. The analysis of the previous research 
discussed above has relied on identical SNA theories, even though their research questions 
are tremendously different.

Based on Zhu et al. (2016) and the fact that paired students’ sequential actions are inter-
twined and their contributions build one upon another (Hesse et al., 2015), we applied SNA 
methods to explore the patterns of action transitions in an online CPS assessment environ-
ment in a dyad setting with a human‒human approach. This fills a research gap in which 
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there is scant research investigating paired students’ action transitions in computer-based 
CPS tasks. We created networks in which actions (e.g., drag to move an object, type mes-
sages) are nodes and the transitions of two actions are the links representing the order of 
the actions. We refer to these networks as transition networks (Zhu et al., 2016). Transition 
networks explicitly illustrate how students’ future actions are often influenced by their prior 
actions in CPS. Further, SNA measures are vital factors for assessing the formation and 
transition of entities (i.e., actions in our study) (Ouyang & Scharber, 2017), and SNA is 
often combined with other research methods to address the social and cognitive aspects of 
CSCL (Ouyang, 2021). Therefore, in addition to calculating SNA measures (see the Meth-
ods section) of transition networks as a way to represent patterns of action transitions, we 
also highlighted the distinct patterns of action transitions in CPS processes across differenti-
ated pair compositions in terms of CPS social and cognitive skills. The process data from 
the present study are defined as a sequence of actions that the pairs conducted during CPS 
in an online assessment environment. Process data are typically represented by a sequence 
of actions, and each of these actions belongs to a finite pool of available actions (Zhu et 
al., 2016). In the ATC21S online assessment environment utilized in the present study, the 
action sequence was embedded with partial time information recorded by the environment 
in a way that the order of actions was relevant (i.e., the first action is followed by the second 
action in the sequence).

Objectives

The purpose of our study was to examine patterns of action transitions conducted by pairs 
of sixth-grade students in an online CPS assessment environment by utilizing an SNA 
approach. We also shed light on the relationship between the patterns of action transitions 
and students’ assessed skill levels of CPS (i.e., social and cognitive skills of CPS). Based on 
previous studies (e.g., Andrews-Todd & Forsyth, 2020), we hypothesize that pairs including 
at least one member with high social and high cognitive skills may conduct more actions 
with a higher frequency of action transitions on average and with a higher tendency to con-
duct actions for different number of times.

The following research questions were addressed:

1.	 How do individual students’ social and cognitive skill levels vary in CPS tasks? What 
kinds of pair compositions can be identified in terms of the social and cognitive skills 
of CPS?

2.	 How do patterns of action transitions differ between pairs comprising diverse social and 
cognitive skill levels of CPS?

Methods

Participants and procedure

With a convenience sampling method, data were collected in 2019 from 166 sixth-grade stu-
dents (Meanage = 12.60, SDage = 0.33, female = 91, 54.82%) from 12 classes within 5 schools 
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in a Finnish urban municipality from which we obtained permission to conduct research. 
Students participated voluntarily in our study with the option to terminate their participa-
tion at any time if they wished. All student participants and their guardians filled out a con-
sent form. We utilized a computer-based assessment environment developed in the ATC21S 
project at the University of Melbourne. In our study, a series of four game-like tasks (i.e., 
Laughing Clown, Sunflower, Hot Chocolate, Olive Oil) was administered to the students. 
The tasks were based on the hypothetical-deductive approach that focuses on generic skills. 
The students were randomly assigned to work in pairs (female pairs: 27, 32.53%; male 
pairs: 19, 22.89%; mixed-gender pairs: 37, 44.58%); each student in a pair was assigned a 
role of “A” or “B” (Student A or Student B). Before the tasks started, the aims of the study 
and practical issues of using the assessment environment (e.g., how to log in the assessment 
environment) were introduced. Each student collaborated synchronously with their partner, 
each using a laptop, with each student being located in a different room. The participants 
were told that they would solve the problems together with their assigned partners and that 
they could talk with one another through typing texts in the chat window. They could also 
click buttons and drag to move objects on their computer screens. The participants worked 
through the assessment tasks in a fixed order (i.e., Laughing Clown, Sunflower, Hot Choco-
late, Olive Oil), and they were not allowed to proceed to the next task without both members 
of the dyad having clicked the “Finish” buttons on their screens. Moreover, once they had 
finished a task, they were not allowed to return to it. The participants had the option to leave 
the tasks by not solving the problem, and no time limit was imposed.

CPS tasks

Laughing Clown is a symmetric task (i.e., both participants had the same resources and 
screen views) and is the simplest of the four tasks. In this task, a clown machine and 12 balls 
are shown to each paired partner, and students are required to first understand how a clown 
machine functions in general so they are able to discover whether their clown machines 
work in the same way. The Sunflower task is also a symmetric task, requiring dyads to 
mix two plant foods to maximize the height of the plant. The goal of Hot Chocolate is to 
maximize profits and sales in Europe by utilizing information related to recipes and markets. 
The Hot Chocolate task is asymmetric, in which dyads have different resources and screen 
views. For the details of the tasks, see Griffin & Care (2015).

The Olive Oil task

SNA on the action transitions in CPS was based on the data from the Olive Oil task only. 
We selected the Olive Oil task for the analysis of transition networks for two reasons. First, 
being content free with no requirement of prior knowledge and addressing the enhance-
ment of inductive and deductive reasoning skills, the task follows the reasoning procedures 
required in the Tower of Hanoi problem popularized by mathematician Eduard Lucas in 
1883 (Newell & Simon, 1972). The task requires dyads to collaboratively enact sequences 
of actions to achieve the goal by thinking of the “steps ahead of their current state and work 
out sub-tasks before acting” (Care et al., 2015, p. 93). From a methodological point of view, 
this sequential feature is well represented by transition networks (Zhu et al., 2016). Second, 
the task is structured asymmetrically, in which each student can access different resources 
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(for details of the task, see Care et al., 2015). Such resource interdependence is typical for 
creating collaborative contexts (Johnson et al., 1998). Therefore, the paired students had 
to collaboratively work out what kinds of resources were available for them at the very 
beginning of the path to solve this task. More importantly, the asymmetric design of the task 
ensured the paired participants had to respectively conduct different actions, which meant 
the process to solve the problem consisted of actions conducted by both participants. This 
offers a methodological basis to utilize a transition network to represent the actions con-
ducted by both students within a pair.

In the Olive Oil task, Student A had a three-liter jar, an olive oil tank, a transfer pipe, and 
a bucket, while Student B had a five-liter jar, a transfer pipe, and a bucket. The objective 
of the task was to fill Student B’s jar with four liters of olive oil. Both students could type 
texts in the chat window to talk with one another. The jars can be moved to carry olive oil 
between the oil tank and the transfer pipe (for Student A) and between the bucket and the 
transfer pipe (for Student B) by dragging these items with a mouse. Student B, in addition, 
had a button called “Accept transfer” on the screen for the confirmation to receive the oil 
from Student A. Consequently, before Student A could transfer oil to Student B, Student B 
would not be able to do anything to solve the problem except discussing it with Student A 
in the chat window. Figure 1 shows the resources in the problem space on the two screen 
views in the Olive Oil task.

Fig. 1  Asymmetrical screen views of Student A (at the top) and Student B (at the bottom) in the Olive Oil 
task (originally in Finnish with English translation)
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Network formation for action transitions in the Olive Oil task

To study the patterns of action transitions, we created transition networks with the sequen-
tial process data, including 14,448 log file events conducted by 83 pairs in the Olive Oil 
task. The order of the events indicated the sequence of the actions (e.g., drag to move an 
object, type texts in the chat window) that the pairs conducted in the Olive Oil task. It is 
worth noting that the contents of the students’ messages in the chat window were excluded 
from the analysis.

We utilized weighted directed networks to represent action transitions; each network 
represents one pair of the students’ action transitions. The nodes in the network represent 
actions (e.g., drag to move an object, type in a chat window), and directed links indicate 
the transitions of the actions when the first action was followed by the second action. Every 
cell in an adjacent network matrix represents the frequency of action that changed from the 
action in the row to the action in the column. The nodes of “Start” and “Finish” in each tran-
sition network represent the beginning and end of the task. We distinguished participants’ 
operational actions (e.g., clicking a button or dragging an object with a mouse) from written 
communication (i.e., students’ typing texts in chat window) and further grouped operational 
actions into three categories based on the log file data that were automatically generated 
from the assessment environment (see Table 1): (1) two system actions corresponding to 
Student A’s proposal and Student B’s acceptance of the transferring oil, (2) four transfer 
actions that show the completion of transferring different amounts of oil, and (3) other 
operational actions (actions that are other than those in the above categories). All the opera-
tional actions and chats were automatically distinguished by the assessment environment 
(we merely categorized other operational actions into one group). The reason for separating 
system actions and transfer actions from other operational actions is that all system actions 
and all transfer actions are necessary for solving the problem. Table 2 presents the most effi-

Table 1  Categories of nodes in transition networks generated from the Olive Oil task
78 actions (Network 
nodes)

Representations 
as nodes in tran-
sition networks

Example data from log 
files automatically ex-
tracted from the assessment 
environment

Meanings of actions

Chats:
2 chat actions for 
participants in a pair

ChatA, ChatB What do you have on your 
screen?

ChatA = The action of Student A’s 
typing texts in the chat window;
ChatB = The action of Student B’s 
typing texts in the chat window;

Operational actions:
2 system actions S1, S2 S1: wants to transfer oil,

S2: accepts the transfer
S1 = Student A wants to transfer 
oil to Student B, S2 = Student B 
accept the transfer.

4 transfer actions T1, T2, T3, T4 T1: completedTransfer: 
3 L = 0:5 L = 3

Transfer completed: Now Student 
B’s 5 L jar has 3 L oil.

Start and Finish Start, Finish Start, Finish Start = task starts, Finish = task 
ends.

68 other operational 
actions

A1, A2, A3…, 
A68

A7: 3 L_fill:3 L = 3:5 L = 0 Student A fills the 3 L jar with oil 
from the oil tank.

Note: In order to represent distinct operational actions conducted by the participants, codes (e.g., A7 in this 
table) were randomly assigned to operational actions.
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cient path for solving the Olive Oil task (for more details, see Care et al., 2016). As shown 
in Table 2, there are altogether 10 operational actions needed in the most efficient path to 
solve the task. These 10 operational actions need to be conducted in different amounts of 
times in a specific sequence showed in Table 2. In addition to the 10 operational actions 
illustrated in Table 2, chatting between Student A and Student B (i.e., the nodes of ChatA 
and ChatB) is also necessary to reach the most efficient path to solve the problem, and such 
written communication within a pair could occur at any time during the task for different 
numbers of times due to the asymmetric nature of the task. Therefore, there are altogether 
12 actions (including 10 operational actions and 2 chat actions) in the most efficient path for 
solving the Olive Oil task.

Eighty-three transition networks were assembled corresponding to the actions conducted 
by 83 pairs of participants. Isolated nodes (i.e., those available actions that the student pairs 
did not conduct) were added to each network so that all the networks had an identical set 

Table 2  The most efficient path to solve the Olive Oil task
Operational actions showed in 
log file data

Description Categories of 
operational 
actions

Codes of 
node names 
in transition 
networks

3 L_fill:3 L = 3:5 L = 0 Student A fills the 3 L jar with oil from 
the oil tank.

Other operation-
al action

A7

Student A wants to transfer oil Student A drags the jar with 3 L oil to the 
oil pipe.

System action S1

Student B has accepted the 
transfer

Student B clicks the “Accept transfer” 
button.

System action S2

completedTrans-
fer:3 L = 0:5 L = 3

Now Student B’s 5 L jar has 3 L oil. Transfer action T1

3 L_fill:3 L = 3:5 L = 3 Student A fills the 3 L jar with oil from 
the oil tank for the second time.

Other operation-
al action

A20

Student A wants to transfer oil Student A drags the jar with 3 L oil to the 
oil pipe.

System action S1

Student B has accepted the 
transfer

Student B clicks the “Accept transfer” 
button.

System action S2

completedTrans-
fer:3 L = 1:5 L = 5

Now Student B’s 5 L jar contains 5 L and 
Student A’s 3 L jar has 1 L oil left.

Transfer action T2

5 L_empty:3 L = 1:5 L = 0 Student B pours 5 L oil into the bucket. Other operation-
al action

A54

Student A wants to transfer oil Student A drags the jar with 1 L oil to the 
oil pipe.

System action S1

Student B has accepted the 
transfer

Student B clicks the “Accept transfer” 
button.

System action S2

completedTrans-
fer:3 L = 0:5 L = 1

Now Student B’s 5 L jar holds 1 L oil. Transfer action T3

3 L_fill:3 L = 3:5 L = 1 Student A fills the 3 L jar with oil from 
the oil tank for the third time.

Other operation-
al action

A47

Student A wants to transfer oil Student A drags the jar with 3 L oil to the 
oil pipe.

System action S1

Student B has accepted the 
transfer

Student B clicks the “Accept transfer” 
button.

System action S2

completedTrans-
fer:3 L = 0:5 L = 4

Student B’s 5 L jar now contains 4 L and 
Student A 3 L jar has no oil. The problem 
in the task is solved now.

Transfer action T4
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of nodes. Thus, network measures (see the Network measures section) could be compared 
across the networks. We excluded self-loops (Wasserman & Faust, 1994) in all networks 
(i.e., repetitions of the same action over and over, for instance, type in chat window and 
click “send” then type again and click “send”) because we were interested in the transitions 
between different actions during the process. According to our definitions of nodes and 
edges in transition networks, self-loops were not used in our analysis and have not usually 
been considered in earlier analogous SNA theories and applications (Wasserman & Faust, 
1994).

On the other hand, network visualizations can be useful to map the relations of nodes 
and to identify nodes that are more or less frequently connected (Poquet et al., 2021). In the 
context of transition networks, network visualizations provide useful information to identify 
the frequency of action transitions from a visual point of view. For instance, Fig. 2 shows 
the visualization of the transition network for all 83 pairs’ action transitions in the Olive Oil 
task. In addition to written communication, all the operational actions that were needed in 
the most efficient path to solve the problem in Table 2 were in the network. However, some 
essential actions (e.g., T3, A47) showed a lower frequency compared with other actions in 
the most efficient path. This implies that there are not many pairs that were able to recognize 
the importance of conducting these essential actions in the path to solve the problem, and 
these actions and related action transitions might represent key difficulties for the dyads.

Fig. 2  Visualization of the transition network conducted by 83 pairs in the Olive Oil task.
(Note: For meanings for the codes of the nodes, see Table 1 and Table 2. The size of the nodes is indicated 
by the indegree value of the node (indegree = number of incoming links multiplied by the weights). The 
parameter of indegree aims to identify the differences in the frequency of action transitions in the figure, 
especially for those actions necessary in the most efficient path but having been conducted less frequently 
(e.g., T3, A47) in comparison with the other actions. Edge sizes equal the weights of the edges divided by 
150. The reason for this division is to avoid an unclear presentation and overlapped visualization of edges 
because the original weight values ranged from 1 to 668, with a mean of 25.42 in the network. Colors of 
the edges: Red = action transitions among actions in the most efficient path to solve the problem; Blue = 
action transitions among actions that are not in the most efficient path to solve the problem; Gray = action 
transitions between actions that are necessary and not necessary in the most efficient path to solve the 
problem. The positions of nodes are randomly assigned by the visualization software, meaning that the 
distance between the nodes does not have any particular significance.)
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Network measures for action transitions in the Olive Oil task

Generated from the process data in the Olive Oil task, transition networks are directed and 
weighted to accommodate repeated action transitions and preserve the sequential nature of 
the data. To examine the patterns of action transitions, we calculated the set of fundamental 
SNA measures for the directed weighted transition networks.

The numbers of existing nodes, as a descriptive measure of a transition network, measure 
the number of actions that the pairs conducted during CPS. The higher the number of exist-
ing nodes, the more actions the pairs conducted.

Global measures. To address the global features of transition networks, we examined 
two commonly used network measures: weighted network density and degree centraliza-
tion. It should be noted that in SNA these terms are not defined identically to the terms with 
similar names in general statistics.

Density in a directed weighted network refers to the proportion of the total number of 
existing edges over the maximum number of possible links. For a directed network with g  
nodes and t links, the maximum number of links can be g(g − 1). It is notable that a link 
from node v1  to ν2 is not identical to a link from node ν2 to node v1 . The corresponding 
network density is t

g(g−1), which can be between 0 and 1. For a weighted directed network, 
there are g(g − 1) possible links, while all links are weighted by their values wi . Therefore, 
the density for a weighted directed network (Wasserman & Faust, 1994) is as follows:

	
Dw =

∑t
i=1 wi

g(g − 1)

Because the edge weights can be larger than 1, the weighted density value can be larger than 
1. The density for a directed weighted network represents the theoretical average strength of 
the links. In the context of our process data, for one action sequence, the weighted density 
reveals the average frequency of transitions between two actions, as contingent in this case 
upon the fixed number of possible actions in the Olive Oil task.

The Freeman degree centralization (1979) is a global measure capturing the variability 
at the node level in a network. For a network G , the degree centralization is as follows:

	

CD =

∑g
i=1

[
max
ν∈V

CD (ν)− CD (νi)

]

max
∑g

i=1

[
max
ν∈V

CD (ν)− CD (νi)

]

where max
ν∈V

CD (ν)is the largest value of degree centrality CD (νi)for any node in the net-
work. The numerator is the sum of the difference between every node’s degree centrality and 
the largest value, whereas the denominator max

∑g
i=1[max

ν∈V
CD(ν)− CD(νi)]is a normalized 

factor calculated as the largest possible sum of differences over all possible networks with 
the same number of nodes g . In this case, the possible maximum value of degree centraliza-
tion exists in the network whose structure is a star (with one node connected to the rest of 
the nodes simultaneously, while the rest of the nodes are not connected to one another). The 
corresponding maximum is, theoretically, (g − 1)2 for a directed network. In contrast, the 
minimum value is 0, revealing that all nodes have an identical degree. The higher the value 
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of the degree centralization, the more unequal the degree values are. In the action transition 
networks from our process data, degree centralization measures the dispersion of attempts 
given to different actions. A low value of degree centralization shows that a pair conducts 
actions for the same number of times, while a high value of degree centralization indicates 
that a pair prefers to implement certain actions instead of others.

Local dyadic and triadic measures. In addition to the global patterns in transition net-
works, we also examined local dyadic (two nodes) and triadic (three nodes) patterns because 
they constitute the basic blocks of the network structure and illustrate triadic dynamics at the 
local level. In the context of transition networks, these dyadic and triadic measures capture 
the local action transitions, which indicate the extent to which students revisited the previ-
ous action (i.e., dyadic pattern) and previous two actions (i.e., triadic patterns).

Reciprocity (Wasserman & Faust, 1994) captures the dyadic structures in networks, and 
it is the number of mutual links divided by the total number of existing links. For transition 
networks generated from process data, reciprocity captures the extent to which the partici-
pants revisited the previous action right away. In the context of transition networks in the 
current article, it is worth noting that the meaning of reciprocity is different from that of the 
self-loop. Reciprocity exhibits the extent to which paired participants reconduct a previous 
different action, whereas self-loop refers to the previous same action repeatedly conducted 
(we excluded self-loops in the analysis as mentioned above).

Triad census (Wasserman & Faust, 1994, p. 244) altogether has 16 link combinations 
made of three nodes. Figure 3 shows 16 possible triadic patterns that are named based on 
Holland & Leinhardt (1970) and Davis & Leinhardt (1972). The first digit in the names of 
the triads in Fig. 3 represents the number of reciprocal links in the triad; the second one 
reveals the number of nonreciprocal links in the triad; the third one shows the number of 
unconnected links in the triad; and a possible extra capitalized letter at the end represents 
the orientation of the triad in situations when the first three numbers are identical. The let-
ter U means up; the letter D indicates down; the letter T reveals transitive; and the letter 
C represents cyclic. In networks generated from the process data, triadic structures show 
the extent to which the previous two actions tended to be revisited immediately. To obtain 
better insights into the transitive relationship among the three actions, we partitioned the 
16 triadic patterns into five categories (see Table 3), here revised from Batagelj & Mrvar 
(2001) and Borgatti & Lopez-Kidwell (2014) in the context of transition networks that are 
generated from process data. Then, we calculated the numbers of 16 triadic patterns existing 
in each transition network for further analysis. All the global and local measures for transi-
tion networks we included (except the null triad that counts the number of isolated nodes) 
are confirmed to have significant predictive power related to the variability of students’ 
problem-solving outcomes in an online assessment environment (Zhu et al., 2016).

Social and cognitive skills of CPS

The social and cognitive skill levels of CPS were identified based on the log file data of all 
four tasks. The log file data consisted of mouse events (e.g., clicking a button, dragging to 
move an object) and chat discussion (i.e., typing texts in the chat window) in the task envi-
ronment. All the actions were recorded in order and time-stamped. The focus of the ATC21S 
assessment tasks is “the process and quality of problem solving” (Adams et al., 2015, p. 
116) rather than the conventional design that relies on attaining a solution as the sole cri-
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Table 3  Categories of triad census in transition networks
Categories Triadic patterns (with names in 

Fig. 3)
Descriptions

Null triad 003 Three isolated nodes
Dyadic triads 012, 102 Three nodes in which links exist between two 

nodes
Brokerage triads 021D, 021U, 021C, 111D, 111U, 

201
Partially connected three nodes with one node 
as a broker, capturing two links in a triad.

Connected triads 030T, 030C, 120D, 120U, 120C, 210 Three non-reciprocally connected nodes, 
capturing three links in a triad.

Reciprocal triad 300 Three reciprocally connected nodes

Fig. 3  Patterns of triad census for directed networks. (Note: Nodes = actions that the participants conduct-
ed; Links between nodes = the sequences of action transitions; Arrows at the end(s) of links = directions of 
sequences in action transitions. A tie with an arrow at only one end between two nodes indicates that the 
participant changed from conducting one action to another but not the other way; a tie with an arrow at 
both ends between two nodes means that the participant alternated between a pair of actions.)
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terion using dichotomous scores. Adopting rubrics and partial credit approaches, students’ 
social and cognitive skill levels of CPS were scored through automation procedures based 
on their actions in the log file during the problem solving for all four CPS tasks.

The automation procedure began with the identification of task features matching the ele-
ments of Hesse et al.’s (2015) framework (i.e., participation, perspective taking, and social 
regulation represent social skills, while task regulation and knowledge building represent 
cognitive skills) from all the tasks administered. This was then followed by the generation 
of simple rules (see below) to collect data points that were able to represent these elements. 
The data points were extracted from log files generated by the students’ work in the assess-
ment tasks, consisting of the documentation of each event (i.e., every action conducted by 
the participants). In particular, the actions observed in the log file data were used as indica-
tors of social and cognitive skills, as defined in Hesse et al. (2015). Such indicative behav-
iors were then coded into rule-based indicators that could be extracted from the process 
log file data through an algorithmic procedure similar to the description in Zoanetti (2010), 
which reports how process data (e.g., action counts) can be interpreted as an indicator of a 
behavioral variable (e.g., learning from a mistake). These coded indicators were considered 
the primary data source for the scoring procedure. Each of the scoring algorithms took the 
coded dichotomous or polytomous indicators as the input and created a corresponding out-
put, defined by the rule for the relevant indicator. For instance, the algorithm would count 
the occurrences of the event “chat” in the log file data if capturing the number of interac-
tions in a task, and the output for this indicator would be a numerical value representing the 
frequency of the chat (for more details on the algorithms, see Adams et al., 2015). Then, the 
indicators were analyzed using Rasch modeling (Rasch, 1960) with two dimensions (i.e., 
social and cognitive skill levels). The modeling procedure set the average task indicator 
difficulty to 0, and the difficulty of an indicator was presented as an estimate describing the 
students’ skill level based on the four tasks. Consequently, the students’ skill levels were 
identified as higher if they conducted more actions whose corresponding theoretical indica-
tors were more difficult to construct. The students’ social and cognitive skill levels were 
identified through weighted likelihood estimate scores (WLE; i.e., the estimates on item 
range of difficulty as enacted by the participant, which was given a measure of item diffi-
culty). Table 4 shows the WLE distribution on the different skill levels of CPS. In practice, 
the scoring engine, which is managed by the University of Melbourne, automatically coded 
and scored the log file data, producing WLE scores and skill levels for further analysis and 
for producing reports for teacher and student use.

Analysis strategy

The data analysis was conducted in R 4.0.2 (R Core Team, 2020). R packages sna (v2.6; 
Butts 2020), network (v1.16.1; Butts et al., 2020), and GGally (v2.0.0; Schloerke et al., 
2020) were mainly applied to process, visualize, and analyze the transition networks with 
the process data from the Olive Oil task. In particular, we created a transition network for 
each pair of the participants’ action transitions. We calculated the number of existing nodes, 
density, Freeman degree centralization, reciprocity, and the numbers of the 16 patterns in 
the triad census (see Fig. 3) for each network. Analysis of variance, Welch’s tests, and post 
hoc tests (Tukey and Bonferroni) were applied to the network measures across social and 
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cognitive skill levels of CPS that were computed based on the four CPS tasks in the ATC21S 
portal.

Results and discussion

Social and cognitive skill levels of CPS among individuals and pair compositions

Social and cognitive skills of CPS varied among the individual students in the four CPS 
tasks. The social skill levels of 153 (92.17%) participants were relatively high (i.e., at levels 
4, 5, 6), whereas the cognitive skills of 120 (72.29%) participants were at the low levels (i.e., 
at levels 1, 2, 3). Table 5 shows the frequency of each social and cognitive skill level of CPS 
within the 166 individual participants.

We categorized all participants into four theoretically based individual CPS profiles 
(Andrews-Todd & Forsyth, 2020). In particular, levels 1, 2, and 3 in social and cognitive 
skills (see Table 4) were grouped into the low dimension of skills, while levels 4, 5, and 6 
were classified as the high dimension. In our data, there were three CPS groups for 166 indi-
vidual participants: high social and high cognitive skills (HH), high social and low cognitive 
skills (HL), and low social and low cognitive skills (LL). Because the four CPS assessment 
tasks were administered in pairs, five pair compositions of CPS skills were identified among 
the 83 pairs of participants for further analysis.

When the paired students exhibited the same levels of skills, we used “active” or “pas-
sive” to represent the high or low level of social skills, respectively, and used “high-perform-
ing” or “low-performing” to represent the high or low level of cognitive skills, respectively. 
“Compensated” was applied to demonstrate the pairs in which two students had different 
levels within the same skill (e.g., one member had high and the other had low social or cog-
nitive skills). Accordingly, the five pair compositions of CPS skills were identified as active 

Skill levels Social skills: n (%) Cognitive 
skills: n (%)

1 4 (2.41%) 2 (1.21%)
2 6 (3.61%) 54 (32.53%)
3 3 (1.81%) 64 (38.55%)
4 35 (21.08%) 33 (19.88%)
5 94 (56.63%) 9 (5.42%)
6 24 (14.46%) 4 (2.41%)

Table 5  Frequency of social and 
cognitive skill levels within 166 
individual participants generated 
from a bundle of four CPS tasks

 

Skill levels Social WLE range Cognitive WLE 
range

1 below 1.3 below − 3.5
2 between − 1.3 and − 0.7 between − 3.5 and 

− 0.8
3 between − 0.7 and − 0.5 between − 0.8 and 

0.5
4 between − 0.5 and 0.3 between 0.5 and 1.7
5 between 0.3 and 1.5 between 1.7 and 2.1
6 between 1.5 and 7 above 2.1

Table 4  Range of WLE scores in 
ATC21S portal corresponding to 
the social and cognitive skill lev-
els of a bundle of four CPS tasks
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high-performing pairs (both participants had high social and high cognitive skills), active 
compensated pairs (both participants had high social skills while each member represented 
either a high or low level of cognitive skills), active low-performing pairs (both participants 
demonstrated high social and low cognitive skills), compensated low-performing pairs 
(each member represented either high or low social skill levels while both exhibiting low 
cognitive skills), and passive low-performing pairs (both participants showed low social 
and low cognitive skills). Almost half of the pairs (n = 40, 48.19%) were active low-per-
forming pairs, whereas passive low-performing pairs accounted for the fewest pairs (n = 2, 
2.41%). It is notable that there was a set of 32 pairs in which each pair included at least one 
member with high social and high cognitive skills (i.e., active high-performing and active 
compensated pairs), whereas there were 51 pairs that did not have one member with high 
social and high cognitive skills (i.e., active low-performing, compensated low-performing, 
and passive low-performing pairs). Figure 4 presents the frequency distribution of the five 
pair compositions within the 83 pairs of participants.

Utilizing a computer-based environment with a human−human approach, Andrews-Todd 
& Forsyth (2020) cluster four types of individual students’ CPS profiles of social and cogni-
tive levels in a triad setting: high social and high cognitive, high social and low cognitive, 
low social and high cognitive, as well as low social and low cognitive. Except for the low 
social and high cognitive profile, we found the same profiles of individual students’ CPS 
skills as those in Andrews-Todd & Forsyth (2020). The reason why no individual students 
were assessed as having low social and high cognitive skills might be related to the asym-
metric design of the Olive Oil task that deliberately promoted social interactions between 
paired partners. If dyads did not actively communicate with their partners through chatting, 
they were not able to proceed further in the task, leading to low instead of high cognitive 
skills of CPS in the assessment environment. Beyond the individual level, we extended the 
knowledge of individual students’ CPS profiles to five pair compositions in a dyad setting.

Differences in patterns of action transitions among five pair compositions

In this section, we first present and discuss visualizations of transition networks from action 
sequences within different pair compositions in order to highlight the action sequences 
indicative of skillful pairs in the context of the Olive Oil task. Second, we offer the descrip-
tive statistics of network measures in these transition networks. Finally, we present and 
discuss comparisons across the network measures between transition networks associated 
with pairs with different skills.

To illustrate the contrast in action transition processes across pair compositions, we visu-
alized two transition networks, namely one conducted by an active high-performing pair and 
one by a passive low-performing pair; in both cases we chose the pairs who implemented 
the most actions among pairs that were similar in terms of composition of CPS skills. The 
comparison was based on the log file data of the Olive Oil task (see Figs. 5 and 6). The 
active high-performing pair consisted of two members with high social and high cognitive 
skills, whereas the passive low-performing pair had both members with low social and low 
cognitive skills. The active high-performing pair in Fig. 5 conducted more actions than the 
passive low-performing pair in Fig. 6 (i.e., there are more nodes in Fig. 5 than in Fig. 6). 
It can be seen that the active high-performing pair attempted a greater diversity of paths to 
solve the Olive Oil task. The active high-performing pair conducted 11 actions (see Fig. 5) 
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out of the 12 necessary actions in the most efficient path (see 10 actions in Table 2 together 
with the nodes of ChatA and ChatB). In contrast, the passive low-performing pair imple-
mented merely 4 actions (i.e., ChatA, ChatB, S1, and A7; see Fig. 6) that were in the most 
efficient path to the solution. On the other hand, the active high-performing pair repeated 
those actions that were not in the most efficient solution path less frequently than the pas-
sive low-performing pair (i.e., Fig. 6 has thicker blue edges revealing more frequent repeti-
tion between unnecessary actions in the most efficient path when compared with Fig. 5). 
Moreover, the active high-performing pair conducted a higher frequency of action transition 
when compared with the passive low-performing pair. Based on the above elaboration on 
the visualizations, Fig. 5 represents a relatively productive CPS, while Fig. 6 illustrates a 
relatively unproductive one. These visualizations of the transition networks show that the 
pair with high social and high cognitive skills of CPS appeared to conduct more productive 

Fig. 4  Frequency distribution of the five pair compositions (N = 83 pairs). (Note: HH-HH = active high-
performing pairs (n = 14, 16.87%); HL-HH = active compensated pairs (n = 18, 21.69%); HL-HL = active 
low-performing pairs (n = 40, 48.19%); LL-HL = compensated low-performing pairs (n = 9, 10.84%); 
LL-LL = passive low-performing pairs (n = 2, 2.41%))
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CPS than the pair with lower skills. CSCL comprises processes of working collectively 
toward a solution of problems, especially when the path to the solution is unclear (Bause et 
al., 2018). Compared with unproductive CPS, productive CPS with more trials of different 

Fig. 5  Visualization of the transition network conducted by an active high-performing pair in the Olive 
Oil task. (Note: For meanings for the codes of the nodes, see Tables 1 and 2; Edge sizes equal to the 
weights of the edges divided by three. The reason for this division is to avoid an unclear presentation 
through visualization of overlapping edges; Colors of the edges: Red = action transitions among actions 
in the most efficient path to solve the problem; Blue = action transitions among actions not in the most 
efficient path to solve the problem; Gray = action transitions between actions necessary and not necessary 
in the most efficient path to solve the problem; The positions of nodes are randomly assigned, meaning 
that the distance between the nodes does not have particular meanings; this is decided randomly by the 
visualization software)

 

Fig. 6  Visualization of the transition network conducted by a passive low-performing pair in the Olive Oil 
task, here following the same symbols as in Fig. 5
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solution paths, and higher frequency of action transitions may better facilitate conducting 
the actions included in the most efficient path.

In the transition networks generated from the process data in the Olive Oil task, the mean 
number of existing nodes was 27.8, meaning that 83 pairs conducted 27.8 actions on aver-
age during the task. The maximum number of actions that the pairs conducted was 58, while 
the minimum was 6, indicating a large variation between the pairs. The density of networks 
appeared to be sparse (M = 1.12%). This result implies that the participants were not likely 
to attempt every available action to work out the problem (some might have left the task 
before solving the problem). A low value in the mean of degree centralization (0.09) reveals 
that there appeared to be no particular focal action that the pairs implemented during the 
task. The low mean value of degree centralization is related to the asymmetric design of 
the Olive Oil task, leading to the solution path being unclear for paired students. Therefore, 
students had to communicate with their paired partners to attempt different paths to solve the 
problem. The mean of reciprocity was 0.24, indicating that the students revisited the previ-
ous one action immediately, at least to some extent. This implies that the students appeared 
to plan their solution paths with more than one action ahead. In terms of the triad census, 
the average number of null triads (i.e., three isolated nodes; see the “003” pattern in Fig. 3) 
turned out to be large (M = 71,881), meaning that there were 71,881 isolated “003” patterns 
on average. This result validates the low average value of density (1.12%) in the transition 
networks in which students did not appear to conduct many available actions. In turn, the 
average number of reciprocal triads (i.e., three nodes forming triadic reciprocity, see pattern 
“300” in Fig. 3) was small (M = 0.71). This shows that students barely revisited the previous 
two actions right away on average. That is, the student pairs were likely to attempt another 
path consisting of other actions to solve the problem rather than revisiting the previous two 
actions back and forth. Table 6 depicts the descriptive statistics of all network measures of 
the transition networks.

In the current study, we utilized students’ social and cognitive skill levels of CPS as the 
outcome measures to guide formation of pairs based on composition. Based on the results 
of the ANOVA and Welch’s tests comparing network measures of transition networks across 
five pair compositions of CPS skills (see Table 7), all network measures were significantly 
different across pair compositions, except for reciprocity and the number of reciprocal triads 
(i.e., three actions forming triadic reciprocity, “300” in Fig. 3). The most important result is 
that the transition networks of pairs having at least one member with high social and high 
cognitive skills (i.e., active high-performing and active compensated pairs) demonstrated 
significantly higher mean values regarding the number of actions, average frequency of 
action transitions, and the tendency to conduct actions for different number of times when 
compared with the other pair compositions.

First, pairs having at least one member with high social and high cognitive skills con-
ducted more different actions than other pair compositions. This is further validated by 
our finding that the number of null triads (i.e., the number of three actions that were not 
conducted, e.g., “003” in Fig. 3) in the transition networks of active high-performing and 
active compensated pairs was significantly lower than that of other pairs (see Table 7). More 
concretely, the average number of actions that active high-performing pairs conducted was 
twice as much as that of compensated low-performing and passive low-performing pairs. 
Having at least one member with high social and high cognitive skills in a pair may facili-
tate the implementation of more actions to attempt different solution paths. In the Olive Oil 
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task, chats and all operational actions in the most efficient path of solution (see Table 2) are 
not easy to conduct successfully in just one trial. Pairs have to discuss and attempt different 
paths to access the solution. Pairs having at least one member with high social and high cog-
nitive skills were more likely to obtain the potential solution for the task, leading to produc-
tive CPS because they conducted more different actions than other pairs when attempting 
different paths for the solution.

On the other hand, our finding that pairs with the best skill levels (i.e., active high-
performing pairs) conducted the most actions is not in line with the result in De Boeck & 
Scalise (2019), in which students who implemented more actions appeared to be less suc-
cessful in PISA 2015. Compared with the human–human approach adopted in our study, the 
human–agent approach applied in De Boeck & Scalise (2019) provided students with lim-
ited opportunities for communication with the computer agent. Therefore, the path to solve 
the problem was designed to be relatively more structured so that the successful participants 
in the task did not necessarily need to conduct many actions to attempt different paths for 
the solution when compared with that in human–human approach tasks. Particularly, the 
Xandar task applied in De Boeck & Scalise (2019) has four parts (i.e., agreeing on a strat-
egy, reaching a consensus, playing the game effectively, and assessing progress) that address 
a relatively clear path to solve the problem. For instance, in the first part of agreeing on a 
strategy, the student is expected to follow the rules of engagement provided, whereas in the 
fourth part, the agent poses a question about the progress. This structured form of assistance 
from the environment is useful for participants to figure out the solution path so that they 

Network measures Mean SD Max Min
Number of existing nodes 27.80 13.60 58 6
Density 1.12% 0.56% 2.30% 0.12%
Degree centralization 0.09 0.04 0.48 0.08
Reciprocity 0.24 0.08 0.19 0.02
Number of triad census:
  Null triad (003) 71881.00 2094.00 75627 67500
  Dyadic triads
  012 3403.00 1701.00 7040 370
  102 517.00 255.00 1063 70
  Brokerage triads
  021D 44.00 40.20 185 1
  021U 37.80 29.40 119 1
  021C 97.90 78.20 350 1
  111D 27.00 19.50 93 0
  111U 26.90 22.10 92 1
  201 3.43 3.84 17 0
  Connected triads
  030T 14.30 11.50 52 0
  030C 5.63 4.56 18 0
  120D 3.99 3.43 13 0
  120U 4.60 3.73 17 0
  120C 5.75 4.61 20 0
  210 2.36 2.77 11 0
  Reciprocal triad (300) 0.71 1.03 5 0

Table 6  Descriptive statistics of 
network measures in transition 
networks generated from the 
Olive Oil task
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do not need to conduct many actions to attempt different possible paths for the solution. In 
contrast, pairs representing the best skill levels were likely to conduct the most actions in 
the Olive Oil task with a human−human approach; this may be because of the asymmetric 
nature of the task, lack of structured assistance from the environment compared with the 
human–agent approach, and the restriction-free communication with partners. There could 
be substantial variations across computer-based CPS tasks in terms of the design of the tasks 
(e.g., whether the tasks are asymmetric or symmetric with a human–human or human–agent 
approach; how much and what kinds of the previous knowledge learned in the curriculum 
are required for the tasks; whether the communication is synchronous or not; whether the 
tasks are short-term, e.g., the tasks in our study, or long term that last for several weeks 
or months; or whether the tasks are for dyads, triads, or even more students in a group). 
To some extent, our results could be applied to those computer-based CPS tasks that are 

Table 7  Results of one-way ANOVA and Welch’s tests on five pair compositions across network measures in transi-
tion networks of process in the Olive Oil task
Network measures Active high-

performing
(n = 14)
(M/SD)

Active 
compensated
(n = 18)
(M/SD)

Active low- 
performing
(n = 40)
(M/SD)

Compensated 
low-performing
(n = 9) (M/SD)

Passive 
low- per-
forming
(n = 2)
(M/SD)

F

Number of nodes 37.79/13.17 32.72/14.14 25.48/11.31 15.89/9.56 13.50/6.36 6.38***
Density 1.40%/

0.40%
1.40%/
0.6%

1.00%/
0.50%

0.50%/
0.30%

0.60%
/0.60%

7.29***

Degree centralization 0.12/0.04 0.11/0.04 0.08/0.03 0.05/0.01 0.06/0.04 11.52***
Reciprocity 0.24/0.08 0.25/0.05 0.24/0.07 0.26/0.14 0.21/0.08 0.18
Number of triad census:
  Null triad (003) 70813.64/

1644.75
70723.17/
2116.42

72190.98/
1864.41

74049.33/
1378.97

73799.00/
1964.34

6.86***

  Dyadic triads
  012 4278.71/

1404.94
4271.78/
1693.48

3167.68/
1525.32

1705.89
/1253.42

1851.50
/1495.53

6.21***

  102 612.00
/161.73

678.44
/253.22

484.05
/238.11

239.56
/132.91

304.00
/328.01

7.13***

  Brokerage triads
  021D 61.00/38.56 65.89/47.59 37.03/34.69 10.78/13.08 15.00/16.97 4.81**
  021U 52.64/30.12 53.83/30.94 32.15/25.53 12.22/12.10 16.00/18.39 6.61***
  021C 141.50/79.70 142.78/89.07 80.60/62.16 29.78/31.67 40.00/39.60 6.37***
  111D 37.64/21.40 38.50/19.09 23.10/16.32 8.33/5.39 10.00/14.14 7.04***
  111U 35.86/23.73 41.83/24.95 22.35/17.14 7.67/6.96 6.00/5.66 10.95***
  201 4.14/3.35 5.44/4.62 3.00/3.66 0.78/1.39 1.00/1.41 3.03*
  Connected triads
  030T 11.79/5.91 20.17/10.79 14.55/12.66 5.44/6.35 13.00/18.39 2.96*
  030C 8.36/5.36 7.17/4.08 4.85/4.15 2.33/3.16 3.00/4.24 3.87**
  120D 5.14/3.23 6.28/3.50 3.25/2.91 0.56/0.73 5.50/6.36 15.78***
  120U 5.43/2.93 7.11/4.09 4.10/3.28 0.56/0.53 4.50/6.36 21.73***
  120C 5.00/2.75 8.78/4.71 5.48/4.82 2.11/1.69 5.50/6.36 3.99**
  210 2.21/2.16 4.11/3.64 2.08/2.44 0.56/1.33 1.50/2.12 3.25*
  Reciprocal triad (300) 0.93/1.00 0.72/0.83 0.78/1.21 0.11/0.33 0.50/0.71 0.98
Welch’s tests were applied to 111U, 120D, and 120U due to unequal variance, while a one-way ANOVA was 
applied to the rest of network measures
Degree of freedom: (4, 78); *p < 0.05, **p < 0.01, ***p < 0.001
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designed similarly to the Olive Oil task (i.e., synchronous short-term tasks that are designed 
with asymmetric human–human approach for dyads, not requiring knowledge obtained in 
the previous curriculum).

Second, active high-performing and active compensated pairs showed the highest den-
sity values in their transition networks of the Olive Oil task. This indicates that pairs having 
at least one member with high social and high cognitive skills appeared to change actions 
more frequently on average than other pairs. The Olive Oil task is asymmetric, emphasiz-
ing inductive and deductive reasoning skills. The solution path for the task is not apparent 
to participants at the beginning, so pairs must type messages for discussion to attempt dif-
ferent actions with the goal of obtaining the path for the solution. Therefore, pairs need to 
frequently change actions to access the solution path in the Olive Oil task. That is, the high 
frequency of changing actions in the Olive Oil task may exhibit more productive CPS. 
In contrast, utilizing a computer-based assessment environment for individual students’ 
problem solving, Zhu et al. (2016) report that eighth graders with higher efficiency scores 
exhibited a significantly lower frequency of action transitions on average. It is noteworthy 
that the actions referred to in Zhu et al. (2016) are all operational actions, excluding chats. 
The individual students in Zhu et al. (2016) were given basic information about how a hand 
water pump works, and then, they were asked to fix a pump that was not working properly. 
With prior knowledge provided and working alone, the students had better performance in 
Zhu et al. (2016) because they did not need to either attempt various actions to access the 
solution or communicate with partners during the task; this leads to less frequently changing 
actions on average. It appears that the results regarding relations between patterns of action 
transitions (i.e., number of conducted actions, frequency to change actions) and outcomes 
depend to a great extent on the task design and implementation.

Third, in our study, active high-performing and active compensated pairs had the high-
est mean values of degree centralization, while compensated low-performing pairs demon-
strated the lowest mean value. This shows that pairs having at least one member with high 
social and high cognitive skill levels tended to attempt certain actions more frequently than 
other actions in the Olive Oil task. This result is not in line with that of Zhu et al. (2016) 
addressing individual students’ problem solving in an online assessment environment. Zhu 
et al. (2016) show that students with higher systematicity scores do not prefer to conduct 
certain focal actions instead of others, meaning that they conduct actions for almost the 
same number of times. The difference of findings in our study and in Zhu et al. (2016) may 
be because of the different designs of the tasks. With manual provided for students in Zhu 
et al. (2016), individual students merely need to learn the solution routine from the manual 
and apply such routine to solve the task. Consequently, individual students with higher out-
comes do not need to try different solution paths by conducting certain focal actions more 
frequently (Zhu et al., 2016). However, in our study with human‒human approach exclud-
ing additional assistance provided such as the manual in Zhu et al. (2016), the students with 
better outcomes are likely to focus on conducting some actions more frequently than others 
when figuring out the solution path with their paired partners. That is, the extent to which 
pairs choose to conduct certain actions more frequently than other actions may relate to CPS 
productivity and the quality of their outcomes.

As discussed above, pairs comprising at least one student with high levels of social and 
cognitive skills appeared to exhibit more productive CPS than other pairs in the Olive Oil 
task. That is, in the transition networks generated from the Olive Oil task, student pairs 
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having at least one member with high social and high cognitive skills (i.e., active high-
performing and active compensated pairs) exhibited significantly higher mean values for 
the number of actions, average frequency of action transitions, and the tendency to conduct 
actions for different number of times compared with other pair compositions.

Our result that pairs involving at least one member with high social and high cognitive 
skills are more productive in computer-based CPS is in line with the finding of Andrews-
Todd & Forsyth (2020) showing that having at least one member with high social and high 
cognitive skills in a three-person group facilitates performance. In addition, Herborn et al. 
(2017) report that in a human–agent setting, active high-performing collaborators (i.e., indi-
viduals with high social and high cognitive skills) exhibited the best performance on a 
number of indicators (e.g., knowledge acquisition, application, and reasoning of problem 
solving) in PISA 2015. Consequently, involving at least one member with high social and 
high cognitive skills is likely to produce better outcomes or be more productive in com-
puter-based CPS than other individual profiles or pair compositions. Compared with other 
pair compositions, the active low-performing, compensated low-performing, and passive 
low-performing pairs (i.e., pairs that did not have one member with high social and high 
cognitive skills) showed less productive CPS, as indicated by the fewer actions conducted, 
lower frequency of changing actions on average, and greater tendency to conduct actions for 
the same number of times (i.e., less likely to repeat particular actions) in their transition net-
works. The relatively low level of cognitive skills that both members had in these three pair 
compositions may have hindered them in creating additional ideas and a shared understand-
ing (Andrews-Todd & Forsyth, 2020). On the other hand, social interaction among mem-
bers is considered a major contributor to productive CPS (Hao et al., 2015). Collaborative 
discussions allow students to enhance individual cognition by engaging in profound levels 
of knowledge restructure and revision (Liu & Hmelo-Silver, 2010). Computer-based CPS 
tasks require active levels of social interaction based on high cognitive skills; for instance, 
the ATC21S tasks that we administered appear to be sensitive to pair composition. Further-
more, the social and cognitive skills of CPS are “not mutually exclusive” (Pöysä-Tarhonen 
et al., 2018, p. 2); they are intertwined in a way that the outcomes of a CPS task are gener-
ally the results of the interactions of these skills (Liu et al., 2015). When there is at least one 
socially and cognitively more skillful member in the pair, this member is likely to efficiently 
interact with and cognitively assist the other member to facilitate their partner’s potential 
contributions.

Although the distinct pair compositions in terms of CPS skills presented diverse pro-
ductivity in CPS, reciprocity and the number of reciprocal triads (i.e., triadic pattern “300” 
representing three actions that transit reciprocally in Fig. 3) were not significantly different 
across the five pair compositions. This result indicates that students were likely to revisit the 
previous one and two actions immediately to the same extent, regardless of their CPS skill 
levels. In the asymmetric reasoning task—Olive Oil—students needed to intensively com-
municate with their partners through writing in chat windows. Their partners were expected 
to respond to questions and requests right away, regardless of their skill levels. Accordingly, 
such immediate responses were demonstrated as reciprocity and as the number of recipro-
cal triads. Thus, reciprocity and the number of reciprocal triads in the transition networks 
showed insignificant differences across the five pair compositions of CPS skills.

There was no particular pair composition presenting the highest or lowest numbers of 
all triadic types in the connected triads (see Table  7). The main difference between the 
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connected triads and reciprocal triads is that the former captures the action transitions of 
non-reciprocal three links within three nodes, whereas the latter represents the action transi-
tions of reciprocal three links in three nodes in the transition networks (see Fig. 3; Table 3). 
Thereby, the result of no particular pair composition showing the highest or lowest numbers 
in all connected triads, in a way, validates the insignificant finding in the number of recip-
rocal triads across pair compositions because the number of nodes in the connected triads 
and in the reciprocal triad are the same. Significant differences in the numbers of brokerage 
triads and connected triads across pair compositions could provide useful information for 
designing tasks and looking for common pitfalls (Zhu et al., 2016) in online problem solv-
ing tasks. Analytic methods other than SNA may not offer such information. For example, 
if a certain action transition in a triadic pattern that is rather frequently repeated, however, 
does not belong to the path to the solution, this may indicate a potential design problem that 
needs to be improved in the task or that the participants are showing a common misconcep-
tion of problem solving in these three actions.

Post hoc tests that compared the network measures in transition networks across the five 
pair compositions show that differences were found between active high-performing pairs 
and compensated low-performing pairs (number of nodes: p < 0.001; density: p < 0.001; cen-
tralization: p < 0.001; null triad: p < 0.001; numbers of dyadic triads: p < 0.01; numbers of 
brokerages triads 021D, 021U, 021 C, 111D (for visual structures, see Fig. 3): p < 0.05; num-
ber of connected triad 030 C: p < 0.05). Statistically significant differences in the numbers of 
other brokerage triads (111U, 201: p < 0.05) and connected triads (120D, 120U, 120 C, 210: 
p < 0.05) were found between active compensated pairs and compensated low-performing 
pairs. Moreover, multiple comparisons indicate that there was no significant difference in 
the network measures in the transition networks between the passive low-performing pairs 
and other pair compositions. This was unexpected because we assumed that passive low-
performing pairs, in which both the participants had low levels of social and cognitive skills, 
might present significant differences from other pair compositions. This result might be 
because in the present sample, there were only two passive low-performing pairs. A small 
sample size of passive low-performing pairs might not be representative.

In an online assessment environment, we investigated transitional patterns of sequen-
tial actions (e.g., drag and move objects with a mouse, click buttons, type messages) and 
their relations with paired students’ CPS outcomes, which has not gained much attention in 
previous CSCL literature (Dado & Bodemer, 2017). We extended Zhu et al.’s (2016) study 
from individual to paired students, showing that paired students’ patterns of action transi-
tions could also be studied through transition networks. Degree matters a great deal in the 
mutual influence between actions in CSCL (Stahl & Hakkarainen, 2021), and patterns of 
action transitions are able to capture such mutual influence to demonstrate the productivity 
of students’ CSCL. However, some patterns of action transitions (e.g., number of conducted 
actions, frequency to change actions on average) do not demonstrate identical relations 
with students’ outcomes in different tasks that are designed with either a human−human 
or human−agent approach. The relationship between patterns of action transitions and stu-
dents’ outcomes appears to be task- and approach-oriented in CSCL. In particular, such 
relations depend on the approach used when designing the task (e.g., human−human or 
human−agent), what kinds of knowledge and skills are needed for solving the task, and the 
extent to which structured assistance is available for students before and during the task.
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The tasks developed in the ATC21S project aimed at teaching and learning CPS skills. 
The outcomes represented students’ social and cognitive skill levels of CPS generated from 
the tasks designed to provide direct feedback to students and teachers in a formative manner. 
Teachers might be able to utilize this kind of information on students’ CPS skill levels to 
optimize students’ developmental progression in future CPS practices. Group composition 
is especially important in computer-based CPS tasks, in which the teachers’ facilitating role 
is often minimal (Borge et al., 2015). Based on our results on the pair composition of CPS 
skill levels and their relation to CPS productivity, teachers could assign one student who 
has high social and high cognitive skills into a pair for future CPS and other CSCL tasks 
although both members in a pair should ideally have high social and high cognitive skills. 
As a result, facilitated by the one with high social and high cognitive skills, the student pair 
may actively integrate each other’s opinions, obtaining and providing useful feedback to 
one another to enhance the comprehension of the problem solving tasks. This kind of facili-
tation by a more skillful learning partner may create opportunities but also challenges. On 
the one hand, there are positive opportunities, especially for a socially and/or cognitively 
less skillful student in the pair to observe and engage with a more skillful learning partner 
in a way that each student in the pair can have a relatively productive role in contributing 
to solving the tasks. On the other hand, a more skillful student can easily compensate for 
the performance of a less skillful partner. Yet, this may offer fewer opportunities for the lat-
ter one to practice the skills and strategies needed in CPS. To minimize this compensatory 
effect, teachers should offer additional learning opportunities, for instance, more practice 
and feedback for those students who need more assistance and facilitation in CPS and CSCL 
tasks. On the other hand, sophisticated information about students’ patterns of action transi-
tions can provide teachers with knowledge regarding students’ productivity of CSCL so that 
teachers can obtain a comprehensive understanding of students’ CSCL performance. More-
over, triadic patterns of students’ transition networks could offer insights for practitioners 
and researchers to detect potential pitfalls in task design.

The limitations of the present study warrant some consideration. First, our study relied on 
a relatively small sample of Finnish sixth graders, and the frequency distribution of five pair 
compositions was not balanced (e.g., there were only two passive low-performing pairs). 
Future investigations could recruit a larger sample of students in different age cohorts and 
possibly also from different nations. Second, our research assessed students’ CPS processes 
and skills in a cross-sectional setting. Future studies could focus on longitudinal settings that 
probe the dynamic relationship between students’ CPS processes and skills to be developed 
over a longer time span. Third, the actions for transition networks generated from log files 
are usually not from a probability sample. Rather, the actions were not randomly selected to 
conduct. Thus, transition network data appear to differ from the data collected from conven-
tional item response data in terms of the possibility of generalizing the results to the general 
population (Scott & Carrington, 2011). Fourth, we merely examined fundamental network 
measures in transition networks. To better understand the patterns of action transitions in 
transition networks, future investigations could explore more network measures for transi-
tion networks, for instance, betweenness, closeness, and average path length (Wasserman 
& Faust, 1994). Moreover, we did not analyze the contents of written communications (i.e., 
contents of students’ typing in chat windows) or students’ thinking processes during the 
tasks. Future research could combine a transition network analysis with other methods in 
more deeply analyzing CSCL processes. For instance, transition networks could assist in 
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filtering data and identifying productive or unproductive episodes for more detailed micro-
level analyses. With transition networks, the frequency of actions in the solution path could 
also be analyzed, followed by qualitative content analysis or computational linguistic analy-
sis (Dowell et al., 2019) of the written communication related to those actions to reach a 
deeper understanding of what makes productive or unproductive CSCL.

Conclusions

CSCL is all about the peer interactions that occur in sequences of actions (including moving 
objects with a mouse and typing messages for communication; Stahl & Hakkarainen 2021). 
Within such sequences, the actions mutually influence each other (Baker et al., 2007), and 
such influences are viewed in the sequential nature. The mutual influence between actions is 
a matter of degree (Stahl & Hakkarainen, 2021), and patterns of action transitions are thus 
able to capture such mutual influence and demonstrate the productivity of students’ CSCL 
processes.

The purpose of the present study was to explore student pairs’ patterns of action transi-
tions and their relation to students’ outcomes, namely, CPS skills, in an online CPS environ-
ment. We represented actions as nodes and sequences of actions as links to create transition 
networks representing action transitions. We also computed fundamental network measures 
(e.g., average frequency of changes among actions, the dispersion of attempts given to dif-
ferent actions) to study the patterns of action transitions exhibiting the productivity of the 
student pairs’ CPS. We extended existing knowledge of patterns of action transitions from 
an individual (Zhu et al., 2016) to dyad setting, demonstrating the productivity of paired 
students’ CPS. Based on our results, teachers and practitioners should carefully consider 
group composition when creating collaborative pairs or small groups (von Davier & Halpin, 
2013). Our study further underlined that a pair having at least one member with high social 
and high cognitive skills of CPS is likely to exhibit productive CPS that is characterized by 
more actions, a higher average frequency of transition among actions with a higher tendency 
to conduct actions for different number of times when compared with unproductive CPS. 
It is notable that our results could be generalized to the contexts of synchronous short-term 
computer-based CPS tasks that are asymmetric requiring human–human collaboration in 
pairs, without knowledge obtained in the previous curriculum.

Our results contribute to developing pedagogical practices by providing empirical evi-
dence of the importance of being aware of the students’ social and cognitive skill levels of 
CPS when assigning students into pairs for computer-based CPS tasks. At the time when 
CPS in a variety of digital environments has become part of the curriculum in many countries 
(Wise & Schwarz, 2017), we provided a way to study action transitions that demonstrates 
the productivity of CPS. Accordingly, teachers can benefit from inferences of procedural 
information from action transitions to obtain a holistic understanding of how the pair or 
small group collectively conducts a series of computer-based CPS tasks as a whole (Theiner 
& O’Connor, 2010). Methodologically, the patterns of action transitions in CSCL are chal-
lenging to study. Our study offers a novel approach to investigate paired students’ patterns 
of action transitions by integrating process-oriented research with skill-based assessments.
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