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A B S T R A C T

Airborne Laser Scanning (ALS) results in point-wise measurements of canopy height, which can further be used
for Individual Tree Detection (ITD). However, ITD cannot find all trees because small trees can hide below
larger tree crowns. Here we discuss methods where the plot totals and means of tree-level characteristics
are estimated in such context. The starting point is a previously presented Horvitz–Thompson-like (HT-like)
estimator, where the detectability is based on the larger tree crowns and a tuning parameter 𝛼 that models
the detection condition. We propose a new method which is based on modeling the spatial pattern of hidden
tree locations using a sequential spatial point process model, with a tuning parameter 𝜃. We also explore
whether the variability of the tuning parameters 𝛼 and 𝜃 can be predicted using ALS features to improve the
predictions. The accuracy of stand density, dominant height and mean height is used as comparison criteria in
a cross-validation procedure. The HT-like estimator with empirically estimated tuning parameter 𝛼 performed
the best. The overall performance of the new method was comparable. The new method was computationally
less demanding, which makes it attractive for practical use.
1. Introduction

Airborne Laser Scanning (ALS) results in point-wise measurements
of canopy height, which allow detection of individual tree crowns
using individual tree detection (ITD). The detected trees can be ordered
according to their shortest distance to the sensor, and trees may hide
behind earlier trees; we call larger trees ‘‘earlier’’ in this context. Here
we focus on the estimation of totals and means of all forest trees,
including those that are hidden below larger tree canopies. The missed
trees have a direct impact on the total estimates, such as stand density
(𝑁 , trees per ha). Also the means (e.g. mean height) may be biased
since small trees are missed more easily than large trees (Vauhkonen
et al., 2010).

Mehtätalo (2006) proposed a Horvitz–Thompson-like (HT-like) es-
timator for the estimation stand density based on ITD. He used a
sequential construction and assumed that a three is detected if the
crown center is not covered by larger tree crowns. If tree locations
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follow complete spatial randomness, the probability to detect tree 𝑖 can
be computed using union of detected crown segments. The method is an
application of stochastic geometry (Chiu et al., 2013), which analyzes
sets generated by marked point processes (Illian et al., 2007). Kansanen
et al. (2016, 2019, 2022) generalized the method by assuming that a
tree is detectable if it does not hit the set 𝐴𝑖, which is obtained by
subtracting/adding a buffer of width |𝛼|𝑟𝑖 from/to the union of larger
crown segments. The tuning parameter 𝛼 (−1 ≤ 𝛼 ≤ 1) needs to be
known beforehand, e.g. based on the properties of the ITD algorithm
or using empirical training data.

The constructions described above assume that the density of trees
of a given size is similar in the visible and hidden parts of the sam-
ple plot. However, the hidden parts have worse growing conditions
e.g. in terms of sunlight availability. In addition, foresters may have
manipulated the point pattern of tree locations e.g. through thinnings.
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Table 1
Mean, standard deviation, minimum and maximum of stand density (𝑁), quadratic
mean diameter (QMD) and basal area (BA) in Liperi. The full data contains 110 field
plots.

Attribute mean sd min max

𝑁 , stems ha−1 1085.99 625.18 211.11 3900
QMD, cm 18.48 5.92 8.23 37.18
BA, m2 ha−1 23.87 7.80 7.84 46.19
Mean height, m 15.86 4.30 8.94 26.61
Dominant height, m 22.12 4.98 12.83 34.28

Empirical estimation of 𝛼 takes this problem into account at least
artially, but a better solution might be explicit modeling of the local
tand density in the hidden parts. An intuitive model for this purpose
s the finite sequential spatial point process model (SSPP), which was
ecently proposed for forest data by Yazigi et al. (2021). In SSPP, the
oints (tree locations) within an observation window (sample plot)
re ordered from the earliest (largest) to the latest (smallest), and the
arlier points have an effect on the locations of the latter points. They
ssumed that the order in terms of tree age can be sufficiently well
pproximated by the order in terms of tree diameter. The first location
f the sequence is generated from the homogeneous Poisson process.
or the latter trees, homogeneous Poisson process is also used for
enerating a proposal location. If the proposal is within distance 𝑅 from
ny of the earlier locations, the proposal is accepted with probability
. Otherwise it is accepted with probability 1 − 𝜃.

The SSPP model of Yazigi et al. (2021) allows the generation of dif-
erent spatial point patterns depending on the values of the parameter
. For 𝜃 = 1∕2, the SSPP model is a homogeneous Poisson process.
alues 𝜃 < 1∕2 and 𝜃 > 1∕2 correspond to clustered and regular spatial
oint patterns respectively. If the parameter 𝑅 is selected so that it cor-
esponds to the detection condition in the HT-like estimator, the ratio
𝜃

1−𝜃 describes the ratio of stand densities in the hidden and visible parts
of the forest, leading to a straightforward extension of Kansanen et al.
(2016). An additional possible extension is modeling the parameter 𝜃
f Yazigi et al. (2021) or/and the parameter 𝛼 of Kansanen et al. (2016)
mpirically using predictors based on the ALS data and justified by
oint process theory (Häbel et al., 2021).

In this paper, we extend the HT-like estimator of Kansanen et al.
2016) so that it takes into account the interaction of trees through
he SSPP model of Yazigi et al. (2021), and compare the extended
stimator with the previously published one. We will also evaluate
hether the variability of the tuning parameters can be explained by
redictors derived from the ALS point cloud to improve the accuracy of
he extended HT-like estimator. The evaluation with empirical data is
ased on a leave-one-out cross-validation approach, using the accuracy
f stand density, dominant height and mean height as performance
riteria. This paper extends the analysis of Mehtätalo et al. (2021) by
1) generalizing the estimator for plot total and mean, (2) exploring
he possibility to explain the tuning parameters using laser features, (3)
valuating based on cross-validation and (4) presenting a more detailed
valuation using dominant and mean heights of the plot.

. Material

We use 110 fixed-area plots of size 30 by 30 m from North Carelia,
inland (Table 1). Scots pine (Pinus sylvestris L.) is the dominant
pecies on 39%, Norway spruce (Picea abies [L.] Karst.) on 43%, and
irch species (Betula pendula Roth and B. Pubescens Ehrh.) on 18%
f the plots. The trees were measured for location, diameter (DBH),
nd height on the field. ALS data were acquired using an Optech Titan
nstrument on July 2–10, 2016 using the scanning altitude of 850 m
bove ground level, the scanning half angle of 20 degrees, the pulse
epetition frequency of 250 kHz and the sampling density of 4.8 pulses

2

2

er m . We used only the 1064 nm channel in this study. m
3. Methods

3.1. Individual tree detection

In the applied Bayesian framework-based ITD algorithm, individual
trees are modeled as rotationally symmetric objects. For each tree the
maximum a posteriori (MAP) estimates of their location, crown radius
and height, the lower limit of the living crown, and crown shape
parameter are determined. For a more detailed discussion about the
ITD algorithm, we refer to Lähivaara et al. (2014) and Kansanen et al.
(2022).

The trees found by ITD are those that are visible to the scanner.
As we discussed in the introduction, some trees may be hidden below
other tree canopies, which means that plot totals (of stand density,
standing volume or biomass, for example) are underestimated. Fur-
thermore, because the hidden trees are on average smaller than the
visible trees, the means of tree-specific variables will be overestimated.
To adjust the estimates based on ITD for these problems, we use a
previously published HT-like estimator and a new variant of it, which
are explained in the next subsections.

3.2. The basic estimator

We assume that ALS is used to detect the projections of tree crowns
to the ground level 𝐶𝑖, where 𝑖 is an index for tree. The 𝑛 observed
trees within a sample plot window 𝑊 are ordered according to the
distance to the sensor, which in practice means ordering in terms of
height in decreasing order. Furthermore, assuming that crown area is
a monotonic function of tree height, this corresponds to ordering in
terms of |𝐶𝑖| from largest to smallest. Now, small (later) trees may
hide behind larger (earlier) trees in the ordered sequence. An intuitive
starting point to approximate the number of hidden trees is based on
the assumptions that (i) a tree is detected if the center point is visible
to the scanner and (ii) the density (trees per ha) in the hidden parts
of 𝑊 is similar to that in the visible part of 𝑊 for each detected tree.
Then the detectability for tree 𝑖 is the proportion of the total area not
covered by larger tree crowns (Mehtätalo, 2006; Kansanen et al., 2016,
2019)

𝜋𝑖 = 1 −
|

|

|

𝑊 ∩
⋃𝑖−1

𝑗=1 𝐶𝑗
|

|

|

|𝑊 |

.

We are interested in the plot total of the tree-level characteristic
𝑖, 𝜏 =

∑𝑁
𝑖=1 𝑚𝑖. For estimation, we use the Horvitz–Thompson-like

stimator

𝜏𝑚 =
𝑛
∑

𝑖=1

𝑚𝑖
𝜋𝑖

, (1)

where the inclusion probability 𝜋𝑖 is called detectability (Thompson,
012; Kansanen et al., 2019). It is straightforward to implement estima-
or (1) using the ordered set of observed tree crowns. Notice that using
𝑖 = 1 for all trees gives the estimator of the total number of trees,
hich we denote by 𝜏1. For the plot-level mean of the tree-level char-
cteristic 𝑚, such as the mean height, we use the estimator (Thompson,
012, p. 69)

̂𝑚 =
𝜏𝑚
𝜏1

. (2)

Writing the estimator (1) as

𝜏𝑚 =
𝑛
∑

𝑖=1
𝑚𝑖 +

𝑛
∑

𝑖=1

(

1
𝜋𝑖

− 1
)

𝑚𝑖 (3)

shows that it is the sum of the total of observed trees and an estimated
total of hidden trees. Because 𝜋𝑖 is smaller than or equal to 1, the

ultipliers
(

1
𝜋𝑖

− 1
)

are non-negative. Therefore, the estimator adjusts
he total of detected trees upwards, which is intuitive if the two above-
entioned assumptions on the detection condition and spatial pattern
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of tree locations in the hidden parts of the plot are met, and no other
nuisance effects are present. However, the spatial pattern of the small
trees is affected by nearby larger trees. Furthermore, the ITD algorithm
may miss also visible trees or may find trees that do not exist. The next
subsections present adjustments for these shortcomings.

3.3. Adjusting for the detection condition

Kansanen et al. (2016, 2022) proposed an adjustment that allowed
parameter 𝛼 to control the detection condition. To estimate the de-
ectability of tree 𝑖, a buffer of width 𝛼𝑟𝑖 is removed (a negative 𝛼 means
hat a buffer is added) from the union of larger tree crowns, and the
etectability is defined as the probability that the center point of tree 𝑖
s within this buffered set. An intuitive range for 𝛼 is the interval [−1, 1];

using 𝛼 = 1 means that the tree will be detected if any part of the
crown disk is outside the union of larger tree crowns, whereas 𝛼 = −1
means that the tree crown should not overlap with larger tree crowns at
all to make the tree detectable. However, there is no technical reason
to restrict the value of 𝛼. Especially, if it is estimated empirically, it
implicitly describes the density of the hidden trees below the larger
ones, and no upper or lower bounds for 𝛼 are necessary.

Formally, the detectabilities are defined as

𝑖 =

⎧

⎪

⎨

⎪

⎩

1 −
|𝑊 ∩[

⋃𝑖−1
𝑗=1 𝐶𝑗⊖𝐵(𝛼𝑟𝑖)]|

|𝑊 |

, 𝛼 > 0

1 −
|𝑊 ∩[

⋃𝑖−1
𝑗=1 𝐶𝑗⊕𝐵(|𝛼|𝑟𝑖)]|

|𝑊 |

, 𝛼 < 0
, (4)

where ⊖ is erosion and ⊕ is dilation and 𝐵(𝑟) is a disk of radius 𝑟 (Chiu
et al., 2013). To apply formula (4), parameter 𝛼 needs to be known. In
applications, a value based on the known properties of the applied tree
detection algorithm could be used based on the restrictions of inter-tree
distances used in the applied ITD algorithm. It would also be possible to
remove such small, detected trees that are not detectable according to
the applied detection condition. Such an approach might make the data
more closely follow the model assumptions, which might improve the
final estimation result. Alternatively, the parameter can be estimated
empirically, as we do here.

3.4. Adjusting for the spatial pattern in the hidden parts of the plot

If the value of 𝛼 is determined using the ITD algorithm, the estima-
tor (1) with detectability (4) assumes that the density in the hidden
parts (𝜆ℎ, trees per ha) is similar to the density in the visible part
(𝜆𝑣, trees per ha) for each tree separately. That assumption may be
unrealistic, therefore it might be better to allow 𝜆ℎ ≠ 𝜆𝑣. However,
we might assume that the ratio of densities in the hidden and visible
parts is constant for all trees of a sample plot, regardless of tree size.
An intuitive way to parameterize such assumption is to use parameter
𝜃, (0 ≤ 𝜃 < 1), such that
𝜆ℎ
𝜆𝑣

= 𝜃
1 − 𝜃

.

Value 𝜃 = 0.5 means that the density in the hidden part is similar to that
n visible part, 𝜃 < 0.5 means that the density in hidden parts is smaller
han in the visible part (small trees avoid large trees), and 𝜃 > 0.5 means

that density in the hidden parts is larger than in the visible parts (large
trees attract small trees). The HT-like estimator (3) can then be adjusted
as follows:

𝜏𝑚 =
𝑛
∑

𝑖=1
𝑚𝑖 +

𝜃
1 − 𝜃

𝑛
∑

𝑖=1

(

1
𝜋𝑖

− 1
)

𝑚𝑖 . (5)

For convenience, we rewrite the formula in the form that mimics
the Horvitz–Thompson-like estimator

𝜏𝑚 =
𝑛
∑ 𝑚𝑖

∗ , (6)
3

𝑖=1 𝜋𝑖 𝑅
where

𝜋∗
𝑖 = 1

1 + 𝜃
1−𝜃

(

1
𝜋𝑖

− 1
) =

𝜋𝑖 − 𝜃𝜋𝑖
𝜃 + 𝜋𝑖 − 2𝜋𝑖𝜃

.

However, 𝜋∗
𝑖 cannot be interpreted as an inclusion probability or de-

tectability, because 𝜃 is a parameter of the spatial point process model
of the tree population. To employ Eq. (6), parameter 𝜃 needs to be
known. Notice that using 𝜃 = 0.5 leads to estimator (3) and 𝜃 = 0 gives
𝜏𝑚 =

∑

𝑚𝑖.

3.5. Estimating 𝛼 and 𝜃 for a forest plot using field data

In this section, we present how the values of 𝛼 and 𝜃 needed
in estimators (3) and (6) can be estimated for sample plots using
field-measured trees. These estimates are then used as true values in
the subsequent analysis. Especially, we aim at predicting them using
remote sensing data to enable practical application of estimators (1)
and (5).

3.5.1. The 𝑁-matching method to estimate 𝛼 or 𝜃
Estimation of 𝛼 or 𝜃 can be based on matching the field-measured

values for the number of trees with the HT-estimate. For every plot
where the field-measured tree count 𝑁𝑓 is larger than the number of
detected trees 𝑛, it is possible to find such value of 𝛼, conditional on
a predefined value of 𝜃, that 𝜏1 = 𝑁𝑓 ; the estimated tree count 𝜏1 is
based on Eqs. (3) and (4). Corresponding solution can also be found
for 𝜃 conditional on a predefined value of 𝛼.

The left-hand side of equation 𝑁𝑓 − 𝜏1(𝛼|𝜃) = 0 is a monotonic
function of 𝛼. Therefore, it has a unique solution, which can be
found e.g. by using a step-halving algorithm. We used implementation
lmfor::updown in R (Mehtätalo and Kansanen, 2022). For 𝜃, the
exact solution to equation 𝑁𝑓 − 𝜏1(𝜃|𝛼) = 0 is

𝜃 =
𝑁𝑓 − 𝑛

∑𝑛
𝑖=1

1
𝜋𝑖

+𝑁𝑓 − 2𝑛
.

Notice that 𝑁-matching utilizes only the field-measured tree counts,
whereas the SSPP-method described below utilizes also the field-
measured tree locations.

For plots where the number of detected trees is greater or equal to
the number of field-measured trees, we considered 𝛼 = 𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
as the 𝑁-

atching estimate. It is the smallest value of 𝛼 that gives the minimum
istance |

|

|

𝑁𝑓 − 𝜏1(𝛼|𝜃)
|

|

|

and 𝜏1 = 𝑛 when trees are isolated. For 𝜃, we
sed 𝜃 = 0 as the 𝑁-matching estimate of 𝜃 when 𝑛 ≥ 𝑁𝑓 , which always
ives 𝜏1 = 𝑛. An alternative is to consider 𝑁-matching estimate to be
ndefined in those plots.

.5.2. The SSPP-method to estimate 𝜃
An alternative to 𝑁-matching for estimating 𝜃 for a forest plot

s an adjusted version of the SSPP model of Yazigi et al. (2021).
he model is based on ordering trees from largest to smallest. The
odel assumes that the location of the first tree of the sequence is

enerated by a homogeneous spatial Poisson process. For the later
rees, a proposal location is generated using the Poisson process. The
roposal is accepted with probability 𝜃 if the model is within distance 𝑅
interaction radius) from any of the earlier trees and with probability
− 𝜃 otherwise. The model of Yazigi et al. (2021) has parameters 𝑅
nd 𝜃, which are common to all trees of the plot. The parameters were
stimated using maximum likelihood. Here we use the predicted crown
adius as a predefined tree-specific value of 𝑅, which was predicted
sing tree 𝐷𝐵𝐻 . Therefore, only parameter 𝜃𝑖 was estimated when
itting the SSPP model for forest plot 𝑖.

For prediction of crown radius, a data set of ITD-based crown radii
nd field-measured tree 𝐷𝐵𝐻 was constructed by manually match-
ng the ITD data with field-measurements. Only sure matches were
ncluded in the data set. Thereafter, a mixed-effect model

= 𝛽 + 𝛽 𝐷 + 𝛽 (𝐷 − 𝐷̄ ) + 𝑎 + 𝑏 𝐷 + 𝑒 , (7)
𝑖𝑗 0 1 𝑖𝑗 2 𝑖𝑗 𝑖 𝑖 𝑖 𝑖𝑗 𝑖𝑗
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𝐷

Table 2
The ALS features calculated on the basis of marginal distribution of return heights and spatial information
from thresholded canopy height models (TCHM).
Feature Symbol x-values

Height features
Quantile of first return heights p_x 50, 80, 95 (%)
Proportion of first returns above a threshold d_x 2, 10, 15 (m)
Spatial features
Number of patches no_x 20, 40, 60, 80 (%)
Average size of patches in number of pixels means_x 20, 40, 60, 80 (%)
Standard deviation of size of patches sdS_x 20, 40, 60, 80 (%)
Average number of same pixel type in a 4-neighborhood SP_x 20, 40, 60, 80 (%)
Euler number for TCHMs E_x 20, 40, 60, 80 (%)
Integrated deviation of 𝐹 -function from theoretical reference IF_x 20, 40, 60, 80 (%)
KL-type divergence of 𝐹 -function from theoretical reference DF_x 20, 40, 60, 80 (%)
Pairwise KL-type divergence of 𝐹 -functions between TCHMs F_x1 × 2 20, 40, 60, 80 (%)
was fitted, where 𝑅𝑖𝑗 is the maximum crown radius based on ITD and
𝑖𝑗 is the field-measured DBH of tree 𝑖 on plot 𝑗; 𝐷̄𝑖 is the mean of

field-measured diameters and 𝑎𝑖 and 𝑏𝑖 are random zero-mean bivariate
normal random effects on plot 𝑖. Term 𝑒𝑖𝑗 is residual error with variance
𝜎2 ||

|

𝑅̃𝑖𝑗
|

|

|

2𝛿
(Mehtätalo and Lappi, 2020). The plot-level predictions of this

model were used to predict crown radii for all field-measured trees.
Thereafter, an estimate of parameter 𝜃𝑖 was obtained for each plot by
fitting the SSPP model of Yazigi et al. (2021) separately for each plot,
using maximum likelihood, conditioning on the tree-specific estimates
of crown radii as the interaction radii.

3.6. Predicting 𝛼 and 𝜃 without field data

A simple way for estimating 𝛼 and 𝜃 without field-data is to use the
mean of the plot-specific ‘true’ values in a training data set. However,
better performance might be obtained by regressing them on conven-
tionally used features of the ALS return heights or such features that
tell about the spatial pattern of trees. Häbel et al. (2021) proposed
a set of such metrics, based on the theory of spatial point patterns
and stochastic geometry (Table 2). We explored if they improve the
prediction of 𝛼 and 𝜃 compared to using the mean of training data.

For each evaluated plot-level parameter estimate (𝛼 and 𝜃 based on
𝑁-matching and 𝜃 based on SSPP), we used stepwise model selection,
as implemented in R-function step (R. Core Team, 2021). We used BIC
as the model selection criterion instead of AIC, because AIC sometimes
led to models with more than ten predictors, which was regarded as
a too large number of predictors in the data of 110 plots (Harrell,
2001). However, for some of the characteristics, one or few plots had
a very different value of the characteristics than the others, and those
characteristics were not used in the analysis to avoid problems caused
by overly influential observations. For parameter 𝛼, a linear model of
form

𝛼𝑖 = 𝒙′𝑖𝜷 + 𝑒𝑖 (8)

was used and fitted using OLS. For 𝜃, a nonlinear model of form

𝜃𝑖 =
1

1 + exp
(

−𝒙′𝑖𝜷
) + 𝑒𝑖 (9)

was used to restrict the value of predicted 𝜃 to range (0, 1); estimation
was based on nonlinear OLS. The variable selection was first done using
a linear model of form (8) for logit(𝜃).

3.7. Analysis

3.7.1. The evaluated methods
To evaluate the estimator (6) using different values of 𝛼 and 𝜃,

we start with the detected tree crowns. The following methods were
thereafter used for determining 𝛼 and 𝜃 in the estimator.

1. 𝛼 = 0, 𝜃 = 0 (Using detected trees only)
4

2. 𝛼 = 0, 𝜃 = 0.5 (Mehtätalo, 2006)
3. 𝛼 = 0, 𝜃 is the mean of the plot-level values based on the SSPP
model.

4. 𝛼 = 0, 𝜃 is the mean of the plot-level values based on 𝑁-
matching.

5. 𝛼 = 0, 𝜃 is predicted using ALS metrics. The estimates based on
SSPP-model are used when fitting model for 𝜃.

6. 𝛼 = 0, 𝜃 is predicted using ALS metrics. The estimates based on
𝑁-matching are used when fitting model for 𝜃.

7. 𝛼 is the mean of the plot-level values based on 𝑁-matching,
𝜃 = 0.5

8. 𝛼 is predicted using ALS metrics, 𝜃 = 0.5
9. 𝛼 is the mean of the plot-level values based on 𝑁-matching. The

plot-level estimates of 𝜃 where further found by 𝑁-matching.
The mean of these estimates was used in prediction.

10. Similar to method (9) but 𝜃 was based on a regression model of
the plot-level estimates.

3.7.2. Cross-validation procedures
The evaluation for methods (1–8) was based on leave-one-out cross-

validation, where each plot, in turn, was used for evaluation and
all steps of training, including the stepwise variable selection of the
predictive models, were carried out without the evaluation plot in
question.

For methods 9 and 10, a two-step cross-validation approach was
needed because the training was needed for both parameters in separate
steps. To conduct the cross-validation for plot 𝑖, the training data of step
1 included all plots except for plot 𝑖. A further leave-one-out procedure
was conducted within this training set to estimate 𝜃 for each plot 𝑗,
𝑗 = 1,… , 𝑛 − 1 using 𝑁-matching. When estimating 𝜃 for plot 𝑗, the 𝛼
parameter was estimated as the mean of the 𝑛− 2 training plots, i.e. in
the training data of step 2 that excluded plots 𝑖 and 𝑗. In method 9, the
mean of the obtained 𝑛−1 estimates of 𝜃 in the training data was then
used as a prediction for plot 𝑖. In method 10, the predictions of 𝜃 were
based on a nonlinear regression model of form (9) fitted to the 𝑛 − 1
estimates of 𝜃.

3.7.3. Comparison criteria
The methods were evaluated by estimating their ability to predict

the stand density (trees per ha), dominant height (meters), and mean
tree height (meters). Dominant height was determined as the mean of
100 tallest trees per hectare, i.e., the mean of 9 tallest trees on the 30 m
by 30 m sample plot.

It is well-known that ALS-based estimates of tree height are un-
derestimates because of penetration of laser pulses to the crown and
missed treetops (Gaveau and Hill, 2003). For example, in the data
set of matched field-measured and ITD-trees (see Section 3.5.2), the
mean difference was 0.626 m. However, the matching data was biased
towards larger trees, and the absolute difference seemed to increase
with increasing height. Therefore, the bias was eliminated from the
estimated heights using the model

ℎ(𝑓𝑖𝑒𝑙𝑑) = 𝛽 + 𝛽 ℎ(𝐴𝐿𝑆) + 𝑎 + 𝑏 ℎ(𝐴𝐿𝑆) + 𝑒 ,
𝑖𝑗 0 1 𝑖𝑗 𝑖 𝑖 𝑖𝑗 𝑖𝑗
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Table 3
The predictors that remained in the predictive models of 𝛼𝑁𝑚𝑎𝑡𝑐ℎ, 𝜃𝑁𝑚𝑎𝑡𝑐ℎ and 𝜃𝑆𝑆𝑃𝑃 (Eqs. (8) and (9)) after stepwise variable selection in the
full model fitting data, the model fitting statistics of the models and the summary (minimum–median–maximum) of the number of predictors
in the 110 models fitted to the leave-one-out cross-validation data sets.

Response Predictors Residual standard error 𝑅2 # of predictors in LOO

𝜃𝑁𝑚𝑎𝑡𝑐ℎ p_95, d_10, IF_0.2 0.117 0.217 2 - 3 - 10
𝜃𝑆𝑆𝑃𝑃 no_0.8, DF_0.2 0.111 0.139 2 - 2 - 7
𝛼𝑁𝑚𝑎𝑡𝑐ℎ p_50, p_80, d_10, DF_0.2, F_84, F_82 0.236 0.297 4 - 6 - 9
Table 4
The cross-validation results about the accuracy of stand density for all plots on the left and for plots with highest field-measured stand density on the right (𝑁 > 114, 37 plots).
The figure ME/se in parentheses is the ratio between mean error and the standard error of mean.

All plots Plots with highest 𝑁

ME RMSE ME RMSE

Method 𝛼 𝜃 1/ha (ME/se) % 1/ha % 1/ha (ME/se) % 1/ha %

1 0 0 −387.3 (−11.1) −35.5 532.4 48.8 −755.9 (−12.8) −42.1 834.9 46.5
2 0 0.5 621.7 (10.4) 57.0 881.5 80.9 1045.1 (8.0) 58.2 1307.2 72.8
3 0 𝜃̄𝑆𝑆𝑃𝑃 38.1 (1.6) 3.5 246.1 22.6 2.6 (0.0) 0.1 318.8 17.7
4 0 𝜃̄𝑁𝑚𝑎𝑡𝑐ℎ 7.9 (0.4) 0.7 236.9 21.7 −51.0 (−1.0) −2.8 309.3 17.2
5 0 𝜃𝑆𝑆𝑃𝑃 80.7 (2.8) 7.4 310.3 28.5 105.7 (1.5) 5.9 438.2 24.4
6 0 𝜃𝑁𝑚𝑎𝑡𝑐ℎ −10.5 (−0.4) −1.0 263.4 24.2 −85.6 (−1.4) −4.8 386.1 21.5
7 𝛼̄𝑁𝑚𝑎𝑡𝑐ℎ 0.5 −38.1 (−1.8) −3.5 219.5 20.1 −159.0 (−3.8) −8.9 298.5 16.6
8 𝛼̃𝑁𝑚𝑎𝑡𝑐ℎ 0.5 −27.2 (−1.0) −2.5 274.4 25.2 −116.2 (−1.8) −6.5 414.8 23.1
9 𝛼̄𝑁𝑚𝑎𝑡𝑐ℎ 𝜃̄𝑁𝑚𝑎𝑡𝑐ℎ −101.1 (−4.6) −9.3 250.8 23.0 −267.1 (−6.3) −14.9 368.2 20.5
10 𝛼̄𝑁𝑚𝑎𝑡𝑐ℎ 𝜃𝑁𝑚𝑎𝑡𝑐ℎ −19.9 (−0.6) −1.8 320.9 29.4 −15.3 (−0.2) −0.9 503.1 28.0
4

𝜃
n
r
i
a
u

c
b
I

t
a
e
A
d
6
t
i
m
d
m
T
a
a
h

d
1
t

which was fitted to the same data set that was used for fitting the model
shown in Eq. (7). Here ℎ(𝑓𝑖𝑒𝑙𝑑)𝑖𝑗 and ℎ(𝐴𝐿𝑆)𝑖𝑗 are the field-measured and
ALS-based tree height in meters, 𝛽0 and 𝛽1 are fixed regression coeffi-
cients, 𝑎𝑖 and 𝑏𝑖 random plot effects and 𝑒𝑖𝑗 the residual error, based on
the standard default assumptions of mixed-effects models (Mehtätalo
and Lappi, 2020). Also crown radius was evaluated as a candidate
predictor but it did not improve the fit. The parameter estimates of the
model were 𝛽0 = −0.0614, 𝛽1 = 1.039, var(𝑎𝑖) = 0.3602, var(𝑏𝑖) = 0.02752,
cor(𝑎𝑖, 𝑏𝑖) = −0.946 and var(𝑒𝑖𝑗 ) = 0.9532. The plot-level predictions from
his model were used as the heights of detected individual trees when
omputing the mean and dominant heights based on them.

The mean error (ME, empirical bias), RMSE, and standard deviation
ere used to measure the performance. Relative RMSE and ME were
lso used for the stand density, where RMSE and ME were divided by
he mean of the field-measured value.

. Results

.1. Estimation and prediction of 𝛼 and 𝜃

Among plots where field-measured tree count was higher than the
umber of detected trees in the ALS data, the plot-specific estimates of
based on 𝑁-matching varied from 0.018 to 0.627, with the mean of

.281 and median 0.286 (Fig. 1). The estimates based on 𝑆𝑆𝑃𝑃 varied
rom 0.039 to 0.550, with a mean of 0.301. The plot-specific estimates
f 𝛼 varied between −0.26 and 1.24, with a mean of 0.400. The
stimates of 𝛼𝑁𝑚𝑎𝑡𝑐ℎ and 𝜃𝑁𝑚𝑎𝑡𝑐ℎ had very strong nonlinear dependence,
hereas the dependencies between 𝜃𝑆𝑆𝑃𝑃 and the estimates based on
-matching were much weaker. Including also the nine plots where

ield-measured tree count was equal or smaller than the number of
etected trees changed the results dramatically, especially in the case of
. Therefore, and based on some initial analysis, we defined the solution
f 𝑁-matching as undefined for those plots. In practice it means that
hese plots were not included in the training data sets in the cross-
alidation, but each of them was used as an evaluation plot to avoid
iased results.

Even the best performing predictors of 𝛼 and 𝜃 explained only a
mall portion of the total variability (Table 3). In cross-validation, the
ull models reported in Table 3 were not used but the variable selection
as done separately for each training set. The set of predictors varied a

ot among the training sets, as illustrated by the summary of the number
5

f parameters in them summarized in the last column of Table 3. t
.2. Performance of the adjusted HT like estimator

The Horvitz–Thompson-like estimator, where the estimates of 𝛼 or
are based on the training data, performed well compared to the

aive method 1, where only detected trees are used. This happened
egardless of the method used in estimating 𝛼 and 𝜃. There was a clear
mprovement in mean error, standard deviation and RMSE for all three
pplied stand characteristics (Tables 4 and 5) regardless of the method
sed in determining the parameters 𝛼 and 𝜃.

The best method to determine the combination of 𝛼 and 𝜃 for
estimation of stand density was the method 7, where 𝜃 = 0.5 and 𝛼
are determined as the mean of training plots (Table 4). It was clearly
better than the second-best method 4, where 𝛼 = 0 and 𝜃 is the mean
of 𝜃𝑁𝑚𝑎𝑡𝑐ℎ of the training plots. However, method 7 shows signs of sys-
tematic underestimation of stand density for plots with the highest true
density (Fig. 2, top; Table 4, right). Even though it is the best method in
terms of RMSE also among those plots, the almost 9% underestimation
can hardly be explained by sampling errors (|𝑀𝐸|∕𝑠𝑒(𝑀𝐸) ≈ 3.8. In
ontrast, method 4 where 𝜃 is the mean of plot-specific estimates of 𝜃
ased on 𝑁-matching has both low ME and RMSE among those plots.
t was also the second-best method in the full data set.

In terms of dominant height and mean height, the method 2 where
he values 𝛼 = 0 and 𝜃 = 0.5 do not utilize the training data at all
re the best (Table 5). However, that method is clearly the worst for
stimating stand density and cannot be suggested for practical use.
mong methods 3–10, where 𝛼 and 𝜃 are estimated using the training
ata, the best method in terms of RMSE of dominant height is method
where 𝛼 = 0 and 𝜃 is based on a regression model on 𝜃𝑁𝑚𝑎𝑡𝑐ℎ. In

erms of RMSE in mean height, methods 7 and 8 where 𝜃 = 0.5 and 𝛼
s estimated either as the mean of training plot or using a regression
odel are the best and have very similar performance. However, the
ifferences between methods 3–8 in the accuracy in dominant and
ean height are small and may be much affected by random variability.
he value of |𝑀𝐸∕𝑠𝑒| is clearly above 2 for all methods for dominant
nd mean height, which indicates that the underestimation of mean
nd dominant heights is significant; being about 0.20 m for dominant
eight for methods 3–10 and about 1.1 m for mean tree height.

Fig. 3 gives a closer look on the height estimation. It shows the
istributions of tree height based on field-measurements and methods
, 2, and 4. The HT-like estimator adjusts only the weights of detected
rees. Therefore, the (discrete) support of the adjusted height distribu-

ion is the same as that of the detected trees. ALS-based ITD seldom
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f

Fig. 1. The plot-specific estimates of 𝛼 and 𝜃 -parameters based on 𝑁-matching and 𝜃 based on SSPP on field-measured tree count and on each other. Triangle is used as symbols
or those plots where field-measured tree count was smaller or equal to the detected tree count.
Table 5
The cross-validation results about the accuracy of dominant height and mean tree height.

Dominant height Mean tree height

ME RMSE SD ME RMSE SD

Method 𝛼 𝜃 m (ME/se) % m % m m (ME/se) % m % m

1 0 0 −0.31 (−6.54) 0.59 −1.42 2.68 0.50 1.84 (8.80) 11.63 2.86 18.04 2.20
2 0 0.5 −0.10 (−2.32) 0.44 −0.43 2.00 0.43 0.66 (3.72) 4.16 1.97 12.40 1.86
3 0 𝜃̄𝑆𝑆𝑃𝑃 −0.20 (−4.70) 0.50 −0.92 2.25 0.46 1.08 (5.82) 6.79 2.21 13.96 1.94
4 0 𝜃̄𝑁𝑚𝑎𝑡𝑐ℎ −0.21 (−4.84) 0.50 −0.96 2.27 0.46 1.11 (5.97) 7.01 2.24 14.11 1.95
5 0 𝜃𝑆𝑆𝑃𝑃 −0.20 (−4.56) 0.49 −0.89 2.22 0.45 1.05 (5.67) 6.60 2.19 13.84 1.94
6 0 𝜃𝑁𝑚𝑎𝑡𝑐ℎ −0.21 (−4.88) 0.49 −0.93 2.20 0.44 1.13 (6.07) 7.12 2.25 14.16 1.95
7 𝛼̄𝑁𝑚𝑎𝑡𝑐ℎ 0.5 −0.21 (−4.90) 0.51 −0.97 2.29 0.46 1.05 (5.82) 6.62 2.15 13.58 1.89
8 𝛼̃𝑁𝑚𝑎𝑡𝑐ℎ 0.5 −0.21 (−4.96) 0.49 −0.96 2.23 0.45 1.05 (5.85) 6.64 2.15 13.58 1.89
9 𝛼̄𝑁𝑚𝑎𝑡𝑐ℎ 𝜃̄𝑁𝑚𝑎𝑡𝑐ℎ −0.23 (−5.20) 0.52 −1.05 2.34 0.47 1.15 (6.27) 7.23 2.23 14.04 1.92
10 𝛼̄𝑁𝑚𝑎𝑡𝑐ℎ 𝜃𝑁𝑚𝑎𝑡𝑐ℎ −0.23 (−5.10) 0.51 −1.02 2.33 0.46 1.13 (6.26) 7.13 2.20 13.86 1.89
6
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finds trees that are shorter than the shortest trees in the field data,
but can easily miss some of the smallest size classes, as illustrated
by plots 2, 31, 36, and 94. This leads to a general overestimation of
individual tree height. However, the adjusted height distribution based
on method 7 (𝐻𝑇 (𝛼̄, 0.5)) looks otherwise very similar to the observed
eight distribution in many of these plots. Especially, the right tail of
he estimated height distribution is nicely estimated, which explains the
ow RMSE of dominant height, and much smaller bias than for mean
ree height. For method 𝐻𝑇 (0, 0.5), the number of stems has a severe

overestimation, especially for the classes of shortest detected trees.

5. Discussion

This study extended the Horvitz–Thompson-like estimator proposed
by Mehtätalo (2006) and further developed by Kansanen et al. (2016,
2019, 2022) to take into account the departure from the assumption of
complete spatial randomness in the tree population and evaluated the
methods with empirical data. The new adjusted HT-like estimator (6)
includes two parameters: 𝛼 that models the detection condition and 𝜃
hat models how large trees affect the occurrence of smaller trees within
he area of their crown projection.

As already demonstrated in the previous papers, the adjustment of
he set of trees found by ITD based on the detection condition is highly
seful. If only the detected trees were used, the stand density would
e underestimated by 35%. In addition, empirical estimation of the
arameter of the estimator is suggested: assuming that a tree is detected
f center point is visible (𝛼 = 0) and using Poisson process for the hidden
rees (𝜃 = 0.5), the stand density was overestimated by 57%. The best-
erforming methods were those where either 𝛼 or 𝜃 was estimated as

the mean of training plots and the other parameter was given the above-
mentioned default value. Those methods led also to much better results
in terms of estimation of mean height and dominant height than using
ITD-trees only. Especially, the distribution of tree heights was much
more realistic than one would get by using only the detected trees
or using adjustment based on the default values. However, dominant
height was underestimated by approximately 0.2 m and mean height
overestimated by approximately one meter. These estimates are already
corrected for the well-known underestimation based on penetration
of laser pulse to tree crowns and missing treetops (Gaveau and Hill,
2003). The overestimation of tree height is caused by a higher detection
probability for large trees. This bias was clearly decreased but not
completely removed by the proposed estimator.

Including separate parameters for modeling the detectability condi-
tion and the spatial pattern of tree locations make conceptually much
sense. However, our results showed that explicit modeling of the spatial
point pattern through the sequential spatial model of Yazigi et al.
(2021) provided only minor improvements compared to the method
of Kansanen et al. (2016). A natural explanation is that, as discussed
already in Kansanen et al. (2022), empirical estimation of parameter
𝛼 implicitly takes into account also the departure from the complete
spatial randomness. Our results showed that this implicit modeling of
the spatial point pattern seems to be so efficient that a well-formulated
spatial model did not provide clear improvement in overall accuracy,
even though it led to better estimation of stand density for those sample
plots where the true stand density was the largest. However, it is not
sure whether this is a property of the methods that generalizes to other
data sets.

The adjusted model was based on an assumption that the ratio of
densities in the hidden and visible parts of the forest is constant for
all trees of a sample plot, regardless of tree size. This is much more
realistic assumption than that of the previous methods, which assumed
that the densities in the hidden and visible parts are equal, but can still
be criticized e.g. because the trees in the hidden parts may have larger
probability to be removed in thinnings or due to mortality, compared to
the trees in visible parts. The model might be adjusted for this problem
7

by allowing parameter 𝜃 to depend on the tree size. However, the
Fig. 2. The estimates of number of stems, dominant height and mean height on
field-measured values using methods 1 (naive ITD), 2 (naive HT) and the three
best-performing methods to determine 𝛼 and 𝜃 for the Horvitz–Thompson like estimator.

benefit of such extension might be minor, in a similar way as the effect
of switching from a model that assumes similar density to hidden and
visible parts was found to be minor in this study.

Another important difference between methods where 𝛼 = 0 and
𝜃 is estimated vs. the methods where 𝜃 = 0.5 and 𝛼 is estimated is in
computing time. When 𝛼 ≠ 0, we need to dilate or erode a union of
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Fig. 3. The true height distributions of six selected sample plots and estimated distributions based on methods 1, 2 and 7, and the mean height (hmean), dominant height (hdom)
nd number of stems (N) in each of the distributions.
rown segments 𝑛 times in a plot with 𝑛 detected trees, which can take
lot of time especially if the estimation is done on stands with thousands
of trees. The computational burden for estimators where 𝛼 = 0 is much
lower.

The approach where both parameters 𝛼 and 𝜃 were estimated em-
pirically did not lead to improvements compared to methods where
only either of these parameters was fixed to a justified value and the
other was estimated. A natural explanation to this behavior is the
strong dependence of the estimates of 𝛼 and 𝜃 when 𝑁-matching was
used (Fig. 1). These parameters are so strongly dependent that using
both of them leads to an overparameterized model. Or in other words,
8

formulating a justified model for the process of canopy visibility and
estimating the related parameter 𝛼 using 𝑁-matching leads to very
similar results than modeling spatial point pattern using a well-justified
model and estimating the related parameter 𝜃 using 𝑁-matching.

Fig. 1 shows that the optimal values of 𝛼 and 𝜃 vary much between
sample plots. Therefore, we expected that a model that could predict
these parameters even slightly better compared to the mean of the
estimates of the training plots would perform better in prediction
of stand characteristics. However, even though the spatially justified
predictors of Häbel et al. (2021) were able to predict some variability
in the estimates of 𝛼 and 𝜃, the improved accuracy did not pay back
in improvements in the accuracy of stand density, mean and dominant

height.
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