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Abstract
We study metric spheres (𝑍, 𝑑𝑍) obtained by gluing
two hemispheres of 𝕊2 along an orientation-preserving
homeomorphism g ∶ 𝕊1 → 𝕊1, where 𝑑𝑍 is the canoni-
cal distance that is locally isometric to 𝕊2 off the seam.
We show that if (𝑍, 𝑑𝑍) is quasiconformally equivalent to
𝕊2, in the geometric sense, then g is a welding homeo-
morphism with conformally removable welding curves.
We also show that g is bi-Lipschitz if and only if (𝑍, 𝑑𝑍)
has a 1-quasiconformal parametrization whose Jacobian
is comparable to the Jacobian of a quasiconformal map-
ping ℎ∶ 𝕊2 → 𝕊2. Furthermore, we show that if g−1 is
absolutely continuous and g admits a homeomorphic
extension with exponentially integrable distortion, then
(𝑍, 𝑑𝑍) is quasiconformally equivalent to 𝕊2.

MSC 2020
30L10 (primary), 30C65, 28A75, 51F99, 52A38 (secondary)

1 INTRODUCTION

In this paper, wework in the unit sphere𝕊2 ⊂ ℝ3.We denote the equator𝕊2 ∩ (ℝ2 × {0}) by𝕊1 and
endow 𝕊2 with the length distance 𝜎 induced by the Euclidean distance ofℝ3. The open southern
and northern hemispheres are denoted by 𝑍1 and 𝑍2, respectively. Here (0, 0, 1) ∈ 𝑍2.
Consider an orientation-preserving homeomorphism g ∶ 𝕊1 → 𝕊1,mapping the boundary of𝑍1

to the boundary of 𝑍2. We identify each 𝑧 ∈ 𝕊1 with its image g(𝑧) ∈ 𝕊1. With this identification,
we obtain a set 𝑍 and inclusion maps 𝜄1 ∶ 𝑍1 → 𝑍 and 𝜄2 ∶ 𝑍2 → 𝑍. We call 𝑆𝑍 = 𝜄1(𝕊

1) = 𝜄2(𝕊
1)

the seam of 𝑍.
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2 IKONEN

We construct a pseudodistance 𝑑𝑍 on 𝑍, see Section 3, making the inclusion maps local
isometries off the seam and 1-Lipschitz everywhere. We consider the quotient map 𝑄∶ 𝑍 → 𝑍

identifying points 𝑥, 𝑦 ∈ 𝑍 whenever 𝑑𝑍(𝑥, 𝑦) = 0, and endow 𝑍 with the associated quotient dis-
tance.
We are interested in this construction for the following reason: whenever the metric space 𝑍 is

quasiconformally equivalent to 𝕊2, there exist Riemann maps 𝜙1 ∶ 𝑍1 → Ω1, 𝜙2 ∶ 𝑍2 → Ω2 onto
the complementary components of a Jordan curve  with g = 𝜙−1

2
◦𝜙1|𝕊1 ; with the Carathéodory

theorem we can make sense of the composition 𝜙−1
2

◦𝜙1|𝕊1 [16]. Any such g is called a welding
homeomorphism and  a welding curve. A long-standing problem is to understand which homeo-
morphisms g satisfy g = 𝜙−1

2
◦𝜙1|𝕊1 for some Riemann maps. We refer to the survey articles [18,

37] for further background information.
We also investigate the properties of𝑍, given an arbitrary welding homeomorphism g . We show

in Section 4 that the 1D Hausdorff measures on the seam 𝑄(𝑆𝑍) and on (the tangents of)  are
closely connected, using results from classical complex analysis [16]. For example, our results
show that a given subarc of the welding curve has tangents only in a set negligible to the 1D
Hausdorff measure if and only if the quotient map𝑄 collapses the corresponding part of the seam
to a point.
We present in Sections 7.1 and 7.2 examples illustrating that for some homeomorphisms g ,

after removing a portion 𝐸′ of the seam 𝑄(𝑆𝑍), one can find a 1-quasiconformal embedding
𝜓∶ 𝑍 ⧵ 𝐸′ → 𝕊2, but not necessarily a quasiconformal homeomorphism Ψ∶ 𝑍 → 𝕊2. A similar
phenomenon was investigated in [17] and [7] in more detail.
We now state our first result.

Theorem 1.1. Let g ∶ 𝕊1 → 𝕊1 be an orientation-preserving homeomorphism. The following are
quantitatively equivalent.

(1) g is 𝐿-bi-Lipschitz;
(2) there exists an 𝐿′-bi-Lipschitz homeomorphism Ψ∶ 𝑍 → 𝕊2;
(3) there exists 𝐶′ ⩾ 0 such that for every 𝑦 ∈ 𝑄(𝑆𝑍),

lim inf
𝑟→0+

2
𝑍
(𝐵𝑍(𝑦, 𝑟))

𝜋𝑟2
⩽ 𝐶′.

In the implications “(1) ⇒ (2)” we may take 𝐿′ = 𝐿, in “(2) ⇒ (3)” 𝐶′ = (𝐿′)4, and in “(3) ⇒ (1)”
𝐿 = 𝜋𝐶′.

We prove “(1) ⇒ (2)” by observing that if g ∶ 𝕊1 → 𝕊1 admits an 𝐿′-bi-Lipschitz extension
𝜙∶ 𝑍2 → 𝑍2, the space 𝑍 has an 𝐿′-bi-Lipschitz parametrization. That we may take 𝐿′ = 𝐿 in “(1)
⇒ (2),” follows by applying a known planar extension result [24] and stereographic projection.
The claim “(2) ⇒ (3)” is a straightforward consequence of the properties of Hausdorff mea-

sures. The implication “(3)⇒ (1)” is proved by carefully analysing the behaviour of the inclusion
mappings 𝜄𝑖 ∶ 𝑍𝑖 → 𝑍 at the equator 𝕊1. Notice that the 𝜄𝑖 are 1-Lipschitz everywhere and local
isometries outside the equator. This implies 𝐶′ ⩾ 1 in (3). Remark 5.9 shows two ways to improve
the bi-Lipschitz constant 𝜋𝐶′. The improvements imply that as 𝐶′ → 1+ in (3), the bi-Lipschitz
constant of g converges to one. In particular, (3) holds with 𝐶′ = 1 if and only if g is an isometry.
Theorem 1.1 is closely related to the following result.
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Theorem 1.2. If an orientation-preserving homeomorphism g ∶ 𝕊1 → 𝕊1 is 𝐿-bi-Lipschitz, there
exists a 1-quasiconformal homeomorphism 𝜑∶ 𝕊2 → 𝑍 and a 𝐾-quasiconformal homeomorphism
ℎ∶ 𝕊2 → 𝕊2 such that the Jacobians satisfy

𝐶−1𝐽ℎ(𝑥) ⩽ 𝐽𝜑(𝑥) ⩽ 𝐶𝐽ℎ(𝑥) for2
𝕊2
-almost everywhere, 𝑥 ∈ 𝕊2 (1.1)

for 𝐾 = 𝐿4 and 𝐶 = 𝐿2. Conversely, if there exists 𝐾, 𝐶, and ℎ for which Equation (1.1) holds, then g
is 𝜋(𝐾𝐶)2-bi-Lipschitz.

The Jacobians are defined in Section 2.3. We note that if ℎ∶ 𝕊2 → 𝕊2 is an orientation-
preserving quasiconformal homeomorphism, the 𝐽ℎ coincides with the usual distributional
Jacobian; see for example [2, Section 3.8].
If g is 𝐿-bi-Lipschitz, the existence of 𝜑 and ℎ is a straightforward consequence of the implica-

tion “(1)⇒ (2)” in Theorem 1.1. If ℎ and 𝜑 exist, we first check thatΨ = ℎ ◦𝜑−1 is bi-Lipschitz, the
study of the seam requiring a careful argument, and use the implications “(2)⇒ (3)⇒ (1)” from
Theorem 1.1 to verify that g is bi-Lipschitz.
Theorem 1.2 is a special case of the quasiconformal Jacobian problem: which weights 𝜔∶ 𝕊2 →

[0,∞] are comparable to the Jacobians of quasiconformal homeomorphisms ℎ∶ 𝕊2 → 𝕊2; see [6,
10], and references therein for further reading.
Given that (1) and (3) are equivalent in Theorem 1.1, it is not entirely clear for which classes

of homeomorphisms one can expect 𝑍 to be quasiconformally equivalent to 𝕊2, or what kind of
geometric properties one can expect from such a 𝑍.

Question 1.3. Let 𝑍 be the metric space obtained from a homeomorphism g ∶ 𝕊1 → 𝕊1. When
can we find a quasiconformal homeomorphism 𝜓∶ 𝑍 → 𝕊2? What kind of restrictions does this
impose on g?

As an example, if g is a welding homeomorphism corresponding to the von Koch snowflake,
then 𝑑𝑍(𝑥, 𝑦) = 0 for every pair of points in the seam, see Remark 4.2. Hence 𝑍 can fail to be
quasiconformally equivalent, or homeomorphic, to 𝕊2 when g is in quasisymmetry. We show that
a simple measure-theoretic assumption removes this obstruction.

Proposition 1.4. Let g ∶ 𝕊1 → 𝕊1 be a quasisymmetry whose inverse is absolutely continuous. Then
𝑍 is quasiconformally equivalent to 𝕊2.

The absolute continuity of g−1 is used in twoways. First, it guarantees that𝑍 = (𝑍, 𝑑𝑍). Second,
if𝜓∶ 𝑍2 → 𝑍2 is a quasisymmetric extension of g , we show that the homeomorphism𝐻∶ 𝕊2 → 𝑍

satisfying𝐻|𝑍1 = 𝜄1 and𝐻|𝑍2 = 𝜄2 ◦𝜓|𝑍2 is quasiconformal. A key step in the proof is showing the
Sobolev regularity𝐻−1 ∈ 𝑁1,2(𝑍, 𝕊2); the absolute continuity of g−1 is applied here.
Proposition 1.4 is a special case of the following stronger result.

Theorem 1.5. Let g ∶ 𝕊1 → 𝕊1 be an orientation-preserving homeomorphismwhose inverse is abso-
lutely continuous. If g extends to a homeomorphism 𝜓∶ 𝑍2 → 𝑍2 for which 𝜓|𝑍2 has exponentially
integrable distortion, then 𝑍 is quasiconformally equivalent to 𝕊2.

We now explain the main steps of the proof of Theorem 1.5. We first show that there
exists a homeomorphism 𝐻∶ 𝕊2 → 𝑍 with exponentially integrable distortion. We also have
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𝐻−1 ∈ 𝑁1,2(𝑍, 𝕊2); see Remark 6.8. The exponential integrability of the distortion of 𝐻 is used
to verify the reciprocality condition of 𝑍, see Definition 2.5. Then [31, Theorem 1.4] shows that
𝑍 is quasiconformally equivalent to 𝕊2. The key ingredients in the proof are the condenser esti-
mates for mappings of exponentially distortion [27], applicable because 𝐻−1 ∈ 𝑁1,2(𝑍, 𝕊2), and
the Stoilow factorization theorem [2, Chapter 20]. There are some known criteriawhich guarantee
that g admits an extension as in Theorem 1.5; see [25, 39].
In Section 7.1, we present an example of g ∶ 𝕊1 → 𝕊1 that is locally bi-Lipschitz outside a single

point, but for which 𝑍 is not quasiconformally equivalent to 𝕊2. This illustrates that the absolute
continuity of g−1 is not enough to guarantee that 𝑍 is quasiconformally equivalent to 𝕊2. This fact
is a consequence of the following result, partially answering Question 1.3.

Theorem 1.6. Suppose that g ∶ 𝕊1 → 𝕊1 is an orientation-preserving homeomorphism for which
there exists a quasiconformal homeomorphism ℎ∶ 𝕊2 → 𝑍. Then 𝑍 = (𝑍, 𝑑𝑍) and there exists a 1-
quasiconformal homeomorphism 𝜋∶ 𝕊2 → 𝑍. Furthermore, g is a welding homeomorphism whose
welding curves are conformally removable.

The first step in the proof of Theorem 1.6 is showing that ℎ can be assumed to be 1-
quasiconformal. Then, up to an orientation-reversingMöbius transformation,𝜙𝑖 = ℎ−1 ◦ 𝜄𝑖 ∶ 𝑍𝑖 →
𝕊2 are Riemann maps with welding curve  = ℎ−1(𝑄(𝑆𝑍)) and welding homeomorphism
𝜙−1
2

◦𝜙1|𝕊1 . The equality 𝑍 = (𝑍, 𝑑𝑍) and the conformal removability of  follow from a connec-
tion we show between the tangents of the welding curve  and the Hausdorff 1-measure on the
seam 𝑄(𝑆𝑍); see Section 4. The equality 𝑍 = (𝑍, 𝑑𝑍) implies g = 𝜙−1

2
◦𝜙1|𝕊1 .

We recall that a compact proper subset 𝐾 ⊂ 𝕊2 is conformally removable if every homeomor-
phism𝑀∶ 𝕊2 → 𝕊2 conformal in 𝕊2 ⧵ 𝐾 is Möbius. The von Koch snowflake example illustrates
that conformal removability of a welding curve  is not enough to guarantee even that 𝑍 is home-
omorphic to 𝕊2. We refer the reader to [37] and [38] for further reading on conformal weldings and
the connections to conformal removability. See [20] for some results in the context of Theorem 1.5.
The paper is structured as follows. In Section 2, we introduce our notations and some pre-

liminary results. In Section 3, we analyse the distance 𝑑𝑍 induced by any given homeomorphism
g ∶ 𝕊1 → 𝕊1.When g is awelding homeomorphim,we establish in Section 4 a connection between
the geometry of the seam 𝑆𝑍 and the tangents of the corresponding welding curves . We also
prove Theorem 1.6 in this section. In Section 5, we prove Theorems 1.1 and 1.2. Proposition 1.4 and
Theorem 1.5 are proved in Section 6. In Section 7, we give some concluding remarks.

2 PRELIMINARIES

2.1 Notation

Let (𝑌, 𝑑𝑌) be a metric space. We sometimes drop the subscript from 𝑑𝑌 when there is no chance
for confusion. For all 𝑄 ⩾ 0, the 𝑄-dimensional Hausdorff measure, or a Hausdorff 𝑄-measure, is
defined by

𝑄
𝑌
(𝐵) =

𝛼(𝑄)

2𝑄
sup
𝛿>0

inf

{
∞∑
𝑖=1

(diam𝐵𝑖)
𝑄 ∶ 𝐵 ⊂

∞⋃
𝑖=1

𝐵𝑖, diam𝐵𝑖 < 𝛿

}
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for all sets 𝐵 ⊂ 𝑌, where 𝛼(𝑄) is chosen so that𝑛
ℝ𝑛

coincides with the Lebesgue measure 𝑛 for
all positive integers.
The length of a path 𝛾∶ [𝑎, 𝑏] → 𝑌 is defined as

𝓁𝑑(𝛾) = sup

𝑛∑
𝑖=1

𝑑(𝛾(𝑡𝑖), 𝛾(𝑡𝑖+1)),

the supremum taken over all finite partitions 𝑎 = 𝑡1 ⩽ 𝑡2 ⩽ ⋯ ⩽ 𝑡𝑛+1 = 𝑏. A path is rectifiable if it
has finite length.
Themetric speed of a path 𝛾∶ [𝑎, 𝑏] → 𝑌 at the point 𝑡 ∈ [𝑎, 𝑏] is defined as

𝑣𝛾(𝑡) = lim
𝑡≠𝑠→𝑡

𝑑(𝛾(𝑠), 𝛾(𝑡))|𝑠 − 𝑡|
whenever this limit exists. The limit exists 1-almost everywhere for every rectifiable path [12,
Theorem 2.1].
A rectifiable path 𝛾∶ [𝑎, 𝑏] → 𝑌 is absolutely continuous if for all 𝑎 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑏,

𝑑(𝛾(𝑡), 𝛾(𝑠)) ⩽ ∫
𝑡

𝑠
𝑣𝛾(𝑢) 𝑑1(𝑢)

with 𝑣𝛾 ∈ 𝐿1([𝑎, 𝑏]) and 1 the Lebesgue measure on the real line. Equivalently, the rectifiable
path 𝛾 is absolutely continuous if it maps sets of 1-measure zero to sets of1

𝑌
-measure zero [12,

Section 3].
Let 𝛾∶ [𝑎, 𝑏] → 𝑋 be an absolutely continuous path. Then the (path) integral of a Borel function

𝜌∶ 𝑋 → [0,∞] over 𝛾 is

∫𝛾 𝜌 𝑑𝑠 = ∫
𝑏

𝑎
(𝜌 ◦ 𝛾)𝑣𝛾 𝑑1. (2.1)

If 𝛾 is rectifiable, then the path integral of 𝜌 over 𝛾 is defined to be the path integral of 𝜌 over the
arc length parametrization 𝛾𝑠 of 𝛾; see [19, Chapter 5] for further details.
Given a Borel set 𝐴 ⊂ 𝑌, the length of a path 𝛾∶ [𝑎, 𝑏] → 𝑌 in 𝐴 is defined as

∫𝑌 𝜒𝐴(𝑦)#(𝛾−1(𝑦)) 𝑑1
𝑌
(𝑦), where #(𝛾−1(𝑥)) is the counting measure of 𝛾−1(𝑥). For 𝐴 = 𝑌, [15,

Theorem 2.10.13] states

𝓁(𝛾) = ∫𝑌 #(𝛾
−1(𝑦)) 𝑑1

𝑌(𝑦). (2.2)

When 𝛾 is rectifiable, for every Borel function 𝜌∶ 𝑌 → [0,∞],

∫𝛾 𝜌 𝑑𝑠 = ∫𝑌 𝜌(𝑦)#(𝛾
−1(𝑦)) 𝑑1

𝑌(𝑦). (2.3)

The equality (2.3) follows from [15, Theorem2.10.13] via a standard approximation argument using
simple functions.
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2.2 Metric Sobolev spaces

In this section we give an overview of Sobolev theory in the metric surface setting, and refer to
[19] for a comprehensive introduction.
Let Γ be a family of paths in 𝑌. A Borel function 𝜌∶ 𝑌 → [0,∞] is admissible for Γ if the path

integral ∫𝛾 𝜌 𝑑𝑠 ⩾ 1 for all rectifiable paths 𝛾 ∈ Γ. Given 1 ⩽ 𝑝 < ∞, the 𝑝-modulus of Γ is

mod𝑝 Γ = inf ∫𝑌 𝜌
𝑝 𝑑2

𝑌,

where the infimum is taken over all admissible functions 𝜌. Observe that if Γ1 and Γ2 are path
families and every path 𝛾1 ∈ Γ1 contains a subpath 𝛾2 ∈ Γ2, thenmod𝑝 Γ1 ⩽ mod𝑝 Γ2. In particu-
lar, this holds if Γ1 ⊂ Γ2. When 𝑝 = 2, and there is no chance for confusion, we omit the subscript
frommod2.
If 𝜌 is admissible for a path family Γ ⧵ Γ0, wheremod𝑝 Γ0 = 0, we say that 𝜌 is 𝑝-weakly admis-

sible for Γ. If a property holds for every path 𝛾 ∈ Γ except in a subfamily of 𝑝-modulus zero, the
property is said to hold on 𝑝-almost every path in Γ. We also refer to 2-almost every path as almost
every path.
We recall the following lemma [19, Lemma 5.2.8].

Lemma 2.1. Let 1 ⩽ 𝑝 < ∞. A family of nonconstant paths Γ satisfies mod𝑝 Γ = 0 if and only if
there exists 𝜌∶ 𝑌 → [0,∞], 𝜌 ∈ 𝐿𝑝(𝑌) with

∞ = ∫𝛾 𝜌 𝑑𝑠 for every 𝛾 ∈ Γ.

Let 𝜓∶ (𝑌, 𝑑𝑌) → (𝑍, 𝑑𝑍) be a mapping between metric spaces 𝑌 and 𝑍. A Borel function
𝜌∶ 𝑌 → [0,∞] is an upper gradient of 𝜓 if

𝑑𝑌(𝜓(𝑥), 𝜓(𝑦)) ⩽ ∫𝛾 𝜌 𝑑𝑠

for every rectifiable path 𝛾∶ [𝑎, 𝑏] → 𝑌 connecting 𝑥 to 𝑦. The function 𝜌 is a 𝑝-weak upper
gradient of 𝜓 if the same holds for 𝑝-almost every rectifiable path.
A 𝑝-weak upper gradient 𝜌 ∈ 𝐿

𝑝

loc
(𝑌) of 𝜓 isminimal if it satisfies 𝜌 ⩽ 𝜌 almost everywhere for

all 𝑝-weak upper gradients 𝜌 ∈ 𝐿
𝑝

loc
(𝑌) of 𝜓. If 𝜓 has a 𝑝-weak upper gradient 𝜌 ∈ 𝐿

𝑝

loc
(𝑌), then

𝜓 has a minimal 𝑝-weak upper gradient, which we denote by 𝜌𝜓. We refer to Section 6 of [19]
and Section 3 of [36] for further details. Minimal 2-weak upper gradients are also referred to as
minimal weak upper gradients.
Fix a point 𝑧 ∈ 𝑍, and let 𝑑𝑧 = 𝑑𝑍(⋅, 𝑧). The space 𝐿𝑝(𝑌, 𝑍) is defined as the collection of mea-

surable maps 𝜓∶ 𝑌 → 𝑍 such that 𝑑𝑧 ◦𝜓 is in 𝐿𝑝(𝑌). Moreover, 𝐿𝑝
loc
(𝑌, 𝑍) is defined as those

measurable maps 𝜓∶ 𝑌 → 𝑍 for which, for all 𝑦 ∈ 𝑌, there is an open set 𝑈 ⊂ 𝑌 containing 𝑦
such that 𝜓|𝑈 is in 𝐿𝑝(𝑈, 𝑍).
The metric Sobolev space 𝑁1,𝑝

loc
(𝑌, 𝑍) consists of those maps 𝜓∶ 𝑌 → 𝑍 in 𝐿𝑝

loc
(𝑌, 𝑍) that have

a minimal 𝑝-weak upper gradient 𝜌𝜓 ∈ 𝐿
𝑝

loc
(𝑌).
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For subsets ∅ ≠ 𝑈 ⊂ 𝑌, we say that 𝜓 ∈ 𝑁1,𝑝(𝑈, 𝑍) if 𝜓|𝑈 ∈ 𝑁
1,𝑝

loc
(𝑈, 𝑍), 𝜌𝜓|𝑈 ∈ 𝐿𝑝(𝑈) and

𝜓|𝑈 ∈ 𝐿𝑝(𝑈, 𝑍). If 𝑍 = ℝ, we denote 𝑁1,𝑝(𝑈, 𝑍) = 𝑁1,𝑝(𝑈), and in the case 𝑝 = 2,

𝐸(𝜓) ∶= 2−1
‖‖‖𝜌𝜓‖‖‖2𝐿2(𝑈).

We refer to 𝐸(𝜓) as the Dirichlet energy of 𝜓.
We repeatedly use the following technical lemma in later sections.

Lemma 2.2. Let 𝜓∶ 𝑌 → 𝑍 be continuous, 𝜌∶ 𝑌 → [0,∞] a Borel function and 𝛾∶ [0, 1] → 𝑌

absolutely continuous with ∫𝛾 𝜌 𝑑𝑠 < ∞.
Suppose that 𝐸 ⊂ 𝑌 is compact,1

𝑍
(𝜓(𝐸)) = 0, and 𝓁(𝜓 ◦ 𝛾|𝐼) ⩽ ∫𝛾|𝐼 𝜌 𝑑𝑠 for each closed interval

𝐼 ⊂ [0, 1] ⧵ 𝛾−1(𝐸). Then 𝓁(𝜓 ◦ 𝛾) ⩽ ∫𝛾 𝜌 𝑑𝑠.
Proof. First, for every closed interval 𝐽 ⊂ [0, 1] ⧵ 𝛾−1(𝐸), 𝜓 ◦ 𝛾|𝐽 is absolutely continuous with
𝑣𝜓 ◦ 𝛾(𝑠) ⩽ (𝜌 ◦ 𝛾)(𝑠)𝑣𝛾(𝑠) for 1-almost every 𝑠 ∈ 𝐽. This follows from [19, Proposition 6.3.2].
Second, consider the connected components {𝐼𝑖}∞𝑖=1 of [0, 1] ⧵ (𝜓 ◦ 𝛾)−1(𝜓(𝐸)). Notice that 𝐼𝑖 ⊂

[0, 1] ⧵ 𝛾−1(𝐸) for every 𝑖.
Let 𝐽𝑖 = 𝐼𝑖 . Then 𝑣𝜓 ◦ 𝛾(𝑠) ⩽ (𝜌 ◦ 𝛾|𝐽𝑖 )(𝑠) 1-almost everywhere on 𝐽𝑖 (on 𝐼𝑖). This fact, the

continuity of 𝜓 ◦ 𝛾 and ∫𝛾 𝜌 𝑑𝑠 < ∞ imply

𝓁(𝜓 ◦ 𝛾|𝐽𝑖 ) ⩽ ∫𝐼𝑖 (𝜌 ◦ 𝛾)𝑣𝛾 𝑑𝑠 < ∞.

By summing over 𝑖, we conclude

∞∑
𝑖=1

𝓁(𝜓 ◦ 𝛾|𝐽𝑖 ) ⩽ ∫⋃∞
𝑖=1 𝐼𝑖

(𝜌 ◦ 𝛾)𝑣𝛾 𝑑𝑠 ⩽ ∫𝛾 𝜌 𝑑𝑠.

Given1
𝑍
(𝜓(𝐸)) = 0, (2.2) and (2.3) imply

𝓁(𝜓 ◦ 𝛾) = ∫𝑍⧵𝜓(𝐸) #((𝜓 ◦ 𝛾)−1(𝑥)) 𝑑1
𝑍(𝑥)

⩽

∞∑
𝑖=1

∫𝑍⧵𝜓(𝐸) #((𝜓 ◦ 𝛾|𝐽𝑖 )−1(𝑥)) 𝑑1
𝑍(𝑥)

=

∞∑
𝑖=1

𝓁(𝜓 ◦ 𝛾|𝐽𝑖 ) ⩽ ∫𝛾 𝜌 𝑑𝑠.

Hence 𝓁(𝜓 ◦ 𝛾) ⩽ ∫𝛾 𝜌 𝑑𝑠. □

2.3 Measure theory

Let 𝑌 be a Borel subset of a complete and separable metric space. A Borel measure 𝜇 on 𝑌 is
𝜎-finite if there exists a Borel decomposition {𝐵𝑖}∞𝑖=1 of 𝑌 for which 𝜇(𝐵𝑖) < ∞ for every 𝑖.
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A pair of 𝜎-finite Borel measures 𝜇 and 𝜈 on 𝑌 are said to be mutually singular if there
exists a Borel set 𝐵 ⊂ 𝑌 such that 𝜇(𝐵) = 0 and 𝜈(𝑌 ⧵ 𝐵) = 0. The measure 𝜇 admits a Lebesgue
decomposition (with respect to 𝜈), where 𝜇 = 𝑓 ⋅ 𝜈 + 𝜇⟂, with 𝜇⟂ and 𝜈 mutually singular and 𝑓
Borel measurable [9, Sections 3.1–3.2 in Volume I]. We say that 𝜇 and 𝜈 are mutually absolutely
continuous if 𝜇 = 𝑓 ⋅ 𝜈 with density 𝑓 > 0 𝜈-almost everywhere.
Given a homeomorphism 𝜓∶ 𝑌 → 𝑍 and measures 𝜈 on 𝑌 and 𝜇 on 𝑍, the measure 𝜓∗𝜇(𝐵) =

𝜇(𝜓(𝐵)) is called the pullbackmeasure. Such ameasure admits a decomposition 𝜓∗𝜇 = 𝑓 ⋅ 𝜈 + 𝜇⟂

with 𝜈 and 𝜇⟂ mutually singular. If 𝜈 = 2
𝑌
and 𝜇 = 2

𝑍
, the density 𝑓 is called the Jacobian of 𝜓

and denoted by 𝐽𝜓.

2.4 Quasiconformal mappings

Here we define quasiconformal maps and recall some basic facts.

Definition 2.3. Let (𝑌, 𝑑𝑌) and (𝑍, 𝑑𝑍) bemetric spaces with locally finite Hausdorff 2-measures.
A homeomorphism 𝜓∶ (𝑌, 𝑑𝑌) → (𝑍, 𝑑𝑍) is quasiconformal if there exists 𝐾 ⩾ 1 such that for all
path families Γ in 𝑌

𝐾−1 modΓ ⩽ mod𝜓Γ ⩽ 𝐾modΓ, (2.4)

where 𝜓Γ = {𝜓 ◦ 𝛾∶ 𝛾 ∈ Γ}. If Equation (2.4) holds with a constant 𝐾 ⩾ 1, we say that 𝜓 is 𝐾-
quasiconformal.

A special case of [36, Theorem 1.1] yields the following.

Theorem 2.4. Let 𝑌 and 𝑍 be locally compact separable metric spaces with locally finite Hausdorff
2-measure and 𝜓∶ 𝑌 → 𝑍 a homeomorphism. The following are equivalent for the same constant
𝐾 > 0:

(i) modΓ ⩽ 𝐾mod𝜓Γ for all path families Γ in 𝑌.
(ii) 𝜓 ∈ 𝑁1,2

loc
(𝑌, 𝑍) and satisfies

𝜌2
𝜓
(𝑦) ⩽ 𝐾𝐽𝜓(𝑦)

for2
𝑌
-almost every 𝑦 ∈ 𝑌.

The outer dilatation of 𝜓 is the smallest constant 𝐾𝑂 ⩾ 0 for which the modulus inequality
modΓ ⩽ 𝐾𝑂 mod𝜓Γ holds for all Γ in 𝑌. The inner dilatation of 𝜓 is the smallest constant 𝐾𝐼 ⩾ 0

for whichmod𝜓Γ ⩽ 𝐾𝐼 modΓ holds for all Γ in 𝑌. The number 𝐾(𝜓) = max{𝐾𝐼(𝜓), 𝐾𝑂(𝜓)} is the
maximal dilatation of 𝜓.
For a set 𝐺 ⊂ 𝑌 and disjoint sets 𝐹1, 𝐹2 ⊂ 𝐺, let Γ(𝐹1, 𝐹2; 𝐺) denote the family of paths with

each path starting at 𝐹1, ending at 𝐹2 and whose images are contained in 𝐺. A quadrilateral is a
set 𝑄 homeomorphic to [0, 1]2 with boundary 𝜕𝑄 consisting of four boundary arcs, overlapping
only at the end points, labelled 𝜉1, 𝜉2, 𝜉3, 𝜉4 in cyclic order.
A metric surface is a separable metric space 𝑌 with locally finite Hausdorff 2-measure that is

homeomorphic to a (connected) 2-manifold without boundary.
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Definition 2.5. Ametric surface 𝑌 is reciprocal if there exists a constant 𝜅 ⩾ 1 such that

𝜅−1 ⩽ modΓ(𝜉1, 𝜉3; 𝑄)modΓ(𝜉2, 𝜉4; 𝑄) ⩽ 𝜅 (2.5)

for every quadrilateral 𝑄 ⊂ 𝑌, and

lim
𝑟→0+

modΓ
(
𝐵𝑌(𝑦, 𝑟), 𝑌 ⧵ 𝐵𝑌(𝑦, 𝑅); 𝐵𝑌(𝑦, 𝑅)

)
= 0 (2.6)

for all 𝑦 ∈ 𝑌 and 𝑅 > 0 such that 𝑌 ⧵ 𝐵𝑌(𝑦, 𝑅) ≠ ∅.

We note that for every metric surface,

𝜅−10 ⩽ modΓ(𝜉1, 𝜉3; 𝑄)modΓ(𝜉2, 𝜉4; 𝑄), (2.7)

with 𝜅0 = (4∕𝜋)2 [14, 32].
We recall [31, Theorem 1.4] stating the following.

Theorem 2.6. Let (𝑌, 𝑑𝑌) be a metric surface homeomorphic to ℝ2 or to 𝕊2. Then there exists a
quasiconformal embedding 𝜓∶ (𝑌, 𝑑𝑌) → 𝕊2 if and only if 𝑌 is reciprocal.

Similarly, Theorem 1.3 of [22] shows that if a metric surface (𝑌, 𝑑𝑌) can be covered by quasicon-
formal images of domains 𝑉 ⊂ ℝ2, then (𝑌, 𝑑𝑌) is quasiconformally equivalent to a Riemannian
surface. In particular, we have the following.

Theorem 2.7. Let (𝑌, 𝑑𝑌) be ametric surface homeomorphic to 𝕊2. Then there exists a quasiconfor-
mal homeomorphism 𝜓∶ (𝑌, 𝑑𝑌) → 𝕊2 if and only if each point 𝑦 ∈ 𝑌 is contained in an open set
𝑈 from which there exists a quasiconformal homeomorphism 𝜙∶ 𝑈 → 𝑉 ⊂ ℝ2.

Since the duality lower bound (2.7) holds, Corollary 12.3 of [31] shows that any homeomorphism
from a metric surface into a Euclidean domain having bounded outer dilatation has bounded
inner dilatation. More precisely, we have the following.

Proposition 2.8. Let 𝑌 be a metric surface, 𝑈 ⊂ 𝑌 a domain, and 𝜓∶ 𝑈 → Ω ⊂ ℝ2 a
homeomorphism. If 𝐾𝑂(𝜓) < ∞, then 𝜓 is 𝐾-quasiconformal for 𝐾 = (2 ⋅ 𝜅0) ⋅ 𝐾𝑂(𝜓).

3 HEMISPHERES

Recall that 𝜎 is the usual intrinsic length distance on the sphere 𝕊2, induced by the Euclidean
distance of ℝ3. We construct a (pseudo)distance 𝑑𝑍 on 𝑍 using a predistance 𝐷∶ 𝑍 × 𝑍 → [0,∞]

defined in the following way, with the identification 𝑆𝑍 ⊂ 𝑍1 for the seam,

𝐷(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
∞, if (𝑥, 𝑦) ∈ 𝑍1 × 𝑍2 ∪ 𝑍2 × 𝑍1,

min {𝜎(𝑥, 𝑦), 𝜎(g(𝑥), g(𝑦))}, if 𝑥, 𝑦 ∈ 𝑆𝑍,

𝜎(𝑥, 𝑦), otherwise.
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Then we denote 𝑑𝑍(𝑥, 𝑦) = inf
∑𝑛
𝑖=1 𝐷(𝑥𝑖, 𝑥𝑖+1), the infimum taken over finite chains (𝑥𝑖)𝑛+1𝑖=1

for which 𝑥1 = 𝑥 and 𝑥𝑛+1 = 𝑦. We obtain a metric space 𝑍 and a quotient map 𝑄∶ 𝑍 → 𝑍 by
identifying (𝑥, 𝑦) ∈ 𝑍 × 𝑍 whenever 𝑑𝑍(𝑥, 𝑦) = 0, and setting 𝑑𝑍(𝑥, 𝑦) = 𝑑𝑍(𝑄

−1(𝑥), 𝑄−1(𝑦)) for
each 𝑥, 𝑦 ∈ 𝑍.
In this section, we focus on analysing the distance 𝑑𝑍 on the seam 𝑆𝑍 . The main results of this

section are Lemmas 3.2 and 3.3 and Proposition 3.6.
In the following two lemmas we abuse notation and identify 𝜄𝑖(𝑍𝑖) with 𝑍𝑖 when convenient.

Lemma 3.1. The following hold:

(1) Let 𝑥, 𝑦 ∈ 𝕊1 ⊂ 𝑍1 and (𝑥𝑖)𝑛+1𝑖=1
a chain with 𝑥1 = 𝑥, 𝑥𝑛+1 = 𝑦, and 𝑥𝑖 ∈ 𝑍1 otherwise. Then∑𝑛

𝑖=1 𝐷(𝑥𝑖, 𝑥𝑖+1) ⩾ 𝐷(𝑥, 𝑦).
(2) Let 𝑥, 𝑦 ∈ 𝕊1 ⊂ 𝑍1 and (𝑥𝑖)

𝑛+1
𝑖=1

a chain with g(𝑥1) = g(𝑥), g(𝑥𝑛+1) = g(𝑦), and 𝑥𝑖 ∈ 𝑍2
otherwise. Then

∑𝑛
𝑖=1 𝐷(𝑥𝑖, 𝑥𝑖+1) ⩾ 𝐷(𝑥, 𝑦).

Proof. Given the chain from the claim (1), for every 𝑖, 𝐷(𝑥𝑖, 𝑥𝑖+1) = 𝜎(𝑥𝑖, 𝑥𝑖+1). Thus,∑𝑛
𝑖=1 𝐷(𝑥𝑖, 𝑥𝑖+1) ⩾ 𝜎(𝑥1, 𝑥𝑛+1) ⩾ 𝐷(𝑥1, 𝑥𝑛+1). The corresponding inequalities hold for the chain

from (2). □

Lemma 3.1 implies that when computing 𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) for 𝑥, 𝑦 ∈ 𝕊1, it is sufficient to consider
chains with intermediate points staying within the seam.

Lemma 3.2. If 𝑥, 𝑦 ∈ 𝑍1, then

𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) =

{
𝜎(𝑥, 𝑦), or there exist 𝑤,𝑤′ ∈ 𝕊1 with

𝜎(𝑥, 𝑤) + 𝑑𝑍(𝜄1(𝑤), 𝜄1(𝑤
′)) + 𝜎(𝑤′, 𝑦) ⩽ 𝜎(𝑥, 𝑦).

(3.1)

The corresponding identity holds for points 𝑥, 𝑦 ∈ 𝑍2.
Furthermore, if 𝑥 ∈ 𝑍1 and 𝑦 ∈ 𝑍2, there exist 𝑤,𝑤′ ∈ 𝕊1 such that

𝑑𝑍(𝜄1(𝑥), 𝜄2(𝑦)) = 𝜎(𝑥, 𝑤) + 𝑑𝑍(𝜄1(𝑤), 𝜄1(𝑤
′)) + 𝜎(g(𝑤′), 𝑦). (3.2)

Proof. We show Equation (3.1). Suppose that there exists a sequence 𝜖𝑗 → 0+ and a sequence of

chains (𝑥𝑖,𝑗)
𝑛𝑗+1

𝑖=1
joining 𝑥 to 𝑦with 𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ −𝜖𝑗 +

∑𝑛𝑗
𝑖=1

𝐷(𝑥𝑖,𝑗, 𝑥𝑖+1,𝑗) so that every chain
has an element in 𝕊1. If 𝑖1 is the first index for which 𝑥𝑖,𝑗 ∈ 𝕊1 and 𝑖2 the last one, then

𝑛𝑗∑
𝑖=1

𝐷(𝑥𝑖,𝑗, 𝑥𝑖+1,𝑗) ⩾ 𝜎(𝑥, 𝑥𝑖1,𝑗) + 𝑑𝑍(𝜄1(𝑥𝑖1,𝑗), 𝜄1(𝑥𝑖2,𝑗)) + 𝜎(𝑥𝑖2,𝑗, 𝑦)

⩾ inf
{
𝜎(𝑥, 𝑤) + 𝑑𝑍(𝜄1(𝑤), 𝜄1(𝑤

′)) + 𝜎(𝑤′, 𝑦)
}
,

the infimum taken over every 𝑤,𝑤′ ∈ 𝕊1. Observe that the infimum is realized by some 𝑤,𝑤′ ∈

𝕊1. Given such 𝑤,𝑤′ ∈ 𝕊1, we pass to the limit 𝑗 → ∞ and conclude

𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ 𝜎(𝑥, 𝑤) + 𝑑𝑍(𝜄1(𝑤), 𝜄1(𝑤
′)) + 𝜎(𝑤′, 𝑦).

Since “≤” holds for every pair 𝑤,𝑤′ ∈ 𝕊1, the lower equality in Equation (3.1) follows.
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If no such sequence of 𝜖𝑗 → 0+ exists, then there exists 𝜖0 > 0 such that for every 𝜖0 > 𝜖 > 0,
any chain joining 𝑥 to 𝑦 with 𝑑𝑍(𝜄1(𝑥), 𝜄2(𝑦)) ⩾ −𝜖 +

∑𝑛
𝑖=1 𝐷(𝑥𝑖, 𝑥𝑖+1) does not intersect 𝕊

1. Hence∑𝑛
𝑖=1 𝐷(𝑥𝑖, 𝑥𝑖+1) ⩾ 𝜎(𝑥, 𝑦). So, either way, we obtain Equation (3.1). The claims for each 𝑥, 𝑦 ∈ 𝑍2

and (𝑥, 𝑦) ∈ 𝑍1 × 𝑍2 are proved in a similar manner. □

For 𝑖 = 1, 2, we denote 𝜄̃𝑖 ∶= 𝑄 ◦ 𝜄𝑖 ∶ 𝑍𝑖 → 𝑍. Lemma 3.2 implies that 𝜄̃𝑖 is 1-Lipschitz everywhere
and a local isometry in 𝑍𝑖 . We also establish that 𝜄̃𝑖 ismonotone, that is, the preimage of a point is
a compact and connected set.

Lemma 3.3. For 𝑖 = 1, 2, the inclusion map 𝜄̃𝑖 ∶ 𝑍𝑖 → 𝑍 is 1-Lipschitz everywhere and a local isom-
etry on 𝑍𝑖 . Moreover, for every 𝑧 ∈ 𝑍, the preimage 𝜄̃−1

𝑖
(𝑧) is compact and connected. It contains two

or more points only if 𝜄̃−1
𝑖
(𝑧) ⊂ 𝕊1.

Before proving Lemma 3.3, we show two auxiliary results.

Lemma 3.4. Let 𝑥, 𝑦 ∈ 𝕊1 be distinct. Then there exists an arc 𝛾∶ [0, 1] → 𝕊1 joining 𝑥 to 𝑦 with
𝐷(𝜄1(𝑥), 𝜄1(𝑦)) = min{𝓁(𝛾),𝓁(g ◦ 𝛾)}. The arc satisfies

𝐷(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ sup
{𝑡𝑖}

𝑛+1
𝑖=1

𝑛∑
𝑖=1

𝐷(𝜄1(𝛾(𝑡𝑖)), 𝜄1(𝛾(𝑡𝑖+1))),

the supremum taken over finite partitions of [0, 1]. In particular, 𝐷(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ 𝓁(̃𝜄1(𝛾)).

Proof. The existence of 𝛾 with 𝐷(𝜄1(𝑥), 𝜄1(𝑦)) = min{𝓁(𝛾),𝓁(g ◦ 𝛾)} follows from the fact that 𝜎 is
geodesic on 𝕊1. We identify 𝜄1(𝑥) with 𝑥 for every 𝑥 ∈ 𝕊1 in the following computations.
The claim about the partitions is a consequence of the following observation and induction: If

0 ⩽ 𝑎 < 𝑠 < 𝑏 ⩽ 1, then

𝐷(𝛾(𝑎), 𝛾(𝑏)) ⩾ 𝐷(𝛾(𝑎), 𝛾(𝑠)) + 𝐷(𝛾(𝑠), 𝛾(𝑏)). (3.3)

We first assume that𝐷(𝛾(𝑎), 𝛾(𝑏)) = 𝜎(𝛾(𝑎), 𝛾(𝑏)). Then 𝛾 is a length-minimizing geodesic joining
𝛾(𝑎) and 𝛾(𝑏). Consequently,

𝜎(𝛾(𝑎), 𝛾(𝑏)) = 𝜎(𝛾(𝑎), 𝛾(𝑠)) + 𝜎(𝛾(𝑠), 𝛾(𝑏)).

Since 𝜎(𝑐, 𝑑) ⩾ 𝐷(𝑐, 𝑑) holds for every 𝑐, 𝑑 ∈ 𝕊1, the inequality (3.3) holds in this case. In the
remaining case, g ◦ 𝛾 is a length-minimizing geodesic joining g(𝛾(𝑎)) and g(𝛾(𝑏)) and

𝜎(g(𝛾(𝑎)), g(𝛾(𝑏))) = 𝜎(g(𝛾(𝑎)), g(𝛾(𝑠))) + 𝜎(g(𝛾(𝑠)), g(𝛾(𝑏))).

Since 𝜎(g(𝑐), g(𝑑)) ⩾ 𝐷(𝑐, 𝑑) for every 𝑐, 𝑑 ∈ 𝕊1, the inequality (3.3) holds also in this case.
The partition claim implies 𝐷(𝑥, 𝑦) ⩾

∑𝑛
𝑖=1 𝑑𝑍(̃𝜄1(𝛾(𝑡𝑖)), 𝜄̃1(𝛾(𝑡𝑖+1))) for every partition {𝑡𝑖}

𝑛+1
𝑖=1

of
[0, 1]. The inequality𝐷(𝑥, 𝑦) ⩾ 𝓁(̃𝜄1(𝛾)) follows by taking the supremum over such partitions. □

Lemma 3.5. Let 𝑥, 𝑦 ∈ 𝕊1 be distinct. Then there exists an arc 𝛾∶ [0, 1] → 𝕊1 joining 𝑥 to 𝑦 such
that 𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) = 𝓁(̃𝜄1(𝛾)).
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Proof. Let 𝜖 > 0. The defining property of 𝑑𝑍 and Lemma 3.1 imply the existence of a chain
{𝑥𝑖}

𝑛+1
𝑖=1

⊂ 𝕊1 joining 𝑥 to 𝑦 for which

𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ −𝜖 +

𝑛∑
𝑖=1

𝐷(𝜄1(𝑥𝑖), 𝜄1(𝑥𝑖+1)).

For each 𝑖, Lemma 3.4 yields the existence of an arc 𝜃𝑖 ∶ [0, 1] → 𝕊1 joining 𝑥𝑖 to 𝑥𝑖+1
with 𝐷(𝜄1(𝑥𝑖), 𝜄1(𝑥𝑖+1)) ⩾ 𝓁(̃𝜄1(𝜃𝑖)). Let 𝜃 denote the concatenation of these paths. Then
𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ −𝜖 + 𝓁(̃𝜄1(𝜃)).
Let 𝜃′ ∶ [0, 1] → 𝕊1 be an arc joining 𝑥 to 𝑦 within the image of 𝜃. Applying Equation (2.3) on

𝑍 with 𝜌 ≡ 𝜒𝑍 implies that 𝓁(̃𝜄1(𝜃)) ⩾ 𝓁(̃𝜄1(𝜃
′)). Such a 𝜃′ is one of the arcs joining 𝑥 to 𝑦 within

𝕊1.
Let 𝜖𝑗 → 0+ and consider 𝜃′

𝑗
as above for every such 𝜖𝑗 . Up to passing to a subsequence and rela-

beling, wemay assume that every such 𝜃′
𝑗
is the same arc 𝜃′. Passing to the limit 𝑗 → ∞ establishes

𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)) ⩾ 𝓁(̃𝜄1(𝜃
′)) ⩾ 𝑑𝑍(𝜄1(𝑥), 𝜄1(𝑦)). We set 𝛾 = 𝜃′ to conclude the proof. □

Proof of Lemma 3.3. The claimed 1-Lipschitz and local isometry properties of 𝜄̃1 follow from
Lemma 3.2. The local isometry property implies that given 𝑧 ∈ 𝑍, the preimage 𝜄̃−1

1
(𝑧) has more

than two points only if the preimage is a subset of 𝕊1.
Suppose the existence of a distinct pair 𝑥, 𝑦 ∈ 𝜄̃−1

1
(𝑧). Then 𝑥, 𝑦 ∈ 𝕊1. Lemma 3.5 shows that

there exists an arc 𝛾 joining 𝑥 to 𝑦 within 𝕊1 satisfying

0 = 𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) = 𝓁(̃𝜄1(𝛾)).

This implies |𝛾| ⊂ 𝜄̃−1
1
(𝑧). Since 𝑥 and 𝑦 were arbitrary, we conclude that 𝜄̃−1

1
(𝑧) is path connected.

Consequently, 𝜄̃−1
1
(𝑧) is a connected and compact subset of 𝕊1.

The properties of 𝜄̃2 follow from a symmetry in the argument. Hence the claim follows. □

Proposition 3.6. Let g ∶ (𝕊1,1
𝕊1
) → (𝕊1,1

𝕊1
) be a homeomorphism with g∗1

𝕊1
= 𝑣g1

𝕊1
+ 𝜇⟂

with1
𝕊1
and 𝜇⟂ mutually singular. Then, for every Borel set 𝐵 ⊂ 𝕊1,

1
𝑑𝑍
(̃𝜄1(𝐵)) = ∫𝐵 min

{
1, 𝑣g

}
𝑑1

𝕊1
= ∫𝜄̃1(𝐵) #(̃𝜄

−1
1 (𝑧)) 𝑑1

𝑍
(𝑧). (3.4)

Moreover, for every 𝑥, 𝑦 ∈ 𝕊1, there exists an arc |𝛾| ⊂ 𝕊1 joining 𝑥 to 𝑦 for which

𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) = 𝓁(̃𝜄1(𝛾)). (3.5)

Before proving Proposition 3.6, we first consider a Carathéodory construction on 𝕊1.
First, fix a Borel set 𝐵0 ⊂ 𝕊1 for which 1

𝕊1
(𝐵0) = 0 and 𝜇⟂(𝕊1 ⧵ 𝐵0) = 0. Set 𝜈𝐴𝐵𝑆(𝐵) ∶=

∫𝐵 min{1, 𝑣g }𝜒𝕊1⧵𝐵0 𝑑1
𝕊1
for all Borel sets 𝐵 ⊂ 𝕊1.

For every arc 𝛾∶ [0, 1] → 𝕊1, we denote 𝜉𝐴𝐵𝑆(|𝛾|) ∶= 𝜈𝐴𝐵𝑆(|𝛾|) and 𝜉(|𝛾|) ∶= 𝐷(𝛾(0), 𝛾(1)). The
set function 𝜉𝐴𝐵𝑆 and the family of arcs |𝛾| ⊂ 𝕊1 yields Carathéodory premeasures 𝜈𝐴𝐵𝑆

𝛿
for each

𝛿 > 0.
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Lemma 3.7. For every Borel set 𝐵 ⊂ 𝕊1, we have 𝜈𝐴𝐵𝑆(𝐵) = sup𝛿>0 𝜈
𝐴𝐵𝑆
𝛿

(𝐵) ⩾ 1
𝑍
(̃𝜄1(𝐵)).

Proof. The equality 𝜈𝐴𝐵𝑆(𝐵) = sup𝛿>0 𝜈
𝐴𝐵𝑆
𝛿

(𝐵) follows from the fact that 𝜈𝐴𝐵𝑆 is a finite Borel
regular Borel measure.
We denote 𝐵1 = {𝑣g ⩾ 1} ∪ 𝐵0 and 𝐵2 = 𝕊1 ⧵ 𝐵1. If 𝐵 ⊂ 𝕊1 is Borel, we have

1
𝑍
(̃𝜄1(𝐵)) ⩽

2∑
𝑖=1

1
𝑍
(̃𝜄1(𝐵 ∩ 𝐵𝑖)) ⩽ 1

𝕊1
(𝐵 ∩ 𝐵1) +1

𝕊1
(g(𝐵) ∩ g(𝐵2))

since 𝜄̃𝑖 is 1-Lipschitz for 𝑖 = 1, 2. The right-hand side equals 𝜈𝐴𝐵𝑆(𝐵). Therefore 1
𝑍
(̃𝜄1(𝐵)) ⩽

𝜈𝐴𝐵𝑆(𝐵) holds for all Borel sets. □

Lemma 3.8. Let 𝑥, 𝑦 ∈ 𝕊1 be distinct and 𝛾∶ [0, 1] → 𝕊1 an arc joining 𝑥 to 𝑦 such that
𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) = 𝓁(̃𝜄1(𝛾)). Then1

𝑍
(̃𝜄1(|𝛾|)) = 𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) = 𝜈𝐴𝐵𝑆(|𝛾|).

Proof. Let 𝜋∕2 > 𝛿0 > 0 be such that

𝐷(𝜄1(𝑎), 𝜄1(𝑏)) < 𝛿0 implies max {𝜎(𝑎, 𝑏), 𝜎(g(𝑎), g(𝑏))} < 𝜋∕2.

Given such a pair 𝑎, 𝑏 ∈ 𝕊1, the length-minimizing geodesic 𝜃∶ [0, 1] → 𝕊1 joining 𝑎 to 𝑏 satisfies
𝜉(|𝜃|) = min{𝓁(𝜃),𝓁(g ◦ 𝜃)}. Then 𝜉(|𝜃|) ⩾ 𝜉𝐴𝐵𝑆(|𝜃|).
Let 𝛾 be as in the claim. Let 0 < 𝛿 < 𝛿0 and 0 < 𝜖 < 𝛿∕2. We consider a partition {𝑡𝑖}𝑛+1𝑖=1

of [0, 1]
such that 𝜎(𝛾(𝑡𝑖), 𝛾(𝑡𝑖+1)) < 𝛿∕2 for every 𝑖. Then there exists a chain {𝑥𝑖,𝑗}

𝑛𝑖+1

𝑗=1
⊂ 𝕊1 joining the

ends of 𝛾|[𝑡𝑖 ,𝑡𝑖+1] so that
𝑑𝑍(𝜄1 ◦ 𝛾(𝑡𝑖), 𝜄1 ◦ 𝛾(𝑡𝑖+1)) ⩾ −

𝜖

𝑛
+

𝑛𝑖∑
𝑗=1

𝐷(𝜄1(𝑥𝑖,𝑗), 𝜄1(𝑥𝑖,𝑗+1)).

In particular,𝐷(𝜄1(𝑥𝑖,𝑗), 𝜄1(𝑥𝑖,𝑗+1)) < 𝛿 < 𝛿0 for every 𝑗. Hence the length-minimizing geodesic 𝛾𝑖,𝑗
joining 𝑥𝑖,𝑗 to 𝑥𝑖,𝑗+1 satisfies the assumptions of Lemma 3.4. For every 𝑖, Lemma 3.4 implies that,
up to further partitioning the paths 𝛾𝑖,𝑗 and relabeling, wemay assume 𝜎(𝑥𝑖,𝑗, 𝑥𝑖,𝑗+1) < 𝛿 for every
𝑗. Given this property, we conclude 𝐷(𝜄1(𝑥𝑖,𝑗), 𝜄1(𝑥𝑖,𝑗+1)) = 𝜉(|𝛾𝑖,𝑗|) ⩾ 𝜉𝐴𝐵𝑆(|𝛾𝑖,𝑗|) and

𝓁(̃𝜄1(𝛾)) =
𝑛∑
𝑖=1

𝑑𝑍(𝜄1 ◦ 𝛾(𝑡𝑖), 𝜄1 ◦ 𝛾(𝑡𝑖+1)) ⩾ −𝜖 + 𝜈𝐴𝐵𝑆
𝛿

(
𝑛⋃
𝑖=1

𝑛𝑖⋃
𝑗=1

|𝛾𝑖,𝑗|).
Since the concatenation 𝜃𝑖 of {𝛾𝑖,𝑗}

𝑛𝑖
𝑗=1

is a path joining 𝛾(𝑡𝑖) to 𝛾(𝑡𝑖+1), the concatenation 𝜃 of {𝜃𝑖}𝑛𝑖=1
is a path joining 𝑥 to 𝑦. Hence

⋃𝑛
𝑖=1

⋃𝑛𝑖
𝑗=1

|𝛾𝑖,𝑗| = |𝜃| contains |𝛾| or 𝕊1 ⧵ |𝛾|, and
𝓁(̃𝜄1(𝛾)) ⩾ −𝜖 + min

{
𝜈𝐴𝐵𝑆
𝛿

(|𝛾|), 𝜈𝐴𝐵𝑆
𝛿

(𝕊1 ⧵ |𝛾|)}.
After passing to 𝜖 → 0+ and then to 𝛿 → 0+, we conclude

1
𝑍
(̃𝜄1(𝛾)) = 𝓁(̃𝜄1(𝛾)) ⩾ min

{
𝜈𝐴𝐵𝑆(|𝛾|), 𝜈𝐴𝐵𝑆(𝕊1 ⧵ |𝛾|)}.
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If we had 𝜈𝐴𝐵𝑆(|𝛾|) > 𝜈𝐴𝐵𝑆(𝕊1 ⧵ |𝛾|), this would contradict Lemma 3.7 and the length-minimizing
property of 𝜄̃1(𝛾). Hence 𝜈𝐴𝐵𝑆(|𝛾|) ⩽ 𝜈𝐴𝐵𝑆(𝕊1 ⧵ |𝛾|), and1

𝑍
(̃𝜄1(|𝛾|)) = 𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) = 𝜈𝐴𝐵𝑆(|𝛾|)

follows from Lemma 3.7. □

Proof of Proposition 3.6. The existence of 𝛾 and equality in (3.5) already follows from Lemma 3.4.
We claim that (3.4) holds. To this end, we consider three arcs 𝛾𝑖 ∶ [0, 1] → 𝕊1 overlapping only

at their end points, whose images cover 𝕊1, with the arcs satisfying 𝜈𝐴𝐵𝑆(|𝛾𝑖|) ⩽ 𝜈𝐴𝐵𝑆(𝕊1 ⧵ |𝛾𝑖|).
Lemmas 3.7 and 3.8 imply that 𝜄̃1 ◦ 𝛾𝑖 is a length-minimizing geodesic joining its end points and

𝜈𝐴𝐵𝑆(|𝛾𝑖|) = 1
𝑍
(̃𝜄1(|𝛾𝑖|)). Lemma 3.7 implies that themetric speed of 𝜄̃1||𝛾𝑖| is bounded from above

by min{1, 𝑣g }. Hence the equality 𝜈𝐴𝐵𝑆(|𝛾𝑖|) = 1
𝑍
(̃𝜄1(|𝛾𝑖|)) forces the metric speed of 𝜄̃1 to equal

min{1, 𝑣g } 1
𝕊1
-almost everywhere on |𝛾𝑖| for 𝑖 = 1, 2, 3. The equality (3.4) follows from the area

formula (2.3) and the fact that #(̃𝜄−1
1
(𝑥)) = 1 1

𝑍
-almost everywhere. The fact #(̃𝜄−1

1
(𝑥)) = 1 1

𝑍
-

almost everywhere follows from the monotonicity of 𝜄̃1 and the integrability of the multiplicity.
The integrability of the multiplicity follows from (2.2). □

Remark 3.9. We consider a 2𝜋-periodic doubling measure 𝜇 on ℝ with 2𝜋 = 𝜇([0, 2𝜋]) such
that for some Borel set 𝐵 ⊂ [0, 2𝜋], 1(𝐵) = 0 = 𝜇([0, 2𝜋] ⧵ 𝐵), the existence of which is estab-
lished by Ahlfors–Beurling [4, Section 7]. Then 𝜓(𝑥) = ∫ 𝑥

0 𝑑𝜇 is a homeomorphism and there
exists a quasisymmetry g ∶ 𝕊1 → 𝕊1 with 𝜃 ◦𝜓 = g ◦ 𝜃, where 𝜃(𝑡) = (cos(𝑡), sin(𝑡), 0). Then 𝑣g in
Equation (3.4) is identically zero. Consequently, 𝑑𝑍 ≡ 0 on the seam 𝑆𝑍 .

4 HARMONICMEASURE ANDWELDING HOMEOMORPHISMS

We consider a welding homeomorphism g ∶ 𝕊1 → 𝕊1 and a welding circle  with complemen-
tary componentsΩ1 andΩ2, Riemann maps 𝜙𝑖 ∶ 𝑍𝑖 → Ω𝑖 for 𝑖 = 1, 2, and g = 𝜙−1

2
◦𝜙1|𝕊1 ; in this

section, we identify 𝜙𝑖 with its extension to a homeomorphism 𝑍𝑖 → Ω𝑖 . With this identification
understood, we consider the harmonicmeasures𝜔𝑖(𝐸) ∶= 1(𝜙−1

𝑖
(𝐸) ∩ 𝕊1)∕(2𝜋) for all Borel sets

𝐸 ⊂ 𝕊2.
We define a homeomorphism 𝜋∶ 𝕊2 → (𝑍, 𝑑𝑍) and a quotient map 𝜋∶ 𝕊2 → 𝑍 via the

formulas

𝜋(𝑥) =

{
𝜄1 ◦𝜙

−1
1
(𝑥), when 𝑥 ∈ Ω1,

𝜄2 ◦𝜙
−1
2
(𝑥), when 𝑥 ∈ Ω2

and 𝜋 = 𝑄 ◦𝜋. (4.1)

Recall that𝑄∶ 𝑍 → 𝑍 is the quotientmap identifying 𝑥, 𝑦 ∈ 𝑍 whenever 𝑑𝑍(𝑥, 𝑦) = 0. Lemma 3.3
implies that 𝜋 is monotone and 𝜋−1(𝑥) contains two ormore points only if 𝑥 is a point of the seam
𝑄(𝑆𝑍), and in such a case 𝜋−1(𝑥) ⊂ .
For 𝛼 = 1, 2, we denote, for every Borel set 𝐵 ⊂ 𝕊2,

𝜋∗𝛼
𝑍
(𝐵) ∶= ∫𝑍 #(𝐵 ∩ 𝜋

−1(𝑥)) 𝑑𝛼
𝑍
(𝑥) = 𝛼

𝑍
(𝜋(𝐵)), (4.2)

where the multiplicity can be ignored in the case 𝛼 = 2 since it equals one outside the negligible
set𝑄(𝑆𝑍). For 𝛼 = 1, the multiplicity is two or more only when it is∞ and this happens in a set of
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negligible1
𝑍
-measure. Either way, the multiplicity is negligible in Equation (4.2), so the second

equality is justified.

Proposition 4.1. Let g be a welding homeomorphism with a welding circle  and 𝐼 ⊂  a subarc.
Then 𝑑𝑍(𝜋(𝑥), 𝜋(𝑦)) = 0 for all 𝑥, 𝑦 ∈ 𝐼 if and only if 𝜔1|𝐼 and 𝜔2|𝐼 are mutually singular. If such
an interval exists, then 𝑍 is not quasiconformally equivalent to 𝕊2.

Remark 4.2. If g is a welding homeomorphism obtained from Remark 3.9 or any welding g cor-
responding to the von Koch snowflake [16, Example 4.3], Proposition 4.1 implies that 𝑄(𝑆𝑍) is a
singleton. In particular, 𝑍 is not even homeomorphic to the sphere. For a given g , this happens if
and only if g∗1

𝕊1
and1

𝕊1
are mutually singular.

A key step in the proof of the conformal removability in Theorem 1.6 is the following.

Proposition 4.3. Let g be a welding homeomorphism and 𝜋 as in Equation (4.1). Then 𝜋 is con-
tinuous, monotone, and surjective. Moreover, for all path families Γ on 𝕊2, modΓ ⩽ mod𝜋Γ. The
metric space 𝑍 is quasiconformally equivalent to 𝕊2 if and only if 𝜋 is a homeomorphism for which
modΓ = mod𝜋Γ for all path families.

The proof of Proposition 4.3 requires some preparatory work. Given the curve , we say that
𝑥0 ∈  is a tangent point if there exists a homeomorphism 𝛾∶ (−𝜖, 𝜖) → ′ ⊂  with 𝛾(0) = 𝑥0,
and a tangent vector 𝑣0 ∈ 𝑇𝑥0𝕊

2 with unit length such that for every smooth 𝑓∶ 𝕊2 → ℝ, its
differential 𝑑𝑓 satisfies

𝑑𝑓(𝑣0) = lim
𝑡→0+

𝑓(𝛾(𝑡)) − 𝑓(𝑥0)

𝜎(𝛾(𝑡), 𝑥0)
and 𝑑𝑓(−𝑣0) = lim

𝑡→0−

𝑓(𝛾(𝑡)) − 𝑓(𝑥0)

𝜎(𝛾(𝑡), 𝑥0)
.

If 𝑣0 exists, the tangent vector 𝑣0 is independent of the parametrization 𝛾 and ′ up to multipli-
cation by −1; see [16, Chapter II, Section 4]. The collection of tangents points of  is denoted by
Tn(). The key properties of Tn() are self-contained in the following statement.
Lemma 4.4. The Borel set Tn() has 𝜎-finite Hausdorff 1-measure. Moreover, on the set Tn(), the
measures 𝜔1, 𝜔2, and1 are mutually absolutely continuous.
Given any Borel set 𝐸 ⊂  with 𝜔1(𝐸) ⋅ 𝜔2(𝐸) > 0, the restrictions 𝜔1|𝐸 and 𝜔2|𝐸 are mutually

singular on 𝐸 if and only if1(Tn() ∩ 𝐸) = 0.

Proof. The Borel measurability of Tn() follows from [16, Chapter II, Theorem 4.2] which con-
nects the tangents of  and the angular derivatives of any given Riemann map 𝜙′

1
∶ 𝑍1 → Ω1,

where 𝜕Ω1 = . The fact that Tn() has 𝜎-finite Hausdorff 1-measure follows from [16, Chapter
VI, Theorem 4.2].
Theorem 6.3 of [16, Chapter VI] states that if a Borel set 𝐸 ⊂  is such that 𝜔1(𝐸) ⋅ 𝜔2(𝐸) > 0,

then 𝜔1|𝐸 and 𝜔2|𝐸 are mutually singular on 𝐸 if and only if1(Tn() ∩ 𝐸) = 0.
The fact that on the set Tn() the measures 𝜔1, 𝜔2, and1 are mutually absolutely continuous

follows from [16, Chapter VI, Theorem 4.2 and the following discussion on p. 211]. □

Lemma 4.5. The measures 𝜒𝜋∗1
𝑍
, 𝜒Tn()𝜔1, 𝜒Tn()𝜔2 and 𝜒Tn()1 are mutually abso-

lutely continuous.
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More precisely, a given Borel set 𝐵 ⊂ Tn() has positive 1D Hausdorff measure if and only if
1
𝑍
(𝜋(𝐵)) > 0. Furthermore, if 𝐵 ⊂  ⧵ Tn(), then1

𝑍
(𝜋(𝐵)) = 0.

Proof. We write g∗1
𝕊1
= 𝑣g1

𝕊1
+ 2𝜋 ⋅ 𝜇⟂ with 1

𝕊1
and 𝜇⟂ being mutually singular. We recall

from Proposition 3.6 that for every Borel set 𝐵 ⊂ ,
1
𝑍
(𝜋(𝐵)) = ∫𝜙−1

1
(𝐵)
min

{
1, 𝑣g

}
𝑑1

𝕊1
. (4.3)

We denote ℎ = 𝑣g ◦𝜙
−1
1

and observe the equality 𝜔2 = ℎ𝜔1 + (𝜙1)∗𝜇
⟂, where (𝜙1)∗𝜇

⟂(𝐸) =

𝜇⟂(𝜙−1
1
(𝐸)) for each 𝐸 ⊂ 𝕊2. Then Equation (4.3) is equivalent to

(2𝜋)−11
𝑍
(𝜋(𝐵)) = ∫𝐵 min {1, ℎ} 𝑑𝜔1. (4.4)

Lemma 4.4 implies that the measures 𝜒⧵Tn()𝜔1 and 𝜒⧵Tn()𝜔2 are mutually singular. Conse-
quently, ℎ = 0 𝜔1-almost everywhere in  ⧵ Tn(). In particular, if 𝐵 =  ⧵ Tn(), the left-hand
side equals zero in Equation (4.4).
Lemma 4.4 yields that the measures 𝜒Tn()𝜔1, 𝜒Tn()𝜔2 and 𝜒Tn()1 are mutually absolutely

continuous. Hence ∞ > ℎ > 0 𝜔1-almost everywhere in Tn(). This implies that the measure
in Equation (4.4) is mutually absolutely continuous with the measures 𝜒Tn()𝜔1, 𝜒Tn()𝜔2 and
𝜒Tn()1 . The claim follows from the equalities (4.2) for 𝛼 = 1. □

Proof of Proposition 4.1. Consider a subarc 𝐼 ⊂ . Proposition 3.6 implies that 𝜋(𝐼) has zero 1
𝑍
-

measure if and only if for every 𝑥, 𝑦 ∈ 𝐼, 𝑑𝑍(𝜋(𝑥), 𝜋(𝑦)) = 0 if and only if 𝑣g = 0 1
𝕊1
-almost

everywhere on 𝜙−1
1
(𝐼). Equivalently, 𝜔1|𝐼 and 𝜔2|𝐼 are mutually singular.

Lemma 3.3 shows that 𝑍 ≠ (𝑍, 𝑑𝑍) if and only if there exists a closed arc 𝐼 ⊂ 𝕊1 such that 𝑦 =
𝜄̃1(𝐼). Assume that such an 𝐼 exists. Having fixed 𝑥0 ∈ 𝑍1 and 0 < 𝑠 < 𝜎(𝑥0, 𝕊

1), there exists 𝑐 =
𝑐(𝑥0, 𝐼, 𝑠) for which

modΓ(𝐼, 𝐵𝕊2(𝑥0, 𝑠); 𝐼 ∪ 𝑍1) ⩾ 𝑐 > 0;

a positive lower bound can be shown, for example, by estimating the modulus of all geodesics
joining 𝐼 to 𝐵𝕊2(𝑥0, 𝑠) in 𝐼 ∪ 𝑍1.
When 𝑅 > 0 is small enough, for every 𝑅 > 𝑟 > 0 and every path in Γ(𝐼, 𝐵𝕊2(𝑥0, 𝑠)); 𝐼 ∪ 𝑍1), we

find a subpath 𝛾′ ∶ [0, 1] → 𝑍1 so that 𝜄̃1 ◦ 𝛾′ joins 𝐵𝑍(𝑦, 𝑟) to 𝑍 ⧵ 𝐵𝑍(𝑦, 𝑅) within 𝐵𝑍(𝑦, 𝑅). Since
𝜄̃1 is a local isometry off the seam, this implies

lim inf
𝑟→0+

modΓ
(
𝐵𝑍(𝑦, 𝑟), 𝑍 ⧵ 𝐵𝑍(𝑦, 𝑅); 𝐵𝑍(𝑦, 𝑅)

)
⩾ 𝑐.

Recalling Theorem 2.6, we see that 𝑍 is not quasiconformally equivalent to 𝕊2. □

Lemma4.6. For 𝑖 = 1, 2, let𝜌𝑖 ∶ Ω𝑖 → [0,∞]denote the operator normof the differential of𝐷(𝜙−1
𝑖
).

Then

𝐺 = 𝜒Ω1𝜌1 + 𝜒Ω2𝜌2 +∞ ⋅ 𝜒Tn() ∈ 𝐿2(𝕊2) (4.5)

is a weak upper gradient of 𝜋.
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Proof. The 𝐿2-integrability of 𝐺 follows from the change of variables formulas of the Riemann
maps𝜙1 and𝜙2 and the fact thatTn() has negligible area. Hence, as a consequence of Lemma 2.1,
𝐺 is integrable along almost every absolutely continuous path 𝛾∶ [0, 1] → 𝕊2. Given such a 𝛾, we
claim that

𝑑𝑍(𝜋(𝛾(0)), 𝜋(𝛾(1))) ⩽ ∫𝛾 𝐺 𝑑𝑠, (4.6)

implying that 𝐺 is a weak upper gradient of 𝜋.
Since 𝐺 is integrable along 𝛾, 𝛾 has negligible length in Tn(). Then Equation (2.3) implies

1
𝕊2
(Tn() ∩ |𝛾|) = 0. We conclude1

𝑍
(𝜋() ∩ |𝜋 ◦ 𝛾|) = 0 from Lemma 4.5. The assumptions of

Lemma 2.2 are satisfied and the conclusion 𝓁(𝜋 ◦ 𝛾) ⩽ ∫𝛾 𝐺 𝑑𝑠 follows. The inequality (4.6) is a
consequence. □

We define the Jacobian of 𝜋 to be the density of 𝜋∗2
𝑍
, defined in Equation (4.2), with respect

to2
𝕊2
.

Lemma 4.7. The mapping 𝜋 satisfies Lusin’s condition (𝑁) and the Jacobian 𝐽𝜋 coincides with 𝐺22
𝕊2
-almost everywhere, with 𝐺 being from Equation (4.5).

Proof. The Lusin’s condition (𝑁) of 𝜋 follows from the fact that 𝜋() has negligible2
𝑍
-measure,

the fact that 𝜄𝑖 ∶ 𝑍𝑖 → 𝑍𝑖 is a local isometry, and as 𝜙−1𝑖 ∶ Ω𝑖 → 𝑍𝑖 satisfies condition (𝑁). Here
𝐽𝜋 = 02

𝕊2
-almost everywhere on , so the equality 𝐽𝜋 = 𝐺2 follows from the fact that 𝜙1 and 𝜙2

are Riemann maps. □

Proof of Proposition 4.3. The claimed topological properties of 𝜋 were already verified at the
beginning of this section. Lemmas 4.6 and 4.7 prove that 𝐽𝜋 = 𝐺2 ∈ 𝐿1(𝕊2) with 𝐺 being a weak
upper gradient of 𝜋. This fact and the fact that the multiplicity of 𝜋 is negligible for 𝜋∗2

𝑍
imply

modΓ ⩽ mod𝜋Γ for all path families Γ.
Lastly, we argue that a 𝐾-quasiconformal map 𝜓∶ 𝑍 → 𝕊2 exists (for some 𝐾 ⩾ 1) if and only

if 𝜋 is a 1-quasiconformal homeomorphism. The “if”-direction is obvious.
In the “only if”-direction, the fact that 𝜋 is a homeomorphism follows from Proposition 4.1. So

ℎ = 𝜓 ◦𝜋∶ 𝕊2 → 𝕊2 is a homeomorphism satisfying modΓ ⩽ 𝐾modℎΓ for all path families Γ.
Theorem 2.4 and [2, Definition 3.1.1 and Theorem 3.7.7] prove that ℎ is𝐾-quasiconformal. Conse-
quently, 𝜋 is𝐾′-quasiconformal for some𝐾′ ⩽ 𝐾2. This self-improves to𝐾′ = 1 due to Lemma 4.8
below. This yieldsmod𝜋Γ = modΓ for all path families. □

Lemma 4.8. Suppose that𝜋∶ 𝕊2 → 𝑍 from Equation (4.1) is a homeomorphism. Then𝜋∶ 𝕊2 → 𝑍

is 1-quasiconformal if and only if for every 1-Lipschitz ℎ∶ 𝕊2 → ℝ, ℎ ◦𝜋−1 ∈ 𝑁1,2(𝑍).

Proof. The “only if”-claim is clear, given Theorem 2.4 (ii). In the “if”-direction, fix a 1-Lipschitz
ℎ∶ 𝕊2 → ℝ for now.
Consider the Borel function 𝐺∶ 𝕊2 → [0,∞] defined on Lemma 4.6. Then 𝜌 = 1∕𝐺 ◦𝜋−1 is

such that 𝜌2 is the Jacobian of 𝜋−1, as a consequence of Lemma 4.7. Hence 𝜌 ∈ 𝐿2(𝑍).
Given that ℎ ◦𝜋−1 ∈ 𝑁1,2(𝑍) and 2

𝑍
(𝑄(𝑆𝑍)) = 0, for almost every 𝛾∶ [0, 1] → 𝑍, the com-

position (ℎ ◦𝜋−1) ◦ 𝛾 is absolutely continuous, 𝛾 has negligible length on the seam 𝑄(𝑆𝑍), and
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∫𝛾 𝜌 𝑑𝑠 < ∞. Indeed, the absolute continuity of (ℎ ◦𝜋−1) ◦ 𝛾 for almost every path follows from
[19, Proposition 6.3.2]. The fact that almost every path has negligible length on𝑄(𝑆𝑍) follows from
Lemma 2.1 and the 𝐿2-integrability of ∞ ⋅ 𝜒𝑄(𝑆𝑍). Similarly, the conclusion ∫𝛾 𝜌 𝑑𝑠 < ∞ follows
from Lemma 2.1 and the 𝐿2-integrability of 𝜌.
If we denote 𝐸 = (ℎ ◦𝜋−1)(|𝛾| ∩ 𝑄(𝑆𝑍)), the absolute continuity of (ℎ ◦𝜋−1) ◦ 𝛾 implies

1
ℝ
(𝐸) = 0. Then Lemma 2.2 yields 𝓁((ℎ ◦𝜋−1) ◦ 𝛾) ⩽ ∫𝛾 𝜌 𝑑𝑠. We conclude that 𝜌 is a weak upper

gradient of ℎ ◦𝜋−1.
Since 𝜌 is independent of ℎ and ℎ is an arbitrary 1-Lipschitz function, Theorem 7.1.20 [19] shows

that 𝜌 is a weak upper gradient of 𝜋−1. Since 𝜌2 is the Jacobian of 𝜋−1, we conclude 𝐾𝑂(𝜋−1) = 1.
Recall 𝐾𝑂(𝜋) = 1 from Proposition 4.3. □

Remark 4.9. If the welding curve  happens to be rectifiable, the Hausdorff 1-measure on  and
𝜒Tn()1 are mutually absolutely continuous [16, Chapter VI, Theorem 1.2 (F. and M. Riesz)].
With this fact at hand, Lemma 4.5 implies that 𝜋 is a homeomorphism. Moreover, one can
show that ℎ ◦𝜋−1 ∈ 𝑁1,2(𝑍) for every 1-Lipschitz ℎ∶ 𝕊2 → ℝ. Hence 𝜋 is 1-quasiconformal by
Lemma 4.8.

Proof of Theorem 1.6. Suppose the existence of a quasiconformal homeomorphism 𝜓∶ 𝑍 → 𝕊2.
Up to postcomposing 𝜓 by an orientation-reversingMöbius transformation of 𝕊2, we may assume
that 𝜙𝑖 ∶= 𝜓 ◦ 𝜄̃𝑖|𝑍𝑖 ∶ 𝑍𝑖 → 𝕊2 is orientation-preserving for 𝑖 = 1, 2. Let  = 𝜓(𝑄(𝑆𝑍)).
The set 𝕊2 ⧵  is the disjoint union of Jordan domains Ω1 and Ω2, where Ω𝑖 is the image of 𝜙𝑖

for 𝑖 = 1, 2.
Next, since 𝜓∶ 𝑍 → 𝕊2 is a quasiconformal homeomorphism, 𝜓 satisfies Lusin’s Condition (𝑁)

[31, Section 17]. Consequently,  has zero 2D Hausdorff measure.
We consider the Beltrami differential 𝜇 = 𝜒Ω1𝜇1 + 𝜒Ω2𝜇2, where 𝜇𝑖 is the Beltrami differential

of 𝜙−1
𝑖
. If ℎ∶ 𝕊2 → 𝕊2 is a normalized solution to the Beltrami equation induced by 𝜇 [2, Measur-

able Riemann mapping theorem], the mapping 𝜓 = ℎ ◦𝜓 is 1-quasiconformal. Since  has zero
measure, this is readily verified by hand or by applying [22, Theorem 4.12].
Wehave verified that (𝑍, 𝑑𝑍) = 𝑍 andwemay assume that𝜓∶ (𝑍, 𝑑𝑍) → 𝕊2 is 1-quasiconformal

with 𝜙𝑖 = 𝜓 ◦ 𝜄̃𝑖|𝑍𝑖 being Riemann maps [2, Weyl’s lemma]. Proposition 4.1 implies (𝑍, 𝑑𝑍) = 𝑍.
The definition of 𝑍 implies that g = 𝜙−1

2
◦𝜙1|𝕊1 . Consequently, g is a welding homeomorphism.

In order to show the removability of  ∶= 𝜓(𝑆𝑍), we are given an orientation-preserving
homeomorphism 𝑀∶ 𝕊2 → 𝕊2 conformal in the complement of . Then 𝜋′ ∶= 𝜓−1 ◦𝑀−1

defines a mapping as in Equation (4.1) for the curve ′ = 𝑀(). Proposition 4.3 implies that
𝜋′ is 1-quasiconformal. Consequently, 𝑀−1 = 𝜓 ◦𝜋′ is 1-quasiconformal, that is, a Möbius
transformation. □

5 MASS UPPER BOUND

In this section, we prove Theorems 1.1 and 1.2. We first consider the implication “(3)⇒ (1).” Recall
that we are given an orientation-preserving homeomorphism g ∶ 𝕊1 → 𝕊1 and the canonical
quotient map 𝑄∶ 𝑍 → 𝑍. We are assuming the existence of a constant 𝐶 > 0 for which

lim inf
𝑟→0+

2
𝑍
(𝐵𝑍(𝑦, 𝑟))

𝜋𝑟2
⩽ 𝐶 for every 𝑦 ∈ 𝑄(𝑆𝑍). (5.1)
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In order to make transparent how the Lipschitz constant of g (respectively, g−1) is related to 𝐶
in Equation (5.1), we define 𝐶1, 𝐶2 ⩾ 0 to be the smallest constants for which

lim inf
𝑟→0+

2
𝑍
(̃𝜄1(𝑍1) ∩ 𝐵𝑍(𝑦, 𝑟))

𝜋𝑟2
⩽ 𝐶1 for every 𝑦 ∈ 𝑄(𝑆𝑍) (5.2)

lim inf
𝑟→0+

2
𝑍
(̃𝜄2(𝑍2) ∩ 𝐵𝑍(𝑦, 𝑟))

𝜋𝑟2
⩽ 𝐶2 for every 𝑦 ∈ 𝑄(𝑆𝑍). (5.3)

Recalling from Lemma 3.3 the fact that the inclusion maps are 1-Lipschitz and local isometries
outside the seam, the limit infimum in Equations (5.2) and (5.3) are bounded from below by 1∕2.
Since the seam is negligible, we also have 𝐶1, 𝐶2 ⩾ 1∕2 andmax{𝐶1, 𝐶2} ⩽ 𝐶 − 1∕2.
We show that the constant 𝐶1 in Equation (5.2) and the Lipschitz constant 𝐿1 of g−1 are

connected via the following function

𝑓(𝜖) ∶=

(
sin |(0,𝜋∕2])−1(𝜖)

𝜋
+

√
1 − 𝜖2

𝜋𝜖
for 0 < 𝜖 ⩽ 1. (5.4)

Definition 5.1. For every 𝐶 ⩾ 1∕2, 𝐿 = 𝐿(𝐶) ⩾ 1 denotes the unique positive number such that
for every 0 < 𝜖 ⩽ 𝐿−1, 𝑓(𝜖) ⩾ 𝐶. Equivalently, 𝐿 = 1∕𝑓−1(𝐶).

Remark 5.2. We note that for every 0 < 𝜖 ⩽ 1, we have 𝑓(𝜖) ⩾ (𝜋𝜖)−1. We use this fact during the
proof of Theorem 1.1.

Proposition 5.3. If Equation (5.2) holds with constant 𝐶1 and 𝐿1 = 𝐿(𝐶1) is as in Definition 5.1,
then g−1 is 𝐿1-Lipschitz and 𝜄̃1 ∶ 𝑍1 → 𝑍 satisfies for every 𝑥, 𝑦 ∈ 𝑍1, 𝜎(𝑥, 𝑦) ⩾ 𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) ⩾

𝜎(𝑥, 𝑦)∕𝐿1.

The symmetry in the argument yields the following result.

Proposition 5.4. If Equation (5.3) holds with constant 𝐶2 and 𝐿2 = 𝐿(𝐶2) is as in Definition 5.1,
then g is 𝐿2-Lipschitz and 𝜄̃2 ∶ 𝑍2 → 𝑍 satisfies for every 𝑥, 𝑦 ∈ 𝑍2, 𝜎(𝑥, 𝑦) ⩾ 𝑑𝑍(̃𝜄2(𝑥), 𝜄̃2(𝑦)) ⩾

𝜎(𝑥, 𝑦)∕𝐿2.

We start the proof of Proposition 5.3.We consider the decomposition g∗1
𝕊1
= 𝑣g1

𝕊1
+ 𝜇⟂ with

𝜇⟂ and1
𝕊1
being singular. We fix a Borel representative of 𝑣g . Let 𝑓 be as in Equation (5.4). The

following statement holds for every 𝑍.

Proposition 5.5. Given 1 > 𝜖 > 0 and a1
𝕊1
-density point 𝑥0 ∈ 𝕊1 of 𝐸 ∶= {𝑣g ⩽ 𝜖}, we have

𝑓(𝜖) ⩽ lim inf
𝑟→0+

2
𝑍
(̃𝜄1(𝑍1) ∩ 𝐵𝑍(𝑥0, 𝑟))

𝜋𝑟2
. (5.5)

Proof. For the duration of the proof, we fix normal coordinates 𝐹∶ 𝐵(0, 𝜋∕2) → 𝕊2 centred at
𝑥0 in such a way that the preimage of 𝕊1 ∩ 𝐵(𝑥0, 𝜋∕2) is (−𝜋∕2, 𝜋∕2) × {0} [28, Section 5]. Recall
that this means that 𝐹 is an isometry along radial geodesics and the metric has the expansion
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g𝑖𝑗(𝑥) = 𝛿𝑖𝑗 + 𝑂(‖𝑥‖2
2
) in these coordinates. In particular, as 𝑟 → 0+, the bi-Lipschitz constant of

𝐹|𝐵(0,𝑟) is of the form 1 + 𝑂(𝑟2). We denote Γ(𝑠) ∶= 𝐹(𝑠, 0) for |𝑠| ⩽ 𝜋∕2.
We fix 0 < 𝜂 < 1∕𝜖 − 1. Since 𝑥0 is a density point of 𝐸, there exists 𝑠0 < 𝜋∕2 such that for every

0 < 𝑠 ⩽ 𝑠0,

1
𝕊1
(Γ([−𝑠, 𝑠]) ⧵ 𝐸) ⩽ 𝜖𝜂𝑠. (5.6)

We fix 0 < 𝑟 ⩽ 𝜖𝑠0. Then, for every 0 < 𝑠 < 𝑟∕𝜖, Proposition 3.6 yields, for both 𝐼 = [0, 𝑠] and 𝐼 =
[−𝑠, 0],

𝓁(𝐸 ∩ (̃𝜄1 ◦Γ|𝐼)) ⩽ 𝜖𝑠. (5.7)

Since 𝜄̃1 is 1-Lipschitz, according to Lemma 3.3, Equations (5.6) and (5.7) imply

𝓁(̃𝜄1 ◦Γ|𝐼) ⩽ 𝑠𝜖 + 𝜖𝜂𝑠 = 𝜖(1 + 𝜂)𝑠 < 𝑠. (5.8)

We denote for every |𝑠| < 𝑟∕(𝜖(1 + 𝜂)), 𝜌𝑠 ∶= 𝑟 − 𝜖(1 + 𝜂)|𝑠|. For each 𝑧 ∈ 𝑍1 ∩ 𝐵𝕊2(𝐹(𝑠, 0), 𝜌𝑠),
the inequality (5.8) implies 𝜄̃1(𝑧) ∈ 𝐵𝑍(̃𝜄1(𝑥0), 𝑟).
We estimate 𝐴𝑟 ∶= 2

𝑍
(̃𝜄1(𝑍1) ∩ 𝐵𝑍(̃𝜄1(𝑥0), 𝑟)) as 𝑟 → 0+. In estimating 𝐴𝑟, we use the fact that

the seam 𝑄(𝑆𝑍) has negligible 2
𝑍
-measure and that 𝜄̃1 is a local isometry outside the seam. We

claim that for each 0 < 𝜃 < 𝜋∕2 the following holds:

𝐴𝑟 ⩾ (1 + 𝑂((𝑟∕𝜖)2))−2
(
𝜃𝑟2 + cos(𝜃)

𝑟2

(1 + 𝑂((𝑟∕𝜖)2))𝜖(1 + 𝜂)

)
. (5.9)

The term (1 + 𝑂((𝑟∕𝜖)2))−2 comes from estimating the Jacobian of 𝜄̃1 ◦𝐹. The first term in the
brackets comes from the fact that 𝐹 preserves the speed of radial geodesics, so

(̃𝜄1 ◦𝐹)
({

(𝑠, 𝑡)∶
√
𝑠2 + 𝑡2 < 𝑟, 0 < 𝑡

})
⊂ 𝜄̃1(𝑍1) ∩ 𝐵𝑍(̃𝜄1(𝑥0), 𝑟).

We use this inclusion in a circular sector 𝐶𝜃(𝑟) which has a total angle 2𝜃 and an angle bisector
{0} × ℝ.
The second term in the brackets is twice the area of a suitable triangle. The factor of two

comes from the symmetry of the estimate in Equation (5.8) with respect to the parameter 𝑠 = 0.
We consider a triangle 𝑇𝜃(𝑟) ⊂ ℝ2 foliated by line segments 𝓁(𝑠), where 0 ⩽ 𝑠 < 𝑟∕((1 + 𝜂)𝜖),
with 𝓁(𝑠) having the start point (𝑠, 0), tangent in the direction (sin(𝜃), cos(𝜃)), and has length
𝜌𝑎∕(1 + 𝑂((𝑟∕𝜖)2)). The 𝜄̃1 ◦𝐹 image of such a triangle 𝑇𝜃(𝑟) contributes to 𝐴𝑟. The inequality
(5.9) follows.
We choose the angle 𝜃 to satisfy sin(𝜃) = 𝜖(1 + 𝜂). We divide Equation (5.9) by 𝜋𝑟2, pass to the

limit 𝑟 → 0+, and then to 𝜂 → 0+, and conclude

lim inf
𝑟→0+

𝐴𝑟
𝜋𝑟2

⩾

(
sin |(0,𝜋∕2])−1(𝜖)

𝜋
+

√
1 − 𝜖2

𝜋𝜖
= 𝑓(𝜖). (5.10)

The inequality (5.5) is the same as Equation (5.10). □
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Remark 5.6. Given 0 < 𝜖 < 1, the lower bound in Equation (5.10) is sharp. This can be shown
by considering a bi-Lipschitz g ∶ 𝕊1 → 𝕊1 with metric speed 𝑣g ≡ 𝜖 everywhere in an open
neighbourhood of 𝑥0 ∈ 𝕊1.
If the circular sector 𝐶𝜃(𝑟) and triangle 𝑇𝜃(𝑟) are defined as in the proof of the lower bound

Equation (5.10), with 𝜂 = 0, and 𝜃 = (sin |(0,𝜋∕2])−1(𝜖), we have
lim inf
𝑟→0+

𝐴𝑟
𝜋𝑟2

=
2
ℝ2
(𝐶𝜃(1)) + 22

ℝ2
(𝑇𝜃(1))

𝜋
= 𝑓(𝜖).

This can be showed using Lemma 3.2 and Proposition 3.6. The key property of the angle 𝜃 is
that the line on ℝ2 containing (𝑟∕𝜖, 0) with tangent vector (− cos(𝜃), sin(𝜃)) intersects every ball
𝐵ℝ2((𝑠, 0), 𝜌𝑠) tangentially when 0 ⩽ 𝑠 < 1∕𝜖 and 𝜌𝑠 = 1 − 𝜖𝑠.

Proof of Proposition 5.3. Given Equation (5.2) and Proposition 5.5, we have 𝑣g (𝑥) ⩾ 𝐿−1
1

for 1
𝕊1
-

almost every 𝑥 ∈ 𝕊1. This implies that g−1 is absolutely continuous and 𝑣g−1(𝑥) ⩽ 𝐿1 for 1
𝕊1
-

almost every 𝑥 ∈ 𝕊1. Therefore g−1 is 𝐿1-Lipschitz.
The fact that 𝜄̃1 1-Lipschitz follows from Lemma 3.3. Proposition 3.6 implies that

𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)) ⩾ 𝜎(𝑥, 𝑦)∕𝐿1, for every 𝑥, 𝑦 ∈ 𝕊1.

Given this inequality, the equality (3.1) in Lemma 3.2 implies the corresponding inequality for
every pair 𝑥, 𝑦 ∈ 𝑍1. Hence 𝜄̃−11 is 𝐿1-Lipschitz. □

Next, we verify a lemma about radial extensions of bi-Lipschitz maps, which we need during
the proof of Theorem 1.1.
For the south pole 𝑃1 ∈ 𝑍1, we consider the stereographic projection 𝑃∶ 𝕊2 ⧵ {𝑃1} → ℝ2 × {0}

fixing the equator and mapping the north pole 𝑃2 = (0, 0, 1) to the origin. We identify ℝ2 × {0}
with ℝ2. We note that 𝑃−1 has the explicit definition

𝑃−1(𝑥, 𝑦) =

(
2𝑥

1 + 𝑥2 + 𝑦2
,

2𝑦

1 + 𝑥2 + 𝑦2
,
1 − 𝑥2 − 𝑦2

1 + 𝑥2 + 𝑦2

)
.

The Riemannian tensor of 𝕊2 in these coordinates is 𝐼 = (4∕(1 + 𝑟2)2)gE, where 𝑟 is the distance
to the origin and g𝐸 the Euclidean inner product. In polar coordinates, gE = 𝑑𝑟2 + 𝑟2𝑑𝜃2. We see
from the form of 𝐼 that the bi-Lipschitz constants of g̃ = 𝑃 ◦ g ◦ (𝑃|𝕊1)−1 and g ∶ 𝕊1 → 𝕊1 coincide.
We represent the polar coordinates using the complex notation 𝑟𝑒𝑖𝜃. We note that there exists a

homeomorphism 𝐺∶ ℝ → ℝ with g̃(𝑒𝑖𝜃) = 𝑒𝑖𝐺(𝜃) for every 𝜃 ∈ ℝ. For every 0 ⩽ 𝑟 ⩽ 1 and 𝜃 ∈ ℝ,
we set 𝜓(𝑟𝑒𝑖𝜃) ∶= 𝑟𝑒𝑖𝐺(𝜃) and refer to 𝜓 as the radial extension of g̃ . We recall from [24, Theorem
2.2] that the bi-Lipschitz constants of g̃ and 𝜓 coincide. Let 𝜓 = 𝑃−1 ◦𝜓 ◦𝑃|𝑍2 ∶ 𝑍2 → 𝑍2.
We use the following fact during the proof of Lemma 5.8; see for example [11, 13].

Lemma5.7. For every𝑥, 𝑦 ∈ 𝕊2, 0 < 𝜖 < 1, and 0 < 4𝑟 < 𝜎(𝑥, 𝑦), themodulus of the family of paths
joining 𝐵𝕊2(𝑥, 𝑟) to 𝐵𝕊2(𝑦, 𝑟) with length (1 + 𝜖)𝜎(𝑥, 𝑦) is positive.

Lemma 5.8. The map 𝜓∶ 𝑍2 → 𝑍2 is 𝐿-bi-Lipschitz if g is 𝐿-bi-Lipschitz.

Proof. We refer the interested reader to [24, Section 2] for the proof of the fact that𝜓 is bi-Lipschitz
if g̃ (equivalently g) is bi-Lipschitz. We take this as given.
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Since 𝜓 is bi-Lipschitz, it has a differential at 2-almost every point in 𝔻. Given this fact, the
following computations are understood to hold at 2-almost every (𝑥, 𝑦) = 𝑟𝑒𝑖𝜃 in the unit disk.
The pullback 𝜓∗𝐼 is a diagonal matrix with respect to the basis (𝑑𝑟, 𝑑𝜃), with diagonal 4∕(1 +

𝑟2)2 and 4|𝐺′(𝜃)|2𝑟2∕(1 + 𝑟2)2. Hence the maximum of the operator norms of 𝐷𝜓∶ (𝑇𝔻, 𝐼) →
(𝑇𝔻, 𝐼) and its inverse is equal to 𝐿(𝑟𝑒𝑖𝜃) = max{|𝐺′(𝜃)|, |𝐺′(𝜃)|−1}. Then, if 𝐿′ denotes the essen-
tial supremum of 𝐿(𝑟𝑒𝑖𝜃), Lemma 5.7 implies that 𝜓 is 𝐿′-bi-Lipschitz. On the other hand, 𝐿′ is the
bi-Lipschitz constant of g . □

Proof of Theorem 1.1. We first claim that “(1)⇒ (2).” Lemma 5.8 provides us with an 𝐿-bi-Lipschitz
𝜓∶ 𝑍2 → 𝑍2 extension of the given 𝐿-bi-Lipschitz g . We define 𝐻(𝑥) = 𝜄̃1(𝑥) for each 𝑥 ∈ 𝑍1
and 𝐻(𝑥) = 𝜄̃2 ◦𝜓(𝑥) otherwise. Proposition 3.6 implies that 𝐻 is 𝐿-bi-Lipschitz at the seam, and
Lemma 3.2 implies that𝐻 is 𝐿-bi-Lipschitz everywhere.
Notice that if 𝐻∶ 𝕊2 → 𝑍 is 𝐿′-bi-Lipschitz, we may choose 𝐶 = (𝐿′)4 as an upper bound for

the 2D Hausdorff lower density. Hence “(2)⇒ (3)” follows, quantitatively. Lastly, “(3)⇒ (1)” fol-
lows from Propositions 5.3 and 5.4. In fact, given 𝐶 ⩾ 1 for which the lower density bound of
Equation (5.1) holds, g is 𝐿′-bi-Lipschitz for 𝐿′ solving 𝐶 = 𝑓(1∕𝐿′). Since 𝑓(𝜖) ⩾ 1∕𝜋𝜖 for every
0 < 𝜖 ⩽ 1, we have 𝐶𝜋 ⩾ 𝐿′. Hence g is 𝐶𝜋-bi-Lipschitz. □

Remark 5.9. The estimates between the constants in “(3) ⇒ (1)” in Theorem 1.1 can be improved in
twoways. First, the constants𝐶1 and𝐶2 in Equations (5.2) and (5.3) satisfymax{𝐶1, 𝐶2} ⩽ 𝐶 − 1∕2,
so g is (𝐶 − 1∕2)𝜋-bi-Lipschitz.
The second improvement is obtained by using the constant𝐿′ = 𝐿(𝐶 − 1∕2) fromDefinition 5.1.

Then g is 𝐿′-bi-Lipschitz, where 𝐿′ ⩽ (𝐶 − 1∕2)𝜋.
These improvements imply that the bi-Lipschitz constant of g converges to 1 as 𝐶 → 1+. These

facts also improve Theorem 1.2 and the following result, Proposition 5.10.

Before proving Theorem 1.2, we investigate a related problem. To this end, suppose that we are
given Riemann maps 𝜙𝑖 ∶ 𝑍𝑖 → Ω𝑖 with Ω1 and Ω2 denoting the complementary components of
a welding curve , and set g = 𝜙−1

2
◦𝜙1|𝕊1 .

Proposition 5.10. Let 𝐾,𝐶 ⩾ 1. The welding homeomorphism g is 𝜋(𝐾𝐶)2-bi-Lipschitz if there
exists a 𝐾-quasiconformal homeomorphism ℎ∶ 𝕊2 → 𝕊2 such that for both 𝑖 = 1, 2,

𝐶−1𝐽ℎ(𝑥) ⩽ 𝐽𝜙−1
𝑖
(𝑥) ⩽ 𝐶𝐽ℎ(𝑥) for2

𝕊2
-almost everywhere, 𝑥 ∈ Ω𝑖 . (5.11)

Conversely, if g is 𝐿-bi-Lipschitz, then there exists 𝐿4-quasiconformal homeomorphism ℎ∶ 𝕊2 → 𝕊2

such that Equation (5.11) holds for 𝐶 = 𝐿2.

Proof. We first assume that g ∶ 𝕊1 → 𝕊1 is 𝐿-bi-Lipschitz. Then Theorem 1.1 provides uswith an 𝐿-
bi-Lipschitz homeomorphismΨ∶ 𝑍 → 𝕊2. Proposition 4.3 andEquation (4.1) imply that𝜋∶ 𝕊2 →
𝑍 defined via the formula

𝜋(𝑥) =

{
𝜄̃1 ◦𝜙

−1
1
(𝑥), 𝑥 ∈ Ω1,

𝜄̃2 ◦𝜙
−1
2
(𝑥), 𝑥 ∈ Ω2

(5.12)
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is a 1-quasiconformal homeomorphism. Therefore, ℎ ∶= Ψ ◦𝜋∶ 𝕊2 → 𝕊2 is𝐾-quasiconformal for
𝐾 = 𝐿4, and as Ψ is 𝐿-bi-Lipschitz, the Jacobians of ℎ and 𝜋 are comparable with comparison
constant 𝐶 = 𝐿2.
Next, we are given a Jordan curve  ⊂ 𝕊2 corresponding to a welding homeomorphism g =

𝜙−1
2

◦𝜙1|𝕊1 , a 𝐾-quasiconformal homeomorphism ℎ∶ 𝕊2 → 𝕊2, and a constant 𝐶 ⩾ 1 such that

𝐶−1𝐽ℎ(𝑥) ⩽ 𝐽𝜋(𝑥) ⩽ 𝐶𝐽ℎ(𝑥) 2
𝕊2
-almost everywhere, 𝑥 ∈ 𝕊2 ⧵ . (5.13)

For 𝑖 = 1, 2, the composition ℎ ◦𝜙𝑖 is 𝐾-quasiconformal with Jacobian bounded from above 𝐶
and below by 𝐶−1, respectively; here we apply Equation (5.13). Theorem 2.4 (ii) and Hadamard’s
inequality imply that 𝐶−1 ⩽ 𝜌2

ℎ ◦𝜙𝑖
⩽ 𝐾𝐶 2

𝕊2
-almost everywhere in 𝑍𝑖 . Lemma 5.7 implies that

the homeomorphism ℎ ◦𝜙𝑖 is locally 𝐿′-bi-Lipschitz for 𝐿′ =
√
𝐾𝐶.

Since, for both 𝑖 = 1, 2, 𝑍𝑖 is geodesic, it is immediate that ℎ ◦𝜙𝑖 ∶ 𝑍𝑖 → 𝕊2 is 𝐿′-Lipschitz.
Since this holds for both 𝑖 = 1, 2, the construction of 𝑑𝑍 implies that whenever 𝑥, 𝑦 ∈ 𝕊1,
𝜎(ℎ ◦𝜙1(𝑥), ℎ ◦𝜙1(𝑦)) ⩽ 𝐿′𝑑𝑍(̃𝜄1(𝑥), 𝜄̃1(𝑦)). Lemma 3.2 (3.1) establishes the same inequality for
each 𝑥, 𝑦 ∈ 𝑍1. Hence the mapping 𝜋 defined by the expression (5.12) is a homeomorphism
and Ψ ∶= ℎ ◦𝜋−1 is 𝐿′-Lipschitz on the southern hemisphere. A similar argument shows
that Ψ is 𝐿′-Lipschitz on both of the hemispheres. Then Lemma 3.2 (3.2) implies that Ψ is
𝐿′-Lipschitz everywhere.
Since modΓ ⩽ 𝐾modΨ−1Γ for all path families (recall Proposition 4.3), we have Ψ−1 ∈

𝑁1,2(𝕊2, 𝑍). On the other hand, Ψ(𝑄(𝑆𝑍)) has negligible 2
𝕊2
-measure and Ψ−1 is locally

𝐿′-Lipschitz in the complement of that set. In particular, almost every absolutely continu-
ous 𝛾∶ [0, 1] → 𝕊2 has zero length in Ψ(𝑄(𝑆𝑍)) and Ψ−1 ◦ 𝛾 is absolutely continuous. As a
consequence,1

𝑍
(𝑄(𝑆𝑍) ∩ |Ψ−1 ◦ 𝛾|) = 0.

Denoting𝐸 = 𝑄(𝑆𝑍) ∩ |Ψ−1 ◦ 𝛾| and 𝜌 = 𝐿′𝜒𝕊2 , we conclude fromLemma 2.2 that𝓁(Ψ−1 ◦ 𝛾) ⩽
∫𝛾 𝜌 𝑑𝑠 ⩽ 𝐿′𝓁(𝛾). Lemma 5.7 implies that Ψ−1 is 𝐿′-Lipschitz.
We have verified that Ψ is 𝐿′-bi-Lipschitz. By applying the implications “(2) ⇒ (3) ⇒ (1)” in

Theorem 1.1, we conclude that g is 𝐿-bi-Lipschitz for 𝐿 = 𝜋(𝐿′)4 = 𝜋(𝐾𝐶)2. □

Next, we prove Theorem 1.2. This essentially follows from Proposition 5.10.

Proof of Theorem 1.2. We claim that g ∶ 𝕊1 → 𝕊1 is bi-Lipschitz if and only if there exists a qua-
siconformal homeomorphism ℎ∶ 𝕊2 → 𝕊2 and a 1-quasiconformal homeomorphism 𝜑∶ 𝕊2 → 𝑍

such that 𝐽𝜑 and 𝐽ℎ are comparable.
If such 𝜑 and ℎ exist, we may assume that 𝜙𝑖 = 𝜑−1 ◦ 𝜄̃𝑖|𝑍𝑖 is a Riemann map for both 𝑖 = 1, 2.

Then Proposition 5.10 shows that g is bi-Lipschitz.
Conversely, if g is bi-Lipschitz, Theorem 1.1 provides a bi-Lipschitz homeomorphism Ψ∶ 𝑍 →

𝕊2. Then Theorem 1.6 implies the existence of a 1-quasiconformal homeomorphism 𝜋∶ 𝕊2 → 𝑍

such that 𝜙𝑖 = 𝜋−1 ◦ 𝜄̃𝑖|𝑍𝑖 is a Riemann map for 𝑖 = 1, 2. We may also assume that Ψ ◦ 𝜄̃𝑖|𝑍𝑖 is
orientation-preserving for 𝑖 = 1, 2, by post-composing Ψ with a suitable reflection, if need be.
Defining ℎ = Ψ ◦𝜋 implies that the assumptions of Proposition 5.10 hold for g .
Since Theorem 1.1 and Proposition 5.10 are quantitative, so is Theorem 1.2. □
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6 MAPPINGS OF FINITE DISTORTION

In this section, we establish Proposition 1.4 and Theorem 1.5.

Definition 6.1. Let Ω,Ω′ ⊂ 𝕊2 be open. A homeomorphism 𝜓∶ Ω → Ω′ is a mapping of finite
distortion if 𝜓 ∈ 𝑁1,1(Ω, 𝕊2); second, the determinant 𝐽(𝐷𝜓) of the differential𝐷𝜓 is non-negative
and integrable; lastly, there exists a function 1 ⩽ 𝐾′

𝜓
< ∞ for which

|𝐷𝜓|2g ⩽ 𝐾′
𝜓
𝐽(𝐷𝜓) 2

𝕊2
-almost everywhere in Ω. (6.1)

Here |𝐷𝜓|g refers to the operator norm of the differential 𝐷𝜓. We let 𝐾𝜓 denote a smallest Borel
function which is bounded from below by 𝜒Ω and for which Equation (6.1) holds.

Definition 6.2. A smooth strictly increasing function∶ [1,∞) → [0,∞) is admissible if

(1) (1) = 0,
(2) ∫ ∞

1 𝑡−2(𝑡) 𝑑1(𝑡) = ∞, and
(3) 𝑡 ↦ 𝑡′(𝑡) is increasing for large values 𝑡, and converges to∞ as 𝑡 → ∞.

We obtain the same class of admissible if we replace (2) with the condition

∫
∞

1
𝑡−1′(𝑡) 𝑑1(𝑡) = ∞.

This follows from the fact that(𝑠)∕𝑠 ⩽ 4 ∫ 2𝑠
𝑠 𝑡−2(𝑡) 𝑑1(𝑡) whenever 𝑠 ⩾ 1 and the integration

by parts formula.

Definition 6.3. Let Ω,Ω′ ⊂ 𝕊2 be open, and 𝜓∶ Ω → Ω′ a homeomorphism. We say that 𝜓 is
admissible if 𝜓 is a mapping of finite distortion and there exists an admissible with

∫Ω 𝑒
(𝐾𝜓) 𝑑2

𝕊2
< ∞. (6.2)

If(𝑡) = 𝑝𝑡 − 𝑝 for some 𝑝 > 0, we say that 𝜓 has exponentially integrable distortion.

We recall some properties of such 𝜓. First, 𝜓 satisfies Lusin’s condition (𝑁) [26, Theorem 1.1].
Second, 𝜓−1 ∈ 𝑁1,2(Ω′,Ω) [27, Corollary 1.2]; this implies that 𝜓−1 satisfies Lusin’s condition (𝑁)
[2, Theorem 3.3.7]. Third, the Jacobian 𝐽(𝐷𝜓) appearing on the right-hand side of (6.1) coincides
with the Jacobian 𝐽𝜓 we defined in Section 2.2 [26].
In this section, we show the following theorem.

Theorem 6.4. Suppose that g ∶ 𝕊1 → 𝕊1 is a homeomorphism, g−1 absolutely continuous,
and there exists a homeomorphism 𝜓∶ 𝑍2 → 𝑍2 extending g with 𝜓|𝑍2 admissible. Then 𝑍 is
quasiconformally equivalent to 𝕊2.

Note that Theorem 1.5 is a consequence of Theorem 6.4 so it suffices to verify Theorem 6.4.
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Definition 6.5. Given 𝑥0 ∈ 𝕊1 and 𝜋 > 𝑅0 > 0, set 𝑄 ∶= 𝐵𝕊2(𝑥0, 𝑅0) ⊂ 𝕊2. We define 𝐻(𝑥) =
𝜄̃1(𝑥) if 𝑥 ∈ 𝑄 ∩ 𝑍1 and 𝜄̃2 ◦𝜓(𝑥) if 𝑥 ∈ 𝑄 ∩ 𝑍2, and denote 𝑅 = 𝐻(𝑄) ⊂ 𝑍.

Proposition 6.6. If 𝑅 and𝐻 are as in Definition 6.5, then𝐻 is a homeomorphism and there exists
a 1-quasiconformal homeomorphism 𝑓 = (𝑢, 𝑣)∶ 𝑅 → [0, 1] × [0,𝑀] for some𝑀 > 0.

Proof of Theorem 6.4 assuming Proposition 6.6. We cover the seam in 𝑍 by the interiors of 𝑅 as in
Definition 6.5. This implies that 𝑍 can be covered by quasiconformal images of planar domains,
and the quasiconformal equivalence of 𝑍 and 𝕊2 follows from Theorem 2.7. □

The following lemma is a key step in proving Proposition 6.6.

Lemma 6.7. The 𝐻 from Definition 6.5 is a homeomorphism, 𝐻 ∈ 𝑁1,1(𝑄, 𝑅) and 𝐻−1 ∈

𝑁1,2(𝑅, 𝑄). Furthermore,𝐻 satisfies Lusin’s conditions (𝑁) and (𝑁−1).

Proof. The absolute continuity of g−1 implies for the Lebesgue decomposition g∗1 = 𝑣g1 +

𝜇⟂ that {𝑣g = 0} has negligible 1
𝕊1
-measure in an open neighbourhood of 𝕊1 ∩ 𝑄. Then

Proposition 3.6 and Lemma 3.2 imply that𝐻 is a homeomorphism.
We recall from Lemma 3.3 the fact that the inclusion maps 𝜄̃1|𝑍1 ∶ 𝑍1 → 𝑍 and 𝜄̃2|𝑍2 ∶ 𝑍2 → 𝑍

are 1-Lipschitz local isometries. This implies that 𝐻 and its inverse are absolutely continuous in
measure; the seam has negligible Hausdorff 2-measure.
In the following proof, we write 𝜌𝑖 for functions defined on 𝑄 ∩ 𝑍𝑖 ⊂ 𝕊2 and 𝜌𝑖 = (𝜌𝑖 ◦ 𝜄̃

−1
𝑖
) on

𝑅 ∩ 𝜄̃𝑖(𝑍𝑖) ⊂ 𝑍 for 𝑖 = 1, 2.
Since 𝜓−1 ∈ 𝑁1,2(𝑄 ∩ 𝑍2, 𝕊

2), for 𝑖 = 1, 2, there exists an upper gradient 𝜌𝑖 ∈ 𝐿2(𝑄 ∩ 𝑍𝑖) of
𝐻−1 ◦ 𝜄̃𝑖|𝑍𝑖∩𝑄 for 𝑖 = 1, 2. We fix such functions and denote 𝜌 ∶= 𝜒𝑅∩̃𝜄1(𝑍1)𝜌1 + 𝜒𝑅∩𝜄2(𝑍2)𝜌2 ∈ 𝐿2(𝑅).
Let Γ0 denote the collection of non-constant paths on 𝑅 ⊂ 𝑍 which have positive length in

the seam 𝑄(𝑆𝑍) or along which 𝜌 fails to be integrable. Since 𝜌 +∞ ⋅ 𝜒𝑄(𝑆𝑍) is 𝐿
2-integrable,

Lemma 2.1 yieldsmodΓ0 = 0.
Consider next an absolutely continuous path 𝛾∶ [0, 1] → 𝑅 in the complement of Γ0. Then

𝜃 = 𝐻−1 ◦ 𝛾 is such that 1
𝕊2
(|𝜃| ∩ 𝕊1) = 0. Indeed, since 𝛾 has zero length in the seam, the area

formula (2.3) implies1
𝑍
(|𝛾| ∩ 𝑄(𝑆𝑍)) = 0. This implies1

𝕊1
(|𝜃| ∩ 𝕊1) = 0 due to Proposition 3.6

and the absolute continuity of g|−1
𝕊1∩𝑄

. Since1
𝕊1
(|𝜃| ∩ 𝕊1) = 0, the assumptions of Lemma 2.2 are

satisfied. Hence

𝓁(𝜃) ⩽ ∫𝛾 𝜌 𝑑𝑠 < ∞.

This implies that𝐻−1 has an 𝐿2-integrable weak gradient, so𝐻−1 ∈ 𝑁1,2(𝑅, 𝑄).
Lastly, we claim that 𝐻 ∈ 𝑁1,1(𝑄, 𝑅). To this end, we observe that 𝐻|𝑄∩𝑍𝑖 has an upper gra-

dient 𝜌𝑖 ∈ 𝐿1(𝑄 ∩ 𝑍𝑖), and denote 𝜌 =
∑2
𝑖=1 𝜒𝑄∩𝑍𝑖𝜌𝑖 ∈ 𝐿1(𝑄). Now 𝜌 is integrable along 1-almost

every absolutely continuous path 𝛾∶ [0, 1] → 𝑄 and 1-almost every such path has zero length
in 𝕊1. Having fixed a path 𝛾 with these properties, Proposition 3.6 implies that 𝜃 = 𝐻 ◦ 𝛾 has
zero length in the seam. The inequality 𝓁(𝜃) ⩽ ∫𝛾 𝜌 𝑑𝑠 follows from Lemma 2.2. This yields that
𝐻 ∈ 𝑁1,1(𝑄, 𝑅). □

Remark 6.8. The Sobolev regularity 𝐻−1 ∈ 𝑁1,2(𝑄, 𝑅) is crucial in the following. Typically, the
Sobolev regularity of the inverse of a Sobolev homeomorphism is a subtle issue in the metric
surface setting.
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To highlight the issue, we recall [23, Example 6.1]. There an example of a metric surface 𝑋
was constructed for which there exists a 1-Lipschitz homeomorphism𝐻∶ ℝ2 → 𝑋 withmodΓ ⩽
mod𝐻Γ for all path families, but𝐻−1 ∉ 𝑁1,2(𝑋, ℝ2). In fact,𝐻 is a local isometry outside a Cantor
set 𝐸 ⊂ ℝ × {0} of positive1-measure and𝐻(𝐸) has negligible1

𝑋
-measure. The key point is that

𝑋 is not reciprocal; recall Definition 2.5.

We define the following auxiliary function for later use:

𝑃(𝑡) ∶=

⎧⎪⎨⎪⎩
𝑡2, 0 ⩽ 𝑡 < 1,

𝑡2

−1(log 𝑡2)
, 𝑡 ⩾ 1.

We note that for every 𝑎 ∈ [0,∞),

𝑃(𝑎) ⩽ 𝑒(𝐾𝐻) + 𝑎2

𝐾𝐻
for2

𝕊2
-almost everywhere in 𝑄. (6.3)

This follows by first observing that 𝑎2 < 𝑒(𝐾𝐻) implies 𝑃(𝑎) ⩽ 𝑒(𝐾𝐻) and otherwise 𝑃(𝑎) ⩽ 𝑎2

𝐾𝐻
.

Also, for any measurable function 𝜌∶ 𝑄 → [0,∞],

∫𝑄 𝑃(𝜌) 𝑑
2
𝕊2
< ∞ implies ∫𝑄 𝜌 𝑑

2
𝕊2
< ∞. (6.4)

The implication in Equation (6.4) follows since ′(𝑡)𝑡 is increasing for large 𝑡 and converges to
infinity as 𝑡 → ∞. Consequently, there exists 𝑡1 ⩾ 1 for which the derivative of ℎ(𝑡) = 𝑒(𝑡)∕𝑡2
is bounded from below by ℎ(𝑡)∕𝑡 for every 𝑡 ⩾ 𝑡1. This implies the existence of 𝑡0 ⩾ 1 such that
ℎ(𝑡) ⩾ 1 for every 𝑡 ⩾ 𝑡0. This is equivalent to saying that 𝑃(𝑡) ⩾ 𝑡 for every 𝑡 ⩾ 𝑡0. This yields
Equation (6.4).
We set 𝐾𝜓(𝑥) = |𝐷𝜓|2

g
∕𝐽(𝐷(𝜓))(𝑥) and 𝐾𝜓−1(𝑥) = |𝐷(𝜓−1)|2

g
∕𝐽(𝐷(𝜓−1)). Observe that 𝐾𝜓 =

𝐾𝜓−1 ◦𝜓 2
𝕊2
-almost everywhere.

We set 𝐾𝐻(𝑥) = 1 if 𝑥 ∈ 𝑄 ∩ 𝑍1 and 𝐾𝐻(𝑥) = 𝐾𝜓(𝑥) in 𝑥 ∈ 𝑄 ∩ 𝑍2. Then

∫𝑄 𝑒
(𝐾𝐻) 𝑑2

𝕊2
< ∞. (6.5)

Also, 𝐾𝐻−1 ∶= 𝜌2
𝐻−1∕𝐽𝐻−1 satisfies 𝐾𝐻 = 𝐾𝐻−1 ◦𝐻 2

𝑍
-almost everywhere, since, outside a 2

𝑍
-

negligible set, either the number is one, or 𝜌2
𝐻−1 ◦ 𝜄̃2 = |𝐷(𝜓−1)|2g , 𝐽𝐻−1 ◦ 𝜄̃2 = 𝐽(𝐷(𝜓−1)), and𝐾𝜓 =

𝐾𝜓−1 ◦𝜓.
For every 𝑧 ∈ 𝑄 and every pair 0 < 𝑟 < 𝑟0, we denote Γ(𝑧, 𝑟, 𝑟0) ∶= Γ(𝐵𝕊2(𝑧, 𝑟), 𝑄 ⧵

𝐵𝕊2(𝑧, 𝑟0); 𝑄).

Lemma 6.9. For every 𝑧 ∈ 𝑄 and 0 < 𝑟 < 𝑟0 with 𝑄 ⧵ 𝐵𝕊2(𝑧, 𝑟0) ≠ ∅,

mod𝐻Γ(𝑧, 𝑟, 𝑟0) ⩽ inf

{
∫𝑄 𝜌

2𝐾𝐻 𝑑2
𝕊2
∶ 𝜌 is admissible for Γ(𝑧, 𝑟, 𝑟0)

}
. (6.6)
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Proof. Fix an admissible function 𝜌 for Γ(𝑧, 𝑟, 𝑟0). Then for almost every 𝛾 ∈ 𝐻Γ(𝑧, 𝑟, 𝑟0),𝐻−1 ◦ 𝛾
is absolutely continuous, and

1 ⩽ ∫𝐻−1 ◦ 𝛾
𝜌 𝑑𝑠 ⩽ ∫𝛾(𝜌 ◦𝐻

−1)𝜌𝐻−1 𝑑𝑠.

In particular, 𝜌 = (𝜌 ◦𝐻−1)𝜌𝐻−1 is weakly admissible for 𝐻Γ(𝑧, 𝑟, 𝑟0). Consequently,

mod𝐻Γ(𝑧, 𝑟, 𝑟0) ⩽ ∫𝑅 𝜌
2 𝑑2

𝑍
.

The change of variables formula for𝐻 and the fact that the seam 𝑄(𝑆𝑍) is2
𝑍
-negligible establish

the claim, after taking the infimum over such 𝜌. □

Having observed Lemma 6.9 and Equation (6.5), the capacitary estimate [27, Theorem 5.3]
implies that keeping 𝑟0 fixed in Equation (6.6), we obtain mod𝐻Γ(𝑧, 𝑟, 𝑟0) → 0 as 𝑟 → 0+. A key
point is that  in Equation (6.5) is admissible. Since 𝐻 is a homeomorphism, this implies that
Equation (2.6) holds for every 𝑦 ∈ int(𝑅) ⊂ 𝑍. By repeating the argument with a slightly larger 𝑄,
we conclude the following.

Lemma 6.10. The identity (2.6) holds for every 𝑦 ∈ 𝑅 ⊂ 𝑍.

Fix a decomposition 𝜉1, 𝜉2, 𝜉3, 𝜉4 of 𝜕𝑄 of four arcs overlapping only at their end points, labelled
in cyclic order consistently with the orientation of 𝕊2. For each 𝑖, we denote 𝜉𝑖 = 𝐻(𝜉𝑖).
Given the validity of Equation (2.6) for each 𝑦 ∈ 𝑅 and the universal lower bound in Equa-

tion (2.7), [31, Proposition 9.1] yields the existence of a homeomorphism 𝑓 = (𝑢, 𝑣)∶ 𝑅 → [0, 1] ×

[0,𝑀] with the following properties:

(a) 𝑢 ∈ 𝑁1,2(𝑅) with 2𝐸(𝑢) =∶ 𝑀 [31, Section 4];
(b) 𝑢−1(0) = 𝜉1,𝑢−1(1) = 𝜉3, 𝑣−1(0) = 𝜉2, and 𝑣−1(𝑀) = 𝜉4 [31, Theorem 5.1 and Proposition 7.3];
(c) Theminimal weak upper gradient 𝜌𝑢 is weakly admissible for the path family Γ(𝜉1, 𝜉3; 𝑅) and

is a minimizer, that is,𝑀 = modΓ(𝜉1, 𝜉3; 𝑅) [31, Section 4-5];
(d) For every Borel set 𝐸 ⊂ 𝑅, 2(𝑓(𝐸)) = ∫𝐸 𝜌2𝑢 𝑑2

𝑍
. In particular, the Jacobian of 𝑓 coincides

with 𝜌2𝑢 [31, Proposition 8.2].

The third point implies that if 𝑢′ ∈ 𝑁1,2(𝑅) has the same boundary values as 𝑢 in 𝜉1 ∪ 𝜉3, the
Dirichlet energies satisfy 𝐸(𝑢) ⩽ 𝐸(𝑢′). Given this, we say that 𝑢 is an energy minimizer for
Γ(𝜉1, 𝜉3; 𝑅).
During the proof of Proposition 6.11, the Beltrami differential of 𝐻 is defined to be zero in

int(𝑄) ∩ 𝑍1, and coincide with the one of 𝜓 in int(𝑄) ∩ 𝑍2.

Proposition 6.11. The map 𝑓 = (𝑢, 𝑣)∶ 𝑅 → [0, 1] × [0,𝑀] is a 1-quasiconformal homeomor-
phism.

The proof of Proposition 6.11 is split into several lemmas.
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Lemma 6.12. Let 0 < 𝑎 < 𝑏 < 1 and 0 < 𝑐 < 𝑑 < 𝑀 for which

𝑄0 =
{
𝑥 ∈ 𝑅∶ 𝑓(𝑥) ∈ [𝑎, 𝑏] × [𝑐, 𝑑]

}
⊂ int(𝑅) ⧵ 𝑄(𝑆𝑍).

Then 𝑓|int(𝑄0) is a 1-quasiconformal homeomorphism.
Proof. For the duration of the proof, we denote

𝜉01 = 𝑓−1({𝑎} × [𝑐, 𝑑]), 𝜉02 = 𝑓−1([𝑎, 𝑏] × {𝑐}),

𝜉03 = 𝑓−1({𝑏} × [𝑐, 𝑑]), 𝜉04 = 𝑓−1([𝑎, 𝑏] × {𝑑}).

There exists a Jordan domain 𝑉 ⊂ int(𝑄) ∩ 𝑍𝑖 , for some 𝑖 = 1, 2, such that 𝜄̃𝑖(𝑉) = 𝑄0. Equa-
tion (57) [31, Lemma 10.2] states that

modΓ(𝜉01 , 𝜉
0
3 ; 𝑄

0) =
𝑑 − 𝑐

𝑏 − 𝑎
.

Since 𝜄̃𝑖 is 1-Lipschitz and a local isometry in 𝑉, we have for every quadrilateral 𝑄′ ⊂ 𝑄0,

modΓ(𝜉′1, 𝜉
′
3; 𝑄

′)modΓ(𝜉′2, 𝜉
′
4; 𝑄

′) = 1. (6.7)

In particular, we have

modΓ(𝜉01 , 𝜉
0
3 ; 𝑄

0)modΓ(𝜉02 , 𝜉
0
4 ; 𝑄

0) = 1. (6.8)

We wish to apply [31, Proposition 11.1]. There Rajala assumes that Equation (2.5) holds for some
𝜅 ⩾ 1 and concludes that 2000 ⋅

√
𝜅𝜌𝑢 is a weak upper gradient of 𝑓. We do not assume this. How-

ever, a quick inspection of the proof shows that given any open setΩ ⊂ int(𝑄0), the Property (6.7)
implies that 2000 ⋅ 𝜒int(𝑄0) ⋅ 𝜌𝑢 is a weak upper gradient of 𝑓|int(𝑄0) inΩ. By exhausting int(𝑄0) by
such open sets, we conclude that 𝑓|int(𝑄0) ∈ 𝑁1,2(int(𝑄0); ℝ2).
Since 𝑢 ∈ 𝑁1,2(𝑅) is a continuous energy minimizer, the composition 𝑢 ◦ 𝜄𝑖|𝑉 is harmonic [2,

Weyl’s lemma]. The Riemann mapping theorem, the Sobolev regularity of 𝑓|int(𝑄0), the boundary
values of the components of 𝑓|𝑄0 , and Equation (6.8) imply that 𝑓 ◦ 𝜄𝑖|𝑉 is a Riemann map. In
particular, 𝑓|int(𝑄0) is a 1-quasiconformal homeomorphism. □

Lemma 6.13. The composition 𝑓 = 𝑓 ◦𝐻∶ 𝑄 → [0, 1] × [0,𝑀] is an element of 𝑁1,1(int(𝑄), ℝ2).
Moreover, the Beltrami differential of 𝑓 coincides with the one of𝐻 and Equation (6.5) holds for 𝐾𝑓
in place of 𝐾𝐻 .

Proof. Given Lemma 6.12, the Beltrami differential of 𝑓 and 𝐻 coincide 2
𝕊2
-almost everywhere

in int(𝑄) ⧵ 𝕊1, that is,2
𝕊2
-almost everywhere in int(𝑄). The result also implies that the pointwise

distortions of 𝑓 and𝐻 coincide2
𝕊2
-almost everywhere in int(𝑄).

Next, we show that𝑢 = 𝑢 ◦𝐻 ∈ 𝑁1,1(𝑄).We recall that𝐻 ∈ 𝑁1,1(𝑄, 𝑅).Moreover, if 𝜌0 ∈ 𝐿2(𝑅)

is an upper gradient of 𝑢, the function 𝜌 = (𝜌0 ◦𝐻)𝜌𝐻 is a 1-weak upper gradient of 𝑢 with

∫𝑄 𝑃(𝜌) 𝑑
2
𝑍 ⩽ ∫𝑄 𝑒

(𝐾𝐻) 𝑑2
𝑍 +

‖‖𝜌0‖‖2𝐿2(𝑄) < ∞,
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where we apply Equation (6.3) and the distortion inequality 𝜌2
𝐻
⩽ 𝐾𝐻𝐽𝐻 . The 𝐿1(𝑄)-integrability

of 𝜌 follows from Equation (6.4), so 𝑢 ∈ 𝑁1,1(𝑄).
Let 𝑣 = 𝑣 ◦𝐻. Lemma 6.12 implies that 𝜌 = (𝜌0 ◦𝐻)𝜌𝐻 ∈ 𝐿1(𝑄) is a 1-weak upper gradient of

𝑣 in every open 𝑈 ⊂ int(𝑄) ⧵ 𝕊1. Therefore, 𝑣 ∈ 𝑁1,1(int(𝑄) ⧵ 𝕊1). Given the continuity of 𝑣, we
actually have 𝑣 ∈ 𝑁1,1(int(𝑄)). This is seen by verifying the ACL (absolute continuity on lines)
property for 𝑣|int(𝑄) on charts covering 𝕊1 ∩ int(𝑄). The ACL property on charts follows from a
minormodification of the proof in [35, Theorem 35.1] showing that closed sets with 𝜎-finite Haus-
dorff 1-measure are quasiconformally removable. This implies that 𝜌 is a 1-weak upper gradient
of 𝑣 on int(𝑄). The claim follows from this. □

Lemma 6.14. Let 𝑢′ denote the energy minimizer for Γ(𝜉2, 𝜉4; 𝑄). Then 𝑣 = 𝑀𝑢′.

Proof. Similarly to 𝑓 and 𝑓, let 𝑓′ = (𝑢′, 𝑣′) and 𝑓′ denote the homeomorphisms obtained from
the energy minimizer 𝑢′ for Γ(𝜉2, 𝜉4; 𝑅). Let 𝑅′ denote the image of 𝑓′ and 𝑅 the image of 𝑓.
Lemma 6.13 shows that the Beltrami differentials of 𝑓 and 𝑓′ coincide with one another 2

𝕊2
-

almost everywhere and their distortion satisfies Equation (6.5) for an admissible . Then the
Stoilow factorization theorem [2, Theorems 20.5.1, 20.5.2] implies that 𝜑 = 𝑓′ ◦𝑓−1 is conformal;
note also that 𝜑 = 𝑓′ ◦𝑓−1.
Since 𝜑 is conformal, the energy minimizer 𝜋1 for Γ(𝑓′(𝜉2), 𝑓′(𝜉4); 𝑅′) is such that 𝜋1 ◦𝜑 is

the energy minimizer for Γ(𝑓(𝜉2), 𝑓(𝜉4); 𝑅). On the other hand, here 𝜋1 is the projection to the
𝑥-axis and 𝜋1 ◦𝜑 is𝑀−1 times the projection to the 𝑦-axis. Since 𝜑 = 𝑓′ ◦𝑓−1, the equality 𝑢′ =
𝜋1 ◦𝜑 ◦𝑓 = 𝑀−1𝑣 follows. □

Proof of Proposition 6.11. Lemma 6.14 implies that 𝑓 = (𝑢, 𝑣) ∈ 𝑁1,2(𝑅, ℝ2). Furthermore,
Lemma 6.12 implies 𝜌2

𝑓
= 𝐽𝑓 ∈ 𝐿1(𝑅). Hence modΓ ⩽ mod𝑓Γ for every path family in 𝑅. This

improves to 𝐾-quasiconformality for some 𝐾 ⩾ 1 due to Proposition 2.8. As 𝑓(𝑄(𝑆𝑍) ∩ 𝑅) is neg-
ligible due to the change of variables formula for 𝑓, and as 𝑓−1 is 1-quasiconformal outside
𝑓(𝑆𝑍 ∩ 𝑅), we immediately obtain modΓ ⩽ mod𝑓−1Γ for every path family in 𝑓(𝑅). Thus 𝑓 is
1-quasiconformal. □

Proof of Proposition 6.6. This is proved by Proposition 6.11. □

Remark 6.15. Notice that if Lemma 6.10 holds for a given homeomorphism g ∶ 𝕊1 → 𝕊1 having an
admissible extension, even without assuming the absolute continuity of g−1, the rest of the proof
of Proposition 6.11 (and Proposition 6.6) go through the same way.

Proof of Proposition 1.4. Given a quasisymmetry g ∶ 𝕊1 → 𝕊1, its Beurling–Ahlfors extension
𝜓∶ 𝑍2 → 𝑍2 is a quasisymmetry and 𝜓|𝑍2 is 𝐾-quasiconformal for some 𝐾 ⩾ 1 [4]. Thus, if g−1
is absolutely continuous, g satisfies the assumptions of Theorem 1.5. Alternatively, if 𝐻 is as in
Definition 6.5, Lemma 6.9 implies that 𝐻−1 has outer dilatation 𝐾𝑂(𝐻−1) ⩽ 𝐾. Proposition 2.8
implies that𝐻 is quasiconformal; this self-improves to𝐾-quasiconformality. Clearly𝐻 extends to
a 𝐾-quasiconformal homeomorphism𝐻∶ 𝕊2 → 𝑍. □
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7 CONCLUDING REMARKS

7.1 A point of positive capacity

For a general orientation-preserving homeomorphism g ∶ 𝕊1 → 𝕊1, the 𝑍 can have points of pos-
itive capacity (in the sense that Equation (2.6) can fail) even if g is locally bi-Lipschitz in the
complement of a single point. For example, having fixed arbitrary 1 < 𝛼 < 𝛽, we consider the
homeomorphism ℎ∶ ℝ → ℝ defined by

ℎ(𝑥) =

{
𝑥𝛼, 𝑥 ⩾ 0,

− (−𝑥)𝛽, 𝑥 < 0.
(7.1)

We construct a homeomorphism g ∶ 𝕊1 → 𝕊1 by restricting ℎ to the interval [−1, 1], extending the
restriction toℝ periodically, and by considering the covering map 𝜃(𝑡) = (cos(𝜋𝑡), sin(𝜋𝑡), 0), and
a homeomorphism g ∶ 𝕊1 → 𝕊1 satisfying g ◦ 𝜃 = 𝜃 ◦ℎ−1. Then g−1 is an 𝐿-Lipschitz homeomor-
phism for some 𝐿 ⩾ 1, and one can check directly from the definition of 𝑑𝑍 that the inclusionmap
𝜄̃1 ∶ 𝑍1 → 𝑍 is 𝐿-bi-Lipschitz onto its image.
Let 𝑥0 ∈ 𝑍 denote the point corresponding to (1, 0, 0). By using the techniques from Section 5,

we can show that 𝑍 ⧵ {𝑥0} can be covered by bi-Lipschitz images of planar domains. Then [22,
Theorem 1.3] implies that 𝑍 ⧵ {𝑥0} is 1-quasiconformally equivalent to a Riemannian surface (that
is homeomorphic to a planar domain). Such a Riemannian surface can be conformally embedded
into 𝕊2 [1, Section III.4]. Hence there exists a 1-quasiconformal embedding 𝜓∶ 𝑍 ⧵ {𝑥0} → 𝕊2.
We claim that the complement of the image of𝜓 is a non-trivial continuum (which is equivalent

to the failure of Equation (2.6) at 𝑥0). Indeed, otherwise 𝜓 would extend to a 1-quasiconformal
homeomorphism and g would be a welding homeomorphism, as a consequence of Theorem 1.6.
This would contradict both [29, Example 1] and [34, Theorem 3], where both of these result show
that g is not a welding homeomorphism.
In contrast, if we set 𝛼 = 𝛽 ⩾ 1 in Equation (7.1), the homeomorphism g is a quasisymmetry,

so 𝑍 is quasiconformally equivalent to 𝕊2, as a consequence of Proposition 1.4.

7.2 Points of positive capacity

We construct another example for which points of positive capacity occur. To this end, consider a
Cantor set 𝐸 ⊂ [0, 1] and

ℎ(𝑥) =

⎧⎪⎨⎪⎩
(1([0, 1] ⧵ 𝐸))−1 ∫

𝑥

0
𝜒ℝ⧵𝐸(𝑦) 𝑑1(𝑦), 0 ⩽ 𝑥 ⩽ 1,

𝑥, otherwise.
(7.2)

Then ℎ∶ ℝ → ℝ is a Lipschitz homeomorphism coinciding with the identity map outside (0, 1).
Next, consider the Möbius transformation 𝜃1(𝑧) = (𝑧 − 𝑖)∕(𝑧 + 𝑖) from the upper half-space

ℍ onto the Euclidean unit disk 𝔻. Let 𝜃2(𝑥, 𝑦) = (2𝑥∕(1 + 𝑥2 + 𝑦2), 2𝑦∕(1 + 𝑥2 + 𝑦2), (1 − 𝑥2 −

𝑦2)∕(1 + 𝑥2 + 𝑦2)). Then 𝜃 ∶= 𝜃2 ◦ 𝜃1 ∶ ℍ → 𝑍2 defines a 1-quasiconformal homeomorphism,
given that 𝜃−1

2
is a (n orientation-reversing) stereographic projection.



METRIC SPHERES FROM GLUING HEMISPHERES 31

There exists a unique homeomorphism g ∶ 𝕊1 → 𝕊1 satisfying g ◦ 𝜃 = 𝜃 ◦ℎ−1. We see from
Equation (7.2) that g−1 is 𝐿-Lipschitz and 𝜄̃1 is 𝐿-bi-Lipschitz with a constant 𝐿 depending only on1(𝐸). In particular, 𝑍 = (𝑍, 𝑑𝑍).
We denote 𝐸′ = 𝜄̃2(𝜃(𝐸)) ⊂ 𝑍, and apply [22, Theorem 1.3] as in Section 7.1, and find a

1-quasiconformal embedding 𝜓∶ 𝑍 ⧵ 𝐸′ → 𝕊2.
Consider onℝ2 the distance 𝑑𝐸 obtained as follows: For each absolutely continuous 𝛾∶ [0, 1] →

ℝ2, denote 𝓁𝐸(𝛾) ∶= ∫𝛾 𝜒ℝ2⧵𝐸 𝑑𝑠. We set 𝑑𝐸(𝑥, 𝑦) = inf 𝓁𝐸(𝛾), the infimum taken over absolutely
continuous paths joining 𝑥 to 𝑦.
We denote 𝑋 = (ℝ2, 𝑑𝐸). The change of distance map 𝐻∶ ℝ2 → 𝑋 is a 1-Lipschitz homeomor-

phism that is a local isometry onℝ2 ⧵ 𝐸. Moreover, if 𝜃∶ [0, 1] → ℝ2 is absolutely continuous, the
metric speeds satisfy

𝑣𝐻 ◦ 𝜃 =
(
𝜒ℝ2⧵𝐸 ◦ 𝜃

)
⋅ 𝑣𝜃 1-almost everywhere. (7.3)

The composition 𝐺 = 𝜄̃2 ◦ 𝜃 ◦ (𝐻|[−1,2]×[0,1])−1 is a 1-quasiconformal homeomorphism. This fol-
lows from Lemma 2.2, the equalities1

𝑍
(𝐸′) = 0 = 1

𝑋
(𝐻(𝐸)), together with Proposition 3.6 and

Equation (7.3).
We consider a Cantor set 𝐸 obtained from [23, Example 6.1]. The key property of 𝐸 is the

following: there exists a path family Γ on [0, 1]2, each path joining (0,0) to (1,0), such that
mod𝐻Γ ⩾ (4𝜋)−1 and modΓ = 0. Given that 𝐺 is 1-quasiconformal, the points 𝜄̃2(𝜃(𝑥)), where
𝑥 = (0, 0), (1, 0), fail Equation (2.6). Consequently, 𝑍 is not quasiconformally equivalent to 𝕊2,
and the embedding 𝜓 does not have a quasiconformal extension Ψ∶ 𝑍 → 𝕊2.

Question 7.1. Are there Cantor sets 𝐸 with 1(𝐸) > 0 such that a quasiconformal embedding
𝜓∶ 𝑍 ⧵ 𝐸′ → 𝕊2 extends to a quasiconformal homeomorphism Ψ∶ 𝑍 → 𝕊2?

Given a compact set 𝐹 ⊂ 𝑌 with𝑌 = ℝ2 or𝑌 = 𝕊2, we say that 𝐹 has zero absolute area if every
1-quasiconformal embedding 𝑓∶ 𝑌 ⧵ 𝐹 → 𝕊2 satisfies2

𝕊2
(𝕊2 ⧵ 𝑓(𝑌 ⧵ 𝐹)) = 0.

We expect that the quasiconformal extension Ψ exists if and only if the set 𝐹 = 𝕊2 ⧵ 𝜓(𝑍 ⧵ 𝐸′)

has zero absolute area; the “only if”-direction follows by applying the techniques used in Section 4,
by noting that the composition (𝑓 ◦𝜓)−1 has a continuous, monotone, and surjective extension
𝜋 with modΓ ⩽ mod𝜋Γ for all path families. We expect that the “if”-direction follows from [23,
Theorems 1.3 and 1.4, together with Lemma 5.1].
If 𝐸 in Question 7.1 has zero absolute area, [23, Theorem 1.3] implies that the change of distance

map 𝐻 is a 1-quasiconformal homeomorphism. Given that the 𝐺 above is 1-quasiconformal, one
readily verifies that 𝜄̃2 is a 1-quasiconformal homeomorphismonto its image.We ask the following.

Question 7.2. Let 𝐸, g , and 𝜓 be as in Question 7.1. If 𝜄̃2 ∶ 𝑍2 → 𝑍 is a 1-quasiconformal
parametrization of its image, does 𝜓∶ 𝑍 ⧵ 𝐸′ → 𝕊2 extend to a quasiconformal homeomor-
phism Ψ∶ 𝑍 → 𝕊2? In particular, if 𝐸 has zero absolute area, does 𝐹 = 𝕊2 ⧵ 𝜓(𝑍 ⧵ 𝐸′) have zero
absolute area?

As a related note, it is clear, for example, by [21, Theorem 1.1 and Proposition 1.2], that the inclu-
sion map 𝜄̃2 is a 1-quasiconformal homeomorphism if and only if there exists a quasiconformal
homeomorphism ℎ∶ 𝜄̃2(𝑍2) → 𝔻, where 𝔻 is the closed Euclidean unit disk.
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7.3 Welding homeomorphisms

We consider a welding homeomorphism g ∶ 𝕊1 → 𝕊1 with welding curve  ⊂ 𝕊2. Consider the
monotone mapping 𝜋∶ 𝕊2 → 𝑍 obtained from Equation (4.1).

Question 7.3. If 𝜋 is a homeomorphism, is it a 1-quasiconformal homeomorphism?

We showed in Proposition 4.1 that if𝜋 is not a homeomorphism, then𝑍 is not quasiconformally
equivalent to 𝕊2; the collapsing creates points of positive capacity—by which wemean that Equa-
tion (2.6) fails—in 𝑍. Question 7.3 asks if the collapsing is the only obstruction for quasiconformal
uniformization. Lemma 4.8 reduces the question to understanding when 𝜋−1 ∈ 𝑁1,2(𝑍, 𝕊2).

7.4 Quasisymmetries

Observe that the assumptions of Proposition 1.4 are satisfied by every quasisymmetry g ∶ 𝕊1 → 𝕊1

that is strongly quasisymmetric [3, 5 8, 33]: for every 𝜖 > 0 there exists 𝛿 > 0 such that for every
subarc 𝐼 ⊂ 𝕊1 and Borel set 𝐸 ⊂ 𝐼,

1
𝕊1
(𝐸) ⩽ 𝛿1

𝕊1
(𝐼) implies 1

𝕊1
(g(𝐸)) ⩽ 𝜖1

𝕊1
(g(𝐼)).

Thewelding curves corresponding to strongly quasisymmetric homeomorphisms are special cases
of the asymptotically conformal quasicircles; see [30]. One might ask whether or not 𝑍 is quasi-
conformally equivalent to 𝕊2 whenever g is a welding homeomorphism corresponding to such a
curve. Corollary 4 of [30] provides us with an example of asymptotically conformal quasicircle 
which has an uncountable number of tangent points, with the tangent points dense in , but they
also have zero 1D Hausdorff measure.

Lemma 7.4. There exists a quasisymmetric g ∶ 𝕊1 → 𝕊1 with asymptotically conformal welding
curve  such that 𝑍 is not homeomorphic to 𝕊2.
Lemma 7.4 follows from Proposition 4.1, Lemma 4.5, and the cited example.

Question 7.5. Is the answer to Question 7.3 yes if we also assume that g ∶ 𝕊1 → 𝕊1 is
a quasisymmetry?

To answer Question 7.5 negatively, one needs to construct a quasisymmetry 𝜓∶ 𝑍2 → 𝑍2, with
g = 𝜓|𝕊1 , for which the measures g∗1

𝕊1
and1

𝕊1
are not mutually singular in any subarc 𝐼 ⊂ 𝕊1,

yet the corresponding 𝑍 is not quasiconformally equivalent to 𝑍. Equivalently, one only needs to
show that the homeomorphism 𝐻∶ 𝕊2 → 𝑍, coinciding with 𝜄̃1 in 𝑍1 and with 𝜄̃2 ◦𝜓 in 𝑍2, is not
quasiconformal. By arguing as in the proof of Lemma 4.8, one sees that 𝐻 is quasiconformal if
and only if𝐻−1 ∈ 𝑁1,2(𝑍, 𝕊2).
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30. Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), no. 3, 199–208.
31. K. Rajala, Uniformization of two-dimensional metric surfaces, Invent. Math. 207 (2017), no. 3, 1301–1375.
32. K. Rajala and M. Romney, Reciprocal lower bound on modulus of curve families in metric spaces, Ann. Acad.

Sci. Fenn. Math. 44 (2019), 681–692.
33. S. Semmes, A counterexample in conformal welding concerning chord-arc curves, Ark. Mat. 24 (1986), no. 1,

141–158.
34. J. V. Vainio, On the type of sewing functions with a singularity, Ann. Acad. Sci. Fenn. Math. 14 (1989), no. 1,

161–167.
35. J. Väisälä, Lectures on 𝑛-dimensional quasiconformal mappings, Lecture Notes in Mathematics, vol. 229,

Springer, New York, 1971.
36. M. Williams, Geometric and analytic quasiconformality in metric measure spaces, Proc. Amer. Math. Soc. 140

(2012), no. 4, 1251–1266.
37. M. Younsi, On removable sets for holomorphic functions, EMS Surv. Math. Sci. 2 (2015), no. 2, 219–254.
38. M. Younsi, Removability and non-injectivity of conformal welding, Ann. Acad. Sci. Fenn. Math. 43 (2018), no.

1, 463–473.
39. S. Zakeri,Onboundary homeomorphisms of trans-quasiconformalmaps of the disk, Ann.Acad. Sci. Fenn.Math.

33 (2008), no. 1, 241–260.


	Two-dimensional metric spheres from gluing hemispheres
	Abstract
	1 | INTRODUCTION
	2 | PRELIMINARIES
	2.1 | Notation
	2.2 | Metric Sobolev spaces
	2.3 | Measure theory
	2.4 | Quasiconformal mappings

	3 | HEMISPHERES
	4 | HARMONIC MEASURE AND WELDING HOMEOMORPHISMS
	5 | MASS UPPER BOUND
	6 | MAPPINGS OF FINITE DISTORTION
	7 | CONCLUDING REMARKS
	7.1 | A point of positive capacity
	7.2 | Points of positive capacity
	7.3 | Welding homeomorphisms
	7.4 | Quasisymmetries

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


