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the linearized anisotropic Calderón problem. The geometric 
condition does not involve the injectivity of the geodesic X-
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are the construction of Gaussian beam quasimodes on the 
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as the FBI transform characterization of the analytic wave 
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1. Introduction and statement of results

The inverse conductivity problem posed by Calderón [5] asks to determine the electri-
cal conductivity of a medium from voltage and current measurements on its boundary. 
This problem is the mathematical model of Electrical Impedance (or Resistivity) To-
mography, an imaging method with applications in seismic and medical imaging. It is 
also one of the most fundamental models of inverse boundary value problems for elliptic 
partial differential equations. For these reasons both the theoretical and applied aspects 
of the Calderón problem have been under intense study. We refer to the survey [53] for 
more information and references.

In this article we are interested in the case where the electrical conductivity of the 
medium is anisotropic, i.e. depends on direction. This can be modeled by a matrix 
conductivity coefficient, or in geometric terms by having a resistivity coefficient given 
by a Riemannian metric g on a compact manifold M with smooth boundary. There are 
many variants of this problem. One of them is the (geometric) Calderón problem for a 
Schrödinger equation: given a known compact Riemannian manifold (M, g) with smooth 
boundary and an unknown potential q ∈ C∞(M), determine q from the knowledge of 
the Cauchy data on ∂M of solutions of the Schrödinger equation

(−Δg + q)u = 0 in M.

Here −Δg is the Laplace-Beltrami operator. This geometric Calderón problem is solved 
in [21] when dim(M) = 2. The problem is open in general when dim(M) ≥ 3 with only 
partial results available. In particular, the unique determination of q was obtained in 
[52] in the Euclidean setting, in [27] for hyperbolic manifolds, and in [40], [29] in the 
real analytic setting. Going beyond these settings, the geometric Calderón problem was 
only solved in the case when (M, g) is CTA (conformally transversally anisotropic, see 
Definition 1.1 below) and under the assumption that the geodesic X-ray transform on 
the transversal manifold is injective [10,12].

The linearized version (at q = 0) of the above problem is also of interest, since methods 
for the linearized problem often give insight to the original problem. In our case, the 
linearized problem reduces to the following simple question asking whether products of 
pairs of harmonic functions form a complete set in L1(M):

Question 1. Let (M, g) be a compact oriented Riemannian manifold with smooth bound-
ary. If f ∈ L∞(M) satisfies

∫
M

fu1u2 dVg = 0

for all uj ∈ L2(M) with Δguj = 0 in M , j = 1, 2, is it true that f ≡ 0?
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The methods of [21,10,12] give a positive answer to Question 1 when dim(M) = 2, 
or when dim(M) ≥ 3 and (M, g) is CTA with the transversal manifold having injective 
geodesic X-ray transform. There have been recent attempts to improve these results when 
dim(M) ≥ 3. In [20], it is proved that Question 1 has a positive answer when (M, g) is a 
complex Kähler manifold with sufficiently many holomorphic functions. The article [13]
establishes a recovery of singularities result: if (M, g) is transversally anisotropic and the 
transversal manifold satisfies a certain geometric condition, one can recover transversal 
singularities of f . See also [11], [50] for the linearized Calderón problem with partial data 
in the Euclidean setting.

The recent related works [14,15,31,32,34,41,47] regarded inverse problems for nonlin-
ear elliptic equations on CTA manifolds as well as some complex manifolds, equipped 
with a Kähler metric. The linearized problem in Question 1 plays an important role in 
these results. Moreover, it was proven in [34] that on a general transversally anisotropic 
manifold, the products of four (instead of pairs of) harmonic functions form a complete 
set in L1(M), and this result was used crucially to solve the corresponding inverse prob-
lems for semilinear Schrödinger equations. We also mention the related works [22,36], 
which solve inverse problems for nonlinear wave equations by showing that sets of prod-
ucts of four waves are dense.

In this article we extend the result of [13] and show that if the transversal manifold 
is additionally real-analytic, Question 1 has a positive answer (i.e. one can recover f ∈
L∞(M) completely, not just some of its singularities).

Let us proceed to state our results. To that end, let us first recall the following 
definitions, see [10], [12].

Definition 1.1. Let (M, g) be a smooth compact oriented Riemannian manifold of dimen-
sion n ≥ 3 with smooth boundary ∂M .

(i) (M, g) is called transversally anisotropic if (M, g) ⊂⊂ (T, g) where T = R ×M int
0 , 

g = e ⊕ g0, (R, e) is the Euclidean real line, and (M0, g0) is a smooth compact 
(n −1)–dimensional manifold with smooth boundary, called the transversal manifold.

(ii) (M, g) is called conformally transversally anisotropic (CTA) if (M, cg) is transver-
sally anisotropic, for some positive function c ∈ C∞(M).

Here and in what follows M int
0 = M0 \∂M0 stands for the interior of M0. By choosing 

local coordinates x′ for M0 and denoting by x1 the coordinate on R, the metric g = e ⊕g0
has the form

dx2
1 + gαβ(x′)dx′αdx′ β ,

where the Einstein summation convention is used for α, β = 1, . . . , n − 1.
In this work we require that all manifolds are oriented. We mention the recent work 

[4], which studies the Calderón problem on non-oriented Riemannian surfaces.
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Let (M, g) be transversally anisotropic of dimension n ≥ 3 with a transversal mani-
fold (M0, g0). Next we need some definitions related to the transversal manifold (M0, g0). 
Following [12], we say that a geodesic γ : [−T1, T2] → M0, 0 < T1, T2 < ∞, is nontan-
gential if γ(−T1), γ(T2) ∈ ∂M0, γ(t) ∈ M int

0 for all −T1 < t < T2, and γ̇(−T1), γ̇(T2) are 
nontangential vectors on ∂M0. Following [13], we have the following definition.

Definition 1.2. We say that (x′
0, ξ

′
0) ∈ S∗M int

0 is generated by an admissible pair of 
geodesics, if there are two nontangential unit speed geodesics

γ1 : [−T1, T2] → M0, γ2 : [−S1, S2] → M0,

0 < T1, T2, S1, S2 < ∞, such that

(i) γ1(0) = γ2(0) = x′
0,

(ii) γ̇1(0) + γ̇2(0) = t0ξ
′
0, for some 0 < t0 < 2, where ξ′0 is understood as an element of 

Tx0M
int
0 by the Riemannian duality,

(iii) γ1, γ2 do not have self-intersections at the point x′
0, and x′

0 is the only point of their 
intersections, i.e.

γ1(t) = x′
0 ⇔ t = 0, γ2(s) = x′

0 ⇔ s = 0,

γ1(t) = γ2(s) ⇒ γ1(t) = γ2(s) = x′
0.

Let f ∈ L∞(M) and let us extend f ∈ L∞(M) by zero to (R × M0) \ M . Writing 
x = (x1, x′) where x1 ∈ R, and x′ are local coordinates M0, we let

f̂(λ, x′) =
∞∫

−∞

e−iλx1f(x1, x
′) dx1, λ ∈ R, (1.1)

be the partial Fourier transform of f with respect to x1. We have for each λ ∈ R that 
f̂(λ, · ) ∈ L∞(M0) ∩ E ′(M int

0 ).
When X is a real analytic open manifold and u ∈ D′(X), we let WFa(u) ⊂ T ∗X \{0}

stand for the analytic wave front set of u, see [49, Definition 6.1], [25, Sections 8.5, 9.3]. 
The set WFa(u) ⊂ T ∗X \ {0} is closed conic and we have

π(WFa(u)) = singsuppa(u),

where π : T ∗X → X, (x, ξ) �→ x, is the natural projection and singsuppa(u) is the 
analytic singular support of u, i.e. the smallest closed set such that u is real analytic in 
the complement [25, Theorem 8.4.5]. In particular, WFa(u) = ∅ if and only if u is real 
analytic on X.

We have the following analytic microlocal result, which is an analog of Theorem 1.1 
in [13], established in the C∞–case.
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Theorem 1.3. Let (M, g) be a transversally anisotropic manifold of dimension n ≥ 3
with transversal manifold (M0, g0), and assume that M int

0 and g0|M int
0

are real analytic. 
Assume furthermore that f ∈ L∞(M) satisfies∫

M

fu1u2 dVg = 0, (1.2)

for all uj ∈ L2(M) with −Δguj = 0 in M int. Let (x′
0, ξ

′
0) ∈ S∗M int

0 be generated by an 
admissible pair of geodesics. Then for any λ ∈ R, one has

(x′
0, ξ

′
0) /∈ WFa(f̂(λ, · )) ⊂ T ∗M int

0 \ {0}.

Here f̂(λ, · ) refers to the partial Fourier transformation given by (1.1).

Theorem 1.3 implies the following global result, which gives a positive answer to 
Question 1 under suitable geometric assumptions.

Theorem 1.4. Let (M, g) be a transversally anisotropic manifold of dimension n ≥ 3 and 
assume that the transversal manifold (M0, g0) is connected, M int

0 as well as g0 in M int
0

are real analytic. Assume that every point (x′
0, ξ

′
0) ∈ S∗M int

0 is generated by an admissible 
pair of geodesics. Moreover, assume that f ∈ L∞(M) satisfies (1.2) for all uj ∈ L2(M)
with −Δguj = 0 in M int. Then f = 0 in M .

Remark 1.5. Note that while (M int
0 , g0) is real analytic, Theorem 1.4 does not follow 

from the existing results in the real analytic setting, as it corresponds to deforming the 
zero potential by an L∞ perturbation.

Remark 1.6. In Theorems 1.3 and 1.4 while M int is real analytic, the boundary ∂M need 
not be real analytic.

As the following example shows, there exist transversally anisotropic manifolds (M, g)
with a transversal manifold (M0, g0) satisfying the geometric conditions of Theorem 1.4
and with a non-invertible geodesic X-ray transform. Therefore, the geometric Calderón 
problem is still open on such manifolds while our Theorem 1.4 gives a positive solution 
to the corresponding linearized problem.

Example 1.7. Let M0 = S1× [0, a], a > 0, be a cylinder with its usual flat metric g0. The 
geodesics on M0 are straight lines, circular cross sections, and helices that wind around 
the cylinder. The geodesic X-ray transform is not invertible, since the kernel contains 
functions of the form f(eit, s) = h(s) where h ∈ C∞

0 ((0, a)) integrates to zero over [0, a]. 
However, it is shown in Appendix A that every point (x′

0, ξ
′
0) ∈ S∗M int

0 is generated by 
an admissible pair of geodesics.
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It is established in [13, Lemma 3.1] that if (M0, g0) satisfies the strict Stefanov–
Uhlmann regularity condition at (x′

0, ξ
′
0) ∈ S∗M int

0 , which we now proceed to recall, 
then (x′

0, ξ
′
0) is generated by an admissible pair of geodesics.

Definition 1.8. The transversal manifold (M0, g0) satisfies the strict Stefanov–Uhlmann 
regularity condition at (x′

0, ξ
′
0) ∈ S∗M int

0 if there exists η′ ∈ S∗
x′
0
M int

0 such that 
g0(ξ′0, η′) = 0 and such that the following holds: let γx′

0,η
′ : [−T1, T2] → M0, 0 < T1, T2 <

∞, be the geodesic with γx′
0,η

′(0) = x′
0, γ̇x′

0,η
′ = η′. We have

(i) γx′
0,η

′ is nontangential,
(ii) γx′

0,η
′ contains no points conjugate to x′

0,
(iii) γx′

0,η
′ does not self-intersect for any time t ∈ [−T1, T2].

Hence, if a transversally anisotropic manifold (M, g) is such that the transversal man-
ifold (M0, g0) satisfies the strict Stefanov–Uhlmann regularity condition at every point of 
S∗M int

0 with M int
0 and g0|M int

0
real analytic, and (M0, g0) is connected, then Theorem 1.4

holds.
As the following examples demonstrate, there are transversally anisotropic manifolds 

(M, g) with a transversal manifold (M0, g0) satisfying the geometric condition of The-
orem 1.4, and with an invertible geodesic X-ray transform. Thus, for such manifolds 
(M, g), Theorem 1.4 also follows from [10], [12].

Example 1.9. Let (M0, g0) be a simple manifold, i.e. a compact simply connected manifold 
with strictly convex boundary so that no geodesic has conjugate points. Then (M0, g0)
satisfies the strict Stefanov–Uhlmann regularity condition at any point of S∗M int

0 and 
thus also the geometric condition in Theorem 1.4. Note that in this case (M, g) is ad-
missible in the sense of [10], and Theorem 1.4 would also follow from [10].

Example 1.10. Let S3 ⊂ R4 be the unit sphere and let μ be a geodesic arc from the north 
pole to the south pole of the sphere. Let M0 be the closure of a neighborhood of μ. It is 
established in [13] that the manifold M0 satisfies the strict Stefanov–Uhlmann regularity 
condition at each point of S∗M int

0 . Notice also that the manifold M0 contains conjugate 
points, so that it is not simple. However, the geodesic X-ray transform on (M0, g0) is 
injective by [51], and Theorem 1.4 would therefore also follow from [12].

Remark 1.11. We would like to remark that the strict Stefanov-Uhlmann condition is 
not satisfied for (M0, g0) of Example 1.7 since for any (x′

0, ξ
′
0) ∈ S∗M int

0 with ξ′0 pointing 
in the direction of the [0, a] factor, the orthogonal geodesics never reach ∂M0.

The proof of Theorem 1.3 depends crucially on the construction of Gaussian beam 
quasimodes along nontangential geodesics on M0, with exponentially small errors, as 
stated in the following result. Before stating the result, let us recall from [49, Chapter 1]
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the notion of a classical analytic symbol. Let V ⊂ Cn be an open set. We say that 
a(x; h) =

∑∞
k=0 h

kak(x) is a (formal) classical analytic symbol in V if ak ∈ Hol(V ), 
k = 0, 1, 2, . . . , and for every Ṽ ⊂⊂ V , there exists C = CṼ > 0 such that

|ak(x)| ≤ Ck+1kk, x ∈ Ṽ , (1.3)

k = 0, 1, 2, . . . . The classical analytic symbol a(x; h) is said to be elliptic if a0 �= 0.
We have the following essentially well known result, see [48] and [49], and see also the 

work by Babich [1] for a sketch of the proof. Notice that here our quasimode construction 
is performed along the entire geodesic segment contrary to the standard constructions 
in a neighborhood of a point, see [9]. We use the notation

neigh(p,X)

for an open neighborhood of a point p ∈ X, and similarly for neighborhoods of general 
subsets of other topological spaces in place of p and X above.

Theorem 1.12. Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2 with 
smooth boundary, contained in a real analytic open manifold (X̂, g) of the same dimen-
sion with g real analytic in X̂. Let γ : [−T1, T2] → X, 0 < T1, T2 < ∞, be a unit speed 
non-tangential geodesic in X, and let λ ∈ R. For any neighborhood of γ([−T1, T2]), there 
is a family of C∞ functions v(x; h) on X, 0 < h ≤ 1, supported in the neighborhood, and 
C > 0 such that

‖(−h2Δg − (hs)2)v‖L2(X) = O(e− 1
Ch ), ‖v‖L2(X) � 1, (1.4)

as h → 0. Here s = 1
h + iλ. The local structure of the family v(x ; h) is as follows: 

let p ∈ γ([−T1, T2]) and let t1 < · · · < tNp
be the times in (−T1, T2) when γ(tl) = p, 

l = 1, . . . , Np. In a sufficiently small neighborhood V of a point p ∈ γ([−T1, T2]), we have

v|V = v(1) + · · · + v(Np),

where each v(l) has the form

v(l)(x;h) = h− (n−1)
4 eisϕ

(l)(x)a(l)(x;h).

Here ϕ = ϕ(l) is real analytic in V satisfying for t near tl,

ϕ(γ(t)) = t, ∇ϕ(γ(t)) = γ̇(t), Im (∇2ϕ(γ(t))) ≥ 0, Im (∇2ϕ)|γ̇(t)⊥ > 0, (1.5)

and a(l) is an elliptic classical analytic symbol in a complex neighborhood of p.
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We have chosen to give a fairly complete proof of Theorem 1.12 since we are not 
aware of a detailed treatment in the literature and since we need to have fairly precise 
information concerning the quasimodes for our applications. We refer to [33] for a related 
complex Riccati equation, and to [6] for a geometric interpretation of it.

Let us briefly mention how the exponentially small error is achieved in Theorem 1.12. 
The proof of the theorem is by using the ansatz v(x; h) = eisϕ(x)a(x; h), which, as usual, 
leads to solving the eikonal equation for the phase function ϕ(x) and a transport equation 
for the amplitude a(x; h). We first find an exact analytic solution for the eikonal equation 
near a geodesic segment of γ. Consequently, the transport equation for the amplitude 
a(x; h) =

∑N
k=0 h

kak(x) has analytic coefficients and we find a(x; h) as a classical analytic 
symbol. This involves adapting the nested neighborhood method of [49]. The error for v
being a true eigenfunction then is

(−h2Δg − (hs)2)eisϕ
( N∑

j=0
hjaj

)
= hN+2T2(aN ), (1.6)

where T2 is a second order operator with analytic coefficients. Cauchy estimates and (1.3)
then yield that the error term (1.6) is bounded by hN+2CN+1NN . Letting the order N
of the expansions of a depend on h as N = N(h) = [ 1

heC ] gives the exponentially small 
error in the theorem.

The above was based on finding first an exact analytic solution to the eikonal equation 
|dϕ|g = 1 near a geodesic segment of γ. To find such a solution, we view the eikonal 
equation as the Hamilton-Jacobi equation,

p(x, ϕ′
x(x)) = 0, (1.7)

where p(x, ξ) = |ξ|2g(x) − 1 is holomorphically continued to a complex domain. When 
solving the Hamilton-Jacobi equation (1.7) we proceed by a geometric argument of con-
structing a complex Lagrangian manifold,

Λ ⊂ p−1(0),

in a complex neighborhood of a segment of the graph of γ̇ ⊂ T ∗X, see [48]. The solution 
ϕ is then obtained as a generating function of the Lagrangian Λ, which parametrizes Λ
as

Λ = {(x, ϕ′
x(x)}.

Extending the argument to a neighborhood of the geodesic segment of γ requires some 
extra work involving positive Lagrangians.

Let us proceed to explain the main ideas in the proof of Theorem 1.3. Let α0 =
(x′

0, ξ
′
0) ∈ S∗M int

0 be generated by an admissible pair of geodesics γ1(α0) and γ2(α0) on 
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M0. We first show that there exists a neighborhood of α0 in S∗M int
0 such that every point 

α in the neighborhood is generated by an admissible pair of geodesics γ1(α) and γ2(α) on 
M0. Next we construct two real analytic families of Gaussian beams quasimodes v1(α)
and v2(α) on M0, associated to γ1(α) and γ2(α), respectively, with exponentially small 
errors. The fact that (M, g) is transversally anisotropic provides us with the limiting 
Carleman weight φ(x) = x1 for the Laplacian, and using the technique of Carleman 
estimates, we convert the families of Gaussian beams v1(α) and v2(α) into two families 
of harmonic functions on M with exponentially small remainder terms. Testing the 
orthogonality relation (1.2) with the constructed families of harmonic functions leads to 
the exponential decay of the FBI transform of f̂(λ, ·) in a neighborhood of α0. Using the 
FBI characterization of the analytic wave front set, see [49], we conclude the proof. Note 
that we need to work with families of Gaussian beams to fill out the entire neighborhood 
of α0.

Remark 1.13. Similarly to [13], Theorem 1.3 and Theorem 1.4 are established for 
transversally anisotropic manifolds rather than CTA manifolds. The reason for this is 
that the standard reduction

c
n+2

4 ◦ (−Δcg) ◦ c−
(n−2)

4 = −Δg + q, g = e⊕ g0,

leads to the potential

q = −c
n+2

4 Δg(c−
(n−2)

4 ),

see [12], and therefore, to construct harmonic functions with exponentially small remain-
der terms on a CTA manifold, one has to construct Gaussian beam quasimodes for the 
conjugated Schrödinger operator,

esx1(−h2Δg + h2q)e−sx1 ,

with exponentially small errors. If c is independent of x1 and real-analytic then so is q, 
and this construction could be done as in Theorem 1.12. Notice also that for this reason, 
one can also include a general real analytic potential which is independent of x1 in the 
results of Theorem 1.12. However, if c depends on x1 then the corresponding sequence of 
transport equations becomes of ∂̄-type, see e.g. [14], [30], which complicates the analysis 
of Theorem 1.12 further and is therefore not developed here.

The proof of Theorem 1.12 given in Section 2 below shows also that the following 
result holds.

Corollary 1.14. Let us make the same assumptions as in Theorem 1.12 and let q be real 
analytic on X. Then there is a family of C∞ functions vq(x; h) on X such that
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‖
(
− h2(Δg + q) − (hs)2

)
vq‖L2(X) = O(e− 1

Ch ), ‖vq‖L2(X) � 1,

as h → 0. Here vq(x; h) satisfies the same properties as does v(x; h) in Theorem 1.12.

Let us mention that Gaussian beam quasimode constructions have a long tradition in 
microlocal analysis, see [2], [44], [45], with applications in the analysis of eigenfunctions, 
see [54], and inverse problems, see [43] and the references given there.

Finally, let us point out certain related results on a standard geometric version of 
the Calderón problem, which asks to determine a metric g up to natural gauges (a 
boundary-fixing diffeomorphism, and also a conformal factor when dim(M) = 2) from 
the knowledge of Cauchy data on ∂M of solutions of the equation −Δgu = 0 in M . This 
problem was solved in [38] when dim(M) = 2, but for dim(M) ≥ 3 it is only known 
under additional conditions such as the manifold being real-analytic, see [40,38,37], or 
Einstein [19]. Alternative proofs are given in [3,35]. Interesting counterexamples in the 
case of measurements on disjoint sets or low regularity coefficients are given in [7,8]. If one 
allows degenerate coefficients, there are other counterexamples [37,17]. Counterexamples 
with degenerate coefficients form the basis of invisibility cloaking, see e.g. [53].

The paper is organized as follows. Section 2 is devoted to the construction of expo-
nentially accurate Gaussian beam quasimodes and the proof of Theorem 1.12. Section 3
contains some results concerning properties of geodesics needed in the proof of Theo-
rem 1.3. Section 4 extends Theorem 1.12 to produce analytic families of exponentially 
accurate Gaussian beam quasimodes. The construction of families of harmonic functions 
based on Gaussian beam quasimodes is presented in Section 5. Section 6 contains some 
facts about analytic wave front sets and the proofs of Theorem 1.3 and Theorem 1.4. 
The admissibility property of geodesics in Example 1.7 is verified in Appendix A.
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2. Exponentially accurate quasimodes. Proof of Theorem 1.12

Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth 
boundary, contained in a larger real analytic open manifold (X̂, g) of the same dimension 
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with g real analytic in X̂. We extend γ as a unit speed geodesic in X̂. Let ε > 0 be such 
that γ(t) ∈ X̂ \X and γ(t) has no self-intersection for t ∈ [−T1−2ε, −T1) ∪ (T2, T2 +2ε]. 
This choice of ε is possible since γ is non-tangential. First it follows from [28, Lemma 
7.2] that γ|[−T1−ε,T2+ε] self-intersects only at finitely many times tj with

−T1 < t1 < · · · < tN < T2.

We also set t0 := −T1 − ε and tN+1 := T2 + ε. An application of [12, Lemma 3.5]
shows that there exists an open cover {(Uj, κj)}N+1

j=0 of γ([−T1 − ε, T2 + ε]) consisting of 
coordinate neighborhoods Uj and real analytic diffeomorphisms κj having the following 
properties:

(i) κj(Uj) = Ij × B, where Ij are open intervals and B = B(0, δ′) is an open ball in 
Rn−1. Here δ′ > 0 can be taken arbitrarily small and the same for each Uj,

(ii) κj(γ(t)) = (t, 0) for each t ∈ Ij ,
(iii) tj only belongs to Ij and Ij ∩ Ik = ∅ unless |j − k| ≤ 1,
(iv) κj = κk on κ−1

j ((Ij ∩ Ik) ×B).

The corresponding local coordinates κj(x) = (t, y) ∈ Uj are called the Fermi coordinates. 
Here we note that Lemma 3.5 in [12] is established in the C∞ case, and the real analyticity 
of the Fermi diffeomorphisms κj is obtained by inspection of the proof of Lemma 3.5 in 
[12], in view of the analyticity of X̂. As observed in the proof of [12, Lemma 3.5], in the 
case when γ does not self-intersect, there are Fermi coordinates on a single coordinate 
neighborhood of γ|[−T1−ε,T2+ε] so that (i) and (ii) are satisfied. These coordinates are 
given by inverting the map

(t, y) �→ expγ(t)
( n−1∑
k=1

ykek(t)
)
∈ X̂.

Here ek(t) are the parallel transportations of the last n − 1 vectors of an orthonormal 
frame {γ̇|t=−T1 , e1, . . . , en−1} ⊂ Tγ(−T1)M and exp is the exponential map of (X̂, g).

Our goal is to construct exponentially accurate Gaussian beam quasimodes near 
γ([−T1 − ε, T2 + ε]). We shall start by carrying out the quasimode construction in a 
fixed coordinate neighborhood U = Uj which we can identify with the set I ×B, where 
I ⊂ R is an open interval and B = B(0, δ′) is an open ball in Rn−1 with δ′ > 0. Without 
loss of generality, we assume that 0 ∈ I. The geodesic γ in the open set U is given by 
Γ = {x = (t, y) ∈ I ×B : y = 0}.

Let us consider the following Gaussian beam ansatz,

v(t, y;h) = eisϕ(t,y)a(t, y;h), s = 1 + iλ, λ ∈ R, (2.1)

h
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where the phase ϕ is complex valued with Imϕ(t, y) ≥ 0 and a is an amplitude. We 
shall proceed to construct the quasimode v so that the phase ϕ satisfies (1.5) and the 
amplitude a is an elliptic classical analytic symbol.

2.1. Construction of the phase function ϕ

We shall proceed using the classical arguments, solving the Hamilton-Jacobi equation 
in the complex domain and making crucial use of the geometry of positive complex La-
grangians, see [48]. Let us remark here that while we only need the good properties of 
the phase in the real domain, specifically along the geodesic γ, since the phase function 
takes complex values, the Hamilton-Jacobi equation holds naturally for the holomorphic 
extensions in the complex domain. From the geometric point of view, the complex La-
grangian manifold naturally associated to the phase function ϕ is not confined to the 
real domain but is a submanifold of the complexified phase space.

First we have

e−isϕ(−h2Δg − (hs)2)eisϕa = −h2Δga− ih(1 + iλh)[2〈dϕ, da〉g + (Δgϕ)a]

+(1 + iλh)2[〈dϕ, dϕ〉g − 1]a.
(2.2)

In the usual Gaussian beam construction in the C∞–setting, one solves the eikonal 
equation to a large, and sometimes infinite, order along the geodesic, see [43], [2], [44], 
[45]. Working in the present real analytic setting, it will be natural to solve the eikonal 
equation

〈dϕ, dϕ〉g − 1 = p(x, ϕ′
x(x)) = 0 (2.3)

in a full neighborhood of the geodesic. Here

p(x, ξ) = |ξ|2g − 1 = G(x)ξ · ξ − 1 (2.4)

is the semiclassical principal symbol of the operator P = −h2Δg − (hs)2, where G(x) =
(gjk(x)). Since the metric g is real analytic, p(x, ξ) extends to a holomorphic function in 
an open set of the form Ũ ×Cn, where

Ũ ⊂ Cn

is a complex neighborhood of U .
Let (x(t), ξ(t)) = exp( t

2Hp)(0, ξ0) be the integral curve of the Hamiltonian Hp in 
T ∗X, which corresponds to the unit speed geodesic γ, so that

πx

(
exp

(
t
Hp

)
(0, ξ0)

)
= γ(t), t ∈ I ⊂ R,
2
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where πx(x, ξ) = x, and ξ0 = γ̇(0). Here γ̇(0) is viewed as a cotangent vector using the 
Riemannian duality. Since (0, ξ0) ∈ p−1(0) ∩ (U × Rn), we therefore have (x(t), ξ(t)) ∈
p−1(0) ∩ (U ×Rn) for all t ∈ I. We have explicitly the Hamilton’s equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) = 1

2∂ξp(x(t), ξ(t)),
ξ̇(t) = −1

2∂xp(x(t), ξ(t)),
x(0) = 0,
ξ(0) = ξ0.

(2.5)

Recalling that x = (t, y) ∈ U and writing ξ = (τ, η) ∈ T ∗
xX for the dual variable, we see 

from (2.5) that

∂τp(x(t), ξ(t)) �= 0 for all t ∈ I, (2.6)

since the t component of ẋ(t) is identically 1 in the (t, y) coordinates.
We look for a real analytic solution ϕ of (2.3) in U such that

Imϕ(t, y) ≥ 0, Imϕ(t, 0) = 0, Imϕ′′
yy(t, 0) > 0, t ∈ I, (2.7)

and therefore,

Imϕ(t, y) ∼ |y|2 = dist((t, y),Γ)2, (t, y) ∈ U.

Here and throughout the paper the notation f1 ∼ f2 for positive functions f1 and f2
means that there exists a fixed ε > 0 with εf1 < f2 < ε−1f1. We will find the required 
real analytic solution of (2.3) as the restriction to U ⊂ Rn of a holomorphic function ϕ
in Ũ ⊂ Cn, solving the following Cauchy problem for the Hamilton-Jacobi equation in 
the complex domain, ⎧⎪⎪⎨⎪⎪⎩

p(x, ϕ′
x(x)) = 0, x = (t, y) ∈ Ũ ,

ϕ(0, y) = ψ(y),
ϕ′
x(0) = ξ0.

(2.8)

Here we take ψ to be a holomorphic function near 0 ∈ Cn−1 such that

Imψ′′
yy(0) > 0, (2.9)

ψ(0) is real, and so that the compatibility condition ψ′
y(0) = η0 in (2.8) holds, with 

ξ0 = (τ0, η0) ∈ R × Rn−1. Note that p, ϕ and ψ are holomorphic in their vari-
ables. For a holomorphic function f(z1, . . . , zN ) in an open set V ⊂ CN we write 
f ′
z(z) = (∂z1f(z), . . . , ∂zN f(z)) for the complex gradient, f ′′

zz(z) = (∂zjzkf(z))Nj,k=1 for 
the complex Hessian, etc. If zj = xj + iyj , holomorphicity implies that ∂α

z f(z) = ∂α
x f(z)
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Fig. 1. A Lagrangian submanifold Λ ⊂ T ∗XC satisfying p (Λ) = 0 is the union of the red integral curves of 
Hp in T ∗XC passing through Λ′ ⊂ T ∗XC , which is represented by the black arrows. Here T ∗XC is the 
cotangent bundle of the complexification of X, which is locally Cn

x × Cn
ξ . (For interpretation of the colors 

in the figure(s), the reader is referred to the web version of this article.)

for any multi-index α. This shows that a holomorphic solution ϕ of (2.8) in Ũ ⊂ Cn

indeed yields a real analytic solution of (2.3) in U .
Remark. Let us note that [18, Theorem 5.5] gives the standard Hamilton-Jacobi the-

ory locally near a point in the smooth case, and the extension of this theory to the 
holomorphic case is discussed in the remark following Theorem 1.8.2 in [23]. However 
here we need to construct the phase ϕ enjoying the good properties along the entire 
geodesic segment, and therefore, we shall give a detailed discussion of the construction 
below. The condition (2.9) will be crucial for this purpose.

Step 1. Solving near a point. In order to solve (2.8), we start by following the proof 
of [18, Theorem 5.5], see also [48]. The setting of our proof is illustrated in Fig. 1. To 
this end, we observe first that in view of (2.6), by the implicit function theorem applied 
to p(0, · , · , · ), in a complex neighborhood of (0, 0, τ0, η0) we have p(0, y, τ, η) = 0 if and 
only if τ = λ(y, η) where λ is a holomorphic function near (0, η0) ∈ C2(n−1) such that 
λ(0, η0) = τ0.

Let us define

Λ′ := {(0, y, τ, η) : η = ψ′
y(y), τ = λ(y, η), y ∈ neigh(0,Cn−1)} ⊂ C2n.

We have that Λ′ is a complex manifold of complex dimension n − 1 such that

Λ′ ⊂ p−1(0),

which is isotropic in the sense that the restriction of σ to TΛ′ × TΛ′ vanishes:

σ|Λ′ = 0. (2.10)
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Here σ =
∑n

j=1 dξj ∧ dxj is the complex symplectic form on (the tangent space of) 
C2n = Cn

x × Cn
ξ . Indeed, if we fix (x, ξ) ∈ Λ′, any vector tangent to Λ′ with base point 

at (x, ξ) is of the form (0, V y, V τ , V η) with V η = ψ′′
yyV

y and V y ∈ Cn−1. Applying σ to 
two such vectors gives V y

1 · ψ′′
yyV

y
2 − V y

2 · ψ′′
yyV

y
1 = 0, showing (2.10).

Note also that

Λ′ ∩R2n = {(0, 0, τ0, η0)}. (2.11)

Indeed, (0, 0, τ0, η0) ∈ Λ′ ∩ R2n as (τ0, η0) ∈ Rn and ψ′
y(0) = η0. To see the opposite 

inclusion, let (0, y, λ(y, η), η = ψ′(y)) ∈ Λ′ ∩R2n and Taylor expand ψ′(y) at y = 0,

η = ψ′(y) = η0 + ψ′′(0)y + O(|y|2), y ∈ Rn−1.

We have Im η = Imψ′′(0)y + O(|y|2), and therefore, in view of (2.9), Im η = 0 implies 
that y = 0. This shows (2.11).

Let Hp be the complex Hamilton vector field of p, and let us consider the Hp flowout 
of Λ′:

Λ =
{

exp
(
t

2Hp

)
(ρ) : ρ ∈ Λ′, t ∈ neigh(I,C)

}
⊂ C2n.

Here if μ =
∑N

j=1 aj(z)∂zj is a holomorphic vector field on an open set V ⊂ CN in the 
sense that aj ∈ Hol(V ), j = 1, . . . , n, we can define the flow exp(tμ)(ρ), ρ ∈ V , locally 
for t ∈ neigh(0, C), by solving the system of ODE,{

żj(t) = aj(z(t)), 1 ≤ j ≤ n,

z(0) = ρ,

see [16, Section 1] and the references given there.
Then Λ′ ⊂ Λ, and since the flow of Hp preserves p, we have

Λ ⊂ p−1(0),

and Λ is a C–Lagrangian submanifold of C2n, see [18, Proposition 5.4] for a proof in 
the real case. The proof in the present holomorphic setting is similar. Let us also recall 
from [18, page 60] that the holomorphic Hamilton vector field Hp is tangent to Λ at each 
point of Λ. This is because Λ is a Lagrangian contained in p−1(0).

The differential of πx|Λ is bijective at (0, 0, τ0, η0) since the differential of πx is in-
jective and since any Lagrangian submanifold has dimension dim(X). (The differential 
of πx|Λ is injective since the differential of the exponential map TX → X is injective.) 
Consequently, there is a function ϕ ∈ Hol(neigh(0, Cn)) such that

Λ = Λϕ := {(x, ϕ′
x(x)) : x ∈ neigh(0,Cn)}, (2.12)
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see [42, Section 5.6, Exercise 4], and also [18, Theorem 5.3] for the real version of this 
result. We have ϕ′

x(0) = ξ0 and modifying ϕ by a constant we get ϕ(0, y) = ψ(y), and 
such a solution is unique.

Step 2. Solving near γ. Let us denote the tangent space of Λ at (0, 0, τ0, η0) by Λ0 and 
write

Λ0 := T(0,0,τ0,η0)Λ = {(δx, δξ) ∈ Cn ×Cn : δξ = ϕ′′
xx(0)δx}, (2.13)

where in the second equality we used (2.12).
We claim that Λ0 is a positive Lagrangian plane in the sense that

1
i
σ(ρ, ρ) ≥ 0, ρ ∈ Λ0.

To this end, letting M0 = ϕ′′
xx(0) and using (2.13), we write ρ = (δx, M0δx) ∈ Λ0. Then 

using that M0 is symmetric, we get

1
i
σ(ρ, ρ) = 1

i
(M0δx · δx −M0δx · δx) = 2Im (M0δx · δx)

= 2Im (M0)Re δx · Re δx + 2Im (M0)Imδx · Imδx,

(2.14)

and therefore, it suffices to prove that

ImM0 ≥ 0. (2.15)

In doing so, using (2.8), we write

M0 =
(
ϕ′′
tt(0, 0) ϕ′′

ty(0, 0)
ϕ′′
yt(0, 0) ψ′′

yy(0)

)
. (2.16)

Using that Hp is tangent to Λϕ, we see that exp( t
2Hp)(0, ξ0) = (x(t), ϕ′

x(x(t))) is real 
for t ∈ neigh(0, R), so that ϕ′

t(t, 0), ϕ′
y(t, 0) are real. Hence,

ImM0 =
(

0 0
0 Imψ′′

yy(0)

)
, (2.17)

and therefore, by the condition Imψ′′
yy(0) > 0 we imposed on ψ in (2.9), (2.15) follows.

For future reference, let us remark that

Λ0 ∩R2n = RHp(0, ξ0), (2.18)

where R Hp(0, ξ0) = {s Hp(0, ξ0) : s ∈ R}. Indeed, we have Hp(0, ξ0) ∈ Λ0∩R2n since the 
Hp vector field is tangent to Λ. On the other hand, if (δx, M0δx) ∈ Λ0 ∩ R2n, it follows 
from (2.17) that
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δx = (δt, 0) = δtẋ(0) = δtp
′
ξ(0, ξ0),

where δt ∈ R. Here in the second equality we used that (t, 0) corresponds to the geodesic 
in Fermi coordinates. We get (δx, M0δx) = δt(p′ξ(0, ξ0), M0p

′
ξ(0, ξ0)) = δtHp((0, ξ0)), 

which shows (2.18). Here in the last equality we used Hp(0, ξ0) ∈ Λ0.
Let

κ(t) := exp
(
t

2Hp

)
: Λ → Λ, t ∈ I ⊂ R,

and therefore, the differential satisfies

dκ(t)(0, ξ0) : Λ0 → Tκ(t)(0,ξ0)Λ.

As the canonical transformation κ(t) is real for each t ∈ I, dκ(t)(0, ξ0) preserves positiv-
ity, see [42, Section 5.6, Exercise 8], and therefore,

Λt := Tκ(t)(0,ξ0)Λ ⊂ C2n

is a positive Lagrangian plane, for all t ∈ I.
We claim that Λt is transversal to the fiber F = {(0, η) : η ∈ Cn} ⊂ C2n, for all 

t ∈ I, i.e. Λt +F = C2n. As dim Λt = n, we have to show that Λt ∩F = {0}. Indeed, let 
(0, η) ∈ Λt ∩ F . Then (2.13) implies that(

0
η

)
= dκ(t)(0, ξ0)

(
δx

M0δx

)
, (2.19)

for some δx ∈ Cn. We have

0 = 1
i
σ

((
0
η

)
,

(
0
η

))
= 1

i
σ

(
dκ(t)(0, ξ0)

(
δx

M0δx

)
, dκ(t)(0, ξ0)

(
δx

M0δx

))
= 1

i
σ

((
δx

M0δx

)
,

(
δx

M0δx

))
= 2Im (M0δx · δx).

As ImM0 ≥ 0, we get (ImM0)δx = 0, and therefore, (2.17) implies that δx = αp′ξ(0, ξ0)
for some α ∈ C. Thus, by (2.19) we obtain that(

0
η

)
= dκ(t)(0, ξ0)(αHp(0, ξ0)) = αHp(x(t), ξ(t)) = α

(
ẋ(t)
ξ̇(t)

)
.

Since ẋ(t) �= 0, we get α = 0. Hence,

η = 0,

which establishes the claim.
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As Λt is transversal to the fiber for all t ∈ I, by inspection of the proof of Theorem 5.5 
in [18], we conclude that there exists ϕ ∈ Hol(neigh(I×B, Cn)) such that Λ = Λϕ and ϕ
solves (2.8). The function ϕ is a continuation of the one appearing in (2.12). Notice that 
it is precisely thanks to the fact that the tangent plane Λt does not contain any non-zero 
vector of the form (0, η) for all t ∈ I that the proof of Theorem 5.5 in [18] applies near 
each point in I × {0}, see also [26, Section 24.2].

Step 3. Properties of the solution. Next we shall check that the property (2.7), that 
is

Imϕ(t, y) ≥ 0, Imϕ(t, 0) = 0, Imϕ′′
yy(t, 0) > 0, t ∈ I,

holds for ϕ. First, ϕ′
x(x(t)) = ξ(t) is real for t ∈ I. Writing

d

dt
ϕ(x(t)) = ϕ′

x(x(t)) · ẋ(t) = ξ(t) · 1
2p

′
ξ(x(t), ξ(t)),

we have

ϕ(t, 0) = ψ(0) + 1
2

t∫
0

ξ(s) · p′ξ(x(s), ξ(s))ds = ψ(0) + t, (2.20)

as ξ · p′ξ(x, ξ) = 2(p(x, ξ) + 1). Thus, using that ψ(0) is real, we see that Imϕ(t, 0) = 0
for t ∈ I. Furthermore, if ψ(0) = 0, we get ϕ(t, 0) = t.

Let M(t) = ϕ′′
xx(x(t)). Then M(t) is an n × n complex symmetric matrix depending 

real analytically on t, such that

ImM(t) ≥ 0, (2.21)

in view of the positivity of Λt. We claim that

ImM(t)|W > 0, (2.22)

where W ⊂ Rn is an algebraic supplement to R ̇x(t) so that R ̇x(t) ⊕W = Rn. To that 
end, let us observe first that

Λt ∩R2n = dκ(t)(0, ξ0)(Λ0 ∩R2n) = dκ(t)(0, ξ0)(RHp(0, ξ0)) = RHp(x(t), ξ(t)).

Here we have used (2.18) in the second equality. Let v ∈ W be such that

ImM(t)v · v = 0.

Hence, by (2.21), we get

ImM(t)v = 0.
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Thus, (v, M(t)v) ∈ Λt ∩ R2n = R Hp(x(t), ξ(t)), and therefore, v is proportional to 
p′ξ(x(t), ξ(t)) = ẋ(t). This gives that v = 0, since v ∈ W . Hence, (2.22) follows, and we 
get Imϕ′′

yy(t, 0) > 0 for all t ∈ I.
Finally, we get Imϕ(t, y) ≥ 0 for all (t, y) ∈ U by Taylor’s formula and by using that 

ϕ′
x(x(t)) = ξ(t) is real. We have therefore constructed a real analytic solution ϕ of (2.3)

such that (2.7) holds.

2.2. Construction of the amplitude

We shall follow [49, Theorem 9.3], where the construction of the amplitude as a classi-
cal analytic symbol is carried out in a neighborhood of a point, extending the construction 
to a full neighborhood of a geodesic segment.

We look for the amplitude a in the form of a formal power series in h,

a(x;h) =
∞∑
k=0

hkak(x). (2.23)

From (2.2), we see that we want to solve the following equation formally in powers of h,

e−isϕ(−h2Δg − (hs)2)eisϕa = [−hiL0 − ihΔgϕ+ h2(−Δg +λL0 +λΔgϕ)]a = 0, (2.24)

in a fixed complex domain Ũ , containing Γ. Here

L0 = 2〈dϕ, d · 〉g = 2G(x)ϕ′
x · ∂x = p′ξ(x, ϕ′

x(x)) · ∂x, (2.25)

where p is given in (2.4). The transport equation (2.24) can be written in the following 
form,

(hL0 + hf(x) + h2Q(x,Dx))a = 0, (2.26)

where f(x) = Δgϕ is a holomorphic function on Ũ and Q(x, Dx) = i(−Δg+λL0+λΔgϕ)
is a holomorphic differential operator of order 2. To solve (2.26), we remark first that the 
holomorphic vector field L0 is transversal to each complex hypersurface Ht0 = {(t, y) ∈
neigh(I, C) × neigh(0, Cn−1) : t = t0 ∈ I} at (t0, 0). Indeed,

p′ξ(x(t), ϕ′
x(x(t))) · ∂x = p′τ (x(t), ϕ′

x(x(t)))∂t + p′η(x(t), ϕ′
x(x(t))) · ∂y,

where p′τ (x(t), ϕ′
x(x(t))) �= 0 for all t ∈ I since ∂τp(x(t), ξ(t)) �= 0 for all t ∈ I as noted 

in (2.6). Thus, substituting (2.23) into (2.26), we get a sequence of transport equations 
which can all be solved uniquely in a suitable complex domain containing Γ, provided 
that a|Ht0

is prescribed, for some t0 ∈ I. However, the difficulty here is that we would like 
our solution a(x; h) to be a classical analytic symbol, and following [49, Section 9], we 
shall establish this fact making use of the method of “nested neighborhoods” introduced 
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in [49]. Contrary to [49, Theorem 9.3], where the family of “nested neighborhoods” is 
considered near a point, here we shall work in such neighborhoods near a piece of the 
geodesic.

For simplicity, let us take t0 = 0. We look for solution to (2.26) by using convenient 
coordinates. The coordinates we will use are the usual flowout coordinates (see e.g. [39]), 
which we show to exist for L0 on a neighborhood of a given interval.

Lemma 2.1. Let J ⊂⊂ I be an open interval. There exist local holomorphic coordinates 
(s, z) ∈ neigh(J, C) ×neigh(0, Cn−1) such that the hyperplane H0 is given by the equation 
s = 0 and L0 = ∂

∂s .

Proof. We continue to work in the Fermi coordinates x = (t, y) and recall from [28] that

G(t, y) = (gjk(t, y)) = 1 + O(|y|2). (2.27)

Now (2.3), (2.4), and (2.27) imply that

(ϕ′
t)2(t, 0) + (ϕ′

y)2(t, 0) = 1, (2.28)

and therefore, it follows from (2.20) and (2.28) that ϕ′
y(t, 0) = 0. Hence, Taylor expanding 

ϕ(t, y) at y = 0, we get

ϕ(t, y) = ψ(0) + t + O(|y|2). (2.29)

It follows from (2.25), (2.27), and (2.29) that

L0 = 2(1 + O(|y|2))
(

1 + O(|y|2)
O(|y|)

)
·
(
∂t
∂y

)
= 2(1 + O(|y|2))∂t + O(|y|) · ∂y. (2.30)

Consider the initial value problem for the flow exp(sL0)(0, z),{
∂s(t, y)(s, z) = L0((t, y)(s, z)),
(t, y)(0, z) = (0, z),

(2.31)

where (s, z) ∈ neigh(I, C) × neigh(0, Cn−1). In particular, y(s, z)|z=0 = 0 and therefore, 
y(s, z) = O(|z|). Differentiating the first equation in (2.31) in zj and using (2.30), we get{

∂s(∂zj t(s, z)) = O(y(s, z)∂zjy) = O(|z|),
∂zj t(0, z) = 0.

(2.32)

Hence,

∂zj t(s, z) = O(|z|). (2.33)
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Consider the holomorphic map

F : neigh(I,C) × neigh(0,Cn−1) � (s, z) �→ (t, y)(s, z).

In view of (2.33), the differential DF (s, 0) is given by

DF (s, 0) =

⎛⎜⎜⎝
t′s(s, 0) 0 . . . 0
y′1s(s, 0) y′1z1(s, 0) . . . y′1zn−1

(s, 0)
...

...
...

y′n−1s(s, 0) y′n−1z1(s, 0) . . . y′n−1zn−1
(s, 0)

⎞⎟⎟⎠ , (2.34)

where t′s(s, 0) = 2(1 +O(|y(s, 0)|2)) = 2. By Liouville’s formula, see [24, Theorem 1.2.5], 
we know that the last n − 1 columns in (2.34) are linearly independent, and therefore, 
det(DF (s, 0)) �= 0 for all s ∈ neigh(I, C). Furthermore, F |I×{0} is injective as F (s, 0) =
(t(s, 0), 0) = (2s, 0). An application of a holomorphic version of [28, Lemma 7.3] allows 
us to conclude that F is a holomorphic diffeomorphism in neigh(J, C) × neigh(0, Cn−1)
where J ⊂⊂ I is an open interval.

Now writing x = (t, y), in view of (2.31), we see that

∂

∂s
u(x(s, y)) = u′

x(x(s, y)) · ẋ(s, y) = (L0u)(x(s, y)).

Finally, it follows from (2.30) and (2.31) that{
∂st(s, z) = 2(1 + O(|z|2)),
t(0, z) = 0,

and therefore, t(s, z) = 2s + O(|z|2)s. Hence, t = 0 is equivalent to the fact that s = 0, 
showing that the hyperplane H0 is given by the equation s = 0. �

Passing to the new holomorphic coordinates provided by Lemma 2.1, and renaming 
them as x = (t, y), we are led from (2.26) to consider the following initial value problem,{(

h ∂
∂t + hf(x) + h2Q(x,Dx)

)
a = 0,

a|t=0 = w(y;h),
(2.35)

where w(y; h) is a classical analytic symbol near 0 ∈ Cn−1. We would like to find a 
classical analytic symbol a solving (2.35). Here f is a holomorphic function, and Q is a 
holomorphic differential operator of order 2. To that end, it suffices to solve the following 
problem, {(

h ∂
∂t + hf(x) + h2Q(x,Dx)

)
a = hv,

a| = 0,
(2.36)
t=0
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where v(x; h) is a classical analytic symbol in neigh(J, C) × neigh(0, Cn−1). This is 
because a solution a to (2.36) with v = −( ∂

∂t + f(x) + hQ(x, Dx))v0 and v0|t=0 = w, 
implies that a + v0 solves (2.35). Using that

∂t + f(t, y) = e−F (t,y) ◦ ∂t ◦ eF (t,y),

where F ′
t (t, y) = f(t, y), we may assume that f(x) = 0.

We shall first carry out the analysis of (2.36) under the assumption that the interval 
J is symmetric about the origin and after a rescaling we may assume that J = [−1, 1]. 
Let Ω ⊂ Cn be open such that [−1, 1]t × {0}y ⊂ Ω and Ω is in the domain of definition 
of various symbols. Then let 0 < ε < 1, r > 0 be small but fixed so that if we set

Ω0 =
{
(t, y) ∈ Cn : |y|

ε
+ |Im t|

ε
+ |Re t| < 1 + r

}
then Ω0 ⊂ Ω. Consider the family of open sets,

Ωs =
{
(t, y) ∈ Cn : |y|

ε
+ |Im t|

ε
+ |Re t| < 1 + r − s

}
,

with 0 ≤ s < r. Note that Ωs is a family of “nested neighborhoods” of [−1, 1] × 0 in the 
sense of [49, Theorem 9.3], so that we have

(i) if s1 > s2 then Ωs1 ⊂ Ωs2 ,
(ii) there exists δ > 0 such that for all s1 > s2 and all x ∈ Ωs1 we have the inclusion 

BCn(x, δ(s1 − s2)) ⊂ Ωs2 .

Given μ > 0, we say that a ∈ Aμ, if a(x; h) =
∑∞

k=0 ak(x)hk, a is holomorphic in Ω, 
such that for all s ∈ (0, r),

sup
Ωs

|ak| ≤
f(a, k)
sk

kk, (2.37)

where f(a, k) is the best constant for which (2.37) holds, and

∞∑
k=0

f(a, k)μk := ‖a‖μ < ∞. (2.38)

Now if a ∈ Aμ for some μ > 0 then f(a, k) ≤ Ck+1, k = 0, 1, 2, . . . , and therefore, a is a 
classical analytic symbol on Ω0. Let

(∂−1
t a)(t, y) =

t∫
0

a(τ, y)dτ. (2.39)

We shall need the following result, see [49, Theorem 9.3] and [46, Lemma 5.5].
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Lemma 2.2. Let a ∈ Aμ be of the form

a =
∞∑
k=2

hkak,

and let b = (h∂t)−1a. Then

‖b‖μ ≤ O
(

1
μ

)
‖a‖μ. (2.40)

Proof. We have

b =
∞∑
k=2

hk−1∂−1
t ak =

∞∑
k=1

hkbk,

where bk = ∂−1
t ak+1. Let us estimate supΩs

|bk|. To that end, we write

bk(x) = t

1∫
0

ak+1(σt, y)dσ

We claim that for 0 ≤ σ ≤ 1, if x = (t, y) ∈ Ωs then

(σt, y) ∈ Ωs+(1−σ)|t|. (2.41)

Indeed, using that 0 < ε < 1, we get

|y|
ε

+ σ|Im t|
ε

+ σ|Re t| < 1 + r − s− (1 − σ)
ε

|Im t| − (1 − σ)|Re t|

< 1 + r − (s + (1 − σ)|t|),

showing (σt, y) ∈ Ωs+(1−σ)|t| as claimed. It follows from (2.37), (2.41) that for x ∈ Ωs, 
we have

|bk(x)| ≤ |t|f(a, k + 1)(k + 1)k+1
1∫

0

dσ

(s + (1 − σ)|t|)k+1

= f(a, k + 1)(k + 1)k+1|t|
1∫

0

dσ

(s + σ|t|)k+1

= f(a, k + 1)(k + 1)k+1

|t|∫
dσ

(s + σ)k+1

0
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≤ f(a, k + 1)(k + 1)k+1
∞∫
0

dσ

(s + σ)k+1 = f(a, k + 1)(k + 1)k+1
∞∫
s

dσ

σk+1

= f(a, k + 1)(k + 1)k+1

ksk
.

Here we have used that k ≥ 1. Thus, for any 0 < s < r, we get

sup
Ωs

|bk| ≤ f(a, k + 1)(1 + 1/k)kk(1 + 1/k)k

sk
≤ 2ef(a, k + 1)

sk
kk,

and therefore by the definition of f(b, k), see (2.37), we have

f(b, k) ≤ 2ef(a, k + 1), k = 1, 2, . . . .

Using (2.38), we obtain that

‖b‖μ =
∞∑
k=1

f(b, k)μk ≤
∞∑
k=1

2ef(a, k + 1)μk = 2e
μ
‖a‖μ,

establishing (2.40). �
Now applying to (h∂t)−1 to (2.36), we get

a + (h∂t)−1h2Q(x,Dx)a = ∂−1
t v. (2.42)

Here ∂−1
t v is a classical analytic symbol in Ω0. To proceed, we need the following result.

Lemma 2.3. Let a ∈ Aμ. Then (h∂t)−1h2Q(x, Dx)a ∈ Aμ with

‖(h∂t)−1h2Q(x,Dx)a‖μ ≤ O(μ)‖a‖μ (2.43)

Proof. Writing a(x) =
∑∞

k=0 ak(x)hk, we get

h2Q(x,Dx)a =
∞∑
k=2

hkQ(x,Dx)ak−2.

For s1 > s2, in view of the property (ii) of the “nested neighborhoods” Ωs, and (2.37), 
we obtain for k = 2, 3, . . . that

sup
Ωs1

|Q(x,Dx)ak−2| ≤
C

(s1 − s2)2
sup
Ωs2

|ak−2| ≤
C

(s1 − s2)2
f(a, k − 2)

sk−2
2

(k − 2)k−2. (2.44)

The Cauchy estimate was used here in the first inequality. Taking 0 < s2 = k−2
k s1 < s1

for k = 3, 4, . . . , we get from (2.44) that
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sup
Ωs1

|Q(x,Dx)ak−2| ≤
Cf(a, k − 2)

sk1
kk,

and therefore, in view of (2.37),

f(Q(x,Dx)ak−2, k) ≤ Cf(a, k − 2).

Thus, by the definition of ‖ · ‖μ, see (2.38), we obtain that

‖h2Q(x,Dx)a‖μ ≤
∞∑
k=2

μkCf(a, k − 2) ≤ O(μ2)‖a‖μ. (2.45)

Lemma 2.2 together with (2.45) implies that

‖(h∂t)−1h2Q(x,Dx)a‖μ ≤ O(1/μ)‖h2Q(x,Dx)a‖μ ≤ O(μ)‖a‖μ,

establishing (2.43). �
It follows from Lemma 2.3 that

‖Q̃jw‖μ ≤ O(μj)‖w‖μ, Q̃ := (h∂t)−1h2Q(x,Dx),

for w ∈ Aμ, and therefore, by Neumann series argument, we have that the equation 
(2.42),

a + (h∂t)−1h2Q(x,Dx)a = ∂−1
t v,

has a unique solution a with ‖a‖μ < ∞ for μ > 0 small enough. Thus, a is a classical 
analytic symbol in Ω0.

We shall next proceed to solve (2.35) when the interval J is not necessarily symmetric 
with respect to the origin, J = [a, b] where a < 0 < b. Without loss of generality, we may 
assume that 0 < a + b. Let N ≥ 0 be the largest integer such that (N + 1)|a| < b. We 
first solve (2.35) with the initial condition prescribed at t = 0 in the symmetric interval 
[a, |a|] and obtain a unique classical analytic symbol a(0) in a complex neighborhood of 
[a, |a|] × {0}. Next we solve the initial value problem,{

(h∂t + h2Q(x,Dx))a(1) = 0,
a(1)|t=|a| = a(0)|t=|a|,

(2.46)

in a complex neighborhood of [0, 2|a|] × {0}. Continuing this process and working the 
symmetric intervals of the form [(j − 1)|a|, (j + 1)|a|], j = 2, . . . , N , we construct a 
classical analytic symbol in a complex neighborhood of [a, (N + 1)|a|] × {0} solving 
(2.35). Finally solving (2.46) with the initial condition prescribed at t = (N + 1)|a| in a 
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complex neighborhood of [2(N +1)|a| − b, b] ×{0}, we obtain a classical analytic symbol 
in a complex neighborhood of [a, b] × {0} solving (2.35).

Furthermore, demanding that a|t=0 should be an elliptic classical analytic symbol near 
0 in Cn−1, we conclude that the classical analytic symbol a(x; h) is elliptic in the sense 
that a0 �= 0. This completes the construction of the amplitude as an elliptic classical 
analytic symbol.

It follows from (2.24) that for all N ≥ 1,

e−isϕ(−h2Δg − (hs)2)eisϕ
( N∑

j=0
hjaj

)
= hN+2(−ΔgaN + λ(L0 + Δgϕ)aN )

in a complex neighborhood Ũ of Γ. Using (1.3) and Cauchy’s estimates, we obtain after 
an arbitrarily small decrease of Ũ that

∣∣∣∣e−isϕ(−h2Δg − (hs)2)eisϕ
( N∑

k=0

hkak

)∣∣∣∣ ≤ hN+2CN+1NN .

Choosing N = N(h) = [ 1
heC ], we obtain that

∣∣∣∣e−isϕ(−h2Δg − (hs)2)eisϕ
(N(h)∑

j=0
hkak

)∣∣∣∣ ≤ O(1)e−
1

C1h , C1 > 0,

for all 0 < h ≤ 1. Note that we also have

∣∣∣∣N(h)∑
j=0

hkak

∣∣∣∣ ≤ C

N(h)∑
k=0

e−k ≤ C
e

e− 1 .

In the estimate above we used k ≤ N(h) = [1/(heC)] and |ak| ≤ Ck+1kk, which holds 
since a is classical analytic symbol.

Let χ ∈ C∞
0 (Rn−1) be such that 0 ≤ χ ≤ 1, χ = 1 for |y| ≤ 1/4 and χ = 0 for 

|y| ≥ 1/2. In view of (2.1) we set

v(t, y;h) = h− (n−1)
4 eisϕ(t,y)a(t, y;h), a(t, y;h) =

(N(h)∑
k=0

hkak

)
χ

(
y

δ′

)
. (2.47)

Here δ′ > 0 is chosen sufficiently small so that χ(y/δ′) is zero outside the set where 

we have constructed the functions ϕ and ak. Since Imϕ(t, y) ≥ |y|2
C , C > 0, the cutoff 

function χ does not destroy the exponential smallness of the error, and we see that v
satisfies after an arbitrarily small decrease of the real domain U ,

‖v‖L2(U) � 1, ‖(−h2Δ − (hs)2)v‖L2(U) = O(e− 1
Ch ), C > 0, (2.48)
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as h → 0. Here for the first bound, we use the fact that a0 �= 0.

2.3. Gluing the local quasimodes together

Let us now return to the open Fermi cover (Uj)N+1
j=0 of γ([−T1 − ε, T2 + ε]), replacing 

it if necessary by a slightly smaller relatively compact subcover. We have constructed ϕ0
real analytic in U0 solving the Cauchy problem (2.8) in a complex neighborhood of U0
so that ϕ0(t, 0) = t for all t ∈ I0 and Imϕ′′

0(t, 0) > 0 for all t ∈ I0. In order to construct 
ϕ = ϕ1 real analytic in U1, we pick t0 ∈ I0 ∩ I1 and solve in a complex neighborhood of 
U1, ⎧⎪⎪⎨⎪⎪⎩

p(x, ϕ′
x(x)) = 0,

ϕ|t=t0 = ϕ0(t0, y),
ϕ′
x(t0) = ξ(t0).

We get ϕ1 such that ϕ1 = ϕ0 near (t0, 0) ∈ U0 ∩ U1, and thus, by unique continuation, 
ϕ1 = ϕ0 in U0 ∩ U1, assuming as we may that U0 ∩ U1 is connected. Note that in view 
of (2.20), we have ϕ1(t, 0) = t for all t ∈ I1. Continuing in this way, we obtain ϕj real 
analytic in Uj , 0 ≤ j ≤ N + 1, such that ϕj = ϕj+1 in Uj ∩ Uj+1 and (2.7) holds for 
every ϕj .

Next let a(0)(t, y; h) be an elliptic classical analytic symbol in a complex neighbor-
hood of U0 obtained by solving (2.26). To get a(1)(t, y; h), we solve the sequence of 
transport equations (2.26) with ϕ = ϕ1 and with a(1)|t=t0 = a(0)|t=t0 . Thus, by unique-
ness and analytic continuation, a(1) = a(0) in U0 ∩ U1. Continuing in the same way, we 
get v0, v1, . . . , vN+1 such that

vj = vj+1 in Uj ∩ Uj+1. (2.49)

Let χj = χj(t) ∈ C∞
0 (Ij) be such that 

∑N+1
j=0 χj = 1 near [−T1− ε, T2 + ε], and define 

our quasimode v globally by

v =
N+1∑
j=0

χjvj .

Let p1, . . . , pR ∈ X int be the distinct points where the geodesic γ self-intersects, and 
let −T1 < t1 < · · · < tN < T2 be the times of self-intersections. Let V1, . . . , VR be small 
neighborhoods in X around pj , j = 1, . . . , R. Then choosing δ′ in (2.47) small enough 
we obtain an open cover of a neighborhood of γ[−T1, T2] in X̂,

supp (v( · ;h)) ∩X ⊂ (∪R
j=1Vj) ∪ (∪S

k=1Wk), (2.50)

where in each Vj , the quasimode is a finite sum,
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v( · ;h)|Vj
=

∑
l:γ(tl)=pj

vl( · ;h), (2.51)

and in each Wk (where there are no self-intersecting points), in view of (2.49), there is 
some l(k) so that the quasimode is given by

v( · ;h)|Wk
= vl(k)( · ;h). (2.52)

Finally, the bounds (1.4) follows from the bounds (2.48), and the representations 
(2.51) and (2.52) of v. This completes the proof of Theorem 1.12.

3. Some preliminary results about geodesics

Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth 
boundary, contained in an open real analytic manifold (X̂, g) of the same dimension with 
g real analytic in X̂. First we have the following analog of [13, Lemma 2.1], established 
in this work in the smooth case.

Lemma 3.1. Let α0 = (x0, ξ0) ∈ S∗X int and let ζ1, ζ2 ∈ S∗
x0
X int be such that

ζ1 + ζ2 = t0ξ0 (3.1)

for some 0 < t0 < 2. Then there exists a neighborhood U of α0 in S∗X int and a real 
analytic map

I : U → S∗X int × S∗X int, (x, ξ) �→ (x, ω1(x, ξ)) × (x, ω2(x, ξ))

such that

I(x0, ξ0) = (x0, ζ1) × (x0, ζ2), (3.2)

and

ω1(x, ξ) + ω2(x, ξ) = t0ξ, (x, ξ) ∈ U. (3.3)

Proof. We follow the proof of [13, Lemma 2.1] with minor changes in the real analytic 
setting, and the argument is presented here only for the convenience of the reader.

Let x1, . . . , xn be real analytic local coordinates on X int centered at x0 such that 
G(0) = 1. Here G = G(x) = (gjk) is the co-metric tensor. It follows from (3.1) upon 
taking the scalar product with ζ1, ζ2, and ξ0, that ζ1 · ξ0 = ζ2 · ξ0 and t0 = 2ζ1 · ξ0. 
Similarly, if (3.3) holds, then t0 = 2G(x)ω1(x, ξ) · ξ, and we therefore should have

G(x)ω1(x, ξ) · ξ = ζ1 · ξ0. (3.4)
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Furthermore, if (3.3) is valid, then

ω2(x, ξ) = 2(ζ1 · ξ0)ξ − ω1(x, ξ).

Note that this implies that |ω2(x, ξ)|G(x) = 1, provided that (3.4) holds, and therefore, 
we only need to determine ω1(x, ξ) ∈ S∗X int depending analytically on (x, ξ) such that 
ω1(x0, ξ0) = ζ1 and (3.4) is valid.

To that end, let us set

ζ(x) = ζ1√
G(x)ζ1 · ζ1

.

Then ζ(x) is real analytic in x and ζ(0) = ζ1. Let

ω̃1(x, ξ) = ζ(x) + α(x, ξ)ξ,

for (x, ξ) ∈ neigh((x0, ξ0), S∗Rn), with some α = α(x, ξ) to be chosen. We have

G(x)ω̃1(x, ξ) · ω̃1(x, ξ) = 1 + α2 + 2αG(x)ζ(x) · ξ.

We set

ω1(x, ξ) = ω̃1(x, ξ)√
G(x)ω̃1(x, ξ) · ω̃1(x, ξ)

= ζ(x) + αξ√
1 + α2 + 2αG(x)ζ(x) · ξ

. (3.5)

We would like to find α so that α(0, ξ0) = 0 and that (3.4) holds. The former requirement 
guarantees that ω1(0, ξ0) = ζ1, and the latter requirement implies that we should have

F (x, ξ, α) = 0,

where

F (x, ξ, α) := (1− (ζ1 · ξ0)2)α2 +2G(x)ζ(x) · ξ(1− (ζ1 · ξ0)2)α+(G(x)ζ(x) · ξ)2 − (ζ1 · ξ0)2.

Note that F is real analytic in (x, ξ, α) ∈ neigh((0, ξ0), S∗Rn) × R, F (0, ξ0, 0) = 0, and 
F ′
α(0, ξ0, 0) = 2(ζ1 · ξ0)(1 − (ζ1 · ξ0)2) �= 0, as 0 < ζ1 · ξ0 = t0

2 < 1. Thus, by the implicit 
function theorem, there is a neighborhood U of (0, ξ0) and a unique real analytic function 
α(x, ξ) in U such that α(0, ξ0) = 0 and F (x, ξ, α) = 0 if and only if α = α(x, ξ). Hence, 
ω1(x, ξ) given in (3.5) satisfies the conditions of the proposition. This completes the 
proof. �

We shall also need the following result.
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Lemma 3.2. Let α0 = (x0, ξ0) ∈ S∗Xint. Assume that α0 is generated by an admissible 
pair of geodesics γ1(α0) : [−T1(α0), T2(α0)] → X and γ2(α0) : [−S1(α0), S2(α0)] → X, 
where 0 < T1(α0), T2(α0), S1(α0), S2(α0) < ∞. Then there exists a neighborhood V of α0
in S∗Xint such that every point α = (αx, αξ) ∈ V is generated by an admissible pair of 
geodesics γ1(α) : [−T1(α), T2(α)] → X and γ2(α) : [−S1(α), S2(α)] → X, which depend 
real analytically on α.

Proof. First we have

ζ1 + ζ2 = t0ξ0,

for some 0 < t0 < 2, where ζj = γ̇j(α0) is viewed as a cotangent vector, using the 
Riemannian duality. By Lemma 3.1, there exists a neighborhood U of α0 in S∗X int and 
a real analytic map

I : U → S∗X int × S∗X int, α = (αx, αξ) �→ (αx, ω1(α)) × (αx, ω2(α))

such that

I(x0, ξ0) = (x0, ζ1) × (x0, ζ2),

and

ω1(α) + ω2(α) = t0αξ. (3.6)

The corresponding unit speed geodesics γ1(α) : [−T1(α), T2(α)] → X and γ2(α) :
[−S1(α), S2(α)] → X, T1(α), T2(α), S1(α), S2(α) > 0, such that γj(α)(0) = αx, 
γ̇j(α)(0) = ωj(α), are non-tangential being small perturbations of the non-tangential 
geodesics γj(α0), j = 1, 2. Hence, the functions Tj(α) and Sj(α) depend continuously 
on α ∈ U and in particularly, they are bounded after an arbitrarily small decrease of U . 
Note also that (3.6) implies that γ1(α) and γ2(α) are two distinct geodesics and that are 
not reverses of each other.

We claim that there is a neighborhood Ũ ⊂ U of α0 such that for all α ∈ Ũ , we have

γ1(α)(t) = γ1(α)(0) ⇐⇒ t = 0. (3.7)

Indeed, otherwise there exists a sequence αk → α0 as k → ∞ and 0 �= tk ∈
[−T1(αk), T2(αk)] such that

γ1(αk)(tk) = γ1(αk)(0), (3.8)

for all k. Assuming, as we may, that tk → t0, we get from (3.8) that γ1(α0)(t0) =
γ1(α0)(0). Since the geodesic γ1(α0) does not self-intersect at x0 = γ1(α0)(0), we con-
clude that t0 = 0. Since γ1(αk)(tk) → γ1(α0)(0) = x0 ∈ X int as k → ∞, for all k
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sufficiently large, we see that γ1(αk)(tk) ∈ X int. As X is compact, it has a positive injec-
tivity radius Inj(X) > 0. Here we have extended X to a closed manifold to speak about 
the injectivity radius and the boundary will not cause any problems as γ1(αk)(tk) ∈ X int, 
for k sufficiently large. Now (3.8) implies that |tk| ≥ Inj(X) for all k sufficiently large, 
which is a contradiction as tk → 0. Thus, the claim (3.7) follows. The same is true for 
the family of geodesics γ2(α) for α in a possibly smaller neighborhood of α0.

Finally, we claim there is a neighborhood V ⊂ Ũ of α0 such that for all α ∈ V , we 
have

γ1(α)(t) = γ2(α)(s) =⇒ t = s = 0. (3.9)

Indeed, otherwise, there exists αk → α0 as k → ∞, and tk ∈ [−T1(αk), T2(αk)], and 
sk ∈ [−S1(αk), S2(αk)] such that

γ1(αk)(tk) = γ2(αk)(sk), (3.10)

tk �= 0, and sk �= 0, for all k. Assuming as we may that tk → t0 and sk → s0 and passing 
to the limit in (3.10), we obtain that

γ1(α0)(t0) = γ2(α0)(s0),

and therefore, as γ1(α0) and γ2(α0) are admissible, we get t0 = s0 = 0. Thus, we get

γ1(αk)(tk) = γ2(αk)(sk) → x0,

(αk)x = γ1(αk)(0) = γ2(αk)(0) → x0,

as k → ∞. Note that for k sufficiently large, all the points γ1(αk)(tk), γ1(αk)(0), 
γ2(αk)(sk), γ2(αk)(0) are in the interior of X. Therefore, |tk| ≥ Inj(X) and |sk| ≥ Inj(X)
for k sufficiently large, as otherwise, the geodesics γ1(αk) and γ2(αk) would intersect at 
a geodesic ball centered at (αk)x. This contradicts the fact that tk → 0 and sk → 0 as 
k → ∞, showing the claim. Hence, the pair of geodesics γ1(α), γ2(α) is admissible, for 
all α ∈ V . �
4. Analytic families of exponentially accurate Gaussian beam quasimodes

When proving Theorem 1.3 below, we shall need the following consequence of Theo-
rem 1.12.

Corollary 4.1. Let (X, g) be a compact Riemannian manifold of dimension n ≥ 2 with 
smooth boundary, contained in an open real analytic manifold (X̂, g) of the same dimen-
sion with g real analytic in X̂. Let α0 = (x0, ξ0) ∈ S∗X int and let γ0 : [−T1, T2] → X, 
0 < T1, T2 < ∞, be a unit speed nontangential geodesic such that γ0(0) = x0, and γ0 does 
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not have self-intersections at x0. Let γ(α) : [−T1(α), T2(α)] → X, 0 < T1(α), T2(α) < ∞, 
α = (αx, αξ) ∈ neigh(α0, S∗X int), be a real analytic family of unit speed nontan-
gential geodesics such that γ(α0) = γ0, and γ(α)(0) = αx. Let λ ∈ R. Then there 
is a real analytic family of C∞ functions v(x, α; h) on X, α ∈ neigh(α0, S∗X int), 
0 < h ≤ 1, and C > 0 such that supp (v( · , α; h)) is confined to a small neighborhood of 
γ(α)([−T1(α), T2(α)]) for each α, and

‖(−h2Δg − (hs)2)v(·, α;h)‖L2(X) = O(e− 1
Ch ), ‖v(·, α;h)‖L2(X) � 1, (4.1)

as h → 0, uniformly in α. Here s = 1
h + iλ. The local structure of the family v( · , α; h)

in a neighborhood of αx is as follows:

v(x, α;h) = h− (n−1)
4 eisϕ(x,α)a(x, α;h),

where ϕ(x, α) is real analytic in (x, α) for α ∈ neigh(α0, S∗X int) and |x − αx| < 1
c , 

c > 0, and a(x, α; h) is an elliptic classical analytic symbol near (x0, α0). Furthermore, 
for t close to 0 and α ∈ neigh(α0, S∗X int), we have

ϕ(γ(α)(t), α) = t, ∇ϕ(γ(α)(t), α) = γ̇(α)(t),

Im (∇2ϕ(γ(α)(t))) ≥ 0, Im (∇2ϕ)|γ̇(α)(t)⊥ > 0.

Proof. The functions T1(α) and T2(α) depend continuously on α in a small neighborhood 
of α0, and shrinking the neighborhood further we may assume that T1(α), T2(α) are 
bounded. Let ε > 0 be such that γ(α)(t) ∈ X̂ \X and γ(α)(t) has no self-intersection for 
t ∈ [−T1(α) −2ε, −T1(α)) ∪ (T2(α), T2(α) +2ε] for all α ∈ neigh(α0, S∗X int). This choice 
of ε is possible since γ(α) are non-tangential and depend smoothly on α. It follows from 
[28, Lemma 7.2] that γ(α)|[−T1(α)−ε,T2(α)+ε] self-intersects only at finitely many times 
tj(α), 1 ≤ j ≤ N(α), with

−T1(α) < t1(α) < · · · < tN(α)(α) < T2(α).

First we claim that there is N0 such that N(α) ≤ N0 < ∞ for all α in a small 
neighborhood of α0. This follows by inspection of the arguments in the proof of [28, 
Lemma 7.2]. Indeed, as explained in [28, Lemma 7.2], if γ(α)(t) = γ(α)(s) for some t �= s

then γ̇(α)(t) �= ±γ̇(α)(s). Furthermore, if r is smaller than the injectivity radius of some 
closed manifold containing a fixed neighborhood of X ∪ γ(α)([−T1(α) − 2ε, T2(α) + 2ε]
for α ∈ neigh(α0, S∗X int), then any two distinct geodesic segments of length ≤ r can 
intersect in at most one point. Partitioning [−T1(α) −2ε, T2(α) +2ε] in disjoint intervals 
{Jk}K(α)

k=1 of length ≤ r, we get an injective map

{(t, s) ∈ [−T1(α) − 2ε, T2(α) + 2ε]2 : s < t and γ(α)(t) = γ(α)(s)}
−→ {(k, l) ∈ {1, . . . ,K(α)}2},

(t, s) �→ (k, l) such that t ∈ J , s ∈ J .

(4.2)
k l
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Since T1(α) and T2(α) are bounded for α in a small neighborhood of α0, we may assume 
that K(α) is bounded. Consequently, the cardinality of the set {(k, l) ∈ {1, . . . , K(α)}2}
is bounded uniformly in α. The claim follows.

We also set t0(α) := −T1(α) − ε and tN+1(α) := T2(α) + ε. An inspection of 
the proof of [12, Lemma 3.5] allows us to conclude that there exists an open cover 
{(Uj(α), κj(α))}N(α)+1

j=0 of γ(α)([−T1(α) − ε, T2(α) + ε]) consisting of coordinate neigh-
borhoods Uj(α) and real analytic diffeomorphisms κj(α), depending real analytically on 
α, such that the following properties hold,

(i) κj(α)(Uj(α)) = Ij × B, where Ij are fixed open intervals and B = B(0, δ′) is an 
open ball in Rn−1. Here δ′ > 0 can be taken arbitrarily small and the same for each 
Uj(α), uniformly for α close to α0,

(ii) κj(α)(γ(α)(t)) = (t, 0) for each t ∈ Ij ,
(iii) tj only belongs to Ij and Ij ∩ Ik = ∅ unless |j − k| ≤ 1,
(iv) κj(α) = κk(α) on κ−1

j ((Ij ∩ Ik) ×B).

In particular, the open sets Uj(α) are bounded uniformly in α and contain a fixed open 
set.

Following the proof of Theorem 1.12, and making use of the fact that the geodesics 
γ(α) do not have self-intersections at αx, for α close to α0, we obtain the statement of 
Corollary 4.1. �
Remark 4.2. Let us also note that in general the number of self-intersecting times N(α)
need not depend continuously on α. To this end, assume that the dimension of the 
manifold X is > 2 and that the geodesic γ0 in X has a self-intersection at some point 
x1 ∈ γ0((−T1, T2)) so that x1 = γ0(t1) = γ0(t2), t1 < t2. Then one can show that by 
means of a small perturbation, that one can unwind the loop in the direction orthogonal 
to the plane spanned by the velocity vectors γ̇(t1) and γ̇(t2).

5. Construction of families of harmonic functions based on Gaussian beam quasimodes

Let (M, g) be a transversally anisotropic manifold of dimension n ≥ 3 with transversal 
manifold (M0, g0), and assume that M int

0 and g0|M int
0

are real analytic.
First assume, as we may, that (M, g) is embedded in a compact smooth manifold 

(N, g) without boundary of the same dimension, and let U be open in N such that 
M ⊂ U . Our starting point is the following Carleman estimate for −h2Δ, established in 
[10].

Proposition 5.1. Let φ be a limiting Carleman weight for −h2Δ on U . Then for all 
0 < h � 1, we have

h‖u‖L2(N) ≤ C‖eφ
h (−h2Δ)e−

φ
h u‖L2(N), C > 0, (5.1)
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for all u ∈ C∞
0 (M int).

Using a standard argument, see [10], we convert the Carleman estimate (5.1) into the 
following solvability result.

Proposition 5.2. Let φ be a limiting Carleman weight for −h2Δ on U . If h > 0 is small 
enough, then for any v ∈ L2(M), there is a solution u ∈ L2(M) of the equation

e
φ
h (−h2Δ)e−

φ
h u = v in M int,

which satisfies

‖u‖L2(M) ≤
C

h
‖v‖L2(M).

Now as M ⊂⊂ R ×M int
0 , there is a compact Riemannian manifold M̃0 of dimension n −

1 with smooth boundary such that M ⊂⊂ R ×M̃0 ⊂⊂ R ×M int
0 . Note that (M int

0 , g0|M int
0

)
is an open real analytic manifold with real analytic metric, and we can use Corollary 4.1
to construct a real analytic family of Gaussian beam quasimodes along nontangential 
geodesics on M̃0.

Let us write x = (x1, x′) for local coordinates in R × M̃0. Let

s = 1
h

+ iλ, λ ∈ R, λ fixed.

Note by [10, Lemma 2.9] that φ(x) = ±x1 is a limiting Carleman weight for −h2Δ on 
U . We are interested in finding harmonic functions,

−Δgu = 0 in M int, (5.2)

having the form

u = u(x, α;h) = e−sx1(v(x′, α;h) + r(x, α;h)),

where v = v(x′, α; h) is the Gaussian beam quasimode constructed in Corollary 4.1 on 
the transversal manifold M̃0, associated to a nontangential unit speed geodesic γ(α) on 
M̃0 depending analytically on α ∈ neigh(α0, S∗M̃ int

0 ), and r is a remainder term. Thus, 
u is a solution of (5.2) provided that r solves

e
x1
h (−h2Δg)e−

x1
h (e−iλx1r) = −e−iλx1(−h2Δg0 − (hs)2)v(x′, α;h). (5.3)

Proposition 5.2 and Corollary 4.1 imply that there is r = r( · ; α; h) ∈ L2(M) solving 
(5.3) such that

‖r‖L2(M) = O(e− 1
Ch ), C > 0,
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as h → 0, uniformly in α ∈ neigh(α0, S∗M̃ int
0 ).

To summarize, we have the following result.

Proposition 5.3. Let s = 1
h + iλ with λ ∈ R being fixed. For all h > 0 small enough, there 

are families of harmonic functions u1, u2 ∈ L2(M), i.e. −Δguj = 0 in M int, having the 
form

u1(x, α;h) = e−sx1(v(x′, α;h) + r1(x, α;h)),

u2(x, α;h) = esx1(v(x′, α;h) + r2(x, α;h)),

where v = v( · , α; h) is the family of Gaussian beam quasimodes constructed in Corol-
lary 4.1 on M̃0, and r ∈ L2(M) is such that ‖rj‖L2(M) = O(e− 1

Ch ), C > 0, as h → 0, 
uniformly in α ∈ neigh(α0, S∗M̃ int

0 ), j = 1, 2.

6. Proofs of Theorem 1.3 and Theorem 1.4

6.1. Some facts about analytic wave front sets

We shall rely on the following characterization of the analytic wave front set, which 
we recall from [49, Definition 6.1] for the convenience of the reader. In our applications, 
we have m = n − 1.

Definition 6.1. Let α0 = (x0, ξ0) ∈ T ∗Rm \ {0}, and let ϕ(x, α), x ∈ Rm, α = (αx, αξ) ∈
T ∗Rm \ {0}, be analytic defined in a neighborhood of (x0, α0) such that

ϕ(x, α)|x=αx
= 0, ϕ′

x(x, α)|x=αx
= αξ, (6.1)

and

Imϕ(x, α) ≥ C0|x− αx|2, x, α real, (6.2)

for some C0 > 0. Let a(x, α; h) be an elliptic classical analytic symbol defined in a 
neighborhood of (x0, α0), and let u ∈ D′(X), where X ⊂ Rm is an open set containing 
x0. We have α0 /∈ WFa(u) if and only if there is a real neighborhood U of α0 and C > 0
such that

sup
α∈U

|Tu(α;h)| ≤ Ce−
1

Ch , (6.3)

for 0 < h ≤ 1, where

Tu(α;h) =
∫

e
iϕ(x,α)

h a(x, α;h)χ(x)u(x)dx,

and χ ∈ C∞
0 (X) is supported in a small neighborhood of x0 and χ = 1 near x0.
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Remark 6.2. It is established in [49, Proposition 6.2] that the condition (6.3) is indepen-
dent of the choice of χ, a, and ϕ.

Remark 6.3. Assume that ϕ, a, and u satisfy the same conditions as in Definition 6.1, 
and let ψ ∈ C∞

0 (Rn) be supported in a small neighborhood of 0 and ψ = 1 near 0. We 
have α0 /∈ WFa(u) if and only if there is a real neighborhood Ũ of α0 and C̃ > 0 such 
that

sup
α∈Ũ

|T̃ u(α;h)| ≤ C̃e−
1

C̃h , (6.4)

for 0 < h ≤ 1, where

T̃ u(α;h) =
∫

e
iϕ(x,α)

h a(x, α;h)ψ(x− αx)u(x)dx.

The condition (6.4) is independent of the choice of ψ.

Remark 6.4. The condition (6.1) in Definition 6.1 and Remark 6.3 can be replaced by 
the following

ϕ(x, α)|x=αx
= f(α) real valued, ϕ′

x(x, α)|x=αx
= t0αξ, (6.5)

for some fixed t0 > 0. Indeed, we apply Definition 6.1 and Remark 6.3 with ϕ(x, α)
replaced by 1

t0
(ϕ(x, α) − f(α)) and with h replaced by h/t0.

Remark 6.5. Since the wave front set WFa(u) is conic, we may restrict the attention in 
Definition 6.1 to ξ0 ∈ Rm such that |ξ0| = 1.

6.2. Proof of Theorem 1.3

Let α0 = (x′
0, ξ

′
0) ∈ S∗M int

0 be generated by an admissible pair of geodesics γ1(α0) :
[−T1(α0), T2(α0)] → M0 and γ2(α0) : [−S1(α0), S2(α0)] → M0. As M ⊂⊂ R × M int

0 , 
there is a compact Riemannian manifold M̃0 of dimension n − 1 with smooth boundary 
such that M ⊂⊂ R × M̃0 ⊂⊂ R ×M int

0 , and x′
0 ∈ M̃ int

0 . Furthermore, we can choose M̃0
so that the geodesics γ1(α0) and γ2(α0) are nontangential on M̃0, and hence, γ1(α0) and 
γ2(α0) are admissible on M̃0.

Then by Lemma 3.2, there exists a neighborhood V of α0 in S∗M̃ int
0 such that 

every point α = (αx′ , αξ′) ∈ V is generated by an admissible pair of geodesics 
γ1(α) : [−T1(α), T2(α)] → M̃0 and γ2(α) : [−S1(α), S2(α)] → M̃0, which depend real-
analytically on α. Thus, for all α ∈ V , we have

γ1(α)(0) = γ2(α)(0) = αx′ , (6.6)

γ̇1(α)(0) + γ̇2(α)(0) = t0αξ′ , (6.7)
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for some 0 < t0 < 2 fixed, γ1(α), γ2(α) do not have self-intersections at αx′ , and αx′ is 
the only point where γ1(α) and γ2(α) intersect, for all α ∈ V .

Let s1 = 1
h + iλ and s2 = 1

h , where λ ∈ R. Applying Corollary 4.1, we get vj(x′, α; h), 
j = 1, 2, Gaussian beam quasimodes on M̃0, associated to γj(α) on M̃0, depending real 
analytically on α ∈ V such that

‖vj( · , α;h)‖L2(M) � 1, ‖(−h2Δg0 − (hs)2)vj( · , α;h)‖L2(M) = O(e− 1
Ch ), (6.8)

as h → 0, for some C > 0, uniformly in α ∈ V .
An application of Proposition 5.3 gives harmonic functions on M having the form

u1(x, α;h) = e−s1x1(v1(x′, α;h) + r1(x, α;h)),

u2(x, α;h) = es2x1(v2(x′, α;h) + r2(x, α;h)),
(6.9)

where

‖rj‖L2(M) = O(e− 1
Ch ), C > 0, (6.10)

as h → 0, uniformly in α ∈ V .
Substituting the harmonic functions u1 and u2 given by (6.9) into (1.2), we get∫

M

fe−iλx1(v1(x′, α;h) + r1)(v2(x′, α;h) + r2)dVg = 0. (6.11)

Using (6.10) and (6.8), we see that∫
M

fe−iλx1v1(x′, α;h)v2(x′, α;h)dVg = O(e− 1
Ch ), C > 0, (6.12)

uniformly in α ∈ V . Let us extend f ∈ L∞(M) by zero to (R ×M0) \M and set

f̂(λ, x′) =
∞∫

−∞

e−iλx1f(x1, x
′)dx1

for the Fourier transform with respect to x1. Using the fact that dVg = dx1dVg0 , we 
obtain from (6.12) that∫

M̃0

f̂(λ, x′)v1(x′, α;h)v2(x′, α;h)dVg0 = O(e− 1
Ch ), C > 0, (6.13)

uniformly in α ∈ V . Recalling that the geodesics γ1(α) and γ2(α) intersect at αx′ only 
and that
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supp (vj( · , α;h)) ⊂ small neigh(γj(α)), j = 1, 2,

we conclude from (6.13) that∫
neigh(αx′ ,M0)

f̂(λ, x′)v1(x′, α;h)v2(x′, α;h)
√

g0(x′)dx′ = O(e− 1
Ch ), (6.14)

uniformly in α ∈ V . Recalling that the geodesics γ1(α), γ2(α) do not have self-
intersections at αx′ , by Corollary 4.1, we have in a small neighborhood of αx′ ,

v1(x′, α;h) = h− (n−2)
4 eis1ϕ1(x′,α)a1(x′, α;h),

v2(x′, α;h) = h− (n−2)
4 eis2ϕ2(x′,α)a2(x′, α;h).

(6.15)

Here ϕj(x′, α) are real analytic in (x′, α) in a region of the form α ∈ V and |x′ − αx′ | <
1/c, which is an open neighborhood of (x′

0, α0). Furthermore, aj(x′, α; h) are elliptic 
classical analytic symbols in a neighborhood of (x′

0, α0), j = 1, 2. It follows that the 
neighborhood of αx′ occurring as the domain of integration in (6.14) can be taken to be 
fixed and independent of α. We also have for the geodesic parameters t and s near 0 that

(ϕ1)′x′(γ1(α)(t), α) = γ̇1(α)(t), Im ((ϕ1)′′x′x′(γ1(α)(t), α)) ≥ 0,

Im ((ϕ1)′′x′x′(γ1(α)(t), α)|[γ̇1(α)(t)]⊥) > 0,
(6.16)

and

(ϕ2)′x′(γ2(α)(s), α) = γ̇2(α)(s), Im ((ϕ2)′′x′x′(γ2(α)(s), α)) ≥ 0,

Im ((ϕ2)′′x′x′(γ2(α)(s), α)|[γ̇2(α)(s)]⊥) > 0.
(6.17)

Now substituting (6.15) into (6.14), we see that∫
neigh(αx′ ,M0)

e
iϕ(x′,α)

h f̂(λ, x′)a(x′, α;h)dx′ = O(e− 1
Ch ), h → 0, (6.18)

uniformly in α ∈ V . Here

ϕ(x′, α) = ϕ1(x′, α) + ϕ2(x′, α) (6.19)

is analytic in a neighborhood of (x′
0, α0), and

a(x′, α;h) = e−λϕ1(x′,α)a1(x′, α;h)a2(x′, α;h)
√

g0(x′)

is an elliptic classical analytic symbol in a neighborhood of (x′
0, α0), since the product 

of two classical analytic symbols is a classical analytic symbol.
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We now claim that the phase function ϕ(x′, α) in (6.19) satisfies the conditions (6.5)
and (6.2). First, in view of (6.6) and (1.5), we have

ϕ(x′, α)|x′=αx′ = ϕ1(γ1(α)(0), α) + ϕ2(γ2(α)(0), α) = 0. (6.20)

Using (6.16), (6.17), and (6.7), we get

ϕ′
x′(x′, α)|x′=αx′ = (ϕ1)′x′(γ1(α)(0), α) + (ϕ2)′x′(γ2(α)(0), α)

= γ̇1(α)(0) + γ̇2(α)(0) = t0αξ′ .
(6.21)

It follows from (6.20) and (6.21) that the condition (6.5) holds. Let us now check the 
condition (6.2). To this end, Taylor expanding ϕ(x′, α) at x′ = αx′ , we get

ϕ(x′, α) =ϕ(αx′ , α) + ϕ′
x′(αx′ , α) · (x′ − αx′)

+ 1
2ϕ

′′
x′x′(αx′ , α)(x′ − αx′) · (x′ − αx′) + O(|x′ − αx′ |3),

and therefore, in view of (6.20) and (6.21), when x′ and α are real, we see that

Imϕ(x′, α) = 1
2Imϕ′′

x′x′(αx′ , α)(x′ − αx′) · (x′ − αx′) + O(|x′ − αx′ |3).

Hence, the condition (6.2) is equivalent the following condition,

Imϕ′′
x′x′(αx′ , α) > 0. (6.22)

Using (6.16), (6.17), and the fact that the vectors γ̇1(α)(0) and γ̇2(α)(0) are not parallel, 
we have

Imϕ′′
x′x′(αx′ , α) = Im (ϕ1)′′x′x′(γ1(α)(0), α) + Im (ϕ2)′′x′x′(γ2(α)(0), α) > 0,

showing (6.22). Thus, by Remarks 6.3 and 6.4, in view of (6.18), we get α0 /∈
WFa(f̂(λ, ·)) = WFa(f̂(−λ, ·)) for all λ ∈ R. Noting that if (1.2) holds for f , it also holds 
for f and λ ∈ R is arbitrary, we get α0 /∈ WFa(f̂(λ, ·)) for all λ ∈ R. This completes the 
proof of Theorem 1.3.

6.3. Proof of Theorem 1.4

Now since every point (x′
0, ξ

′
0) ∈ S∗M int

0 is generated by an admissible pair of 
geodesics, by Theorem 1.3, we get f̂(λ, ·) is real-analytic in M int

0 for all λ ∈ R. The 
fact that f̂(λ, ·) has a compact support in M int

0 and that M0 is connected implies that 
f̂(λ, ·) = 0 for all λ ∈ R, and therefore, f = 0. This completes the proof of Theorem 1.4.
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Appendix A. Discussion related to Example 1.7

Let M0 = S1 × [0, a], with a > 0, be a cylinder with its usual flat metric g0. The 
purpose of this Appendix is to show that every point (x0, ξ0) ∈ S∗M int

0 is generated by 
an admissible pair of geodesics.

We have

T ∗(S1 × (0, a)) � T ∗S1 × T ∗(0, a) � (S1 ×R) × ((0, a) ×R) � (S1 × (0, a)) ×R2,

and therefore, we may identify S∗
x0
M int

0 with the unit circle S1 in R2 � C.
Given S1 � ξ0 = (ξ01, ξ02) � ξ01 + iξ02, we set

ξ1 = eiα(ξ01 + iξ02) ∈ S1, ξ2 = e−iα(ξ01 + iξ02) ∈ S1, (A.1)

with α ∈ (0, 2π) to be chosen. The geodesics γ1 and γ2 on M0 such that γj(0) = x0 and 
γ̇j(0) = ξj , j = 1, 2, are given by

γ1(t) = (x01 + ξ11t, x02 + ξ12t) ∈ R/2πZ× [0, a],

γ2(s) = (x01 + ξ21s, x02 + ξ22s) ∈ R/2πZ× [0, a].

The geodesics γ1 and γ2 are nontangential provided that

ξ12 = Im (eiα(ξ01 + iξ02)) = ξ02 cosα + ξ01 sinα �= 0,

ξ22 = Im (e−iα(ξ01 + iξ02)) = ξ02 cosα− ξ01 sinα �= 0.
(A.2)

Note that if γ1 and γ2 are nontangential then they do not have self-intersections.
We have in view of (A.1),

ξ1 + ξ2 = (2 cosα)ξ0, (A.3)

and therefore, the property (ii) of Definition 1.2 follows with t0 = 2 cosα, provided that

0 < cosα < 1. (A.4)

Note that γ1 and γ2 intersect each other if there exist t and s such that

ξ11t− ξ21s ∈ 2πZ, ξ12t = ξ22s. (A.5)

Now if we choose α so that

|ξ11t− ξ21s| < 2π, ξ12t = ξ22s, (A.6)

then (A.5) implies that ξ1t = ξ2s, and therefore, |t| = |s|. In view of (A.3) and (A.4), we 
get t = s = 0, and hence, x0 is the only point of intersections of γ1 and γ2.
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To achieve (A.6), assuming that (A.2) holds, we estimate

|ξ11t− ξ21s| = |t|
|ξ22|

|ξ22ξ11 − ξ21ξ12| = |t|
|ξ22|

|Im (ξ1ξ2)| = |t|
|ξ22|

| sin(2α)|

≤ a

|ξ12||ξ22|
| sin(2α)| = a

|ξ2
02 − sin2 α| | sin(2α)|,

where we use that 0 ≤ x02 + ξ12t ≤ a, 0 ≤ x02 ≤ a, and (A.2). Thus, to prove the result, 
we have to choose α ∈ (0, 2π) so that (A.2), (A.4), and

a

|ξ2
02 − sin2 α| | sin(2α)| < 2π (A.7)

hold. In doing so let us first consider the case when ξ02 �= 0. In this case choosing α > 0
small enough, depending on a and ξ02, we see that (A.2), (A.4), and (A.7) hold. When 
ξ02 = 0, we choose α = π

2 − β with β > 0 small enough, depending on a. Then (A.7)
becomes

a

| cos2 β| | sin(2β)| < 2π,

which together with (A.2), (A.4) hold for such small β. This completes the proof that 
every point of S∗M int

0 is generated by an admissible pair of geodesics.
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