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ABSTRACT 
How do people interact with computers? This fundamental question 
was asked by Card, Moran, and Newell in 1983 with a proposition 
to frame it as a question about human cognition – in other words, 
as a matter of how information is processed in the mind. Recently, 
the question has been reframed as one of adaptation: how do people 
adapt their interaction to the limits imposed by cognition, device 
design, and environment? The paper synthesizes advances toward 
an answer within the theoretical framework of computational ra-
tionality. The core assumption is that users act in accordance with 
what is best for them, given the limits imposed by their cognitive 
architecture and their experience of the task environment. This 
theory can be expressed in computational models that explain and 
predict interaction. The paper reviews the theoretical commitments 
and emerging applications in HCI, and it concludes by outlining a 
research agenda for future work. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and 
models; User models. 
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1 INTRODUCTION 
This paper contributes to theories of the cognitive basis of human– 
computer interaction (HCI). It does so through the lens of cognitive 
science, which has been central to answering questions pertaining 
to information navigation, multitasking, visualization, and input 
device design, among other matters. Rather than seek to answer 
each of these questions separately, HCI has searched for general 
theories of cognition and its environment. Particularly infuential 
have been cognitive architectures [3, 19], which have contributed to 
theories of information foraging [95], dual task performance [15], 
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menu selection [16], distraction [104], and visual search [67]. Such 
theories, while abstractions, are central to the practical aims of 
HCI and have made contributions to computational design [38, 87], 
human factors [126], design practice [96], and design education 
[84]. Recently, human–AI cooperation has added another area in 
which there is a need for theories of cognition [25, 46, 53]. 

The theory presented in this paper has grown out of difculties 
experienced by the authors, cognitive scientists by training, in 
applying cognitive architectures. We repeatedly faced the issue 
that each model needs the modeler to hypothesize how the task is 
completed, and to code this knowledge as production rules. In other 
words, the modeler must specify a “recipe”, a rule set that specifes 
the user’s procedural skill. Writing these rules is challenging, in part 
because users are clever at generating unexpected strategies that are 
hard to identify. This difculty stems from the fact that architectures 
such as EPIC [66] and ACT-R [3] admit a very large space of possible 
strategies. They are not sufciently constrained for ascertaining 
which strategies users will actually choose. Moreover, rule systems 
are brittle. They must be updated if the design or environment 
changes, and a diferent rule set is needed for each type of user, 
limiting applications for design and intelligent interfaces. 

These issues have recently been addressed by a new class of 
theories in eforts to explain why people choose some strategies in 
interaction and not others [1, 22–24, 56, 59, 61, 63, 91]. Consider, 
for example, explaining why people make certain text-entry errors 
rather than others, why they tend to skim rather than read web 
pages, and why they sometimes require hundreds of eye movements 
to interpret a visualization but at other times only a few. These new 
theories, known as computationally rational theories, explain how 
observable interaction is a consequence of adaptation to constraints 
(bounds) imposed by cognition and environment. 

This paper provides a novel synthesis of computational rational-
ity as a theoretical framework. It brings the familiar idea of cog-
nitive architectures together with the idea of bounded optimality 
[13, 74, 102, 103], rooted in machine learning. While computational 
rationality, as defned by Lewis et al. [74], was identifed as one 
of the foundational concepts of interaction [52], it has not been 
reviewed from an HCI perspective. The key idea of the theory is 
that interactive behavior emerges as a consequence of a control 
policy that is optimally adapted to subjective preferences and to 
bounds, where the preferences include perceived gains and costs, 
among them the costs of error, and the bounds are imposed by 
both an internal environment (the mind) and an external environ-
ment (including a device). Various sources of internal and external 
bounds are illustrated in Figure 1. The bounds limit human infor-
mation processing – that is, they limit the space of computable 
strategies available for interaction. We develop the argument that 
the control policy that is adapted to these bounds interacts with the 
external environment not directly but only via its own internal, or 
cognitive, environment. Under this view, design does not directly 
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determine behavior but, rather, modifes the external environment 
of the user and thereby infuences the actions that a rational user 
will take. Design can change the perceived rewards/costs and the 
perceived availability of actions. What we call “interaction,” then, 
is an emergent consequence of how people choose to behave when 
constrained by preferences, bounds, and environment. The view is 
called “computational rationality” because the control policy used 
to predict interaction is the “rational” (or optimal) policy within 
the limits imposed by the computations available to the mind. 

As with most HCI analyses, practical applications of computa-
tional rationality start by determining the problem that the user 
faces. A computationally rational analysis is unlike architecture-
based theories, however, in that it does not proceed through the 
analyst conducting a hierarchical decomposition of the procedural 
knowledge requirements for the task. Instead, sequential decision 
theory provides a rigorous formalism for representing the problem, 
including goals, and the known bounds. A solution (strategy or pol-
icy) for the resulting decision problem can then be approximated 
via reinforcement learning, which yields verifable predictions of 
a user’s behavior in that situation. Although machine learning is 
used to make predictions, the goal of modeling in HCI is to explain 
how people interact with designed systems embedded in real world 
environments; a very diferent goal to the goals of AI research. 

A key practical implication for HCI is that the modeler need 
not – indeed must not – specify how a task should be done; rather, 
reinforcement learning (RL), or some other means of generating 
approximately optimal policies, is used to derive a policy. Decision 

Figure 1: Computationally rational theories assume that 
users choose behaviors that maximize expected utility, 
given their bounds. Internal bounds are imposed by cogni-
tion and the body and external bounds by the physical envi-
ronment. Navigating a scooter with a mobile map involves 
a range of bounds. The phone holder is too low to permit 
efective use of peripheral vision for collision avoidance, so 
the rider holds the device with a hand that should be on the 
handlebars. During attending to the device, the user’s uncer-
tainty about the position of the scooter in the lane grows, in-
creasing accident risk. The theory seeks to predict the user’s 
policy, or how the user would, in such situation, control lo-
comotion, deploy gaze, and shift the hands. 

theoretic formalisms – for example, partially observable Markov 
decision processes, or POMDPs, which we recruit as a key formal-
ism for this paper – can be used to specify computationally rational 
theories, and RL methods can be used to solve them. POMDPs pro-
vide a general framework for modeling decision processes that are 
sequential; that is, several steps must be taken to reach a goal or 
reward, and each step is dependent on the previous state. A key 
assumption is that the agent cannot directly observe the underlying 
state of the world. Rather, it must build a representation of the 
state through observations of small parts of the world (e.g., a single 
icon) and its actions (e.g., eye movements) – an assumption that 
is consistent with the HCI setting. Thus, the informal notions of 
“cognitive strategy” and “heuristic” can be replaced with the formal 
notion of policy from RL. Moreover, goals can be specifed not only 
as end states but as cumulative reward maximization. 

This account is infuenced by both cognitive science and ma-
chine learning. It draws from cognitive science accounts of the 
processing limits on what people can do. It takes three things from 
machine learning: (1) a formal defnition of what it means to be 
computationally rational [74], (2) a way to rigorously specify the 
user’s problem in interaction (the POMDP), and (3) deep RL al-
gorithms for fnding solutions to these problems. In contrast to 
cognitive architectures, computational rationality provides neither 
a “programming language of the mind” nor scientifc hypotheses 
about the strategies that people use to interact with computers; 
rather, it makes hypotheses regarding goals and processing limits, 
after which it predicts strategies, using approximate optimization 
methods like RL. It therefore avoids the parametric hyper-fexibility 
that comes with programmed rule systems. 

Why should HCI bother with computational rationality? As 
we argue in the next section, interaction is acutely sensitive to 
design. User models that assume fxed strategies fail to discriminate 
between designs. Also, awareness of adaptation is a prerequisite 
for explaining user behavior. An answer to the question ”why do 
people behave like that when given this design?” can be calculated 
from the person?s goals and bounds. Computational rationality is 
positioned as a theory focused on the latent causes of user behavior 
[89], which can be used for inference and prediction. 

In summary, this paper makes four contributions toward clarify-
ing computational rationality as a theory of HCI: 

(1) It develops the argument that human adaptation is of gen-
eral interest to the HCI feld. We review evidence for this 
claim (Section 2), and, in Section 3, we provide a synthesis 
of theoretical assumptions to explain those phenomena. 

(2) It provides a unifed framework for defning a broad range 
of computationally rational models, focusing on the problem 
of integrating cognitive bounds into RL-based models of 
interaction (Section 4). This approach is contrasted to the 
standard approach in machine learning. 

(3) It provides the frst literature review covering model imple-
mentations in the area of HCI (Section 5). 

(4) It presents an analysis of how computational rationality 
can help algorithms better make sense of human behavior 
(“why?”) and drive counterfactual reasoning (“what if. . . ?”) 
in HCI, especially in design and adaptation (Section 6). 

We end with discussion of a research agenda. 
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2 ADAPTATION PHENOMENA: WHAT NEEDS 
TO BE EXPLAINED? 

Computational rationality is a theory of interaction as adaptation 
to bounds, but what are the observable phenomena that constitute 
adaptation in HCI? To answer this question, we ask why people 
adapt to the types of bounds that are implicated in a wide range 
of problems faced in computer use. While our list of phenomena is 
unlikely to be defnitive, we have cast the net widely. One overarch-
ing theme is related to individuals’ diferences. People are observed 
to vary in personality attributes, in preferences, and in cognitive 
abilities [2, 5, 34, 77, 82, 90, 123]. For example, individual-specifc 
diferences are reported in strategies for multimodal interaction, 
with some people preferring to do one thing at a time (e.g., speak 
and then point) while others make use of some overlap [90]. Theo-
ries of adaptation must be capable of explaining why such diversity 
arises, not just describing how. 

2.1 Adaptation to memory limits 
Human memory – working memory, semantic memory, episodic 
memory, etc. – imposes signifcant bounds on how people adapt to 
interactive tasks. Much of what we see in the design of interaction 
is, in part, a response to the properties of human memory. One of 
the benefts of menus and icons, for example, is that they support 
recognition memory and do not demand that commands be recalled, 
the latter being much less reliable. However, humans are not merely 
victims of limited memory. Instead, people adapt how they perform 
tasks to be compliant with their particular memory limits. Consider, 
for example, data-entry tasks, such as copying a phone number from 
paper to a smartphone. When performing this task, people choose 
to break it up into manageable chunks. Smaller chunks will lead to 
lower probability of error but take longer since there are additional 
costs of switching back and forth between paper and phone. People 
tend to break the task up into chunks of 2, 3, or 4 digits, with most 
people being capable of using any of these distinct chunk sizes 
if pressed, but why do some people prefer one chunk size over 
another when given the choice? The answer is that individuals tend 
to choose a chunk size that makes the best use of their memory, 
given the task’s demands for speed and accuracy [54]. Phenomena 
such as this must be explained by cognitive theories of HCI. 

2.2 Adaptation to perceptual bounds 
There are multiple limits imposed by the human visual system that 
are important in HCI [124]. For example, within 2.5 degrees of 
eccentricity from the center of the fovea, visual acuity falls by 50% 
[68]. The user must actively gather information with multiple eye 
movements, building up a “picture” of the world while doing so. 
There is evidence that these eye movements are adapted to the 
perceptual properties of each individual’s own pattern of retinal 
cones and rods [41] as well as to expected information gain [83]. 
Further, a combination of peripheral vision and foveated vision is 
known to be crucial to visual search tasks [67], wherein people 
adapt to the various visual acuity profles provided by the color, 
shape, and size of a target. For example, because shape information 
is the most difcult to perceive in peripheral vision, people are 
less likely to choose to use it to guide search than color or size. 

Cognitive theories in HCI must explain how perceptual bounds, 
such as those of vision, shape interactive behavior. 

2.3 Adaptation to motor bounds 
Aimed movement is a ubiquitous task in HCI [78]. Because hu-
man movements are noisy, an initial aimed movement can end 
up missing the intended target. This may result in a secondary 
(corrective) movement or, sometimes, in the user selecting an in-
correct button that is adjacent to the target, which can be costly. 
In a series of studies of ballistic movements toward a fat surface, 
it was shown that people adapt aimed movement to the amount 
of motor noise in their own particular motor system and to the 
cost of potential errors [119, 120]. Movements are so noisy that, 
more often than not, people use multiple submovements in order 
to make aimed movements. There is evidence suggesting that this 
multiple-submovement strategy is an optimal adaptation to tasks of 
non-ballistic aimed movement across a fat surface [80]. Evidence of 
the planned nature of multiple submovements comes in the obser-
vation that people systematically undershoot a target, presumably 
in an efort to minimize total movement time amid uncertainty 
[35, 49, 50]. 

When performing a motor task, a person can choose to do it 
quickly and less accurately or slowly and more accurately. In one 
study of speed–accuracy tradeofs [125], participants were asked 
to perform a pointing task in conditions that difered in instruction. 
They were asked to be extremely accurate, accurate, neutral, fast, or 
extremely fast. Perhaps it is no great surprise that people followed 
the instructions, but nonetheless a quantitative relationship was 
observed between speed and accuracy. Others have shown that 
people can optimize externally imposed speed/accuracy tradeofs 
[55, 122]. 

While HCI researchers are accustomed to thinking about how 
long it takes a user to point to a target in terms of Fitts’s law [78], 
it does not explain the adaptation of movement time to bounds. 
Movement times increase as target size decreases, for example, 
because the efect of perceptual/motor noise is increased, yet Fitts’s 
law does not have a term for noise in its formulation. Users not only 
take more time as the size and distance of the target increase but 
fundamentally change how they perform the task. For example, the 
onset latency of hand and eye movements, along with the interval 
between them, systematically adapts as the task characteristics 
change [9]. Such strategies are an adaptive response to noise. This 
limitation is important for practice. To expand the scope of design 
decisions beyond target size and width, we need to include strategic 
adaptations in models of aimed movement. 

2.4 Adaptation to the environment 
Studies of HCI have revealed a range of ways in which interaction 
adapts to the environment [51, 106]. For example, to maintain sit-
uation awareness while looking at a phone screen, some drivers 
hold the phone at the top of the steering wheel, some adjust the 
position of the car in trafc in an efort to enhance safety, and some 
initiate phone calls at times of low workload (such as at trafc 
lights) [36]. Adaptations while one is driving also involve interleav-
ing secondary task performance at task boundaries [15]. The point 
here is that people actively adapt to changes in the environment; if 
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higher uncertainty increases the error rate, then people change the 
way they perform the task in order to compensate the best they 
can. 

Adaptation to ecology. While HCI researchers often foreground 
the immediate features of the context, they sometimes forget the 
shaping efect of the user’s previous experience [92]. Evidence for 
this has been instrumental in establishing the “rational” view of 
human cognition [3, 85]. Human memory is shaped too by the ex-
pected distribution of future memory demands [107]. For example, 
users in HCI are more likely to remember passwords that they are 
likely to need [39]. Users also leave a web site if the expected bene-
fts of continuing are outweighed by those of going elsewhere, and 
this tradeof is tuned to the environmental likelihoods [95]. Further, 
users adapt the rate at which they enter text into a computer or 
mobile device to various factors, including the probability of error 
[97]. One of the elements they adjust is the frequency with which 
they check for errors in data-entry and thumb-typing tasks that 
require splitting visual attention across the data, keyboard, and 
feedback [59, 111]. Users have also been shown to allocate time 
adaptively across multiple documents, “skimming” the documents 
so as to fnd the most valuable information [99]. Similarly, people 
devote more time to the beginning of a paragraph than to its middle 
or end, and more time to the beginning of a document than its 
end. These behaviors suggest that information-seeking strategies 
adapt to the diminishing returns associated with reading beyond 
the earlier portions of text [33]. 

2.5 Summary 
Our contention is that all of the diverse phenomena described in 
this section are explained by a simple principle of adaptation called 
computational rationality. In the following sections, we describe 
this theory and explore the progress that has been made in applying 
it to HCI. 

3 THEORETICAL COMMITMENTS 
While the theoretical framework has been presented already as a tu-
ple defning an optimization problem [74], here we take a diferent 
approach, preferring instead to describe a typical control loop in 
HCI that conforms to the tuple. Figure 2 illustrates the theoretical 
framework in terms of a closed-loop control process, presenting a 
comparison to how this structure is commonly used in AI research 
where the goal is not to predict human behavior. Our presentation 
is infuenced by recent contributions to cognitive science that em-
phasize the adaptive nature of human cognition, perception, and 
motor control [18, 27–29, 47, 48, 56, 75, 76]. 

In many uses of this formalism (POMDPs) in machine learning, 
an agent interacts with an external environment. In contrast, in 
computationally rational models, an agent interacts with an internal 
environment via observations and actions, and it interacts with 
a yoked external environment via stimuli and responses. To our 
knowledge, the frst extension of POMDPs to agents with internal 
environments was proposed by Barto et al. [8] and later Singh 
and colleagues [110]; however, the frst applications in HCI only 
emerged a decade later (see Section 5). Central to this development 
has been understanding how to model human-like bounds via a 
POMDP. 

In computationally rational theories of interaction, the state of 
the external environment – which is external to the agent’s body 
– is perceptible via stimuli that result in percepts in the internal 
environment. The agent observes its own internal environment, 
including percepts, and is presented with the resulting (partial) 
observations, along with (subjective) rewards. The agent learns a 
reward-maximizing policy from experience. Experience consists of 
repeated episodes of observation, reward, and action. The resulting 
policy is responsible for determining (internal) actions. Some ac-
tions (but not all) lead to responses that change the external state 
and generate further stimuli. 

With this framework, interaction can be explained as the behav-
ioral consequence of a control policy adapted to partial observations 
and subjective rewards in a contextually specifc environment. Un-
derpinning this control process is a set of theoretical commitments, 
which we elaborate on in the subsections below: 

(1) An agent solves bounded optimality problems defned by its 
internal environment. 

(2) The internal environment represents mental states and im-
poses individually determined bounds on adaptation. 

(3) The external environment includes not only a device design 
but also its spatially and temporally extended context of use 
(ecology). 

(4) Interaction between internal and external environments is 
itself a source of bounds on adaptation. 

(5) Human preferences and goals are represented with a subjec-
tive reward function that takes as input the internal state of 
the agent. 

3.1 Agent 
An agent chooses actions on the basis of its observations. In com-
putational rationality, it does so by solving bounded optimality 
problems (Commitment 1). The agent adapts by learning a policy 
that is optimal with respect to problems defned through its ob-
servations, rewards, and actions. The idea is illustrated in Figure 
3. 

While optimality assumptions are controversial in cognitive 
science [98], computational rationality is supported by evidence 
that when one accounts for the bounds imposed on the agent by the 
internal and external environments, the resulting bounded optimal 
policy closely models human behavior [6, 17, 23, 41, 43, 48, 56, 57, 
64, 69, 79, 85, 116]. A computationally rational theory is a theory 
of the bounds on adaptation and not the processes by which the 
policy is achieved. 

3.2 Policy 
An optimal policy is what determines the selection of actions. It is 
the agent’s solution to the bounded optimization problem. The con-
cept comes from reinforcement learning [115]. In contrast against 
a cognitive architecture model, the policy is not programmed by 
a researcher but acquired through experience. Further, a policy is 
sequential in the sense that it is conditioned on the latest observa-
tions. It determines how interaction will unfold. A single policy 
may give rise to a range of strategic behaviors. 
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(a) A POMDP interacting directly with an external environment (b) A computationally rational POMDP agent mediated by its internal 
environment 

Figure 2: Computationally rational models can be specifed through POMDPs, a formalism for describing sequential decision 
problems under partial observability; POMDPs explain interactive behavior as a consequence of a policy that is optimally 
adapted to observations and reward. (a) In machine learning, POMDPs often assume that agents operate directly with external 
environments. (b) A computationally rational theory uses POMDPs in which the agent does not operate directly with the 
external environment, doing so only via its internal environment (mental states). 

3.3 Internal environment 
The internal environment is a theory of the cognitive states on 
which the agent’s policy can be conditioned – as well as the state’s 
dynamics. The primary determinant of the internal environment’s 
state is the percepts constructed from stimuli, but, in addition, the 
state can include psychological constructs such as memory, emo-
tion, or stress. Capacity limits, among them memory capacities, are 
an important feature of the internal environment. Moreover, they 
are individuated, with each person being subject to an individual-
specifc profle of bounds. This leads to Commitment 2. 

In addition, it is assumed that the internal environment is (1) sto-
chastic in that successor states are probabilistically determined. It 
is also (2) partially observable, because its true state is not available 
to the agent. Rather, the agent must make repeated (internal) obser-
vations and build an estimate of the internal state. For example, the 
agent may be physically tired but must estimate exactly how tired 
by observing (perhaps repeatedly) its own internal physiology. 

3.4 External environment 
The external environment refers to the physical context of interac-
tion as well as the interactive technologies contained therein. As 
the internal environment is, the external environment is stochastic 
and only partially observable. A sequence of stimuli generated by 
a user’s position with respect to the external environment leads 
to the construction of percepts in the internal environment. While 
many computer applications, most computer games among them, 
are obviously stochastic, also numerous applications that appear 
deterministic are in fact experienced stochastically. Therefore, both 
the particulars of a device design and its temporally and spatially 

extended situation of use contribute to the external environment 
(Commitment 3). 

3.5 Stimulus and response 
The intersection between internal and external environments is an 
important source for bounds (Commitment 4). This is where inter-
action happens. Both the ability to sense the environmental stimuli 
and the ability to actuate responses that manipulate the environ-
ment involve bounds that are important for explaining interaction. 
For instance, the human ability to glean visual information from 
external stimuli is bounded by multiple physiological limitations 
of the human eye. Only a small foveated portion of the full visual 
feld can be seen accurately, and moving this point of fxation takes 
time and contains uncertainty in terms of spatial noise. The ability 
of humans to manipulate the external environment is similarly 
bounded by noisy response functions. Physical limitations dictate 
the movement speed and accuracy of a fnger, with the human 
cognition being required to adapt the tradeof between these to 
serve a particular goal, given the environment. 

3.6 Reward 
The reward function is a theory of subjective utility. It encodes 
whatever is important to the agent: its preferences and goals (Com-
mitment 5) but also the negative rewards associated with states, 
such as fatigue or time cost. While AI researchers often talk about 
external environments as generating rewards, our framework com-
mits to the idea that rewards are a function of internal states [8, 110]. 
External states – for example, the presence of secondary reinforcers 
– may be associated with rewards but are not rewards in and of 
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themselves. The importance of this separation is that it allows for 
modeling individual-to-individual diferences in the weighting of 
factors that contribute to reward (e.g., [40]). Weight coefcients, 
in this sense, defne a control point in a class of subjective reward 
functions that specify the scope of the individual reward functions 
the model allows. 

4 A FORMAL FRAMEWORK FOR THEORIES 
OF INTERACTION 

This section describes a unifed framework for building computa-
tionally rational models of interaction. It formalizes the concepts 
introduced in the previous section and illustrated in Figure 2. Our 
main goal is a fexible and expressive formalization that permits 
the representation of individual preferences, capacity limits, and 
designs and is powerful enough to predict interaction when given 
these bounds. It needs to be expressive enough to account for com-
plex interactive behavior and for individual preferences and capaci-
ties that infuence how users adapt yet also formal enough to permit 
implementation in computational models. While formalization of 
POMDPs is not novel, the goal for this section is to explain how 
it is used to model HCI where internal bounds are central. The 
research surveyed in our literature review (in the next section) can 
be modeled by means of this framework. 

4.1 Interaction as sequential decision-making 
Following work in cognitive science [27, 29], research on compu-
tational rationality in HCI has started to make use of Markovian 
decision problems. A Markovian decision problem describes a se-
quential stochastic process in an environment. The environment is 
in some state, and the probability of it transitioning to another state 
in the next step depends on the current state and selected action. 

Figure 3: Computationally rational theories make predic-
tions about user behavior by considering how behavior 
adapts to both external and internal environment. These to-
gether determine feasible behaviors, and with RL we can es-
timate their associated subjective payofs (rewards vs. costs). 
Adapted from Howes and Lewis [55]. 

Here we describe a problem type that is most similar to a partially 
observable Markov decision problem. 

A POMDP is defned as a tuple in terms of the entities introduced 
in Figure 2. More formally, the POMDP is a tuple < S, A,T , R, Ω, O > 
defning a sequential process that in each time step t is in a state 
st ∈ S , where S is the space of possible environmental states. The 
agent makes an observation ot −1 ∈ Ω, dictated by the observation 
function O . It takes an action at ∈ A, where A is the set of all 
actions available to the agent. The transition functionT (st , at , st +1) 
defnes the probability p (st +1 | st , at ) of the process moving to state 
st +1 after the action has been performed. A scalar reward r ∈ R 
is then signalled to the agent, as defned by the reward function 
R (st , at ) = r . A key commitment in computational rationality is 
that the reward is determined by not the external environment but 
an internal reward-generating process (critic). Depending on the 
application, the reward function can be defned in terms of the new 
state (st +1), an action taken in the current state (st , at ), or the whole 
triple (st , at , st +1). The modeler can choose the states and actions 
at the level of detail relevant for the current analysis. 

The policy determines which actions are chosen, given the most 
recent observation (see Figure 2). Formally, the decision to take an 
action in a given state is defned as a policy π , which, for a history 
of observations or its summary, outputs either a single action a ∈ A 
or a probability distribution over all actions A. 

4.2 Modeling bounds 
Bound is an essential concept in the theory. It refers to anything 
that constrains the performance of an agent relative to an ideal, 
unbounded agent. In practice, bounds are modeled by means of the 
various functions of the POMDP, such as the observation function 
O and the transition function T . While how best to model bounds 
remains an open question, we have identifed four fundamental 
types of bounds used so far: 

Time refers to a duration, the time it takes to carry out an action 
or compute something – e.g., system response times and times 
associated with the user’s information-processing capacities. The 
transition function T is a plausible candidate for modeling such ef-
fects (e.g., [61]). Noise refers to any external input that obscures the 
signal of a channel. The central and peripheral nervous system have 
internal noise. Noise can also have physical origins, caused, for ex-
ample, by physical contact or the biomechanics of the human body 
(e.g., [71]). Noise too can be modeled via the transition function T . 
Uncertainty refers to imperfect knowledge – for example, inability 
to estimate the state of the world or control the outcomes from an 
action. The cause of uncertainty is often something else, such as 
partial observability or noise. Capacity is a maximum level/amount 
allowed by some cognitive faculty, such as working memory. Such 
a capacity limit could be modeled within the transition function T , 
but other options may exist also. 

4.3 Discovering optimal policies 
A boundedly optimal agent does what is best, given its preferences 
and the internal environment. The agent can do this because of 
having found an optimal control policy, which maximizes long-
term expected utility, or cumulative rewards. In computational 



Computational Rationality as a Theory of Interaction CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

rationality, utility is defned as the mapping from a history of events 
to a scalar value, 

U : H → R, (1) 
where H is the set of all possible histories [74]. 

Utility is directly connected to the specifcation of the reward 
function R when the history space is defned as the space of all 
possible state-action trajectories of the POMDP. With a given policy 
π , the utility of an action a ∈ A in a particular state s ∈ S is X 

′ Uπ (s, a) = R (s, a) + γ T (s, a, s ′ ) Uπ (s , a ′ ), (2) 
s ′ ∈S 

where γ ∈ [0, 1] denotes a discount linked to future rewards [101] 
′and a ∈ A is the action taken in the next state. The idea is that the 

utility of an action depends not only on the immediate reward that 
can be obtained by following said action from this state but also 
on the future rewards that one can assume follow when the same 
policy is applied. This is why our scooter driver might fnd the 
optimal task-interleaving policy to be a compromise between the 
two tasks, safe riding and reading the map. The crucial property of 
utility, visible in Eq. 2, is that it involves self-referential or recursive 
operations [10]. To know the utility of the present state, one must 
estimate the utility of future states. 

Reinforcement learning is the problem of learning by interacting 
with the environment [115]. The goal of the learner is to discover 
an optimal policy π ∗ . This is a policy that, given Eq. 2, returns the 
action with the highest expected utility: 

X 
′ Uπ ∗ (s ) = max[R (s, a) + γ T (s, a, s ′ ) Uπ ∗ (s , a ′ )]. (3) 

a
s ′ ∈S 

The details of how optimal policies can be discovered are beyond 
the scope of this paper, since there are multiple RL frameworks 
and algorithms for solving the problem. While RL has been used 
to model interactive behavior in prior HCI work (e.g., [72, 127]), 
the cognitive mechanisms and their bounds have received little 
attention. Instead, behavior has been studied as an emergent con-
sequence of time costs related to actions. The next section reviews 
several research papers at the intersection of computational ratio-
nality and HCI that utilize RL methods in creating models of human 
adaptive behavior in interactive tasks. 

5 PROGRESS IN MODELING INTERACTIVE 
BEHAVIOR: A REVIEW 

In this section, we provide a review of literature addressing recent 
progress in developing and validating computationally rational 
models for HCI tasks. The scope of our literature review is limited 
to papers that model adaptation in an interactive task as an optimal-
policy problem subject to bounds. 

5.1 The literature selected 
With Google Scholar, we used the following set of search terms: 
”model AND adapt AND ("computational rationality" OR "rational 
adaptation" OR "bounded optimality") AND ("interactive task" OR 
"human-computer interaction" OR "HCI")”. The four blocks express 

our scope: the paper must present a model of adaptation that is 
based on the idea of optimal adaptation to bounds, and the context 
must be interaction. Of the 147 results, we excluded master’s and 
PhD theses, public talks, technical and project reports, duplicate 
entries, workshop papers, and books or book chapters that could 
not be accessed online, leaving 86 papers. Out of these, 66 were 
excluded because they did not have an interactive task, did not 
report on a computational model, were review papers, or did not 
model human adaptation. A paper was excluded from the fnal 
set of papers if it did not include a computational mechanism for 
deriving optimal policies. Our fnal list has 15 papers, all of which 
are described below and listed in Table 1. 

The rest of this section is organized into three subsections: the 
frst looks at individual diferences, the second memory limits, and 
the third perceptual-motor bounds. 

5.2 The theme of individuals’ diferences 
Computationally rational theories have explained individual-specifc 
diferences in a number of task contexts. Jokinen et al. [62] explained 
diferences in risky driving behavior as optimal adaptation to noise 
in motor control. Noise was hypothesized to afect not only driver 
actions but also, when they are looking away from the road, dri-
vers’ estimates of car position. The authors succeeded in isolating 
individuals who were at high risk at producing “tail cases”: situa-
tions of extreme and therefore dangerous lane deviations. Sarcar 
et al. [105] modeled the efect of individual-specifc tremor (signal-
independent noise) on touchscreen typing strategies. They used 
an optimizer to fnd out how fnger movements and proofread-
ing frequency adapt to an individual’s tremor level. Combinatorial 
optimization was then used to fnd an optimal text-entry design 
for each individual. Typing-error rates for users with tremor were 
predicted to fall from 50% to around 5% on a keyboard where letter 
groups and word predictions were optimized, as compared with a 
baseline design. In the future, to expand on accounts addressing 
individual-specifc diferences, researchers should look at how to 
model non-neurotypical cases, such as cases of ADHD or autism. 

5.3 The theme of adaptation to memory limits 
Computationally rational models have been used to explain how 
user behavior adapts to limits in both short-term (see Subsection 
2.1) and long-term memory. In a computationally rational model, 
diferent policies are a consequence of diferent limits to these 
various systems. Jokinen et al. [63] showed how visual search adapts 
to limits of visual short-term memory and the availability and 
accuracy of long-term positional recall. The model explains how 
details in the UI design, such as element coloring, afect how humans 
learn UIs and how they adapt to changes in existing designs. This 
model was successfully used in work that adapted UI design to 
individuals’ history [117]. 

5.4 The theme of adapting to perceptual-motor 
bounds 

Perceptual and motor bounds can be modeled in the stimulus and 
observation functions. Chen et al. [23] predicted menu-search strate-
gies as optimal adaptation to visual features available during fxa-
tions. They assumed that diferent visual features – such as shapes 
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Table 1: Recent eforts at computationally rational modeling of interactive tasks. All papers report on fndings in which poli-
cies adapt to environmental or cognitive constraints. 

Ref. Task Paper Title Finding 

[24] Visual search A cognitive model of how people make decisions Visual search policy in decision-making adapts to the visual 
through interaction with visual displays design of the UI. 

[63] Visual search Adaptive feature guidance: Modelling visual search Visual search policies adapt to the availability of long-term 
with graphical layouts memory information about target features. 

[121] Visual search The adaptation of visual search to utility, ecology Visual search policies adapt to web site design. 
and design 

[60] Multitasking Modelling drivers’ adaptation to assistance systems A driver’s multitasking policy adapts to the presence of a 
lane assist. 

[62] Multitasking Bayesian parameter inference for cognitive simula- Drivers adapt their multitasking policy to individual-specifc 
tors driving skill. 

[14] Multitasking Fast or safe? How performance objectives determine Choice of interaction modality in multitasking adapts to 
modality output choices while interacting on the relative task importance. 
move 

[59] Typing Touchscreen typing as optimal supervisory control Typing policy adapts to the design of the keyboard. 
[105] Typing Ability-based optimization of touchscreen interac- Touchscreen typing policies adapt to the abilities of the user 

tions and the design of the keyboard. 
[7] Pointing The efect of time-based cost of error in target-

directed pointing tasks 
Pointing policy adapts to the cost of making errors. 

[21] Pointing Predicting mid-air interaction movements and fa-
tigue using deep reinforcement learning 

Mid-air interaction policies adapt to the physical fatigue from 
the hand movements. 

[23] Menu selection The emergence of interactive behavior: A model of 
rational menu search 

Visual search in menus adapts to menu design. 

[65] Menu selection Inferring cognitive models from data using approxi-
mate Bayesian computation 

Individuals’ menu-search policies adapt to long-term knowl-
edge about item positions, and one can infer these parameters 
by using Bayesian likelihood-free inference. 

[73] Visual decision-
making 

Informing decisions: How people use online rating 
information to make choices 

Policy for searching of online ratings to aid in decision-
making adapts to the ratings’ informativeness. 

[94] Decision-
making 

Probabilistic formulation of the take the best heuris-
tic 

Decision-making policy adapts to the availability of efcient 
heuristics. 

[109] Drawing Children adapt drawing actions to their own motor Drawing on a touchscreen adapts to motor uncertainty and 
variability and to the motivational context of action changes in rewards and penalties. 

of menu labels and their lexical contents – can be sampled at dif-
ferent accuracy, depending on their eccentricity (angular distance 
from the fovea). They showed that, because of this bound, the op-
timal policy hinges, in a complex way, on the menu’s length and 
organization. Comparing the results against human eye-tracking 
data, they found a good match. 

Jokinen et al. [59] investigated touchscreen typing by hypoth-
esizing an optimal hierarchical control policy governing how the 
eyes and fngers move across the screen of a cell phone. The bounds 
included limited visual acuity and motor noise in pointing. Because 
of uncertainty as to fnger position, the eye is needed to guide 
pointing movements. However, typing errors still occur, necessitat-
ing checking what has been typed, during which the eyes cannot 
efectively guide the fngers. The authors used a computationally 
rational model to solve the problem of optimal allocation of visual 
resources between typing and checking, alongside how the pointing 

movements should balance fnger speed and accuracy. The model 
successfully reproduced several metrics and phenomena observed 
when humans type, such as inter-key interval, average typing speed, 
and correlation between typos and proofreading. 

Jokinen and Kujala [60], following prior work [61], analyzed 
how drivers adapt their multitasking policies to the presence of 
intelligent driving assistance. Replicating human data, a model 
adapted glancing behavior to external task conditions such as driv-
ing speed and the design of the in-car UI. The model assumed 
that drivers allocate visual attention so as to maximize the joint 
task utility, given the uncertainty associated with the driving task. 
From changing the conditions for the task – e.g., adding automatic 
lane-keeping functionality and varying its reliability – the model 
predicted that drivers adapt to driving automation by extending 
their in-car glances, perhaps to the detriment of safe driving [60]. 
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6 WHY AND WHAT IF: EXPLAINING USER 
BEHAVIOR AND INFORMING DESIGN 

Unique to computational rationality is that the explanations take 
adaptation into account. But how might computational rationality 
support the practical aims of HCI, such as user research and design? 
We expand in this section on how computational rationality can 
play a role in answering the “what if. . . ?”-type and ”why?” ques-
tions that are so important to design and user research. ”Why did 
the user click this icon?” “What would happen if the system pro-
vided no feedback at this stage?” (see [88]). As before, the beneft 
of computational rationality is that the adaptive responses of users 
can be taken into account. In this way, it complements supervised 
learning as an approach to inference and counterfactual reasoning 
problems in HCI. For example, while supervised learning may be 
a feasible approach to predicting human interruptibility from la-
belled sensor data [58], it does require a large amount of data. In 
contrast, computationally rational models can, in principle, learn 
such predictions by exploring a simulated problem domain. 

In this section, we provide a theoretical overview of explanations 
and counterfactual scenarios, linking these uses to the theory and 
modeling formalisms presented in Sections 3 and 4. 

6.1 Answering “why?” questions 
A model M predicts interactive behaviour given internal parame-
ters θ and external environment parameters ϕ. These parameters 
express the psychological and physiological bounds that are rele-
vant to the task. Computational rationality asserts that the policy 
of the model is an optimal policy given θ and ϕ, so we rewrite Eq. 
3 in a more general form: 

π ∗ = arg max Eh∼<Mπ , θ ,ϕ > U (h) , (4) 
π 

where h ∈ H is the history of the interactive episode. The intuition 
of this formula is that a user is assumed to follow the policy that 
maximizes the long-term subjective expected utility. With a given 
history sampled from simulating the parameterized model, a policy 
that maximizes the utility of the emerging history is used to predict 
user behavior. 

“Why?” questions can be answered by means of parameter in-
ference, determining the most plausible set of parameters θ ∗ that 
can be used to describe the user via the model M . This is done by 
maximizing the likelihood of observed human data y: 

θ ∗ = arg max p (y | Mθ , ϕ) . (5) 
θ 

The most likely set of parameters is therefore those that, for a given 
model M in an environment ϕ, produce a set of predictions best 
matching the observed human data. In practice, because they rely 
on simulation, computationally rational models require a likelihood-
free estimation method [45, 65]. The likelihood is computed from 
the model M of the user interacting with the external environment 
ϕ. In computational rationality, this policy is assumed to be optimal 
with regard to the given inferred parameters. A distinct beneft 
over cognitive architecture models is that possible policies (produc-
tion systems) do not need to be provided by the researcher. This 
decreases the dimensionality of the inference problem. An example 
that uses likelihood-free inference to provide answers to “why?” 

questions is a computationally rational model of task interleaving 
[40]. Researchers found that users with (inferred) high discount 
factors persisted longer in the task before switching to another 
task. On the other hand, users who tended to discount long-term 
rewards performed poorly in the task. 

6.2 Answering “what if. . . ?” questions 
The beneft of a parameterized simulation model is that it can be 
used to evaluate various counterfactual interventions. We formalize 
this by specifying that the designer attempts to optimize a set of 
interventions i ∗ (often called “designs”) that maximize the expected 
value function V , given the predicted history of behavior sequences 
that are adaptations to these interventions: 

i ∗ = arg max Ei,h V (h) . (6) 
i 

In a manner similar to the user model’s utility function U (Eq. 1), 
the value function V maps a history h to a scalar. Determining 
V is problem-dependent, but, for instance, V can be a function 
of U , so as to mandate alignment [100]. Alternatively, in addition 
to encompassing U , V can include criteria such as a measure of 
information gain (see, for example, [20]). 

The advantage of theorizing on interaction as computational 
rationality is evident from the formulas presented here. Because 
humans are adaptive, (eventually) adjusting their policies when the 
environment changes, the designer can explore the consequences 
of hypothetical interventions only if it is possible to model and 
predict how the user will adapt to these changes before they are ac-
tually made. There are a few, though not many, reports concerning 
computationally rational approaches to designing individualized 
UIs. In a study of text entry, Sarcar et al. [105] used a computa-
tionally rational model to design a touchscreen keyboard for users 
with tremor. They searched keyboard designs and assessed them by 
predicting WPM and error rates via a model adapted to the relevant 
design. They found that typing errors can be signifcantly reduced 
by grouping several letters on keys and ofering word-completion 
functionality. In another study, a model of visual search and layout 
learning was used to optimize layouts in line with the user’s history 
(previously seen site designs) [63, 118]. Visual search was modeled 
as optimal adaptation to perceptual bounds and memory recall for 
the given site-visit history. The results showed that layouts, per-
sonalized through such a model, can signifcantly speed up visual 
search. 

7 FROM MICRO-HCI TO MACRO-HCI: A 
RESEARCH AGENDA 

Computational rationality is based on a simple but powerful as-
sumption: people do what is best for them, given what they can 
do. In contrast to programmable cognitive architectures, compu-
tational rationality derives policies from given hypotheses about 
the constraints that bound adaptation. It ofers one answer to the 
call to develop theories of HCI that deal with a “larger number of 
phenomena at the level of specifcity that is needed to inform de-
sign decisions” [52, p. 5049]. Advances have been demonstrated in 
a handful of tasks – with perhaps their strongest manifestations be-
ing in typing, multitasking, menu interaction, and decision-making. 
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However, computational rationality needs to – in Shneiderman’s 
terminology – reach out from micro-HCI, or the realm of user in-
terfaces and interactive tasks, to macro-HCI, or the realm of social 
experiences and activities [108]. In doing so, it must begin to tackle 
a broader range of phenomena of human motivations, social expe-
rience, and external contexts that are central to understanding HCI 
in general. 

Motivation dynamics. The most critical of these challenges might 
be human motivation: what makes a user pursue some activities 
and not others? In the models that we have described above, the 
answer to this question is provided by the reward function, which 
is a hypothesis about a user’s subjective utility. Typically in exist-
ing models, the reward, while subjective, is a simple function of 
some external outcome state, such as navigating to a particular 
web page, and the costs of arriving at the outcome. In contrast, 
in computational models of intrinsic motivation, such as curiosity, 
states that are novel to the agent are hypothesized to be rewarding 
in their own right. A curiosity-driven agent can thereby prioritize 
learning about an environment at the expense of immediate ex-
ternal reinforcers. Other models of intrinsic motivation focus on 
empowerment, this being the pursuit of perceived control over the 
states of the environment [44]. We need to reach beyond curiosity, 
however, to explain why people often seem to engage in behav-
ior that seems unproductive or even detrimental to them, such as 
leaving smartphone notifcations on while trying to focus on work, 
or why they keep scrolling through news though knowing that 
this is not good for them. According to self-determination theory 
[30], behavior is driven by motivations, which evolve over time 
in an interplay of beliefs, experiences, and basic needs. The user 
distracted by notifcations may hold inaccurate beliefs about notif-
cations’ consequences or be unable to estimate the efects of turning 
them of. Better understanding of motivation-related dynamics is a 
key to behavior-change and rehabilitation applications. A related 
challenge involves emotions. Our literature review revealed that 
current modeling does not consider emotions. However, this is by 
no means evidence that computational rationality is not conducive 
to treating humans as emotional beings. Indeed, some recent studies 
have used RL to model human emotions [81]. If computationally 
rational models of interaction are to gain traction in HCI, one can 
expect emotion to be among the phenomena investigated. 

Human learning. Computationally rational models of interaction 
are models of adapted behavior, not models of the process of adap-
tation. Although RL [115] is a general statement of the problem 
of learning from the environment and not targeted specifcally at 
explaining how humans learn, there is ample scientifc evidence for 
its biological basis [27]. Also, humans employ various RL systems 
when adapting, such as model-free, model-based, and episodic [42]. 
These likely have an important role to play in explaining interac-
tion, but, to our knowledge, no current model in HCI explicitly 
takes advantage of these ideas. There is a related challenge in the 
human ability to generalize skills. Without understanding this abil-
ity, computer applications will underestimate human abilities in 
novel encounters, such as facing a previously unseen part of a user 
interface. For example, in contrast to people who can transfer pre-
viously learned control solutions, the text-entry model described 
above learns a policy for single-fnger text entry but would have to 

be retrained for two- or multi-fnger text entry. While model-free 
RL has been shown to be capable of predicting human adaptations 
in narrow task domains, it can be difcult to extend these models 
to broader activities without addressing this. Research in cognitive 
sciences hints that planning, memory, and supervisory control are 
exploited to overcome this limitation, as in models of human cogni-
tion that employ model-based [31], episodic [42], and hierarchical 
RL [12]. Probabilistic program induction approaches learning of 
motor programs by inducing them from experience and combining 
them like computer programs can combine scripts [70]. Future work 
should look at how generalization is achieved by combining sym-
bolic capabilities (e.g., reasoning from concepts) and subsymbolic 
ones. 

Situations. A key theory for understanding how people interact 
with computers is that of situated action [114]. Suchman argued 
that “plans” are not so much mental control structures that univer-
sally precede actions as they are resources produced and exploited 
within activities. Action is determined not only by plans but also 
by embodied skills conditioned on the particulars of the imme-
diate situation [112, 113]. Indeed, the highly top-down nature of 
GOMS-like, pre-programmed production-rule models of cognition 
represents a commitment that is misaligned with empirical data 
pointing to the embodied and highly reactive nature of cognition. In 
contrast, computational rationality is aligned well with the concept 
of embodied action. Boundedly optimal policies are tuned to the 
specifc conditions of each state that lead to the maximization of 
reward. They are embodied in the sense that the states are internal 
ones determined by limited perceptual mechanisms, and they are 
situated in that they are determined by the dynamics of the exter-
nal environment as it is experienced by the model. For providing 
a richer account of situations, one challenge for computational 
rationality is – in line with Suchman’s advice – to understand the 
relationship between plans and action [86, 92]. An essential aspect 
of this is to understand the internal–external transition function 
– in other words, the factors that people pay attention to when 
choosing what to do. 

Context. Context is widely believed to be an important deter-
minant of interactive behavior, but what “context” means in the 
HCI domain is contested [32]. For some, context is construed as 
a relatively stable “place” in time, space, and society where inter-
action occurs over some interval (context 1). For example, using a 
mobile phone on a train is diferent from using it in an ofce. For 
others, context arises spontaneously as a consequence of interaction 
(context 2), rather than as a location where interaction happens. 
Context might, for example, be determined moment to moment 
by what is relevant for an unfolding conversation. The context 
changes constantly throughout a conversation as the situation de-
velops. Both meanings of context present special challenges and 
limits to computational rationality as a theory of interaction. For 
context 1, the future looks relatively promising. All that researchers 
need do is determine generally relevant aspects of context and 
build these into the specifcations of the decision problems. Then, 
RL would generate the relevant context-specifc adaptations. With 
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context 2, the future looks less bright, since it points to infnite-
dimensionality interaction and the potential impossibility of antic-
ipating and modeling a reasonable subset of the factors that may 
determine the socially constructed, continually changing context. 
The consequent research challenge is to identify and defne uni-
versal, lower-dimensionality representations of contexts that can 
capture reasonable parts of everyday interactions. 

Distributed cognition. Advocates of distributed cognition have 
posited that one general principle of interaction is that “people of-
load cognitive efort to the environment whenever practical” [51, p. 
181]. For example, it is assumed that the more a cockpit can do by 
way of “remembering its speed,” the less a pilot will do. An alterna-
tive that is consistent with computational rationality, is that people 
distribute information processing to the environment only to the 
extent that it allows them to make adaptive use of their internal 
processing capabilities. In other words, people adaptively distribute 
cognition [92, 93]. Some advances have been made toward devel-
oping computationally rational accounts of these phenomena [54], 
but much more work is needed to demonstrate the adequacy of 
computational rationality as an explanation of distributed cognition 
phenomena. 

Social interaction. Social interaction poses a signifcant challenge 
not only to computational rationality but to all cognitive model-
ing. On the one hand, behavior in mediated communication and 
collaboration is adaptive. When people interact with each other, 
they adjust the way they perform tasks to the distribution of re-
lationships with the members of the audience [26]. People using 
social media are known to adopt a range of strategies in eforts to 
prevent context collapse [11, 26]. On the other hand, it is not clear 
how adaptation in computer-mediated social contexts should be 
modeled. One starting point for modeling is social cognition [37]. It 
characterizes the mechanisms by which people process, store, and 
apply information about other people and social situations. This 
could aford a way to model social contexts by means of constructs 
that are already available, such as perceptions, beliefs, memory, and 
reasoning. 

Computational design. Finally, while computational rationality 
holds promise for computational design, it faces technical chal-
lenges that have limited its application to some fairly simple prob-
lems. Most prior research on computational design in HCI has 
exploited non-adaptive models (e.g., [87]). This limits them to rel-
atively simple sensorimotor tasks that assume no change in the 
user’s strategy between designs. For instance, SUPPLE used Fitts’s 
law and a readability heuristic to generate widget layouts that 
accommodate users with motor defciencies [38]. Computational 
rationality starts with the notion that user behavior is not static but 
adapts to design. For example, eye-hand coordination strategies 
might change. Hence, computational rationality could extend the 
scope of computational design and improve the outcome quality. 
Today’s training times for computationally rational models are pro-
hibitively long for large design spaces, however. The optimizers 
have to be smarter, policy learning needs to be faster, or both. 

Adaptive and cooperative interfaces. Further into the future, com-
putational rationality could ofer a way for HCI researchers to con-
tribute to the development of adaptive and cooperative interfaces 
[25]. From an HCI perspective, cooperative and mixed-initiative 
systems should try to maximize the added value that automation 
gives users while considering the costs and attentional dynam-
ics involved. This requires a strong inferential capability [53]. In 
machine learning, one of the key methods for inference, inverse 
reinforcement learning, has been shown to be intractable unless 
there are assumptions made about bounds [4]. Computational ratio-
nality ofers exactly that: the better the assumptions about utility, 
bounds, and environment we put into the model, the better its 
results. That the approach is built around constructs rooted in psy-
chology has further benefts for applications. An AI application 
employing such constructs may be better able to explain its behav-
ior and communicate with human partners. Moreover, the fact that 
a computationally rational policy establishes a causal link between 
bounds and behavior also acts in favor of explanation [56]. 

8 SUMMARY 
Computational rationality is emerging as a new direction for un-
derstanding interaction as an adaptive control process. It recruits 
several key ideas from cognitive science and machine learning 
for defning adaptation problems and solving them by means of 
reinforcement-learning algorithms. We have argued that a devia-
tion from the standard account of machine learning is necessary, 
to open the door for modeling interactive tasks with humans. In 
particular, cognition and its bounds should be modeled as a user’s 
internal environment. Building on this assumption, modeling has 
been performed for a broad range of interactive settings in a gen-
erative fashion. Much work remains, however, for expanding the 
scope of the theory from micro- to macro-HCI. This includes eforts 
to understand how to model human motivations, contexts, learning, 
and social interactions. 
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