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Abstract: In this Master’s Thesis, the ability of convolutional neural networks in the eval-

uation of tumor-stroma ratio from histopathological images, is studied. The goal is to find

out, whether pre-training with domain-specific data brings more accuracy to the convolu-

tional neural network model. Tumor-stroma ratio is predicted with the trained model and the

predicted values are compared with visual tumor-stroma estimations made by pathologist.

When domain-specific data was used in the pre-training of the convolutional neural network,

a slight improvement in the validation accuracy of the model was observed. Correlation be-

tween the predicted and visual values was also found. Further analysis is needed to study

what is the connection of these computationally predicted values to other clinicopathological

factors and overall survival of the patient.

Keywords: Convolutional neural networks, computer vision, artificial intelligence, medical

image analysis, digital pathology, colorectal cancer, histopathology, tumor-stroma ratio

Suomenkielinen tiivistelmä: Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkko-

jen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun

arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, kun opet-

tamisessa käytetään kohdealuespesifistä dataa. Mallin ennustamaa kasvain-strooma suhdelukua
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verrataan patologin visuaalisesti tekemään arvioon.

Tutkimuksesta selvisi, että kohdealuespesifisen datan käyttö esiopetuksessa lisää konvoluu-

tioneuroverkkomallin tarkkuutta. Myös korrelaatiota ennustetun ja visuaalisen arvion välillä

oli havaittavissa. Tulevaisuudessa olisi hyvä tutkia kasvain-strooma-suhdeluvun yhteyttä

muihin kliinispatologisiin tekijöihin ja potilaan elinaikaan.

Avainsanat: Konvoluutioneuroverkot, konenäkö, tekoäly, lääketieteellisten kuvien analysointi,

digitaalinen patologia, suolisyöpä, histopatologia, kasvain-strooma suhdeluku
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Glossary

CNN Convolutional neural network.

CRC Colorectal cancer.

Histopathology Field of pathology, in which the samples from living tissue are

processed in a pathology laboratory into thin slices which can

be visualised on a microscope.

H&E Haematoxylin & Eosin, a common staining chemical in histopathol-

ogy, which makes the tissue samples visible in different shades

of pink and purple.

Stroma Connective tissue. In this case, the stroma indicates the con-

nective structures within the tumor sites.

TSR Tumor-stroma ratio, proportion of stroma within the tumor site.

WSI Whole-Slide Image, a digitized image from a microscopic tis-

sue sample.
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1 Introduction

Within the last five years, the ability of convolutional neural networks (CNNs) to learn fea-

tures have been noted also in the field of pathology. CNNs have become the most widely

used technique when developing algorithms for pathology tasks (Litjens 2017). Automating

some of the tasks pathologists work with on a daily basis, would bring huge relief to the

rising workload pathologists struggle with. This is particularly important, as the amount of

pathologists is decreasing all the time.

This field of studying and analysing digitized histopathological data is called digital pathol-

ogy. It is one of the many application fields of computer aided medical image analysis. To-

day, digital pathology is not only about digitizing tissue sections as it was before, it is more

about the effort to automate at least some of the pathologists’ routine tasks. The challenge

lies in the specificity of the problems: one experienced pathologist can solve multiple differ-

ent tasks from multiple different tissue and cancer types, but one computer vision algorithm

does not have the ability to perform the way human brain does.

Another challenging feature is the lack of annotated data. CNNs require huge amounts of

data in order to learn the most essential features in an image. Even though the volume of

medical data is huge these days, due to the privacy issues, it is not easily available. This

leads to the situation, where data is not widely shared between facilities, it is rather utilized

on everyone’s own needs.

Data for this study comes from colorectal cancer (CRC), which is the second most most

death causing cancer in the world, causing over 900,000 deaths every year (World Health

Organization 2020). When pathologist takes a look at a histopathological sample, there are

multiple morphological features to observe when making diagnosis. One of these features is

the amount of stroma within the tumor site, i.e. tumor-stroma ratio (TSR), which has been

shown to correlate with survival of the patient in many solid cancer types (Huijbers 2013;

Ma 2012; Mesker 2007).

Stroma is a connective tissue which does not have any special role or functions within normal

tissue. In the case of stroma within the tumor, debates are ongoing whether the role of stroma
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is to help the tumor to proliferate or to suppress the tumor growth (Colangelo et al. 2017).

Nevertheless, for some reason, the prognosis seems to be poorer, if TSR is over 50 %.

There are two main goals in this Master’s Thesis. The first goal is to find out, whether

pre-training the CNN with domain-specific data would bring more accuracy to the model,

when classifying different histopathological structures. The second main goal is to find out,

whether TSR can be reliably defined with the help of CNNs. The predicted TSR values are

compared with the TSR values estimated visually by a pathologist.

The structure of this study goes as follows: first a literature review is presented in chapters

1-4. After that, data and methods are described in chapter 5. The results of this study are

presented in chapter 6, after which discussion is followed in chapter 7. Bibliography and

appendices are listed at the end of this study.
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2 Convolutional neural networks

CNNs have become the state-of-art method in computer vision tasks within the last 10-20

years. Origin of neural networks dates back to 1962 when David Hubel and Torsten Wiesel

studied a cat’s visual cortex. They classified cells responsible for pattern recognition into two

groups: "simple cells" and "complex cells" (Hubel and Wiesel 1962). The first corresponding

computer model was presented twenty years later, when Kunihiko Fukushima published a

self-organizing network. This network had layers that were connected with mathematical

operations between the cells of different layers (Fukushima and Miyake 1982). These were

the first steps towards modern visual pattern recognition techniques.

Few years later, in 1989 LeCun et al. (1989) trained CNN that predicted handwritten digits,

the model was based on Fukushima’s "neocognitron" architecture. The final breakthrough of

CNNs happened in 2012 with ImageNet image classification challenge where Krizhevsky,

Sutskever, and Hinton (2012) presented the best performing model called AlexNet. Since

then, ImageNet challenge has been running on a yearly basis and has been won by CNN

architectures like 19-layer VGG19 and 22-layer GoogLeNet (Russakovsky 2015; Simonyan

and Zisserman 2014; Szegedy et al. 2015).

2.1 Typical structure

CNN is constructed from different types of layers, which typically are convolutional layers,

pooling layers and fully connected layers (Figure 1). The main task of a convolutional layer

is to produce feature maps by applying convolutional operations to the input. Pooling layers

can be added to "squeeze" the amount of information, which is passed on to the next layer.

Fully connected layers are the ones solving the final classification problem with the data they

have from the previous layer (Goodfellow, Bengio, and Courville 2016).

When CNNs are applied to color image data, each layer is a grid-like, three dimensional

structure, which has height, width and depth. For example, if the input is 32 x 32 RGB-

image, height and width of the first layer are both 32, depth is 3 which is the number of

color channels in the input image (Aggarwal et al. 2018; Goodfellow, Bengio, and Courville
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2016).

Figure 1: Structure of a CNN. In this example, every convolution layer is followed by a pooling layer. Final
classification is performed after fully connected layers with softmax function.

To extract the essential features, the spatial relationships between pixels are passed to the

next layer with convolution operations. Kernel, or a convolutional filter, goes through each

channel in the each input image and produces feature maps for the next layer. The kernel can

be e.g. size 1 x 1, 3 x 3 or 5 x 5, usually an odd number is preferred. For a two-dimensional

image, convolution S is a sum of feature maps from all convolution operations of image I

and kernel K:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n) (2.1)

Where (i, j) is the size of the input image I and (m,n) is the size of the kernel K. Activation

function is applied to each convolutional feature map. The purpose of activation function is

to add the non-linearity to the CNN, as convolution is a linear operation. As an activation

function, CNN models often use Rectified Linear Unit (ReLU) (Nair and Hinton 2010):

f (x) = max(0,x) (2.2)

Also other types of ReLU-functions have been developed since the introduction of the orig-
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inal ReLU in equation 2.2, such as Leaky ReLU (Maas, Hannun, Ng, et al. 2013). In Leaky

ReLU, x is multiplied with a constant a (equation 2.3). In the original presentation of Leaky

ReLU, it was suggested that parameter a = 0.01. Increasing the value of parameter a was

shown to have smaller test error compared to ReLU or LeakyReLU with a = 0.01 (Xu et

al. 2015).

f (x) = max(ax,x) (2.3)

Figure 2: Generation of feature maps from layer 1. Input image I goes through convolution operations
throughout the image with kernel K. After the convolution, an activation function (e.g. ReLU) is applied to
each feature map.

Usually, CNNs have one or multiple pooling layers. As mentioned earlier, the goal of the

pooling layer is to "squeeze" the information, and at the same time the resolution of the fea-

ture maps decreases. Typical types of pooling are max-pooling, average-pooling and stochas-

tic pooling, max-pooling being the most common one (Zeiler and Fergus 2013; Kevin, Hayit,

and Dinggang 2017). In max-pooling, a small rectangular region (e.g. 3 x 3 pixel2) of the

feature map is replaced by the maximum value of the region. Pooling layer decreases the

number of parameters needed in the next level, thus decreasing the computational cost of the

network as well (Kevin, Hayit, and Dinggang 2017). Stride is the number of pixels the filter

moves at a time over the input matrix. In the case n = stride, the size of the activation for

the next layer is reduced by n2.
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2.2 Optimization of the loss function

As the goal of the convolutional operation is to minimize the loss function, training a convo-

lutional neural network is basically a global optimization problem. In classification tasks, the

loss function is either softmax or the sigmoid cross-entropy function. Minimizing the loss

function is done using backpropagation algorithm, which utilizes the information of previous

weights when calculating the gradient of the loss function (Werbos 1990). Figure 3 sums up

the typical learning process of a CNN.

Figure 3: Typical learning algorithm of a CNN.

Softmax function for classification probabilities is the most common one when dealing with

multiclass-problems. Softmax function turns the feature maps activations of the last fully

connected layer into probabilities:

pi =
ezi

N
∑
j=1

ezi

(2.4)

Where zi is ith activation of a feature map, N is the number of classes. Cross-entropy loss

uses the softmax probabilities and is calculated as follows:

LCE =−
n

∑
i=1

tilog(pi) (2.5)
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Where ti is the true label and pi is the softmax probability of the ith class.

2.3 Methods to improve accuracy of the convolutional neural network

CNNs can be constructed in countless numbers of ways. In order to improve accuracy some

additional layers or structures, as well as different setups and hyperparameter tuning can be

applied. One example of the improving accuracy is adding dropout-layers, which was orig-

inally introduced by Hinton et al. (2012). Dropout means randomly removing some of the

connections of the last fully connected layer. This has been shown to increase accuracy, be-

cause dropout reduces overfitting (Srivastava et al. 2014). Overfitting is a common problem

with neural networks, as networks learn such precise connections in the training phase which

cannot be generalized to the data at hand. In addition to the original dropout, also other im-

proved methods for dropout has been developed. One of these is DropConnect (Figure 4),

in which some of the connections between, not only the last fully connected layer, but also

from other fully connected layers, are dropped (Wan et al. 2013).

There are also other options to improve accuracy. These include methods like parameter tun-

ing by tuning, e.g., the learning rate, as well as testing different optimization algorithms and

loss functions. Also data augmentation is one option, which is rather easy to implement with

computer vision libraries such as PyTorch. Data augmentation means increasing the number

of input images by rotating, flipping or rescaling the original image. In addition, transfer

learning is widely applied method when training the model and one method to consider es-

pecially when there is a minor or major lack in the amount of data at hand (Mikołajczyk and

Grochowski 2018).

2.3.1 Transfer learning

Probably the most effective method to increase accuracy is transfer learning. Transfer learn-

ing means training a neural network with a pre-trained neural network that has already

learned to recognise patterns. There are roughly two types of transfer learning methods:

fine-tuning and feature extracting (Litjens 2017). In the case of medical images, fine-tuning

means medical images are used only to fine-tune the hyperparameters of the final classifier
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Figure 4: DropConnect drops connections between two fully connected layers (dashed lines). Dropped con-
nections are defined by randomized binary vector R.

of the pre-trained network. When using pre-trained CNN as a feature extractor, a classi-

fier is trained with medical image data, but the features origin is the pre-trained network.

In practice, this means initializing the network with weights from the pre-trained network.

(Goodfellow, Bengio, and Courville 2016)

Teaching a CNN requires a huge amount of training data, which is the problem when the

origin of data is in the medical field. Even though ImageNet has images of dogs, planes and

houses which are far from histopathological ones, initializing weights from a CNN trained

with ImageNet increases accuracy and is often applied in the case of medical images (Litjens

2017; Mormont, Geurts, and Marée 2018).

Lack of data is a common problem also in digital pathology. Whole Slide Images (WSI) are

large in size and when tiled to smaller image tiles, one WSI could easily produce 10,000 -

20,000 image tiles. But the problem is the lack of samples. One sample, one WSI, is from a

tissue sample from one patient. To train a model, which generalizes to other images tiles from

the same domain, image tiles should be derived from different samples. Training data is tiled

from annotations made by pathologists, and annotation sites from one sample do not produce

massive number of image tiles. This is why pre-training with ImageNet or other natural

images dataset is a common approach also when training a CNN with histopathological

images (Bayramoglu and Heikkilä 2016; Kieffer et al. 2017).
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In the histopathology field, pre-training a neural network model with data from the same

domain has been shown to increase accuracy of the final model. Initializing weights from

the same domain, in this case histopathology, brings more accuracy when comparing to mere

ImageNet-initialization (Mormont, Geurts, and Marée 2018; Sharmay et al. 2021).

Considering the wide heterogeneous range of medical images, transfer learning from any

other medical domain to another medical domain might not always work. Study by Mene-

gola et al. (2016) was a good reminder of this. They used images from diabetic retinopathy

to pre-train a network to classify images from melanoma to malignant and benign. In their

experiment, pre-training with ImageNet brought higher accuracy than pre-training with im-

ages from diabetic retinopathy. They did mention that the differences between the diagnosis

processces of these two diseases might explain these results.
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3 Digital pathology

Acquiring, managing and analyzing information from histopathological samples in a digital

environment is called digital pathology. It started developing in the 1980s enabling pathol-

ogists to use remote consultation, which is called telepathology. In addition to the ability to

share histopathological images through the internet with other pathologists, digital pathology

brought many advantages to the field. When digitized, also the quality of tissue samples re-

main constant over time and they are easy to access later if needed (Al–Janabi, Huisman, and

Van Diest 2012). At present, digitizing tissue slides is a routine procedure in most pathol-

ogy laboratories (Pallua 2020). The digitized file form of the histopathology sample is the

multilayered WSI, which is described in more detail in chapter 3.1.

When digital pathology had started to develop, the main focus was on the digital information

it holds or how the histopathological information is stored. Nowadays, digital pathology is

mainly concentrating on new ways of utilizing the growing digital information. The most

popular technique to achieve this is through deep learning (Litjens 2017). This would not be

possible without the recent improvements of computing capacities as WSIs are huge in size,

even though the common practice is to tile the image to smaller patches.

3.1 Whole Slide Image

Before a living tissue is a static sample and can be visualized on a computer screen, it has

gone through many different processing steps. At first, the tissue sample is processed in a

histopathology laboratory into thin sections, which are placed on small microscope glasses,

stained and then scanned with a special WSI-scanner. Examples of the WSIs from CRC

sections are presented in figure 5. The first commercial WSI-scanner was introduced back in

1994 and today, there are plenty of different scanner manufacturers. Modern WSI-scanners

have practical features such as robotics and barcode readers, which ease the slide scanning

process (Pantanowitz et al. 2018).

When digitizing the microscopic glass slide, the main goal is to maintain the accuracy of the

specimen, so that the diagnostic performance remains even if the specimen is viewed on a
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computer screen instead of on a microscope. Several studies have shown the diagnoses made

from conventional microscope glass are in good concordance with the diagnoses made from

WSIs (Azam et al. 2021; Farahani, Parwani, and Pantanowitz 2015). Despite the numerous

validation studies and the fact, that the technology for Whole Slide Imaging developed in

the 1990s, it was not until 2017, when WSIs were approved for primary diagnosis by the US

Food and Drug Administration (Pantanowitz et al. 2018). Within European Union, WSIs are

also allowed for in vitro diagnostics (Azam et al. 2021).

Figure 5: Example WSIs from CRC sections. Images origin: Central Finland Health Care District,
"Suolisyöpä Keski-Suomessa 2000-2015" -project.

Depending on the scanner, image resolution is in the range of 0.25 - 0.50 µm per pixel. To

give some perspective on how detailed the WSI is, the typical diameter of an animal cell is

about 10 µm. From these zoomable WSIs, pathologists are able to navigate the image as with

a conventional light microscope. To make the microscope-like zoomability possible, WSIs

have a pyramidical structure. Biggest resolution level could have, e.g., 100,000 x 200,000

px2 (Figure 6). Total number of pixels in one WSI can be trillions, which makes the file size

of one WSI large, ranging from 1 to 4 gigabytes. This leads to the problem of data storage

and handling, which is one of the major challenges in pathology institutes when digitizing

samples (Pantanowitz et al. 2018).

In addition to the storage challenge, one challenging feature from developers’ perspective,

is the unstandardized file format of the WSIs. The main formats in use are TIFF, BigTIFF

(TIFF variant, which supports larger file size), MRXS (compatible with Mirax-microscope’s

digital scanners) and JPEG2000. Image formats vary in size and can be hard to share as

they require specific software (Farahani, Parwani, and Pantanowitz 2015). Standardizing the
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Figure 6: Pyramidal structure of a WSI. The highest resolution on level 0 can consist of billions of pixels.
WSI can be comprised from n number of resolution levels (e.g. 7-9) to make the zoomability possible without
losing accuracy (original image from CAMELYON-17 challenge, edit Liisa Petäinen).

WSI file format would help not only pathologists, but also professionals who are developing

digital pathology applications and software. Some ease was brought few years back when

Goode et al. (2013) introduced open-access OpenSlide-library. OpenSlide is written in C, but

it enables reading and manipulating WSIs with applications written also with C++, Java and

Python. OpenSlide-library has been very beneficial tool also in the development of bioimage

analysis software, e.g., QuPath (Bankhead et al. 2017).

3.1.1 Preprocessing for deep learning

When training a CNN with WSIs, there is some preprocessing to be made. As WSIs are

huge in size, they are tiled into smaller squares, e.g., 32 x 32 px2 or 224 x 224 px2, which

makes them easier to deal with. If model development is based on existing CNN architecture,

one needs to check which input-size is used in the current CNN architecture. Input-sizes of

CNNs varies a lot depending on the architecture used.

In order to properly visualize the tissue under the microscope, it is stained. Haematoxylin

& Eosin (H&E) stain is the most common method used. This makes structures visible in

different shades of purple and pink. H&E stain makes the cell nuclei appear darker purple,

as other structures appear in different, lighter shades of purple and pink. Histopathological

samples are very vulnerable to inter and intra laboratory stain variations (Roy et al. 2018).
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These variations are due to, e.g., differences in WSI scanners, H&E staining procedures and

the manual tissue processing nature. Pathologists can handle these color variations with ease,

but for CNN-models, the task is more complicated.

Color normalization is one solution to make computers concentrate on structures, even if

the images are from different institutes or different laboratories. Color can be normalized

in many different methods, some of them are unsupervised and computationally cheaper

methods, some supervised, but most of them need a target image. Most common methods are

Reinhard-method, Macenko-method and Vahadane-method (Reinhard et al. 2001; Macenko

et al. 2009; Vahadane et al. 2016). Supervised methods are computationally complex and

slow, which sometimes leaves them out, when considering which method to use.

Also one thing to keep in mind before the tiling phase is the zoom-level. WSIs comprise

from different resolution levels. If CNN is pre-trained with some other histopathological

dataset, one should use the exact same zoom-level, as the images in the pre-trained CNN.

3.2 Deep learning in digital pathology

Deep learning has been applied to many kinds of medical images within the past decade.

These include medical images such as X-ray, ultrasound, magnetic resonance images (MRI)

as well as lung computed tomography (CT). Main tasks deep learning algorithms have been

taught to solve, are classification or sub-classification (e.g. tumor subtype), detection of

disease (e.g. knee osteoarthritis) or tissue segmentation (Ker et al. 2017; Shen, Wu, and Suk

2017). Not to forget recent, still ongoing, coronavirus pandemic: with the help of deep neural

networks, computer vision algorithms have been able to successfully diagnose COVID-19

disease from lung X-ray images and CT scan (Li et al. 2020; Rahimzadeh and Attar 2020;

Wang et al. 2021; Xu et al. 2020). Compared to most medical images, the image file sizes

in microscopic imaging are enormous. Nowadays, as the computing capacity of modern

processors has grown, deep learning has been applied also to the field of pathology.

In digital pathology microscopic images are from histopathological sections. These can be

H&E-stained or immunostained. Immunostaining exposes some particular protein of interest

and this field of pathology is called immunohistochemistry. When a pathologist takes a
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look at the slides on the microscope or on a computer display, he/she makes his/her own

interpretation of the sample. This interpretation can be, e.g., a diagnosis of a disease or, in

the case of cancer surgery, an analysis whether the surgical margin is clear from cancerous

cells. When automating these kinds of tasks with the help of deep learning solutions, the

main goal is to sustain the quality of the results and give pathologists extra time to focus on

the most complex cases.

Tasks, which deep learning has been applied in digital pathology, include classification (nor-

mal, tumor or tumor subtype), recognition (amount of dividing cells) and segmentation

(patch- or pixel-level segmentation) (Litjens 2017). Also more specific tasks are included,

such as training deep learning models to predict certain genetic changes from H&E-stained

histopathological sections (Coudray et al. 2018; Schmauch et al. 2020; Schaumberg, Rubin,

and Fuchs 2018; Chang et al. 2018). This is important, as these analyses in a laboratory

environment are time consuming and rather expensive (Echle et al. 2021). Predicting overall

survival from histopathological sections is also gaining popularity in the field. The typical

tasks in digital pathology regarding CRC are presented more precisely in chapter 4.2.

Main challenges in digital pathology lie in the insatiable data hunger of deep learning algo-

rithms. In order to train a model, that generalizes well, deep learning needs a loads of training

data. In the pathology field, to gain training data means hours of work from pathologist to

annotate the regions of interest. Lack of annotated data is probably the biggest challenge

in digital pathology. Also, as in the field of medical image analysis in general, the privacy

issues of patient data cause some challenges. But there are ways to artificially increase the

amount of data, e.g., data augmentation discussed briefly in chapter 2.3.

At the moment and in the future, constant development of new digital pathology applica-

tions is bringing and will bring plenty of benefits to the field of pathology. Hopefully it will

also ease the work in practice by automating some of the daily tasks pathologists deal with.

Combining other clinical data (e.g. medical history) with the information from the images,

can make deep learning algorithms generate hypotheses we humans never had even thought

of. All of these things are studied with one goal in mind: to improve diagnostics and health-

care in general. In addition, the opportunities of deep learning in digital pathology does not

only cover research and diagnostics. It benefits also, e.g., the education of pathologists and
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quality assurance of histopathology laboratory (Pantanowitz et al. 2018).
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4 Colorectal cancer

Colorectal (colon) cancer (CRC) is one of the most malignant epithelial tumors and it is the

second most common death-causing cancer in the world (World Health Organization 2020).

5-year survival rate in CRC is 58-65 %, even though there has been major improvement

within the last few decades (Siegel, Miller, and Jemal 2020). As with many other types of

cancer, also in the case of CRC, the early detection increases the chance of survival.

CRC is epithelial cancer, which begins to develop in the epithelial cells of the colon. Ep-

ithelial cells are the cells, which line the inner surface of the colon. Figure 7 provides a

generalized view of the colon structure and shows the part where the CRC histopathological

sections come from. Figure 7 also presents examples of normal and tumorous epithelium.

Normal epithelial cells are symmetric and homogeneous in their appearance. Tumor cells

differ from normal epithelial cells and form unique, vague shapes, forming a somewhat het-

erogeneous group, what comes to their appearance. If tumor cells invade from the epithelium

through smooth muscle layer which surrounds the colon, prognosis gets even worse (Klin-

trup et al. 2005).

Figure 7: Colorectal cancer begins from the epithelial cells of the colon. Tumorous tissue can grow as polyps
towards the lumen of the colon or invade deeper into the surrounding muscle of the colon. Image origin Central
Finland Health Care District, "Suolisyöpä Keski-Suomessa 2000-2015" -project".

For prognosis being poor, some significant indicators predicting prognosis have been found.

Finding and assessing prognostic factors is important as those factors is one piece of the
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puzzle when clinicians are determining the best possible treatment for the patient. One of

these factors is the tumor microenvironment, from which tumor-stroma ratio (TSR) can be

evaluated.

4.1 Tumor-stroma ratio

TSR is the proportion of stroma within the tumor site, making it one of the indicators telling

information about the tumor microenvironment. Tumor microenvironment is the immediate

surroundings of the tumorous tissue and it has a potential of being a new target for tumor

treatment. Whether the role of it (in this case the role of stroma) is to proliferate and help the

tumorgenesis, or, whether the role is to suppress and make the life of a tumor as difficult as

possible is still under a debate. Nevertheless, TSR tells much about the microenvironment

and the significance of TSR as a prognostic factor has been shown in many types of cancers.

The low amount of stroma (TSR < 50 %) associates with better prognosis and multiple

studies have shown TSR to be an independent survival predicting factor in many different

cancer types (Huijbers 2013; Ma 2012; Mesker 2007).

As the signifigance of TSR to CRC prognosis is obvious, a protocol has been created for

pathologists to follow when assessing TSR visually (Van Pelt 2018). This has increased the

reproducibility of the evaluation task. Despite that, making the value of TSR reproducible

and therefore fully comparable between samples and pathologists is challenging. The evalu-

ation of TSR (visual and automated) is introduced in chapter 4.2.3.

4.2 Convolutional neural networks in colorectal cancer research and

applications

In the case of CRC, the image data can be acquired, e.g., from colorectal examination

(colonoscopy) or surgery, magnetic resonance imaging (MRI) or computed tomography

(CT). In this section, the focus is on the CNNs trained with H&E-stained histopathologi-

cal images.

As with many other cancer types, the development of image analysis methods regarding
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CRC, have mainly been about classification, detection and outcome prediction. In addition,

CNNs in CRC have been applied to inflammatory bowel diseases (IBD) detection. This

is also very important, because IBDs, such as Crohn’s disease, increase the risk of CRC

(Kulaylat and Dayton 2010; Pacal et al. 2020). Next, CNNs applied to these tasks, as well as

CNNs designed for automated evaluation of TSR, are introduced.

4.2.1 Detection and classification

In CRC image analysis, tasks in detection and classification have been, e.g., about nuclei or

tumor nuclei detection, cancer staging or differentiating the detected tumor between malign

and benign. Detecting tumor budding is also one detection task to which CNNs have been

applied to, because visual detecting of tumor budding is time consuming. Tumor budding

means the presence of a small cluster or multiple small clusters of tumor cells in the invasive

front of CRC. (Pacal et al. 2020)

Some approaches use the information from nuclei detection to classify the sample into differ-

ent tissue types. Sirinukunwattana et al. (2015) constructed CNN model to detect and classify

four nuclei types. Their CNN-model, Spatially Constrained Convolutional Neural Network

(SC-CNN), consists of two 9- and 8-layered networks. The other is designed for detection

of nuclei utilizing the spatial information of the detected nuclei. The precision- and recall-

scores for this CNN in two different validation folds were 0.758/0.781 and 0.823/0.827,

respectively. The best weighted average F1 score of the CNN designed for classification

was 0.784. Combined performance of their model was 0.692 (weighted average F1 score for

nucleus detection and classification). The architecture of SC-CNN was customized, based

on Alexnet-architecture and mitosis-detecting CNN by Cireşan et al. (2013).

Javed et al. (2020) utilized the architecture of the SC-CNN designed by Sirinukunwattana

et al. (2015) and a custom 10-layer CNN by Tofighi et al. (2019) and trained their model

to detect and classify seven nuclei types instead of four. They applied the information from

cell-cell connections to compute a cellular communities in order to recognize the different

tissue phenotypes. They compared their model with other approaches, their model gained

the best classification performance on two different CRC datasets (F1 =).
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Classifying different parts of the specimen to specific categories is a crucial part of many

processes in digital pathology. It affects other diagnostic metrics computed based on the

classification performed in the first place.

4.2.2 Overall survival and outcome prediction

The prediction of survival from CRC has gained more popularity recently. Skrede et al. (2020)

trained ten CNNs and developed a biomarker, which predicts outcome. More value to their

work compared to the previous studies gives the easy way their marker is applied in practice.

Their model needs no visual annotation, TMA-spots or other clinical information. Instead,

it can be applied directly to the WSIs. Model uses two different zoom-levels for prediction,

10x and 40x, and their network is based on MobileNetV2 (Sandler et al. 2018). Their model

was in high agreement with the true outcome of the patient (AUC of 0.713).

Kather et al. (2019) trained a CNN to recognize nine different tissue types from CRC WSIs.

Best performing CNN architecture when classifying the image tiles, was VGG19, overall

classification accuracy on a test set of 7,180 images was 94.3 %. They used the classification

results to assess a "deep stroma score", a metrics based on the proportions of five tissue

types (adipose tissue, debris, lymphocytes, muscle and stroma). Those tissue types had

highest prognostic value and "deep stroma score" was found to have prognostic value in both

recurrence-free survival and overall survival (hazard ratios 1.92 and 1.63, respectively).

4.2.3 Automated evaluation of tumor-stroma ratio

When TSR is evaluated visually, pathologists determine it from H&E-stained tissue sections

by choosing the part of the specimen containing the largest amount of stroma. In practice,

visual evaluation of TSR begins using low magnification on a light microscope. At first the

area, which has the largest amount of stroma within the tumor site, is chosen. The final

estimate of TSR is performed with higher magnification. TSR is scored by 10 % intervals

from 10 % - 90 %, or as “stroma-high” or “stroma-low” (TSR < 50 % or TSR ≥ 50 %,

respectively) (Van Pelt 2018).

Computational evaluation of TSR is quite a new concept. At first, image tiles extracted from
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the histopathological whole-slide image (WSI) have to be classified. After that, TSR can be

predicted from the whole image or, e.g., using a particular spot selected by a pathologist.

Regarding CRC, only a few approaches have been introduced from this subject. In general,

TSR is more or less additional part of the model outcome, as the first goal in these studies

have been to segment the whole tissue sample. In the study, mentioned earlier about nuclei

detection by Sirinukunwattana et al. (2015), they were also able to automate the estimation

of TSR (Sirinukunwattana et al. 2018). They trained a VGG19-model to classify nine tissue

types and the accuracy for detecting stroma and tumor were 90.4 % and 96.0 %, respectively.

Controversary to other TSR-related studies, their study did not show prognostic value for

TSR.

Zhao (2020) trained a CNN-model to recognize nine tissue types from H&E stained WSIs

from CRC. Equally to previous models by Sirinukunwattana et al. (2015) and Kather et

al. (2019), the architecture of the model was VGG19. Overall classification accuracy on two

test sets were 95.7 % and 97.5 %. Classification accuracies for tumor and stroma were 92.8

% and 70.9 % on test set 1, which was the test set published by Kather, Halama, and Marx

(2018). Randomly selected images from Yunnan Cancer Hospital were utilized to establish

test set 2. Classification accuracies for test set 2 were 97.2 %, and 89.1 %. Pathologists

annotations on a 126 image blocks of size 1 mum x mum areas were segmentated with the

model. The segmentation results were in high agreement with pathologists’ annotations

(Pearson r = 0.939, 95% CI 0.914 - 0.957).

Instead of using the whole slide, the other approach is to calculate TSR from the same cir-

cular spot, where the visual TSR evaluation has been estimated. The downside of this is the

manual effort needed, making the procedure less automatic. Geessink et al. (2019) devel-

oped a CNN based on a 11-layer VGG-architecture and trained it to classify nine tissue types.

Using a 50 % cutoff-value between “stroma-high” and “stroma-low”, there was a quite big

disagreement between the model and pathologist (Cohen’s kappa κ = 0.239). When a median

of the TSR estimates computed by the model was used as a cutoff-value for "stroma-high"

and "stroma-low", Cohen’s kappa-value was slightly improved κ = 0.521. Also, "Stroma-

high"- and "stroma-low"-groups had a strong prognostic value when the median was used as

a cutoff-value. The sample size in this current study was quite small (129 patients).
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In conclusion, automated TSR evaluation is a challenging task. The prognostic value it brings

is mostly dependent on the classification accuracy of the CNN and whether TSR is predicted

from the whole specimen or whether particular circular spot is used. If the entire slide is

not utilized to calculate the TSR, one challenge yet to conquer is to find a well-performing

algorithm that imitates the visual evaluating procedure. This is particularly challenging in

the computation time point-of-view as the WSIs are massive in terms of number of pixels.
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5 Data and methods

There are two main steps in the practical part of this study: training the CNN-models and

predicting the TSR-values. At first, 12 different CNN-models are trained from annotated

WSIs to classify image tiles into three different tissue groups: stroma, tumor and other. After

this, TSR-values are predicted from the WSIs, which were not annotated and therefore left

out of the training data. Those WSIs are tiled and tiles are classified with the models trained

earlier. TSR-values are calculated based on the predictions of the model and the predicted

TSR-values are then compared with the visually estimated TSR-values by a pathologist.

Overall studyflow is presented in figure 8.

Figure 8: Diagram of the studyflow. The image tiles for the training of the CNN are tiled from 171 WSIs, the
TSR-values are predicted for the remaining WSIs and compared with the TSR-values determined visually by
the pathologist.
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5.1 Data

Two different CRC-datasets are used: a CRC dataset from Central Finland Health Care

District, "Suolisyöpä Keski-Suomessa 2000-2015" -project (referred further on as "KSSHP-

dataset") and public CRC dataset (referred further on as "Kather-dataset") (Kather, Halama,

and Marx 2018). KSSHP-dataset has 1343 anonymized WSIs, 171 of these have annotations

and are used in the training of the CNNs. Annotations are made by an experienced pathol-

ogist with open source bioimage analysis tool QuPath (Bankhead et al. 2017). From these

annotations, 27,099 tiles are derived. One tenth of the image tiles (2700 image tiles) are ex-

cluded from the training set into a test group, leaving 24,399 image tiles from KSSHP-data

to the CNN training.

Kather-dataset has nine classes, but in this study we need to classify CRC images into three

classes. Image groups from Kather-dataset were used as described in table 1. CNN will not

be trained to recognize background or adipose tissue. Instead, those it will be clipped off

when masking the image.

Original class Description Class in this study

ADI adipose tissue nan

BACK image background nan

DEB debris (organic waste after cell dies) Other

LYM lymphocytes (one type of immune cells) Other

MUC mucus Other

MUS smooth muscle cells Other

NORM normal colon epithelium Other

STR stroma Stroma

TUM tumor Tumor

Table 1: Descpription of the use of Kather-dataset, the original name of the class in Kather dataset in the first
column. Adipose and background images will not be used in this study, they are removed in the image tiling
phase. Classes DEB, LYM, MUC, MUS and NORM will be grouped as one class called "Other". Stroma and
tumor classes will be used as such.

Size of each class in Kather-dataset is approximately 10,000 image tiles. Data will be bal-

anced and equal amount of tiles from original classes DEB, LYM, MUC, MUS and NORM
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are randomly chosen from original groups to form the group "Other".

Dataset Image tile size MPP Number of image tiles

Kather 224 x 224 px2 0.5 31,337

KSSHP 224 x 224 px2 0.5 27,099

Table 2: Image tile size, accuracy (microns per pixel, MPP) and the total number of image tiles.

5.2 Preprocessing

Images in Kather-dataset are already preprocessed, images are 224 x 224 px2 tiles and color

is normalized. KSSHP-data needs to be preprocessed. At first, the annotated parts of the

WSIs are tiled into 224 x 224 px2 image tiles. The tile size was chosen to match the Kather-

data and in addition, most of the CNNs in this study require the chosen size as an input-size.

Image tiles were acquired from the highest resolution level, where accuracy is 0.5 microns

per pixel. After tiling, color normalization by Macenko’s method was applied as images

in Kather-dataset are normalized with Macenko’s method as well (Macenko et al. 2009).

Examples of image tiles from each class are presented in figure 9.

If model input-size differed from size of the tiles, tiles were resized. CNN models pre-

trained with ImageNet have their own requirements about the image normalization. Input

images were normalized using given mean and standard deviation of [0.485,0.456,0.406]

and [0.229,0.224,0.225]. Images in SETUP 3 (without ImageNet-pretraining), were nor-

malized according to mean and standard deviation calculated from the images of the Kather-

dataset.

5.3 Convolutional neural network architectures

There are numerous architectures which have been successfully used in this kind of clas-

sification problem. The architectures are chosen based on their success on histopathology

image classification tasks and accessibility. Many CNNs utilized in digital pathology are less

or more customized, but as this thesis is rather focused on the bigger picture of automated
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Figure 9: Normalized image tiles from each class from KSSHP-dataset.

TSR evaluation instead of CNN development, all architectures should be easily accessed

with a ImageNet pre-trained-option via PyTorch-library (Paszke et al. 2019).

GoogleNet is a 22-layer network, which was the most successfull architecture in CAMELYON16-

breast cancer challenge, ResNet was the winner in 2015 ImageNet-challenge and one of

the most utilized architectures in CRC-related image analysis (Szegedy et al. 2015; He et

al. 2016; Pacal et al. 2020; Litjens et al. 2018). VGG performed well in CRC tissue classifi-

cation task by Kather, Halama, and Marx (2018). Alexnet is rather small network and known

to be quite fast, as well as efficient, which is why Alexnet was included in this study as well

(Krizhevsky, Sutskever, and Hinton 2012).

A lot of new, modified versions of these networks have been developed since the original ar-

chitectures have been published. The exact versions of the architectures chosen in this study

are: Alexnet, Googlenet, ResNet50 and VGG19. For detailed structures of the architectures,

see references Krizhevsky, Sutskever, and Hinton (2012) (Alexnet), Szegedy et al. (2015)

(Googlenet), He et al. (2016) (ResNet50) and Simonyan and Zisserman (2014) (VGG19).

5.4 Training and validating the convolutional neural networks

Three different pre-training approaches are used in this study (SETUP 1, SETUP 2 and

SETUP 3). SETUP 1 and 2 are initialized with ImageNet-weights, in SETUP 1, the CNN

is also pre-trained with Kather-data before training with KSSHP-data. In SETUP 2, CNN

is trained merely on KSSHP-data after ImageNet-weights initialization. SETUP 3 is not

25



initialized with ImageNet-weights, it is trained "from scratch" with Kather-data and KSSHP-

data. With three different training approaches and four different CNN architectures, the total

number of different CNNs trained in this study is 12. Table 3 summarizes the training

approaches.

Setup name Training order

SETUP 1 ImageNet −→ Kather −→ KSSHP

SETUP 2 ImageNet −→ KSSHP

SETUP 3 Kather −→ KSSHP

Table 3: All three setups were applied with four different CNN architectures, making the total number of
different CNNs trained in this study 12.

Training of all setups goes as follows. At first, a test set of 2,700 image tiles was excluded

from the image tiles derived from annotated images of the KSSHP-dataset, making the size

of the training group 24,399 image tiles. The most suitable hyperparameters were validated

using 5-fold cross-validation for the entire training group. Parameters chosen for each archi-

tecture and training approach are listed in appendix A.

Training data was then split into training and validation groups, using two-thirds of the data

for training and one-third of the data for validation. At this point, the main focus was on the

validation loss. All networks were trained for 30-40 epochs and training and validation loss

were plotted. The number of epochs for the training of the final model was chosen visually,

estimating the point where the validation error was the lowest before starting to increase

again (see appendix C). The number of epochs for each model are listed in appendix B. The

final model was trained using the complete training dataset of 24,399 image tiles.

5.5 Predicting tumor-stroma ratio

The 1170 unannotated WSIs of the KSSHP-dataset were tiled into 224 x 224 px2 image tiles

and the class of each tile was predicted with each CNN-model. For each WSI, the TSR was

calculated based on the number of stroma- and tumor-tiles:
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T SR = nstroma
ntumor+nstroma

(5.1)

Where nstroma refers to the total number of stroma tiles and ntumor is the total number of

tumor tiles.

5.6 Equipment

Microscope slides were scanned with Hamamatsu NanoZoomer-XR. Computing was per-

formed in Linux GPU server Tesla P100, x 86_64 with Python-version 3.8.5.
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6 Results

6.1 Validation results of the final networks

Table 4 lists validation losses and validation accuracies of all CNN-models. The most accu-

rate network was VGG19 with SETUP 1 training approach.

SETUP 1 SETUP 2 SETUP 3

loss accuracy loss accuracy loss accuracy

Alexnet 0.132 95.4 % 0.141 95.2 % 0.286 90.6 %

Googlenet 0.102 97.5 % 0.097 97.2 % 0.104 97.7 %

ResNet50 0.114 97.3 % 0.092 97.0 % 0.158 94.5 %

VGG19 0.104 97.8 % 0.095 97.4 % 0.109 96.5 %

Table 4: Validation loss and validation accuracy of all four CNN architectures and three training approaches.
Three most accurate models are shown bold.

6.2 Loss and accuracy on the test set

Test set was excluded from the training images and it has 900 image tiles per class, total

2700 images. Table 5 presents the results on the test set.

Models had the most difficulties distinguishing between classes other and stroma as can be

SETUP 1 SETUP 2 SETUP 3

loss accuracy loss accuracy loss accuracy

Alexnet 0.113 96.5 % 0.106 97.1 % 0.209 93.4 %

Googlenet 0.071 97.9 % 0.065 98.5 % 0.086 97.8 %

ResNet50 0.090 97.5 % 0.077 97.3 % 0.106 97.5 %

VGG19 0.068 98.6 % 0.075 98.3 % 0.104 96.8 %

Table 5: Loss and accuracy results on the test set. Three most accurate models are shown bold.
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seen from confusion matrices plotted from the test set results (see figure 10). Other-class

includes smooth muscle, which is easily mixed up with stroma. Example images of most

incorrect predictions of VGG19 with training SETUP 1 are shown in appendice D.

Figure 10: Classification performance of all 12 models on the test group presented as confusion matrices.

29



6.3 Tumor-stroma ratio predictions

Results from TSR predictions on the test set are shown from the top-3 models (see figure 11).

Boxplots and statistics are shown groupwise, based on the true label (TSR-value ranging

from 10 % to 90 %).

Figure 11: Boxplots showing the groupwise distributions of TSR predictions, results are grouped based on
the true label (visually estimated TSR-value, ranging from 10 % to 90 %).

Mean squared error (MSE) and Pearson correlation of all 12 models are presented in figure

7. Mean, median, standard deviation and the number of WSIs in each group (n) are shown

in figure 6. These statistics are also shown groupwise, such as boxplots in figure 11.
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SETUP 1 / VGG19

Visual TSR 10% 20% 30% 40% 50% 60% 70% 80% 90%

Predicted

TSR

mean 24.5 31.9 36.1 38.6 44.4 58.4 60.4 66.1 86.0

median 23.8 29.7 31.7 35.8 43.0 58.5 59.2 64.7 95.2

std 14.7 16.6 16.1 15.0 16.2 19.3 19.1 20.7 15.5

n 52 94 103 201 282 228 143 51 13

SETUP 2 / Googlenet

Visual TSR 10% 20% 30% 40% 50% 60% 70% 80% 90%

Predicted

TSR

mean 25.1 32.8.2 37.0 39.8 45.8 59.6 61.8 67.0 86.4

median 22.9 29.6 33.9 37.2 43.8 60.5 61.0 64.7 95.7

std 15.3 17.1 16.2 15.3 16.5 19.4 19.4 20.7 15.6

n 52 94 103 201 282 228 143 51 13

SETUP 2 / VGG19

Visual TSR 10% 20% 30% 40% 50% 60% 70% 80% 90%

Predicted

TSR

mean 23.8 31.3 35.0 37.5 43.4 57.6 59.7 65.6 85.6

median 22.9 28.9 32.1 34.8 41.6 58.1 59.4 64.2 94.2

std 14.2 16.0 15.4 14.2 15.5 18.9 19.0 20.5 14.7

n 52 94 103 201 282 228 143 51 13

Table 6: Main statistic metrics from top-3 models of the test results.

6.4 Performance of the final networks

Computing times were also subject of interest in this study. When training the model, train-

ing time per epoch is the one to pay attention to. Also, when TSR is calculated based on the

predictions made by CNN, the other point of interest is the prediction time per image tile.

One WSI can hold up to 20 000-30 000 image tiles (e.g. 224 x 224 px2), so it’s worth noting

(See table 8).

31



SETUP 1 SETUP 2 SETUP 3

MSE Pearson MSE Pearson MSE Pearson

Alexnet 363.0 0.551 354.1 0.560 347.8 0.539

Googlenet 346.0 0.554 349.6 0.554 351.8 0.552

ResNet50 376.3 0.547 369.8 0.552 379.7 0.548

VGG19 348.8 0.562 332.1 0.567 348.6 0.564

Table 7: Mean squared error (MSE) of predicted TSR-values and Pearson correlation with visual TSR esti-
mates. Results presented from all 12 models.

Architecture Number of Model size Training Train time / Predict time /

parameters (MB) setup epoch (s) tile (ms)

Alexnet 61,113,131 244 SETUP 1 182 26.41

SETUP 2 474 26.82

SETUP 3 254 11.42

Googlenet 5,602,979 22.6 SETUP 1 989 9.54

SETUP 2 591 10.11

SETUP 3 251 3.93

Resnet50 23,514,179 94.4 SETUP 1 370 4.44

SETUP 2 354 4.56

SETUP 3 175 3.69

VGG19 143,679,531 575 SETUP 1 738 4.27

SETUP 2 487 5.56

SETUP 3 541 6,92

Table 8: Number of parameters and model size of each architecture. Mean training times per epoch and mean
predicting times per image tile are shown from all 12 models.
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7 Discussion

Overall, the classifying accuracy of all 12 models was excellent and validation results were

in good balance with the test results. The test results show, that ImageNet-initialization

is highly recommended in the case of histopathological images. Pre-training the network

with domain-specific data increased accuracy with ResNet50- and VGG19 -architectures.

Although, considering the effort put on pre-training the network with additional dataset,

differences in the test accuracies are rather minimal and some of those differences might be

explained with randomness. Worth noting is, that it was not tested whether less amount of

training iterations with domain-specific data would bring more accuracy to the final model

or how data augmentation would increase accuracy.

Results on the test set confirmed that the most difficult part of the classification in all 12

models were between classes stroma and other. This might solely be due to the similarity of

smooth muscle and stroma, as part of the other-class are image tiles from smooth muscle. For

human eye, these two tissue types are challenging as well. Despite the minor difficulties, the

accuracy of stroma classification was higher than those found in previous studies by Kather

et al. (2019), Sirinukunwattana et al. (2015), and Zhao (2020).

In this study, the most accurate model was VGG19 with domain-specific pre-training and

ImageNet-initialization. When picking up the most suitable model, model performance is

usually trade-off between the model accuracy and training time. When those are taken to

account, the model with VGG19-architecture, initialized with weights from ImageNet and

with or without domain-specific pre-training would be the model of choice at this point.

Models using VGG19-architecture were also performing more efficient, in terms of training

time and predicting time, when compared to the best Googlenet-model. Computation times

are important to keep in mind, and to minimize those without losing the accuracy, would be

worth studying.

Considering the differences between the visual TSR scoring and the automated version in this

study, TSR-values predicted by the models were correlating rather well. Bringing together

few pathologists to evaluate over 1000 WSIs might not end up in perfect correlation either.
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Overview by Van Pelt (2018) showed, that the inter-observer kappa-values for visual TSR,

using the scoring method recommended by Van Pelt (2018), ranged from 0.60 to 0.89. The

TSR correlation results are a bit difficult to compare with any previous studies regarding

TSR in CRC, as Zhao (2020) utilized the annotations as ground truth, Kather et al. (2019)

and Sirinukunwattana et al. (2018) studied the TSR association with prognosis and Geessink

et al. (2019) scored the samples into "stroma-low"- and "stroma-high" -groups. Differing

from those studies, a pathologist’s visual TSR estimate was the ground truth in this study. It

would be interesting and valuable to study the correlation of the TSR predicted by the model

with several pathologists’ TSR estimates.

Nevertheless, some aspects from the visual evaluation should be brought to the automated

model. For example, only those stroma tiles, which are tumor-related would be taken into

account. One other option is to mimic the visual process by going through the image frame

by frame and choosing one spot to make the final TSR prediction. Once again, computing

times should be noticed in this case. In addition to these, using a smaller tile size might

increase classifying accuracy since some tumor areas, as well as stromal areas in between,

seem to be quite narrow. This might have a significant effect on the final TSR predictions.

Even though this automated version of TSR evaluation is not fully comparable with the

visual one, the reproducibility of a computational method is a major advantage over the

visual TSR evaluation. All models solved the classification problem without major problems

and what comes to the TSR predictions, the correlations with visual TSR estimates were

satisfactory. This kind of tool in daily practice would definately bring reproducibility to the

TSR evaluation process and would be a handy tool, making the TSR evaluation in a fraction

of a time compared to the visual method.

As TSR estimated visually has been shown to be an independent prognostic factor in solid

cancer types, it would be valuable to study the correlation of TSR predicted by this model

with other clinicopathological factors and overall survival of the patient.
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Appendices

A Parameter tuning

SETUP 1 SETUP 2 SETUP 3

LR Optimizer LR Optimizer LR Optimizer

Alexnet 5e-3 SGD 1e-3 Adam 4e-3 Adam

Googlenet 4e-3 Adam 4e-3 Adam 2e-3 SGD

ResNet50 2e-3 SGD 2e-3 SGD 4e-4 Adam

VGG19 1e-2 SGD 9e-3 SGD 8e-3 SGD

Table 9: Chosen parameters in the final training phase of all models. LR refers to learning-rate and optimizer
is the optimization-function used. Parameters were chosen using 5-fold cross-validation. Loss-function was
cross-entropy for all setups.

B Number of epochs

SETUP 1 SETUP 2 SETUP 3

Alexnet 13 10 4

Googlenet 23 35 35

ResNet50 7 5 24

VGG19 14 13 37

Table 10: Number of epochs when training the final model.
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C Training and validation loss

Figure 12: Training and validation losses for all setups and CNNs. Vertical line represents the point where
training was stopped when training the final model.
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D Incorrect predictions

Figure 13: Example images of incorrect predictions of the most accurate model VGG19 pre-trained with
ImageNet and domain-specific data. Model gets often confused between smooth muscle (from class other) and
stroma. 45



E Example of tumor-stroma prediction

Figure 14: TSR predicted for this WSI were in a range from 81.5 % to 87.2 % and within the most accurate
three models the range was from 84.9 % to 85.4 %. Visually estimated TSR was 50 %. This is mainly due the
differences within the manual and automated versions. Adding a distance metrics to the algorithm might bring
these two methods closer to each other, , ignoring those stroma-tiles which are far from the main tumor site.
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