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University of Jyväskylä during 2008-2013. I would like to thank my supervisors
Doc. Kimmo Tuominen and Prof. Kari Rummukainen for introducing me to
the interesting world of lattice field theory and sharing their knowledge with me.
I am grateful to Prof. Keijo Kajantie and Dr. Ari Hietanen for their valuable
comments regarding the manuscript, and to Dr. Antonio Rago for agreeing
to be my opponent. Most of the research that led to this thesis was done in
collaboration with Dr. Jarno Rantaharju and Dr. Anne-Mari Mykkänen to
whom I want to express my gratitude.

The department of physics at the university of Jyväskylä has been an excel-
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Chapter 1

Introduction: The standard
model and beyond

The Standard Model (SM) of particle physics is one of the most accurate the-
ories in physics. It describes three of the four known fundamental interactions;
strong and weak nuclear force and electromagnetism (EM). Gravity is the only
fundamental interaction not included in SM. After years of experiments, includ-
ing the recent discovery of a boson with mass 125 GeV, SM is still compatible
with the experimental data.

In SM, the interactions arise from local gauge symmetries. In the case of
EM, the underlying local symmetry is U(1). For the fermionic fields ψ(x) this
symmetry transformation is

ψ(x)→ exp[ieω(x)]ψ(x), (1.1)

where ω(x) is an arbitrary continuously differentiable function and e is the cou-
pling constant of the theory that describes the strength of the coupling between
the fermionic field ψ(x) and the gauge field Aµ(x). The Lagrangian

LF = ψ̄(x) [(i∂µ + eAµ)γµ −m]ψ(x), (1.2)

is now invariant under the U(1) transformation (1.1), if the gauge field Aµ(x)
transforms as

Aµ(x)→ Aµ(x) + ∂µω(x). (1.3)

The proper kinetic term for the gauge field Aµ(x), which describes the kinematics
of the gauge boson of EM, should also be added to the Lagrangian. It is

LG = −1

4
F µνFµν , (1.4)

where the field strength tensor Fµν = ∂µAν(x)−∂νAµ(x). The gauge field Aµ(x),
called photon, is the mediator of the EM interaction. The two terms, (1.2) and
(1.4), form the Lagrangian of Quantum Electrodynamics (QED).

1



The same gauge principle applies to other gauge symmetry groups as well.
SM is SU(3)×SU(2)×U(1) symmetric gauge theory, where the symmetry group
SU(3) corresponds to the strong interaction, the theoretical formulation of which
is known as quantum chromodynamics (QCD). The gauge group SUT(2)×UY(1),
where SUT(2) is the weak isospin and UY(1) is the weak hypercharge symme-
try, corresponds to the electro-weak interaction, which is spontaneously broken
down to UEM(1) of EM. The elementary matter particles in SM are quarks and
leptons, all of which have an anti-particle with opposite quantum numbers. In
addition there are gauge bosons that mediate these interactions1: gluons (strong
nuclear), W±- and Z-bosons (weak nuclear) and photons (EM).The EM inter-
action couples to both quarks and leptons and the strong interaction only to
quarks. To explain which particles interact through weak interaction, a prop-
erty called chirality must be introduced.

Chirality of a particle is defined to be left (right) handed, if the particle
transforms in left (right) handed representation of the Poincaré group. The left-
and right handed fermionic fields are defined as

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ, (1.5)

where ψ = ψL + ψR and the chirality transformation is

ψL → e−
i
2
θLψL, ψR → e−

i
2
θRψR. (1.6)

Chirality is important because the weak interaction couples only to the left
handed particles. This means that left handed particles are organized into SU(2)
doublets and right handed particles to SU(2) singlets under the weak interaction.
These can be expressed as

QL =

(
uL
dL

)
, EL =

(
eL

(νe)L

)
, uR, dR, eR. (1.7)

The other generations of quarks and leptons are organized similarly. Because
the left and right handed fields transform differently under the SU(2) gauge
transformation, the mass terms that are of the form m(ψ̄LψR + ψ̄RψL) are not
invariant in this gauge transformation.The mass terms for the gauge bosons are
also not invariant under the SU(2) gauge transformation. This means that mass
terms for weak gauge bosons and matter particles can not appear in this theory.
However, according to experiments, the three gauge bosons (W± and Z) of the
weak interaction are massive, as are quarks, electrons, muons and taus. In SM
the masses of the gauge bosons and matter particles are introduced through
electroweak symmetry breaking and the associated Higgs mechanism.

1The number of gauge bosons is the same as the number of generators in the corresponding
gauge group, thus there are eight gluons, three weak bosons and the photon.
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1.1 Higgs mechanism

In SM the weak and EM forces are unified to one electroweak (EW) interaction.
This EW interaction has SUT(2)×UY(1) gauge symmetry. We introduce a new
scalar doublet φ to SM with Lagrangian

LH = |Dµφ|2 − µ2φ†φ− λ(φ†φ)2, (1.8)

where λ > 0, and µ2 < 0, giving the wrong sign for the mass term. This couples
to the EW sector through the covariant derivative

Dµ = ∂µ − igAaµτ
a − i

g′

2
Bµ, (1.9)

where τa are the generators of SUT(2). The Lagrangian (1.9) is invariant under
SUT(2)×UY(1) transformation

φ→ exp(i~α · ~τ) exp(iβ/2)φ, (1.10)

where ~α ∈ R3, β ∈ R are arbitrary. The derivative of the potential

V = µ2φ†φ+ λ(φ†φ)2, (1.11)

has two zeros. The point φ = 0 is a local maximum and |φ|2 = −µ2
2λ

= v2 is a
minimum of the potential V . Thus, the vacuum expectation value of the field φ
is nonzero. The physical vacuum of the system is the minimum of the potential
and so we must expand the Lagrangian around it. The field φ can be written as

φ(x) =
1√
2

(
π1(x) + iπ2(x)√

2v + σ(x) + iπ3(x)

)
, (1.12)

where fields πi(x) and σ(x) are real.
If we now write the potential V from (1.11) using (1.12) and drop terms that

do not depend on x we get

V = −µ2σ2 +
λ

4
(π2

i )
2 +
√

2vλσπ2
i +

λ

2
σ2π2

i +
√

2vλσ3 +
λ

4
σ4. (1.13)

The mass term of the field σ now has the right sign and the other components
πi are massless. From the covariant derivative we get

|Dµφ|2 =
1

2

[
(∂µπi)

2 + (∂µσ)2
]

+
1

8

[
(A2

1 + A2
2)g2π2

i + σ2)
]

+
1

8

[
(gA3

µ + g′Bµ)2(π2
1 + π2

2) + (gA3
µ − g′Bµ)2(σ2 + π2

3)
]

+
1

8
(v2 + 2vσ)

[
(A2

1 + A2
2)g2 + (gA3

µ − g′Bµ)2
]

+ . . . , (1.14)
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where we have excluded interaction terms involving fields πi and ∂µπi, that are
uninteresting at the moment. We define new fields

W±
µ = 1√

2
(A1

µ ∓ iA2
µ),

Z0
µ = 1√

g2+g′2
(gA3

µ − g′Bµ),

Aµ = 1√
g2+g′2

(g′A3
µ + gBµ),

(1.15)

which are the gauge bosons for weak (W±
µ and Z0

µ) and EM (Aµ) interactions.
Inserting these to (1.14) results in

|Dµφ|2 =
1

2

[
(∂µπi)

2 + (∂µσ)2
]

+
1

8

[
(|W+

µ |2 + |W−
µ |2)g2(π2

i + σ2)
]

+
1

8(g2 + g′2)

[
(g2 − g′2)Z0

µ + 2gg′Aµ
]2

(π2
1 + π2

2)

+
1

8

[
(g2 + g′2)|Z0

µ|2(σ2 + π2
3)
]

+
1

8
(v2 + 2vσ)

[
(|W+

µ |2 + |W−
µ |2)g2 + (g2 + g′2)|Z0

µ|2
]

+ . . . ,(1.16)

where we find the mass terms for the weak gauge bosons. These masses are

M2
W =

v2g2

4
, M2

Z =
v2(g2 + g′2)

4
, (1.17)

while the photon remains massless. The field σ is called the Higgs field and its
excitation is the Higgs boson.

The Lagrangian that we got by expanding (1.9) around its physical vacuum
is no longer invariant under the SUT(2)×UY(1) transformation (1.10). How-
ever it is invariant under UEM(1) transformations of the field Aµ i.e. we have
spontaneously broken the SUT(2)×UY(1) symmetry down to UEM(1).

The previously shown formalism was first applied to scalar QED by P. Higgs
in 1964 [1, 2]. It was first applied to electro-weak symmetry breaking indepen-
dently in 1967 by S. Weinberg [3], in 1968 by A. Salam [4] and in 1970 by S.
L. Glashow et al. [5]. Glashow, Weinberg and Salam received the Nobel prize
for their work in 1979. The Higgs boson, included in these theories, is the last
undiscovered particle in SM. In July 2012 the experimental teams CMS and
ATLAS at the Large Hadron Collider (LHC) in CERN announced a discovery
of a new Higgs-like particle with a mass between 125− 127 GeV [6,7].

The masses of the fermions are introduced to the SM with Yukawa couplings
between left- and right handed fermions and the field φ. The terms

−λd
(
Q̄LφdR + d̄Rφ

†QL

)
− λu

(
Q̄Lφ̃uR + ūRφ̃

†QL

)
, (1.18)

where φ̃ = iσ2φ
∗ and σ2 =

(
0 −i
i 0

)
is the second Pauli matrix, are invariant

in SU(2)×U(1) transformations and can be added to the Lagrangian. If we
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expand the mass terms (1.18) around the physical vacuum i.e. inserting (1.12)
we get

−λdv√
2

(
d̄LdR + d̄RdL

)
− λuv√

2

(
ūLuR + ūRuL

)
+ . . . , (1.19)

which are mass terms for u- and d quark with mu = λuv/
√

2 and md = λdv/
√

2.
Similar terms can be added for other quark generations and leptons as well. We
have now included masses for the matter particles in the SM in a gauge invariant
way.

There are two problems with the mathematical formulation of a fundamental
scalar field such as the Higgs field. The first is triviality: If the cut off scale,
meaning the scale above which the theory is not applicable, is taken to infinity
the coupling of the scalar field is identically zero. The second is fine tuning: The
mass of a scalar particle is renormalized additively. This leads to the problem
that the mass of a fundamental scalar particle has to be fine tuned extremely
accurately order by order in perturbation theory to keep the mass of the particle
at any finite value.

1.2 Mathematical formalism of SU(NC) gauge

theory

In the continuum the action of SU(NC) gauge theory, where NC is the number
of color degrees of freedom, is

S = SG + SF, (1.20)

SG =

∫
−1

4
F a
µνF

µν
a d4x, (1.21)

SF =

∫
ψ̄(iDµγ

µ −m)ψd4x, (1.22)

where the fermionic fields ψ can be in any representation R of the gauge group
SU(NC). The action involves the covariant derivative

Dµ = ∂µ − igAaµT
a
R, (1.23)

where T aR are the generators of SU(NC) in representation R. The field strength
tensor F a

µν can be derived from

[Dµ, Dν ] = −igF a
µνT

a
R, (1.24)

and it is
F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.25)

where fabc are the structure constants of the corresponding gauge group SU(NC).
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For complex representations R the theory has a SUL(NF) × SUR(NF) chiral
symmetry2 in the limit of NF massless fermions. The chiral transformation is

ψL → e−
i
2
~θL·~τψL, ψR → e−

i
2
~θR·~τψR, (1.26)

where the matrices τa are the generators of the group SU(NF) and ~θ ∈ RNF is
arbitrary. The action (1.22) with m = 0 is symmetric under this transformation.

In QCD (and QCD-like theories) the chiral symmetry is spontaneously bro-
ken in the vacuum due to the quark-antiquark condensate. If the representa-
tion R is complex, the SUL(NF) × SUR(NF) chiral symmetry breaks down to
SU(NF)3. The pions are the Goldstone bosons corresponding to the sponta-
neously broken chiral symmetry. The number of pions is N2

F − 1 for complex
representations4. Due to the small masses of the two lightest fermion flavors,
the pions also have a small mass. If the fermions were massless, so would be the
pions.

1.3 Technicolor

There is a mechanism that generates masses for the gauge bosons in QCD. Simi-
larly to the mechanism of superconductivity, where electrons condense and form
Cooper pairs, the quarks and anti-quarks form quark-antiquark 〈q̄q〉 conden-
sate. This condensate breaks the SUL(2)×SUR(2) chiral symmetry in the QCD
vacuum down to residual SU(2) symmetry and as a consequence three massless
Goldstone bosons (π± and π0) appear.

If we treat the mesons5 σ = q̄q and πa = q̄iτaγ5q as the fundamental degrees
of freedom we can write an effective Lagrangian for QCD in the form

L = |Dµφ|2 − µ2φ†φ− λ(φ†φ)2, (1.27)

where µ2 < 0 and

φ(x) =
1√
2

(
π1(x) + iπ2(x)√

2v + σ(x) + iπ3(x)

)
. (1.28)

The situation is completely analogous to the Higgs mechanism in section 1.1.
Now the σ field has a vacuum expectation value v = fπ ≈ 95 MeV and inserting
this to (1.17), with the assumption g = 0.65, we get MW ≈ 30 MeV. This
is roughly three orders of magnitude smaller than the observed mass MW =

2For real and pseudoreal representations R the corresponding chiral symmetry group is
SU(2NF).

3If R is real, SU(2NF) breaks down to SO(2NF), and if R is pseudoreal, SU(2NF) breaks
down to Sp(2NF).

4If R is real, the number of pions is 2N2
F +NF − 1, and if R is pseudoreal 2N2

F −NF − 1.

5Here τa are the generators of SU(2), and the field q =

(
u
d

)
.
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80.385 ± 0.015 GeV. In QCD these masses originate from processes that are
shown diagrammatically in figure 1.1. Their effect is to shift the pole in the W±

and Z0 propagator away from zero.

W, Z W, Z

q

q

g g

Figure 1.1: Typical QCD contribution to weak gauge boson vacuum polarization

Technicolor (TC) [8–11] is a theory that explains the EW symmetry breaking
and the masses of the gauge bosons without a fundamental scalar field, thus
avoiding the problems in its mathematical formulation. The idea is to introduce
a new scaled up QCD-like interaction, where the equivalent of the QCD quark-
antiquark condensate, the techniquark condensate 〈Q̄Q〉, is much larger. To get
the observed masses 〈Q̄Q〉 has to be of the order 250 GeV at the TC scale ΛTC .
The Lagrangian of TC is

LTC = Q̄iDµγ
µQ− 1

4
Ga
µνG

µν
a , (1.29)

where the techniquark fields Q couple to TC, strong, weak and EM gauge fields
through the covariant derivative Dµ and Ga

µν is the field strength tensor for the
TC gauge field.

In TC the techniquark condensate acts as a Higgs field, but it can not give
masses to the fermions. For the fermion masses, the TC gauge group has to be
extended so that the extended technicolor gauge group is spontaneously broken
at a higher scale ΛETC and fermions and technifermions interact through this ex-
tended gauge interaction [12,13]. At low energy scales this interaction looks like
a four fermion interaction. Schematic effective four fermion ETC interactions
are of the form

g2
ETC

Λ2
ETC

Q̄QQ̄′Q′,
g2
ETC

Λ2
ETC

Q̄Qq̄q,
g2
ETC

Λ2
ETC

q̄qq̄′q′, (1.30)

where gETC is the ETC coupling constant and ΛETC is the ETC scale. The fields
q′ and Q′ represent (techni)quark fields that can have different flavors than q
and Q. Writing this around the physical vacuum, where Q̄Q = 〈Q̄Q〉 + Q̄fQf

and Qf is the physical techniquark field fluctuation, we get terms proportional
to operators

〈Q̄Q〉ETCQ̄fQf , 〈Q̄Q〉ETC q̄q, q̄qq̄′q′, Q̄fQf q̄q, Q̄fQfQ̄
′
fQ
′
f , (1.31)
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where 〈Q̄Q〉ETC is the value of techniquark condensate at the ETC scale. The
first operator gives masses for the technipions. The second operator gives masses
of the order

g2
ETC〈Q̄Q〉ETCΛ−2

ETC , (1.32)

to the SM fermions. The third and fourth operators in (1.31) generate flavor
changing neutral currents through processes diagrammatically shown in figure
1.2. The last operator is uninteresting at the moment.

q

q

q’

q’

q

q

q’

q’

Q

Q

Figure 1.2: The processes that generate flavor changing neutral currents in ETC.

There are two problems with scaled-up QCD-like TC. First of all, TC should
introduce a minimal number of new particles because particles not belonging
to SM have not been observed. TC, with gauge group SU(NTC), will always
introduce technipions6, from which three appear as longitudinal components of
the weak gauge bosons. The masses of the remaining technipions have to be large
enough that these particles would be too massive to appear in the experiments
so far.

From the experimental data on K0 − K̄0 mixing we get an upper limit for
the scale ΛETC [14],

Λ−2
ETC < 10−5 TeV−2. (1.33)

According to (1.32), we get ms ≈ 0.1 MeV for the strange quark, if we assume
that 〈Q̄Q〉ETC ≈ 〈Q̄Q〉TC and ΛETC/ΛTC = 103. This mass is roughly three
orders of magnitude too small, which shows that the flavor changing neutral
currents have to be somehow suppressed in order to get large enough fermion
masses.

The renormalization group equation gives a way to calculate the scale depen-
dence of the Q̄Q condensate. Because mQ̄Q is renormalization group invariant
i.e. it is scale invariant, we get

d

dµ

(
mQ̄Q

)
= 0

⇒ dm

dµ
Q̄Q+m

dQ̄Q

dµ
= 0. (1.34)

6The number of technipions depends on NTC and the fermionic representation R.
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The anomalous dimension of the mass operator γ = −d logm
d log µ

= − µ
m
dm
dµ

and so we

get a first order differential equation for the scale dependence of Q̄Q

−mγ
µ
Q̄Q+m

dQ̄Q

dµ
= 0, (1.35)

with a solution

(
Q̄Q
)
ETC

=
(
Q̄Q
)
TC

exp

 ΛETC∫
ΛTC

γ(µ)

µ
dµ

 . (1.36)

Theories in which the coupling stays nearly constant over a range of scales are
called ”walking” theories. For walking theories it is expected that the anomalous
dimension of the mass operator γ ≈ 1 [15]. Inserting γ = 1 to (1.36) we get

(
Q̄Q
)
ETC

=
(
Q̄Q
)
TC

ΛETC

ΛTC

. (1.37)

This enhances the Q̄Q condensate at the ETC scale by a factor of ΛETC/ΛTC ,
which is enough to get realistic masses for the fermions [16,17].

1.4 Running of the coupling

The coupling of the SU(NC) theory runs as a function of the energy scale. It is
usually quantified with the β-function, which is the derivative of the coupling
as a function of the logarithm of the energy scale. For SU(NC), (NC > 1), the
β-function to two loops in perturbation theory is

β(g) ≡ µ
dg

dµ
= − β0

16π2
g3 − β1

(16π2)2
g5,

β0 =
11

3
NC −

4

3
T (R)NF,

β1 =
34

3
N2

C −
20

3
NC T (R)NF − 4C2(R)T (R)NF, (1.38)

Above, C2(R) is the quadratic Casimir operator in representation R and T (R)
is defined for each representation as

Tr(T aT b) = T (R)δab. (1.39)

There are three different vacuum phases for SU(NC) gauge theory, which
can be classified with the β-function. For any NC and small values of NF, the
theories are QCD-like. This means that at low energy scales the coupling of the
theory is large and it decreases as the energy scale is increased. The β-function
and coupling as a function of a scale µ of such a theory is shown in figure 1.3.
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The fact that the coupling constant behaves in this way has two implications.
At large energies the fermions are asymptotically free and at small energies the
fermions are bound to hadrons.

1 2 3 4 5
g

-14

-12

-10

-8

-6

-4

-2

ΒHgL

Μ

g
2

Figure 1.3: The β-function of QCD-like theory (left panel). Coupling constant
of the corresponding theory as a function of logarithm of a scale µ (right panel).

If the number of fermionic flavors NF is increased, the theory moves to a
phase where the β-function is first negative and then goes through zero. A
candidate for such a theory is SU(2) with 10 fundamental flavors. Its β-function
to two loops in perturbation theory and the coupling as a function of scale µ is
shown in figure 1.4. Such nontrivial zero in the β-function is called an infrared
fixed point (IRFP).

0.5 1.0 1.5 2.0
g

-0.004

-0.002

0.002

0.004

ΒHgL

Μ

g
2

Figure 1.4: The β-function of SU(2) with NF = 10 fundamental fermions (left
panel). Coupling constant of the theory as a function of logarithm of a scale µ
(right panel).

When NF is large enough asymptotic freedom is lost and the theory moves
to a QED-like phase. In this phase the coupling is small in low energy scales
and grows as the scale is increased. The β-function and coupling are shown in
figure 1.5.
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1 2 3 4 5
g

0.5

1.0

1.5

ΒHgL

Μ

g
2

Figure 1.5: The β-function of QED-like theory (left panel). Coupling constant
of the corresponding theory as a function of logarithm of a scale µ (right panel).

Between QCD-like and conformal phases there is a region, where theories
show ”walking” behavior. In these theories the coupling constant remains nearly
constant over a range of scales. β-function and the coupling constant as a
function of scale for such a theory is plotted in figure 1.6.
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Figure 1.6: The β-function (left panel) and coupling constant (right panel) of a
walking theory.

As stated earlier, theories that have a nontrivial IRFP or show walking dy-
namics are interesting for TC model building. Thus we want to estimate which
theories could show such behavior. This can be done with perturbative tools.
The upper limit for the number of flavors NF for fixed NC comes from the
fact that the asymptotic freedom is lost when the one-loop coefficient β0 of the
β-function vanishes. At this point the theory moves from conformal phase to
QED-like phase. For values of NF that are smaller, the theory is expected to
have a nontrivial IRFP. Near this upper boundary one expects the value of
the coupling at the fixed point α∗ to be small and perturbation theory to be
applicable [18].

A theory can not be conformal if the chiral symmetry is broken, because
the q̄q condensate introduces a scale in the system. Thus theories where chiral
symmetry breaking is reached before the IRFP are not conformal. This gives us
a lower limit to the conformal phase. The critical coupling for chiral symmetry
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breaking in the ladder approximation is αc = π/(3C2(R)) [19]. If we set αc equal
to the fixed point value of the two-loop coupling, which is

α∗ = −β0

β1

(4π), (1.40)

we obtain an approximation for the lower boundary of the conformal phase.
The area in (NC, NF)-plane, where the conformal phase is possible accord-

ing to the previous analysis, is called a conformal window. In figure 1.7 we
show a sketch of SU(NC) phase diagram in the (NC, NF)-plane for fundamen-
tal, two-index (anti)symmetric and adjoint representations [20,21]. The shaded
regions in the figure depict the conformal windows for each of these fermion rep-
resentations; below the conformal window the theory is in the chiral symmetry
breaking and confining phase, while above the conformal window the theory is
in the non-Abelian QED-like Coulomb phase.

F

2S

2A

Adj

2 3 4
N

2

4

6

8

10

12

14

N f

Figure 1.7: Phase diagram of SU(NC) gauge theory as a function of the number
of colors, flavors and fermion representations (F = Fundamental, 2A = 2-index
antisymmetric, 2S = 2-index symmetric, Adj = Adjoint).

There are several recent studies of both SU(2) [22–33] and SU(3) [34–38]
gauge theories with two-index symmetric representation fermions on the lattice.
For studies of QCD-like theories with fundamental representation fermions see
[III, 39–52].

1.5 Outline of the thesis

The main motivation for this work is TC related models, thus we are interested
in gauge field theories that show (nearly) conformal behavior. The best tool
that we have for studying strongly interacting theories is lattice simulations.
However, distinguishing between two cases of slow running and conformal is

12



in no way a trivial task. To reliably do so, one must determine the coupling
extremely accurately. In the second chapter we will explain in detail how one
can remove some of the lattice artifacts that arise from the discretization of the
continuum action.

Unfortunately, following the improvement procedure is not enough, if one
wants to use higher representation fermions. In the third chapter we will show
that large lattice effects appear if one naively implements higher representation
fermions on the lattice and tries to measure the coupling. We will also provide
a cure to remove these unwanted effects.

In the fourth chapter we will show results of SU(2) gauge theory simulations
with NF = 4, 6 and 10 fundamental fermions, where we have implemented these
improvements.
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Chapter 2

Wilson action, Schrödinger
functional and O(a) improvement

In this chapter we will present the lattice action that has been used through-
out this work. We will also show the need for the improved actions that arise
from the Wilson fermions and the Schrödinger functional boundary conditions.
Finally, we will present all the necessary counter terms which cancel all linear
contributions in the lattice spacing a from the action. After this improvement
the results converge more rapidly to the continuum limit.

2.1 Wilson action

The Wilson lattice action was first proposed by Wilson in [53]. It can be divided
into a gauge part SG and a fermionic part SF

S0 = SG + SF. (2.1)

Here the standard Wilson plaquette action is

SG = βL
∑
x;µ<ν

(
1− 1

N
Re
[
Tr[Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν(x)]

])
, (2.2)

with βL = 2N/g2
0, and the link matrices

Uµ(x) = exp(iag0Aµ(x)). (2.3)

If SG is expanded with respect to the lattice coupling a,

SG =
βL
4
a4
∑
x

Fµν(x)F µν(x) +O(a6). (2.4)

From equation (2.4) we can see that when the lattice spacing a is taken to zero,
the gauge part of the action converges to the continuum gauge action and the
next terms in the series vanish as a2.

15



The Wilson fermion action, SF, for NF (mass degenerate) Dirac fermions is

SF = a4
∑
x

ψ̄(x)(D0 +mq,01)ψ(x), (2.5)

where the unimproved Wilson-Dirac operator is

D0 =
1

2
(γµ(∇∗µ +∇µ)− a∇∗µ∇µ). (2.6)

This involves the gauge covariant lattice derivatives ∇µ and ∇∗µ defined as

∇µψ(x) =
1

a
[Ũµ(x)ψ(x+ aµ̂)− ψ(x)], (2.7)

∇∗µψ(x) =
1

a
[ψ(x)− Ũ−1

µ (x− aµ̂)ψ(x− aµ̂)], (2.8)

where Ũ is the parallel transporter in the appropriate fermion representation.
If we want our action to be free ofO(a) terms and thus converge quadratically

to the continuum limit, we must add new terms to the action so that the linear
contributions cancel. These counter terms were first studied by Sheikholeslami
and Wohlert in [54]. It turns out that it is sufficient to add just one new term

Simpr = S0 + δSsw, (2.9)

δSsw = a5
∑
x

cswψ̄(x)
i

4
σµνFµν(x)ψ(x), (2.10)

to cancel O(a) from all on-shell quantities as long as the coefficient csw is chosen
correctly. In equations (2.10) and (2.12) σµν = i[γµ, γν ]/2 and Fµν(x) is the sym-
metrized lattice field strength tensor. Now we can write our improved fermionic
action as

SF,impr = a4
∑
x

ψ̄(x)(D +mq,01)ψ(x), (2.11)

where the Wilson-Dirac operator is

D =
1

2
[γµ(∇∗µ +∇µ)− a∇∗µ∇µ] + csw

ia

4
σµνFµν(x). (2.12)

This improvement coefficient can be determined perturbatively [55,56] and non-
perturbatively [I,57] and to the lowest order in perturbation theory csw = 1 [54].

The boundary values of the fermion fields are set as

P+ψ(x0 = 0,x) = ρ(x), P−ψ(x0 = T,x) = ρ′(x),
P−ψ(x0 = 0,x) = P+ψ(x0 = T,x) = 0,

(2.13)

with similar definitions on the conjugate fields. The projection operators are
P± = 1

2
(1 ± γ0). The boundary fields ρ, ρ′ are source fields for correlation

functions, and they are set to zero when generating configurations in simulations.
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In the spatial directions it is customary to introduce a “twist” for the phase of
the fermion fields [58]:

ψ(x+ Lk̂) = eiθkψ(x), ψ̄(x+ Lk̂) = ψ̄(x)e−iθk . (2.14)

This is done to maximize the smallest eigenvalue of the Dirac operator. In this
work we use θk = π/5 throughout, which is optimal for fundamental fermions1.
The twist, together with the Dirichlet boundary conditions, regulates the fermion
matrix so that simulations at zero fermion masses become possible.

With perturbative calculations, one must also fix the gauge. This will add
two new terms to the action SGF and SFP. The specific form of these terms is only
important while calculating the contribution of the gauge sector to observables.
Since we will mainly be focused on the fermionic contribution, we refer the
interested reader to the original article [60].

2.2 Schrödinger functional

Measurements of the coupling constant on the lattice are usually done using
the Schrödinger functional. It is an effective tool to study the scaling proper-
ties of the coupling constant on the lattice. Basically we introduce a constant
background field to the space-time by setting boundary conditions for the gauge
fields on times T = 0 and T = L. In the spatial directions we apply periodic
boundary conditions for the gauge field, thus the space-time is a cylinder. We
can then study how the coupling responds to changes in the background field.

The boundary fields used throughout this thesis for SU(2) are

Ck =
i

L

(
φ1 0
0 φ2

)
, C ′k =

i

L

(
φ′1 0
0 φ′2

)
, k = 1, 2, 3, (2.15)

where
φ1 = −η,
φ2 = η,

φ′1 = η − ρ,
φ′2 = ρ− η. (2.16)

The standard choice for the angles are η = π
4

and ρ = π. For SU(3) we use

Ck =
i

L

 φ1 0 0
0 φ2 0
0 0 φ3

 , C ′k =
i

L

 φ′1 0 0
0 φ′2 0
0 0 φ′3

 , k = 1, 2, 3, (2.17)

where
φ1 = η − ρ,
φ2 = η(ν − 1

2
),

φ3 = −η(ν + 1
2
) + ρ,

φ′1 = −φ1 − 4ρ,
φ′2 = −φ3 + 2ρ,
φ′3 = −φ2 + 2ρ.

(2.18)

The standard choice for the angles are η = 0, ρ = π
3

and ν = 0.

1For optimal choice of θk for other representations see [59].
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When one uses fermions in a higher representation these boundary fields
have to be transformed to the corresponding representation. For the adjoint
representation the transformation is

Ck(adj)ab = 2Tr(T aCk(F)T bCk(F)†), (2.19)

where T a = σa/2 are the generators of the fundamental representation. This
also works for C ′k. For the (anti)symmetric representation the transformation is

Ck((a)s)ab = ±Tr(KaCk(F)KbCk(F)), (2.20)

where the upper (lower) sign refers to the (anti)symmetric representation and
the matrices Ka form a basis in the space of (anti)symmetric N ×N matrices.
After the transformation one has to diagonalize the resulting matrix in order to
get the right boundary field.

With the boundary matrices Ck and C ′k from (2.15), (2.17), (2.16) and (2.18)
we end up with a background field of the form

B0 = 0, Bk = (x0C
′
k + (L− x0)Ck)/L, k = 1, 2, 3. (2.21)

The path integral representation of the Schrödinger functional is

Z(C,C ′) =

∫
D(ψ)D(ψ̄)D(U)D(c)D(c̄) exp(−S) (2.22)

This can also be written as an effective action

Γ = − lnZ, (2.23)

which has the perturbative expansion of the form

Γ = g−2
0 Γ0 + Γ1 +O(g2

0). (2.24)

The effective action can be used to define the running coupling

ḡ2(L) =
∂Γ0/∂η

∂Γ/∂η
. (2.25)

This gives us a way to calculate the running coupling perturbatively

ḡ2(L) =
∂Γ0/∂η

∂(g−2
0 Γ0 + Γ1)/∂η

,

= g2
0 + p1(L)g4

0 +O(g6
0), (2.26)

where

p1(L) = −∂Γ1/∂η

∂Γ0/∂η
. (2.27)

This quantity will be important in the calculation of one of the improvement
coefficients and the step scaling function.
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The fixed boundary conditions at times t = 0 and t = T will again introduce
O(a) errors to the action. Removal of these errors has first been studied in
[56,60,61]. There it has been shown that the necessary counter terms are

δSV =
ia5

4
csw

L−a∑
x0=a

∑
~x

ψ̄(x)σµνF̂µν(x)ψ(x), (2.28)

δSG,b =
1

2g2
0

(cs − 1)
∑
ps

Tr[1− U(ps)]

+
1

g2
0

(ct − 1)
∑
pt

Tr[1− U(pt)], (2.29)

δSF,b = a4(c̃s − 1)
∑
~x

[Ôs(~x) + Ô′s(~x)]

+a4(c̃t − 1)
∑
~x

[Ôt(~x)− Ô′t(~x)]. (2.30)

Here we have introduced the operators

Ôs(~x) =
1

2
ψ̄(0, ~x)P−γk(∇∗k +∇k)P+ψ(0, ~x), (2.31)

Ô′s(~x) =
1

2
ψ̄(L, ~x)P+γk(∇∗k +∇k)P−ψ(L, ~x), (2.32)

Ôt(~x) =
{
ψ̄(y)P+∇∗0ψ(y) + ψ̄(y)

←−
∇∗0P−ψ(y)

}
y=(a,~x)

, (2.33)

Ô′t(~x) =
{
ψ̄(y)P−∇0ψ(y) + ψ̄(y)

←−
∇0P+ψ(y)

}
y=(T−a,~x)

. (2.34)

By tuning the coefficients csw, cs, ct, c̃s, c̃t to their proper values we can remove
all the O(a) errors.

For the electric background fields which we consider, the terms proportional
to cs do not contribute. Also, if we set the fermionic fields to zero on the
boundaries, the counter term proportional to c̃s vanishes. However the two
terms proportional to ct and c̃t remain nonzero. The c̃t term corrects the mass
of the fermions at times T = a and T = L − a and the ct term changes the
weight of the time-like plaquettes on the boundary.

2.3 Perturbative analysis of the boundary im-

provement

All boundary coefficients have a perturbative expansion of the form

cx = 1 + c(1)
x g2

0 +O(g4
0). (2.35)

Next we will determine the coefficients c̃t and ct to one-loop order in perturbation
theory for different gauge groups and fermionic representations.
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Figure 2.1: Diagrams contributing to the calculation of c̃
(1)
t . The shaded blobs

indicate insertion of operator Γx = {1, γ5}.

Coefficient c̃
(1)
t

The coefficient c̃t was first calculated in [56] for fermions in the fundamental
representation. The result of [56] is

c̃
(1)
t = −0.0135(1)CF , (2.36)

and this generalizes to other fermion representations simply by replacing the fun-
damental representation Casimir operator CF with Casimir operator CR of the
representation R under consideration. This is so because the relevant correlation
functions are proportional to the diagrams presented in figure 2.1, which all in-
clude the color factor

∑
a(T

a)2 = CR. Thus it can be shown that c̃
(1)
t ∝ CR. The

results for gauge groups SU(2) and SU(3) and different fermion representations
are shown in table 2.1.

Coefficient c
(1)
t

The coefficient c
(1)
t can be split into gauge and fermionic parts

c
(1)
t = c

(1,0)
t + c

(1,1)
t NF. (2.37)

The contribution c
(1,0)
t is entirely due to gauge fields and has been evaluated

in [60] for SU(2) and in [62] for SU(3). The fermionic contribution c
(1,1)
t to ct has

been evaluated for fundamental fermions in [63], both for SU(2) and SU(3). We
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have extended these computations for SU(2) and SU(3) gauge theory with higher
representation fermions. The results for the nonzero improvement coefficients
are shown in table 2.1. The numbers beyond the fundamental representation
are new, while those for the fundamental representation provide a good check
on our computations.

The idea behind the calculation of c
(1,1)
t is to find an observable whose O(a)

contribution to one loop order in perturbation theory is only sensitive to the
boundary counter term ct. One suitable observable turns out to be p1, which
was introduced in equation (2.27). The method was developed and applied first
for the pure gauge theory case in [60], and later for fundamental representation
fermions in [63].

In p1 the tree level contribution

Γ0 = g2
0SG(B) = L4

3∑
k=1

N∑
i=1

{
2

a2
sin

[
a2

2L2
(φ′i − φi)

]}
, (2.38)

is just the gauge part of the action calculated at the generated background field
B. The value of the normalizing factor in p1 is then

k =
24L2

a2

{
sin

[
a2

L2
(π − 2η)

]}
(2.39)

for SU(2) and

k =
∂Γ0

∂η
=

12L2

a2

{
sin

[
2a2

3L2
(3η + π)

]
+ sin

[
a2

3L2
(3η + π)

]}
(2.40)

for SU(3). The value of the normalizing factor k does not change when one uses
higher representation fermions.

The nominator in (2.27) can be written in terms of lattice operators via

Γ1 =
1

2
ln det ∆1 − ln det ∆0 −

1

2
ln det ∆2 (2.41)

where the first two terms are due to the gauge part and the ghost part of the
action, and the last term comes from the fermionic part. Their contributions
can also be split into gauge and fermionic parts

p1 = p1,0 +NFp1,1 = −1

k

(
1

2
ln det ∆1 − ln det ∆0

)
+
NF

k

(
1

2
ln det ∆2

)
. (2.42)

The operators ∆0, ∆1 and ∆2 can be expressed in terms of the lattice vari-
ables. However the definitions of ∆0 and ∆1 are related to the SGF and SFP parts
of the action which we did not define, thus the expressions of these operators
will not be presented here. We again refer the reader to the original article [60].
The last operator has a simple form

∆2 = [(D +m0)γ5]2, (2.43)
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where D is the lattice Dirac-Wilson operator defined in (2.12) and γ5 = γ0γ1γ2γ3.
To calculate p1 one then has to determine the determinants of the three

operators ∆0, ∆1 and ∆2. It can be shown that eigenvalue equations of these
operators have equivalent recursion relations. Subsequently one simply has to
solve these recursion relations to get the eigenvalues, and the determinant is
then the product of these eigenvalues. Using this method p1 can be calculated
for a range of values of L. We know that p1,0 and p1,1 can be in the large L limit
expanded as

p1,x ∼
∞∑
n=0

(rn + sn lnL)/Ln, x = 0, 1, (2.44)

where s0 = 2b0,x, r1 = 2c
(1,x)
t and s1 = 0. The coefficient b0,x refers to the one

loop beta function

b0 = b0,0 +NFb0,1 =
1

(4π)2

(
11N

3
− 4TRNF

3

)
, (2.45)

where TR is the normalization of the representation R, defined as Tr(T aRT
b
R) =

TRδ
ab. The main task now is to fit p1,x data using (2.44) to extract the value of

r1. This then gives c
(1,x)
t . We have used the blocking transformation from [64].

Our results are consistent with the generic formula

c
(1,1)
t ≈ 0.019141(2TR). (2.46)

We have also plotted our results of c
(1,1)
t scaled with 1/(2TR) against (2.46) in

NC rep. c
(1,0)
t c

(1,1)
t c̃

(1)
t

2 2 −0.0543(5) 0.01914(2) −0.0101(3)
2 3 −0.0543(5) 0.0766(2) −0.0270(2)
3 3 −0.08900(5) 0.01914(6) −0.0180(1)
3 8 −0.08900(5) 0.1148(3) −0.0405(3)
3 6 −0.08900(5) 0.0957(2) −0.0450(3)

Table 2.1: The nonzero improvement coefficients for Schrödinger functional
boundary conditions with electric background field for various gauge groups
and fermion representations.

figure 2.2. Although we were unable to achieve the accuracy of the original work
[63], our results are fully compatible for fundamental representation fermions.

The figure also clearly indicates that c
(1,1)
t scales with 2TR.

Now we have shown that all O(a) terms can be canceled from the action by
introducing the proper counter terms and tuning the corresponding improvement
coefficients. Unfortunately this is not enough. In the next chapter we will show
that even after the improvement, the discretization errors can be large if the
boundary conditions are chosen poorly.
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Figure 2.2: Our results of c
(1,1)
t scaled with 2TR (blue dots with errorbars) com-

pared with conjectured value of c
(1,1)
t /(2TR) (red line).
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Chapter 3

Perturbative analysis of the
boundary conditions

In this chapter we will introduce the step scaling function, and compute it to one
loop order in perturbation theory. The main observation is that the Schrödinger
functional boundary conditions can introduce large higher order errors in lattice
spacing a, if the boundary fields are not chosen correctly.

3.1 Step scaling

There is a growing interest in the scaling properties of the coupling constant in
gauge theories with fermions in higher representations. Many research groups
use the step scaling function to measure the running of the coupling. The step
scaling function and its perturbative expansion to one loop are

Σ(u, s, L/a) = g2(g0, sL/a)|g2(g0,L/a)=u, (3.1)

= u+ [Σ1,0(s, L/a) + Σ1,1(s, L/a)NF]u2 +O(u3). (3.2)

Using the perturbative expansion of the coupling from (2.26) in the perturbative
formula for the step scaling function, we obtain for the one loop coefficients the
following useful formulas:

Σ1,0(s, L/a) = p1,0(sL)− p1,0(L), (3.3)

Σ1,1(s, L/a) = p1,1(sL)− p1,1(L). (3.4)

We also introduce the variable

δi =
Σ1,i(2, L/a)

σ1,i(2)
=

Σ1,i(2, L/a)

2b0,i ln 2
, i = 0, 1, (3.5)

which is the ratio of the perturbative step scaling and its continuum limit. This
variable is useful in illustrating the convergence of the step scaling. In equation
(3.5) we used

b0,0 = 11NC/(48π2), b0,1 = TR/(12π2), (3.6)
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which are the one loop coefficients of the perturbative beta function.
It has been shown in [63, 65] that for SU(2) and SU(3) with fundamental

fermions Σ1,1(s, L/a) converges rapidly to its continuum limit when one uses
improved action. This can also easily be seen in the left panel of figure 3.1.
However, the situation changes when one considers fermions in the higher rep-
resentations, which can be seen from the right panel of figure 3.1.

Clearly the fermionic step scaling function for the higher representations has
large O(a2) contributions, which are absent in the step scaling for the funda-
mental representation fermions. In the following we will study the effect of the
Schrödinger functional boundary conditions on the convergence of step scaling.
In [66] these errors are removed from SU(3) with sextet fermions by decreasing
the boundary fields by a factor 2.
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Figure 3.1: Fermionic parts of the Lattice step scaling function with fundamental
(left) and higher representation (right) fermions.

3.2 Fundamental domain

The choice of the boundary fields in (2.16) and (2.18) is in no way unique. In
fact one can choose the form of the boundary fields and the values of the angles
η, ρ and ν quite freely. The only limitation is that the fields φ and φ′ have to
belong to the so called fundamental domain. This consists of all the boundary
fields that satisfy the equations

φ1 < φ2 < . . . < φn, |φi − φj| < 2π, for all i, j,
N∑
i=1

φi = 0. (3.7)

Boundary fields of this type lead to a unique (up to a gauge transformation)
minimal action, as shown in [60].
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Figure 3.2: The fundamental domain for SU(2) with the parametrization for the
boundary fields chosen as in (3.8).
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Figure 3.3: The fundamental domain for SU(3) with the parametrization for the
boundary fields chosen as in (3.9).

We take the fields φ and φ′ that were introduced in equations (2.16) and
(2.18), set ν = 0, and choose variables η and ρ to be free parameters. The
equation (3.7) then gives us the range of allowed values for η and ρ1. For SU(2)
we get

η ∈]0, π[, ρ ∈]η, π + η[, and η ∈]− π, 0[, ρ ∈]− π + η, η[. (3.8)

1We drop the requirement in (3.7) that φ1 < φ2 . . . φn, since the angles φi can be reordered
after the choice of η and ρ.
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These areas are presented in figure 3.2. For SU(3) the fundamental domain is

η ∈]− 8π
9
,−4π

7
], ρ ∈]− 3η

8
, 4π+3η

4
[∪

η ∈]− 4π
7
, 0], ρ ∈]− 3η

8
, 4π−3η

10
[∪

η ∈]0, 2π
9

[, ρ ∈]3η
2
, 4π−3η

10
[,

and

η ∈]− 2π
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and it is presented in figure 3.3. The boundary fields that the latter areas
produce are in both cases equivalent to the boundary fields of the former area
and thus we only need to scan half of the parameter space. Now we can study δi
at fixed L as a function of η and ρ as we let these variables range over the values
belonging to the fundamental domain. This in turn will allow us to determine
the background field for which the step scaling function converges most rapidly.

3.3 Higher representations

From now on we will use the terms ”old” and ”new” boundary conditions. The
old boundary conditions refer to the conditions presented in equations (2.16)
and (2.18) with the standard choice of parameters ρ and η. With the term new
boundary conditions we refer to the optimal choice of the parameters ρ and η for
a specific symmetry group and fermion representation as stated in this chapter.
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Figure 3.4: Convergence of |δ1− 1| as a function of η/π and ρ/π for SU(2) with
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and η = π

8
.

We consider first SU(2) with two adjoint Dirac fermions. There are two
darker regions in figure 3.4, indicating the areas where the discretization errors
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are smallest. These two values of ρ, π/2 and 3π/2 are actually equivalent.
The η dependence is weak, and η can be selected from the values within the
fundamental domain quite freely (this turns out to also be true for SU(3)).
However, the value η = ρ/2 must be excluded, since the step scaling function
diverges at that point.
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adjoint fermions at L = 10. The optimal choice is ρ = π

6
and η = −π

9
.

We then turn to SU(3) with two Dirac fermions either in the adjoint or the
sextet representation. Figure 3.5 also shows two darker areas for SU(3) with
adjoint fermions. More detailed analysis shows that in the ρ = π/6 area the
O(a2) effects are smaller. In figure 3.6, which shows the step scaling function
for SU(3) sextet, there is only one dark region at ρ = 67π/150. We also found
that these optimal values of η and ρ are independent of L. A change in L only
modifies the scale of the errors.
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Figure 3.6: Convergence of |δ1− 1| as a function of η/π and ρ/π for SU(3) with
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3
.
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Figure 3.7: Fermionic part of the Lattice step scaling function for higher repre-
sentation fermions with the new boundary conditions.

We also want to be sure that the value of the step scaling parameter s does
not have an effect on the preferred values of angles η and ρ. Thus we have also
done similar contour plots for a range of s values. These are presented in figure
3.8. These figures clearly show that the convergence of the step scaling as a
function of η and ρ does not depend on s.
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Figure 3.8: Convergence of |δ1− 1| as a function of η/π and ρ/π for SU(2) with
adjoint fermions at L = 6 with s = 2, 8/3, 10/3, 4.

We have also plotted δ1 with old and new boundary conditions for SU(2) and
SU(3) with adjoint and SU(3) with sextet fermions for s = 2, 3, 4 as a function
of a/L to see how the convergence is affected by the change of s. These are
presented in figures 3.9, 3.10 and 3.11. All of these figures have the same quali-
tative behavior. While the convergence does improve slightly as s is increased,
the change is still quite small and not enough to cure the higher order lattice
effects present in the step scaling functions with the old boundary conditions.
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Figure 3.9: Fermionic parts of the Lattice step scaling function for SU(2) adjoint
with old (left) and new (right) boundary conditions for s = 2, 3, 4.
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Figure 3.10: Fermionic parts of the Lattice step scaling function for SU(3) ad-
joint with old (left) and new (right) boundary conditions for s = 2, 3, 4.
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Figure 3.11: Fermionic parts of the Lattice step scaling function for SU(3) sextet
with old (left) and new (right) boundary conditions for s = 2, 3, 4.

3.4 Fundamental representation

We wanted to check that the same phenomenon also occurs with the fundamental
representation fermions. It turns out that this is true, as can be seen from figure
3.12. Thus the standard boundary conditions are selected so that the higher
order lattice artifacts cancel.
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4
.

3.5 Gauge sector

One has to keep in mind that changing the boundary conditions could in prin-
ciple also affect the convergence of the gauge part of the step scaling function.
This also happens to be true, but fortunately the effects are roughly one hun-
dred times smaller. Thus one can freely choose the boundary conditions that
are optimal for the fermionic part without compromising the convergence of the
step scaling function.
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Figure 3.13: Convergence of |δ0 − 1| as a function of η/π and ρ/π for SU(2) at
L = 10.

In fact for the gauge part of SU(2) the convergence is even faster if one uses
the new boundary conditions that are optimized for the adjoint fermions. This
can be seen from figure 3.14 where δ0 is plotted as a function of a/L with old
and new boundary conditions.
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Chapter 4

Lattice simulations of SU(2)
gauge theory with NF = 4, 6 and
10

In this chapter we will go through the simulation methods used in [III] and the
main results for the SU(2) simulations with 4, 6 and 10 fermions.

4.1 Preliminaries

We are interested in the scaling properties of the coupling constant and the
possible existence of a nontrivial IRFP as well as the anomalous dimension of the
mass operator at the fixed point. We use the Schrödinger functional introduced
in section 2.2 to carry out the necessary measurements.

Evolution of the coupling can easily be quantified with the step scaling func-
tion from equation (3.2). The step scaling function can be related to the beta
function via

−2 ln(s) =

σ(u,s)∫
u

dx√
xβ(
√
x)
. (4.1)

Near the fixed point β-function is small and (4.1) can be approximated with

β(g) ≈ g

2 ln(2)

(
1− σ(g2, s)

g2

)
. (4.2)

We also measured the mass anomalous dimension γ = −d lnmq/d lnµ of the
NF = 6 theory using the pseudoscalar density renormalization constant which is
defined as

ZP (L) =

√
3f1

fP (L/2)
, (4.3)
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where

f1 = − 1

12L6

∫
d3ud3vd3yd3z〈ζ̄ ′(u)γ5λ

aζ ′(v)ζ̄(y)γ5λ
aζ(z)〉, (4.4)

fP (x0) = − 1

12L6

∫
d3yd3z〈ψ̄(x0)γ5λ

aψ(x0)ζ̄(y)γ5λ
aζ(z)〉, (4.5)

are correlation functions of the pseudoscalar density. Here sources ζ and ζ ′ are
located at the t = 0 and t = L boundaries, respectively. For these measurements
the boundary matrices at t = 0 and t = L were set to unity. The mass step
scaling function is then defined as [67]:

ΣP (u, s, L/a) =
ZP (g0, sL/a)

ZP (g0, L/a)

∣∣∣∣
g2(g0,L/a)=u

, (4.6)

σP (u, s) = lim
a/L→0

ΣP (u, s, L/a), (4.7)

and we chose again s = 2. We found the continuum step scaling function σP by
measuring ΣP at L/a = 6 and 10, and doing a quadratic extrapolation. It can
be related to the anomalous dimension of the mass operator by [68]

σP (u, s) =

(
u

σ(u, s)

)−d0/(2b0)

exp


√
σ(u,s)∫
√
u

dx

(
γ(x)

β(x)
− d0

b0x

) , (4.8)

where b0 = β0/(16π2) in terms of the one-loop coefficient β0 of the beta function
and d0 = −8/(16π2) is the corresponding one-loop coefficient for the anomalous
dimension γ = d0g

2. This can be approximated at the fixed point with

γ∗(g2) =
σP (g2, s)

log(s)
. (4.9)

We set the improvement coefficient csw to its perturbative value [56] csw =
1 + 0.1551(1)g2

0 + O(g4
0). To make sure that the perturbative value of csw is

close to the non-perturbative one, we measured csw using techniques from [I].
We also included the perturbative improvement at the Schrödinger functional
boundaries, which was discussed in chapter 2

4.2 Measurements

The zero mass limit was determined by measuring the κc = 1/(8 + 2m0,c) for all
the used values of β via the PCAC relation using lattice size 164. The measured
values of κc, given in table 4.1, were then used for all lattice sizes. In practice
we achieved |aM | < 0.01.
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NF = 4 NF = 6 NF = 10
βL κc Ntraj βL κc Ntraj βL κc Ntraj

1.8 0.14162 108755 1.39 0.144351377 215119 1 0.14199 216356
1.9 0.139914 89064 1.4 0.139914 221273 1.3 0.13922 232495
2 0.138638 55031 1.44 0.14350583 209124 1.5 0.13762 100476
2.2 0.136636 13294 1.5 0.142446 233273 1.7 0.13627 99792
2.4 0.135205 23359 1.8 0.1385229 25886 2 0.13466 213290
3 0.132548 64035 2 0.1367336 54710 3 0.13146 99918
4 0.130326 58879 2.4 0.1342875 33818 4 0.12981 100328

3 0.132115 41221 6 0.1282 98042
4 0.13014328 47419 8 0.12739 99255
5 0.1290368 41440
8 0.1274578 7116

Table 4.1: Parameter κ used in the simulations at each βL = 4/g2
0 and the

number of measurements performed on the largest lattice.

βL L/a = 6 L/a = 8 L/a = 12 L/a = 16
4 1.2394(18) 1.263(3) 1.300(3) 1.32(1)
3 1.832(5) 1.882(5) 1.971(18) 2.02(2)
2.4 2.629(7) 2.767(15) 2.94(2) 3.17(4)
2.2 3.113(7) 3.29(2) 3.58(3) 3.88(9)
2 3.93(2) 4.24(3) 4.77(8) 5.18(11)
1.9 4.65(2) 4.95(5) 5.48(7) 6.9(3)
1.8 5.78(4) 6.43(7) 8.15(17) 9.0(5)

Table 4.2: The measured values of g2 at each βL = 4/g2
0 and L/a with 4 flavors

of fermions.

βL L/a = 6 L/a = 8 L/a = 10 L/a = 12 L/a = 16
8 0.5207(8) 0.5222(9) 0.5274(13) 0.528(4)
5 0.8585(15) 0.868(3) 0.875(3) 0.889(4)
4 1.095(3) 1.109(2) 1.112(4) 1.122(8) 1.135(7)
3 1.535(8) 1.555(10) 1.587(10) 1.623(15)
2.4 2.030(8) 2.087(16) 2.19(3) 2.25(4)
2 2.655(15) 2.84(6) 2.76(3) 2.95(5) 3.1(2)
1.8 3.25(3) 3.33(4) 3.45(5) 3.47(4) 3.57(11)
1.5 5.40(6) 5.59(6) 5.57(11) 5.75(11) 6.12(13)
1.44 7.21(10) 7.11(15) 7.2(3) 7.3(3) 7.5(2)
1.4 9.74(13) 9.82(13) 10.2(3) 9.8(3) 10.4(4)
1.39 11.48(16) 13.4(3) 13.5(6) 13.5(8)

Table 4.3: The measured values of g2 at each βL and L/a with 6 flavors of
fermions.
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βL L/a = 6 L/a = 8 L/a = 12 L/a = 16
8 0.4700(2) 0.4706(4) 0.4705(5) 0.4707(10)
6 0.6148(3) 0.6159(5) 0.6180(9) 0.6181(19)
4 0.8897(9) 0.8897(13) 0.895(4) 0.895(3)
3 1.1528(16) 1.156(3) 1.150(2) 1.146(4)
2 1.651(4) 1.653(5) 1.637(6) 1.624(13)
1.7 1.924(4) 1.907(5) 1.905(11) 1.896(13)
1.5 2.183(3) 2.137(7) 2.116(11) 2.10(2)
1.3 2.542(8) 2.473(9) 2.382(11) 2.37(2)
1 4.03(2) 3.55(2) 3.23(3) 3.09(4)

Table 4.4: The measured values of g2 at each βL and L/a with 10 flavors of
fermions.
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Figure 4.1: The measured values of g2(g2
0, L/a) against a/L with 4 and 6 fla-

vors of fermions. The black dashed line gives an example of the running in
2-loop perturbation theory at modest coupling, normalised so that it matches
the measurement at L/a = 6.
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Figure 4.2: The measured values of g2(g2
0, L/a) against a/L with 10 flavors of

fermions. The black dashed line gives an example of the running in 2-loop
perturbation theory.

The running coupling g was measured for a range in βL using lattice sizes1

64, 84, 124 and 164. These results are shown in tables 4.2, 4.3 and 4.4. We have
also plotted the measured values of g2 as a function of a/L in figures 4.1 and
4.2. The measured values of g2 were then used to find an interpolating function
in g0 of the form

1

g2(g2
0, L/a)

=
1

g2
0

[
1 +

∑n
i=1 aig

2i
0

1 +
∑m

i=1 big
2i
0

]
. (4.10)

For 4 and 6 fermions the number of terms were chosen to be n = m = 2 and for
10 fermions n = 1 and m = 2.2 The stability of the fits was checked by varying
n or m. The interpolating function was used to find the step scaling function
for L/a = 6, 8, and the continuum limit was extracted using

Σ(u, 2, L/a) = σ(u, 2) + c (L/a)2 . (4.11)

Because of the improved action we expect the O(a) terms to be subleading.
Unfortunately, with only two points in the extrapolation, it was not possible to
verify the accuracy of the extrapolation quantitatively.

The anomalous dimension of the mass operator was determined for the NF =
6 theory similarly. The pseudoscalar density renormalization constant ZP was
measured for a range in β and L/a. The values are presented in table 4.5.

1For NF = 6 the coupling was also measured with 104 lattice. This data was used in the
measurement of γ

2For NF = 10 choosing n = 2 produces a singularity within the fitting range, which is not
acceptable.
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βL L/a = 6 L/a = 8 L/a = 10 L/a = 12 L/a = 16 L/a = 20
2.4 0.9666(8) 0.9353(9) 0.9171(19) 0.9014(19) 0.8870(15) 0.865(4)
2 0.8953(10) 0.857(3) 0.838(2) 0.823(3) 0.793(4) 0.766(6)
1.5 0.702(4) 0.669(3) 0.646(4) 0.618(6) 0.586(5) 0.573(6)
1.44 0.636(3) 0.610(3) 0.588(4) 0.572(4) 0.548(4) 0.517(6)
1.4 0.543(5) 0.547(5) 0.539(5) 0.534(5) 0.508(6) 0.480(8)
1.39 0.508(5) 0.515(7) 0.520(6) 0.517(6) 0.488(8) 0.476(9)

Table 4.5: The measured values of ZP at each βL and L with 6 flavors of fermions.
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Figure 4.3: The mass step scaling function extrapolated to the continuum limit,
using Nf = 6 data and shown for three chosen values of g2.

The data was used to find an interpolating function of the form

ZP (β, L/a) =
n∑
i=0

ci

(
1

β

)i
(4.12)

with c0 = 1, where we have truncated the series at n = 4. From the interpolated
Zp(βL, L/a) we obtained the mass step scaling function ΣP (u, s, L/a) at L/a =
6, 8 and 10 using (4.6), using u = g2 from rational fit (4.10). The continuum
extrapolation was then done by fitting to the extrapolating function

ΣP (u, 2, L/a) = σP (u, 2) + c(u) (L/a)−2 . (4.13)

The fit is shown in figure 4.3. Step scaling function was converted to the estimate
of the anomalous dimension using (4.9), and the results are shown in figure 4.4.

The mass anomalous dimension we measured is somewhat smaller than the
perturbative one at strong coupling. It remains small at all measured values of
the coupling, and if there is a fixed point at g2 >∼ 12, the anomalous dimension
is >∼ 0.25.
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4.3 Results
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Figure 4.5: (colour online) The scaled step scaling function σ(g2, 2)/g2 with 4
fermions. The thick red line corresponds to the continuum extrapolation (4.11),
and the hashed band to the statistical errors of the extrapolation. The thick
dashed line with the shaded error band is the largest volume step scaling function
without extrapolation. The thin dashed line is the 2-loop perturbative value of
σ(g2, 2)/g2.
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Figure 4.6: As in figure 4.5 but with 6 fermion flavors.
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Figure 4.7: As in figure 4.5 but with 10 fermion flavors.

In figures 4.5, 4.6 and 4.7 we show the step scaling functions. In the NF = 10
theory the evolution of the coupling is extremely slow, and our results basically
agree with this at g2 <∼ 2.5: the step scaling practically vanishes in this range.
In this case we expect the two-loop perturbative step scaling function to be
fairly accurate, and from figure 4.7 we see that the errors should be an order of
magnitude smaller in order to resolve it. At stronger coupling the measured step
scaling deviates significantly from zero to negative values. Combined with the
analytically known weak coupling behavior, this indicates that the β-function
must have a fixed point somewhere in this range. However, we believe that a
large fraction of the observed deviation from the perturbative step scaling at
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strong coupling arises from the results at our strongest lattice coupling βL =
4/g2

0 = 1. This point deviates clearly from the rest of the simulation points,
possibly indicating stronger cutoff effects.

Our simulations verify that the SU(2) gauge theory with 6 flavors of funda-
mental representation fermions is indeed close to the lower edge of the conformal
window. Unfortunately, the possible fixed point in this theory is at such a strong
coupling that we were not able to fully resolve the behavior: the results are com-
patible either with a fixed point at g2 >∼ 12 or with a “walking” behavior where
the β-function almost vanishes. The value of the fixed point coupling is nat-
urally scheme dependent; this value is for the Schrödinger functional scheme.
Resolving this question requires simulations with an action that can be used at
stronger lattice couplings.
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Chapter 5

Summary and outlook

The masses of the weak gauge bosons and fermions are included to the SM via
the Higgs mechanism. However, the mathematical formulation of a fundamental
scalar field, such as the Higgs field, suffers from naturality- and fine tuning
problems. These can be overcome if the the Higgs sector of SM is replaced with
a new strongly interacting gauge sector. As a consequence, the Higgs boson is
a composite object of two fermionic fields. This is the basic idea of TC.

For TC to agree with the experimental data, the theory has to be nearly con-
formal and the anomalous dimension of the mass operator has to be of the order
one. This motivates the search for a gauge field theory with these properties.
Because we are studying strongly interacting field theories, the only reliable tool
is lattice simulations.

The Wilson action and the Schrödinger functional provide a well established
method of measuring the scale dependence of the coupling constant on the lat-
tice. This has previously been used for SU(2) and SU(3) gauge theories with fun-
damental representation fermions. As we have shown, the Wilson fermions and
the Schrödinger functional boundary conditions will introduce O(a) errors to the
lattice action. These must be removed with proper counter terms for which cor-
responding coefficients must be determined perturbatively or non-perturbatively
in order to cancel the unwanted effects. In this thesis we have calculated the
previously unknown necessary improvement coefficients for higher representation
fermions in SU(2) and SU(3).

The higher representation fermions will also introduce large O(a2) errors to
the perturbative step scaling function, the lattice equivalent of the β-function.
These effects are absent if one uses fundamental representation fermions. We
have shown that these effects can be removed with a careful choice of the
Schrödinger functional boundary conditions, and provided suitable boundary
fields for different representations of SU(2) and SU(3). This method, however,
tends to reduce the signal from the coupling measurement.

We applied these methods to SU(2) gauge theory with 4, 6 and 10 funda-
mental fermions. We found that NF = 4 theory is QCD like, as is expected
from the perturbative calculations. NF = 6 theory shows possible evidence of
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an IRFP, but we were unable to simulate with sufficiently large lattice couplings
to verify this. With NF = 10, our data is compatible with an IRFP. We also
measured the anomalous dimension of the mass operator for the NF = 6 theory
and found it to be γ∗ ≈ 0.25 at the possible fixed point around g2 ≈ 12.

The research done for this thesis continues. There is still work to do with
the improvement coefficients and boundary conditions for different gauge groups
and representations, such as SU(4). It has also be shown in [59] that the problem
with O(a2) terms in step scaling function can also be overcome with redefinition
of the gauge coupling. A mixture of optimally defined coupling and boundary
conditions might even boost the signal for the coupling measurements, thus
improving the quality of the results remarkably.

These methods should then be applied to different theories within the con-
formal window to find viable candidates for walking TC. Simulations at finite
temperature could also give us more insight to the nature of these theories.
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