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Abstract
We present a systematic way to implement higher order Whitney forms in numerical
methods based on discrete exterior calculus. Given a simplicial mesh, we first refine
the mesh into smaller simplices which can be used to define higher order Whitney
forms. Cochains on this refined mesh can then be interpolated using higher order
Whitney forms. Hence, when the refined mesh is used with methods based on dis-
crete exterior calculus, the solution can be expressed as a higher order Whitney form.
We present algorithms for the three required steps: refining the mesh, solving the
coefficients of the interpolant, and evaluating the interpolant at a given point. With
our algorithms, the order of the Whitney forms one wishes to use can be given as
a parameter so that the same code covers all orders, which is a significant improve-
ment on previous implementations. Our algorithms are applicable with all methods
in which the degrees of freedom are integrals over mesh simplices — that is, when
the solution is a cochain on a simplicial mesh. They can also be used when one sim-
ply wishes to approximate differential forms in finite-dimensional spaces. Numerical
examples validate the generality of our algorithms.

Keywords Higher order Whitney forms · Cochains · Differential forms ·
Interpolation · Discrete exterior calculus · Simplicial mesh

Mathematics Subject Classification (2010) Primary 65D05 · Secondary 58A10 ·
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1 Introduction

Partial differential equations describing field theories such as electromagnetism and
elasticity often admit a natural expression in terms of differential forms. In the past
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decades, the role of differential forms has increased also in numerical methods and
their practical implementations. The growth of their popularity has been acceler-
ated by finite element exterior calculus [1, 3] for the finite element method and by
discrete exterior calculus [13, 16] for finite difference kind of methods. For computa-
tions, differential forms are approximated in finite-dimensional spaces using a mesh
consisting of a finite number of cells. In finite element exterior calculus these finite-
dimensional spaces are spanned by suitable finite elements, while discrete exterior
calculus is based on cochains (also known as discrete forms) as approximations for
differential forms.

Methods based on discrete exterior calculus (DEC) may go by different names,
e.g. Yee-like schemes [9, 10], finite integration technique [12], or generalised finite
differences [6, 8]. These methods enable one to distinguish the features that depend
on metric from those that do not, and in a way they preserve the geometric structure
of the continuous model at the discrete level. The methods can typically be made
explicit, which enables a very large number of degrees of freedom. In the litera-
ture there are many examples where discrete exterior calculus has been successfully
applied (see e.g. [17, 22–26, 29]).

Although methods based on cochains have their benefits, there are also some draw-
backs. When the solution is given as a cochain, it cannot be evaluated at a given point.
In some situations evaluating the solution at a given point is preferable, and then one
has to interpolate the cochain somehow. This raises the question: in which space does
the interpolant lie? In the case of simplicial meshes, it is well known that Whitney
forms [31] can be used to approximate differential forms and interpolate cochains
in methods based on discrete exterior calculus. However, this only applies to lowest
order Whitney forms. Although higher order Whitney forms have been defined and
used elsewhere [4, 5, 7, 11, 15, 21, 27, 28], they have not been used with cochain-
based methods. Indeed, these are often considered low-order methods in that they
seem to lack natural higher order generalisations.

In this paper, we provide an alternative viewpoint and show how higher order
Whitney forms can be used to interpolate cochains in methods based on discrete
exterior calculus. As with lowest order Whitney forms, we require a simplicial mesh
to begin with. This mesh is refined into smaller simplices which have been used to
define higher order Whitney forms in [28]. Cochains on this refined mesh can then
be interpolated using higher order Whitney forms, so when we apply methods based
on discrete exterior calculus with the refined mesh, the solution can be expressed as
a higher order Whitney form.

With this approach, we can reduce the interpolation error without any modifica-
tions in the methods themselves; the only changes are in preprocessing (preparing
the mesh) and postprocessing (interpolating the cochain) stages. For this reason, we
do not focus on any specific method here, but instead provide a framework for inter-
polating cochains with higher order Whitney forms. This framework can then be
applied with any method — our algorithms are applicable whenever the solution is a
cochain on a simplicial mesh. They can also be used if one simply wishes to approx-
imate differential forms in finite-dimensional spaces and might be relevant for the
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finite element method as well, if integrals over small simplices are chosen as degrees
of freedom.

Although reducing the interpolation error alone does not lead to higher order DEC
methods, it is a necessary step toward them. To obtain higher order convergence, one
would also have to improve the accuracy of discrete Hodge operators. This is possible
using higher order Whitney forms and the interpolation framework presented here. It
would of course require changes in specific methods, and hence, we will study higher
order discrete Hodge operators in a future article.

The main novelty of this paper is the systematic implementation strategy that is
usable with DEC and yields Whitney forms of all orders with the same code. The idea
of using small simplices to construct bases and degrees of freedom for higher order
Whitney forms is not new [11, 28]; however, although systematic implementations
for more traditional bases and dofs exist, the approach with small simplices still lacks
a systematic implementation strategy. The implementation in 3D is a delicate issue.
For FEM, it has been studied in [4], but only second- and third-order 1-forms were
implemented. Similarly, only second-order forms were implemented in our previous
studies for DEC [18, 19]. Without general algorithms, the implementation process
has to be repeated separately for each order, while the workload becomes unreason-
ably laborious very quickly. The systematic implementation strategy of this paper
and in particular Algorithms 1–3 are a significant novelty, yielding all orders with the
same code. Without such algorithms, the implementation of, for example, 8th-order
1-forms in 3D would be practically impossible using small simplices (to define both
basis functions and dofs).

The outline of this paper is as follows. We start with some preliminaries in
Section 2. Section 3 covers lowest order Whitney forms, and in Section 4 we recall
the small simplices of [28] and use them to define higher order Whitney forms. In
Section 5 we give the general idea for interpolating cochains with higher order Whit-
ney forms. The implementation of this idea is discussed in Section 6. This section
contains three subsections where we present algorithms for the three required steps:
refining the mesh, solving the coefficients of the interpolant, and evaluating the inter-
polant at a given point. Numerical examples of Section 7 validate the generality of
our algorithms — the order of Whitney forms can be given as a parameter, and hence,
all cases are covered by the same code.

2 Some preliminary concepts

In this section we recall some prerequisite concepts that are used in this paper. The
discussion is brief, but readers unfamiliar with these concepts can consult the given
references for more information.

We start by defining a mesh in a domain � ⊂ R
n. Bounded and convex p-

dimensional polytopes in R
n are called p-cells for short. Cell complex K is a finite

set of cells such that

• each face of every cell in K is also in K .
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• The intersection of two cells in K is either a common face of theirs or the empty set.

The set of p-cells in K is denoted by Sp(K). A cell complex K is a mesh in � if the
union of the cells of K is �. To enable this we assume that our domain � is a bounded
polytope in R

n. A cell complex (or mesh) is simplicial if its cells are all simplices.
In this case there is a unique barycentric function [31, App. II, §2] corresponding to
each 0-simplex xi — this is denoted by λi .

We will also need the concept of orientation [31, App. II, §5]. Recall that p-cell σ

is oriented by orienting its plane. If τ ∈ Sp+1(K) is oriented and σ ∈ Sp(K) is a face
of τ , the orientation of τ induces an orientation on σ ; we say that the orientation of σ

agrees with that of τ if σ is equipped with the induced orientation. For τ ∈ Sp+1(K)

and σ ∈ Sp(K), the incidence number dτ
σ is defined as

dτ
σ =

⎧
⎨

⎩

1 if σ is a p-face of τ and their orientations agree,
−1 if σ is a p-face of τ and their orientations do not agree,
0 otherwise.

In the case of simplices, we denote by x0 . . . xp the oriented p-simplex whose vertices
are x0, . . . , xp and whose orientation is implied by this order of vertices.

We assume the reader is familiar with exterior algebra and differential forms (see
e.g. [31, I–III] and [1]). Let 〈ω, α〉 denote the action of p-covector ω on p-vector α.
Differential p-form in a complex K [31, p. 226] is a set of smooth p-forms ωσ in
the cells σ of K satisfying the following patch condition: if τ is a face of σ , then
the trace ωσ |τ of ωσ equals ωτ in τ . In other words, 〈ωσ (x), α〉 = 〈ωτ (x), α〉 for all
x ∈ τ and all p-vectors α in the plane of τ . This enables us to consider the set of p-
forms ωσ as single p-form ω such that 〈ω(x), α〉 is well-defined for those p-vectors
α that are in the plane of the cell σ for which x ∈ σ − ∂σ . Hence, differential p-
forms in K can be integrated over p-cells. Denote by Fp(K) the space of differential
p-forms in K . Note that since the exterior derivative d commutes with trace, we have
dω ∈ Fp+1(K) if ω ∈ Fp(K), but the Hodge star 	ω is not necessarily in Fn−p(K).

Formal sums
∑

σi∈Sp(K) aiσi of oriented p-cells with real coefficients are called
p-chains of K [31, App. II, §6]. These form a vector space Cp(K) for which the
p-cells σi constitute a natural basis (here σi = 1σi , the sum in which aj = δij ,
the Kronecker delta). The elements of the dual space C∗

p(K) are p-cochains of K .
Following [31], we use σi to denote also the cochain whose value is δij at the chain
σj . Then the p-cells σi constitute the dual basis for C∗

p(K), and also cochains can be
written as formal sums of cells. Negative coefficients indicate change of orientation
so that −σ is the cell σ with opposite orientation. For computer implementations,
chains and cochains can be considered as vectors consisting of the coefficients ai

after a numbering has been chosen for the cells of K .
The boundary ∂τ of a (p + 1)-cell τ ∈ Sp+1(K) is the p-chain

∑
σ∈Sp(K) dτ

σ σ .
This defines the boundary map ∂ : Cp+1(K) → Cp(K) for all chains by requiring
it be linear. The coboundary map d : C∗

p(K) → C∗
p+1(K) for cochains is defined by

dX(c) = X(∂c). We use the same notation d as for the exterior derivative of forms.
When cochains are considered as vectors, we can denote by d also the matrix with
components dij = dτi

σj
for τi ∈ Sp+1(K) and σj ∈ Sp(K), since this is the matrix
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of the coboundary map. This notation is not explicitly needed in this paper, but we
mention it so that dX makes sense also when cochain X is considered as a vector.

Since p-forms can be integrated over p-cells, each p-form ω yields a p-cochain
whose values on chains are determined by integration of ω. Namely, the de Rham
map C : Fp(K) → C∗

p(K) is the linear map defined by

Cω

( ∑

σi∈Sp(K)

aiσi

)

=
∫

∑
σi∈Sp(K) aiσi

ω =
∑

σi∈Sp(K)

ai

∫

σi

ω,

where the second equality is the definition of integration on p-chains. The cochain
Cω can be considered as an approximation of ω. In vector presentation, its compo-
nents are the integrals of ω over the p-cells of K . We remark that Stokes’ theorem
implies Cdω = dCω for p-forms ω.

We invoke the inner product of Rn to define norms as follows. If ω is a p-covector,
denote by |ω| the norm induced by the inner product of Rn [31, I, §12]. If ω is a p-
form, then |ω| denotes the function whose value at x is |ω(x)|. Hence, we may define
the L2 norm of the p-form ω as the L2 norm of the function |ω|. This is denoted
by ‖|ω|‖L2(�). In other words, ‖|ω|‖L2(�) = (

∫

�
|ω(x)|2dx)1/2. For p-simplex σ ,

denote by |σ | its p-dimensional volume and define its fullness �(σ) by �(σ) =
|σ |/diam(σ )p.

Discrete exterior calculus [13, 14, 16] enables a discrete presentation of boundary
value problems expressed in terms of differential forms. When differential forms are
approximated with cochains, the coboundary operator naturally replaces the exterior
derivative. Indeed, if Cω approximates ω, then Cdω = dCω suggests that dCω is
the right approximation for dω. One also has to express the Hodge star operator for
cochains. There are several ways to do this, and one typically employs a dual complex
so that p-cochains of K are mapped to (n−p)-cochains of the dual complex. We need
not consider any specific approach to deal with the Hodge operator or any specific
boundary value problem. The framework we present in this paper can be applied as
long as the solution is a cochain on a simplicial mesh which is meant to approximate
a differential form — that is, its coefficients correspond to the integrals of the form.

3 Lowest order Whitney forms

In this section, we briefly recall Whitney forms as a tool for interpolating cochains.
More information can be found in [20]. Let us henceforth assume that the mesh K is
simplicial.

Definition 3.1 The Whitney 0-form corresponding to the 0-simplex xi is the
barycentric function Wxi = λi . For p > 0, the Whitney p-form corresponding to
the p-simplex x0 . . . xp is [31, VII, 11.16]

W(x0 . . . xp) = p!
p∑

i=0

(−1)iλidλ0 ∧ . . . ∧ d̂λi ∧ . . . ∧ dλp, (3.1)
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where d̂λi indicates a term omitted from the product.
For each p, the Whitney map W : C∗

p(K) → Fp(K) is defined by setting

W
( ∑

σi∈Sp(K)

aiσi

)

=
∑

σi∈Sp(K)

aiWσi .

The image W(C∗
p(K)) = span{Wσ | σ ∈ Sp(K)} ⊂ Fp(K) is the space of Whitney

p-forms and denoted by Wp(K).

First, recall that CWX = X for all X ∈ C∗
p(K). Cochains and Whitney forms

are in one-to-one correspondence in the simplest possible way, the cochain X =∑
σi∈Sp(K) aiσi ∈ C∗

p(K) corresponding to the p-form WX = ∑
σi∈Sp(K) aiWσi ;

we can interpolate X with WX, and the integrals of this interpolant match with the
values of X on p-simplices of K . Further, we can approximate p-form ω ∈ Fp(K)

with the Whitney form WCω, and the integrals of this approximation match with
those of ω on p-simplices of K: CWCω = Cω. This approximation is exact for
elements of Wp(K), including constant p-forms.

For computing derivatives, a useful fact is that d and W commute: for X ∈ C∗
p(K),

we have dWX = WdX. Finally, we mention the affine invariance property of Whit-
ney forms. Let σ = x0 . . . xn and τ = y0 . . . yn be two n-simplices and ϕ : σ → τ

the affine map such that ϕ(xi) = yi . Then W(x0 . . . xp) in σ is the pullback
ϕ∗(W(y0 . . . yp)). Because of this property, computations done in a reference sim-
plex transfer to all simplices by affine transformations and hence need be done only
once. This will be useful when we consider interpolation with higher order Whitney
forms.

4 Small simplices and higher order Whitney forms

Lowest order Whitney forms defined in the previous section include constants and are
at most first-order polynomials in each simplex. There are also higher order Whitney
forms, or Whitney forms of order k, which include (k − 1)th-order polynomials and
are at most kth-order polynomials in each simplex. Higher order Whitney forms can
be defined in different ways. We use the so-called small simplices of [28], since this
approach enables us to interpolate cochains with higher order Whitney forms.

To define the small simplices, let I(n + 1, k) denote the set of multi-indices
with n + 1 components that sum to k; that is, I(n + 1, k) consists of arrays k =
(k0, k1, . . . , kn) where the ki are nonnegative integers such that

∑n
i=0 ki = k. The

cardinality #I(n+1, k) of I(n+1, k) is

(
n + k

k

)

(see Lemma A.1 in Appendix A).

For a fixed n-simplex σ = x0 . . . xn, each multi-index k ∈ I(n + 1, k − 1) defines a
map, which we denote by kσ , from σ to itself such that the point x whose barycen-
tric coordinates are λi maps to the point whose barycentric coordinates are λi+ki

k
. In

other words, kσ is defined by

kσ : σ → σ, λ0x0 + . . . + λnxn 
→ λ0+k0
k

x0 + . . . + λn+kn

k
xn.
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For k ≥ 1, the set of kth-order small p-simplices of K is

S
p
k (K) = { kσ (τ ) | σ = x0 . . . xn ∈ Sn(K),

k ∈ I(n + 1, k − 1), and τ is a p-face of σ }. (4.1)

Small simplices are homothetic images of the simplices of K . See Fig. 1 for examples
of small simplices.

To each kth-order small p-simplex υ corresponds a kth-order Whitney p-form
w(υ) ∈ Fp(K), as given in the following definition. Henceforth, when σ = x0 . . . xn

is a fixed n-simplex, we denote by λkσ the function
∏n

i=0(λi)
ki .

Definition 4.1 Let σ = x0 . . . xn ∈ Sn(K), k ∈ I(n + 1, k − 1), and τ be a p-face
of σ . The kth-order Whitney p-form corresponding to the small simplex kσ (τ ) is

w(kσ (τ )) = λkσWτ .

Fig. 1 Second- and third-order small simplices kσ (σ ) in the cases when σ is a triangle in two dimensions
and a tetrahedron in three dimensions
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The space of kth-order Whitney p-forms is the span of all such forms:

W
p
k (K) = span{w(υ) | υ ∈ S

p
k (K)}.

Since the higher order Whitney forms in the definition above are products of
barycentric functions and lowest order Whitney forms, it is immediate that they too
are affine invariant and elements of Fp(K). However, it is equally evident that there
is no similar correspondence between Whitney forms and cochains of C∗

p(K) in the
higher order case. Namely, Wp(K) is already isomorphic to C∗

p(K), and increasing
the order increases the dimension of the space, so there is no way for W

p
k (K) to be

isomorphic to C∗
p(K). However, it is only natural that higher order approximations

require more degrees of freedom, and the spanning higher order forms in Definition
4.1 were given corresponding to small simplices of K . This suggests that instead of
C∗

p(K) we should concentrate on cochains over the small simplices of K — the next
section makes this idea precise.

5 Interpolating with higher order Whitney forms

As can be seen from Fig. 1, the small simplices do not pave �, and hence, they do
not form a subdivision of K . However, we can always refine the mesh K such that
the refinement contains the small simplices as cells. In this section, we consider how
to interpolate cochains of this refined mesh with higher order Whitney forms.

Choose k and let Kk denote a refinement of K into kth-order small simplices;
more precisely, Kk can be any mesh in � that contains the small simplices of order
k as cells. Kk is allowed to have also other cells. For instance, between the small
simplices of a tetrahedron in three dimensions, there are holes that are either octa-
hedra or inverted tetrahedra (see Fig. 1). The refinement Kk is not unique; the holes
can be accepted as cells as such, or one may further divide them into simplices. The
only requirements are that Kk is a mesh in � (i.e. satisfies the definition of mesh
given in Section 2) and contains the small simplices of order k as cells. We can
then consider chains Cp(Kk) and cochains C∗

p(Kk) of Kk and the de Rham map
Ck : Fp(K) → C∗

p(Kk) (which is well-defined in Fp(Kk), but we restrict the domain
to the subset Fp(K)).

To interpolate with higher order Whitney forms, we are looking for some kind of
interpolating map V : C∗

p(Kk) → Fp(K) akin to the Whitney map W . Since the
coefficients ai of the cochain X = ∑

σi∈Sp(Kk)
aiσi can be considered as integrals

of some differential form that X is meant to approximate, we would like to find
VX ∈ W

p
k (K) such that

∫

σi
VX = ai ∀σi ∈ Sp(Kk). In other words, we would like

to have CkVX = X for all X ∈ C∗
p(Kk), preserving the property of W . However,

it is evident that this is generally not possible, since the number of cells in Kk is
greater than the dimension of W

p
k (K). We will therefore have to relax the condition∫

σi
VX = ai ∀σi ∈ Sp(Kk) somehow.
Since the spanning higher order forms in Definition 4.1 were given corresponding

to small simplices of K , the first relaxation that comes to mind is to require
∫

σi
VX =

ai not for all σi ∈ Sp(Kk) but for all σi ∈ S
p
k (K) — that is, for those cells that
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are small simplices. However, the spanning forms in Definition 4.1 are not linearly
independent, so the dimension of W

p
k (K) is lower than the number of small simplices

in Sp(Kk). Hence, we must relax the condition even further.
A simple and feasible way to deal with this linear dependency is to choose a subset

Ŝ
p
k (K) of S

p
k (K) such the forms corresponding to small simplices in Ŝ

p
k (K) form

a basis for W
p
k (K). The subset Ŝ

p
k (K) of S

p
k (K) is chosen by omitting redundant

small simplices. Then those coefficients ai of the cochain X = ∑
σi∈Sp(Kk)

aiσi that

correspond to σi ∈ Ŝ
p
k (K) determine a unique element VX ∈ W

p
k (K) such that

∫

σi
VX = ai ∀σi ∈ Ŝ

p
k (K), defining a linear map V : C∗

p(Kk) → Fp(K). The map
V does not satisfy CkVX = X for all X ∈ C∗

p(Kk) since we do not necessarily have
∫

σi
VX = ai if σi /∈ Ŝ

p
k (K). Now we only have CkVX = X for X ∈ Ck(W

p
k (K)).

This is how our earlier requirement has been relaxed. To summarise, VX has the
correct integrals on the chosen subset of small simplices.

To make the above precise, we have to specify some details — namely, how to
choose the subset Ŝ

p
k (K) such that the corresponding Whitney forms constitute a

basis for W
p
k (K). In the following we give the general idea in n-dimensions; details

specific to three dimensions are considered in the next section.
Let σn denote a generic n-simplex considered as a cell complex, and let W̊

p
k (σn)

denote the subspace of p-forms in W
p
k (σn) with zero trace on the boundary of σn.

We rely on the decomposition [2, Theorem 7.3]

W
p
k (σn) =

⊕

σq∈Sq(σn)
p≤q≤n

W̊
p
k (σ q), (5.1)

where we have extended elements in W
p
k (σq) to elements of W

p
k (σn) using the

barycentric extension (see [2, (7.1)]; simply consider all barycentric functions in σn

instead of σq ), which will henceforth be applied implicitly when appropriate. This
implies the global decomposition

W
p
k (K) =

⊕

σq∈Sq(K)
p≤q≤n

W̊
p
k (σ q). (5.2)

Hence, it suffices to choose the subset Ŝ
p
k (σ q) in a generic q-simplex σq , consid-

ering only those small simplices that are not contained in the boundary of σq . The
same choice can then be applied throughout the mesh, yielding the required map
V : C∗

p(Kk) → Fp(K).

Let us therefore consider q-simplex σq and let S̊
p
k (σ q) denote the set of those

small simplices in S
p
k (σ q) that are not contained in the boundary of σq . The dimen-

sion of W̊
p
k (σ q) compares with the cardinality of S̊

p
k (σ q) as follows:

dim(W̊
p
k (σ q)) =

(
q

p

)(
p + k − 1

q

)

,
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#S̊
p
k (σ q) =

⎧
⎪⎪⎨

⎪⎪⎩

(
k − 1

q

)

, p = 0,
(

q + 1
p + 1

) (
p + k − 1

q

)

, p > 0.
(5.3)

The first line has been proved in [1], and the second line is proved as Lemma A.3 in
Appendix A.

These counts determine how many small simplices one must omit before their
cardinality matches the dimension of the Whitney forms in each simplex. The omitted
simplices can be chosen in many ways, as long as the remaining forms span the same
space. For this, let us recall the linear relations between higher order Whitney forms.
When σ is a p-face of a (p + 1)-simplex τ , let τ − σ denote the node of τ that is
opposite to σ . Then, for each τ ∈ Sp+1(σ q) we have (see e.g. [19] for a proof)

∑

σ∈Sp(σq)

dτ
σ λτ−σWσ = 0. (5.4)

This shows that second-order p-forms are linearly dependent, and multiplying both
sides by λkσq with k ∈ I(q + 1, k − 2) gives relations for kth-order p-forms. These
relations can be used to ensure that we only omit redundant small simplices and the
remaining p-forms still span the same space.

When p = 0 or p = q, (5.3) says dim(W̊
p
k (σ q)) = #S̊

p
k (σ q). Thus none of the

small simplices will be omitted in that case. When 0 < p < q, we multiply (5.4)
applied to each (p+1)-face τ of σq = x0 . . . xq by λkσq with k ∈ I(q+1, k−2) such
that ki �= 0 if xi /∈ τ . (This requirement on k is set to obtain relations specifically for
W̊

p
k (σ q) instead of W

p
k (σq).) By Lemma A.2 in Appendix A, the number of such k

is

(
p + k − 1

q

)

, and hence, we get

(
q + 1
p + 2

) (
p + k − 1

q

)

relations for W̊
p
k (σ q).

Notice that the binomial coefficient

(
p + k − 1

q

)

involved in (5.3) appears here

too; these formulas have a nice geometric interpretation which will be helpful in
implementations. All of this will be clarified in practice in the next section.

We conclude this section with the approximation property of higher order Whitney
forms [20] and some remarks.

Theorem 5.1 Let V : C∗
p(Kk) → Fp(K) be the linear map obtained with a choice

of kth-order small simplices as explained above, and let ω be a smooth p-form in �.
There exists a constant Cω,k such that

|VCkω(x) − ω(x)| ≤ Cω,k

C
p
�

hk for all x ∈ τ in all τ ∈ Sn(K)

whenever h > 0, C� > 0, and K is a simplicial mesh in � such that diam(σ ) ≤ h

and �(σ) ≥ C� for all simplices σ of K .

Remark 5.2 To vary the order of Whitney forms in different subdomains of �, one
has to divide adjacent elements into small simplices of different orders. This results in
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a division that is not a mesh in the sense of discrete exterior calculus. The interfaces
of such subdomains require special treatment and changes in specific methods.

Remark 5.3 d and V commute for 0-cochains, i.e. dVX = VdX for X ∈ C∗
0 (Kk).

For p > 0, this property cannot be achieved without giving up on other properties. In
general dVX is given by VdCkVX, so the derivative can still be computed after one
first corrects the values of X on omitted small simplices.

6 Systematic implementation strategy

Let us next turn our attention to the implementation of the ideas presented in the
previous section. For simplicity and due to practical interests, we will henceforth
restrict to the three-dimensional case n = 3. Although more work would be required
in the case n > 3, it should be visible how the same algorithms generalise to any
dimension. In contrast, we will not restrict to any specific order k. Our algorithms
enable the implementation of kth-order 0-, 1-, 2-, and 3-forms in R

3 such that the
order k can be given as a parameter and the same code covers all orders.

Let us first consider kth-order small simplices and the choice of the subsets
Ŝ

p
k (σ q) in three dimensions. As explained, we will work in a generic q-simplex σq

and consider only those small simplices that are not contained in the boundary of σq .
Using (5.3) with 0 ≤ p ≤ q ≤ 3, we find that there are three types of small simplices
that require attention:

• W̊ 1
k (σ 2) has dimension 2

(
k
2

)
, while #S̊1

k (σ 2) = 3
(
k
2

)
. This means we have to omit

(
k
2

)
small 1-simplices in σ 2.

• W̊ 1
k (σ 3) has dimension 3

(
k
3

)
, while #S̊1

k (σ 3) = 6
(
k
3

)
. This means we have to omit

3
(
k
3

)
small 1-simplices in σ 3.

• W̊ 2
k (σ 3) has dimension 3

(
k+1

3

)
, while #S̊2

k (σ 3) = 4
(
k+1

3

)
. This means we have to

omit
(
k+1

3

)
small 2-simplices in σ 3.

Our strategy to omit redundant small simplices was inspired by the example with
k = 3 given in [11, p. 31]. We make use of the following geometrical observation,
illustrated in Fig. 2 (recall also Fig. 1). In σ 2, the holes that are not small simplices are
inverted triangles and in correspondence to elements of I(3, k −2). Their cardinality
is

(
k
2

)
, which is also the number of relations we get for W̊ 1

k (σ 2). These relations
correspond to the inverted triangles, and we omit one small 1-simplex for each. In
σ 3, there are two kind of holes:

(
k
3

)
inverted tetrahedra corresponding to elements of

I(4, k − 3) and
(
k+1

3

)
octahedra corresponding to elements of I(4, k − 2). We have

4
(
k
3

)
relations for W̊ 1

k (σ 3); 4 per inverted tetrahedron (one for each of its 2-faces).
These relations allow us to omit any 3 of the edges of each inverted tetrahedron to
obtain a basis for W̊ 1

k (σ 3). For W̊ 2
k (σ 3), we have one relation per octahedron, and

omitting one 2-face for each octahedron yields a basis for W̊ 2
k (σ 3).

As stated, it suffices to make these choices only once in a generic q-simplex, and
the same choice can then be applied throughout the mesh. For other small simplices
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Fig. 2 Illustration of the holes between kth-order small simplices for k = 4 and k = 5. In σ 2, there are(
k
2

)
inverted triangles. In σ 3, there are

(
k
3

)
inverted tetrahedra and

(
k+1

3

)
octahedra

than the three types covered above, none of the small simplices are omitted. However,
we remark that in practice one should exclude duplicate entries from the sets S̊0

k (σ q).
Namely, the same small 0-simplex may appear multiple times in (4.1). To handle this,
we can choose to always label the small 0-simplices as the images of the first vertex
of σq .

Let us denote the chosen subsets of S̊
p
k (σ q) by ˆ̊

S
p
k (σ q) and choose a numbering for

their elements. As explained in the previous section, these subsets determine a map
V : C∗

p(Kk) → Fp(K) which enables us to interpolate cochains of Kk with kth-order
Whitney forms. The implementation process can be divided into three steps:

1. Given a simplicial mesh K in �, we form a refinement Kk containing the kth-
order small simplices as cells.

2. Given a cochain X ∈ C∗
p(Kk), we solve the coefficients of the interpolant VX in

the chosen basis.
3. Given the coefficients of the interpolant VX, we show how to evaluate it at a

given point x ∈ �.

These steps are discussed in detail in the following three subsections.

6.1 Refining themesh

Suppose we have a three-dimensional simplicial mesh K in �. In this subsection, we
discuss how the mesh can be refined systematically to obtain a refinement Kk that
contains the kth-order small simplices as cells. We make the following assumptions
for the mesh as data structure:
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• The p-simplices of K have been indexed, and the positions of the 0-simplices
(which are points in �) are contained in a list.

• The vertices of each p-simplex σ ∈ Sp(K) can be accessed in a definite order,
and this order determines the orientation of σ .

• Given a list of vertices x0, . . . , xp, we have means of finding the p-simplex with
these vertices (if one exists).

These can be achieved when, in addition to the position list, we store the indices of
the (p − 1)-faces and the parent (p + 1)-simplices of each p-simplex σ .

When refining the mesh, one might wish to store the indices of the small simplices

that correspond to the elements of the sets ˆ̊
S

p
k (σ q) in each q-simplex σq ∈ Sq(K).

They will be needed when interpolating cochains, and having saved the indices in
memory, one need not repeatedly find them for each interpolation. While possible,
this is not necessary if new indices are allocated in increasing order, as the indices
of the small simplices will then be implied from those of the big simplices. In this
case finding them is a very small task, while storing the indices can use a lot of
memory. Nevertheless, if desired, the index of each small simplex can be stored right
after it is added to Kk , and hence, we need not make this explicit in the rest of this
subsection.

The strategy for refining the mesh is as follows. We start with an empty mesh
Kk and make it the desired refinement of K by going through the simplices of K in
the order of increasing dimension and adding the corresponding small simplices into
Kk . With this order, we only have to consider the small simplices that are not in the
boundary of the simplices, since those in the boundary have already been covered
along with some lower-dimensional simplex. For 2- and 3-simplices, we will also fill
the holes that would otherwise be left between the small simplices. Multi-indices are
needed to label both small simplices and the holes, and hence, we assume access to
the sets I(l, m) stored in some data structure.

The first step is straightforward: we copy the 0-simplices of K into Kk . Second,
the small 0- and 1-simplices of each 1-simplex of K are added into Kk . Third, we go
through the 2-simplices of K and add the corresponding small 0-, 1-, and 2-simplices
into K , also filling the inverted triangles in between. Fourth, we add the small 0-, 1-,
2-, and 3-simplices and the holes of each 3-simplex of K into Kk . The holes that
are octahedra are the only cells in Kk that are not simplices; however, it is possi-
ble to divide them into four tetrahedra. In discrete exterior calculus, it is sometimes
desirable that cells are well-centered. In this case one might wish to divide each octa-
hedron into four tetrahedra by adding a 1-simplex of smallest possible length. If this
is not uniquely determined, the octahedron can accordingly be divided into two pyra-
mids or kept as it is. The potential division has no effect on the algorithms of this
paper.

When adding the small simplices of σq = x0 . . . xq ∈ Sq(K) into Kk , we first add
the small 0-simplices that are in the interior of σq . These are obtained as images of
x0 through kσ with k ∈ I(q, k − 1) such that ki �= 0 for i > 0. Each small 0-simplex
is covered exactly once, so we do not have to check if another 0-simplex has already
been added in the same position. For adding other small simplices (and the holes),



Numerical Algorithms

we need means of finding the indices of the small 0-simplices corresponding to their
vertices (which have already been added into Kk). It is useful to have a function that
returns the index of the small 0-simplex kσ (xi) for any k, σ = x0 . . . xq , and i ∈
{0, . . . , q}. The indices of the 0-simplices can then be used to add higher-dimensional
cells (or find if they exist); these are added in the order of increasing dimension.

The approach is simple on paper and also relatively easy to implement. Algo-
rithm 1 summarises our strategy for refining the mesh.

-
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6.2 Solving the coefficients of the interpolant

Suppose we have a cochain X ∈ C∗
p(Kk) on the refined mesh Kk . In this subsection, we

discuss how to determine the coefficients of the interpolant VX in the chosen basis.
The idea is to first solve the coefficients corresponding to small p-simplices that

are in ˆ̊
S

p
k (σp) for some σp ∈ Sp(K). These can then be used to solve the coefficients

corresponding to small p-simplices that are in ˆ̊
S

p
k (σp+1) for some σp+1 ∈ Sp+1(K).

Continuing in this order, we can solve the coefficients of the interpolant in all
simplices.

When σp ∈ Sp(K), the coefficients corresponding to small p-simplices that are

in ˆ̊
S

p
k (σp) are uniquely determined by the values of X on the elements of ˆ̊

S
p
k (σp); let

X[ ˆ̊
S

p
k (σp)] denote these components of X when it is considered as a vector. To solve

the coefficients, observe that if for each p and q we define matrix A(p, q), indexed

over υ ∈ ˆ̊
S

p
k (σ q), by

A(p, q)ij =
∫

υi

w(υj ),

and define ci as ith component of the vector A(p, p)−1X[ ˆ̊
S

p
k (σp)], then the Whitney

form
∑

υi∈ ˆ̊
S

p
k (σp)

ciw(υi) has the correct integrals on elements of ˆ̊
S

p
k (σp). Hence,

the coefficients can be solved using the inverse of the matrix A(p, p).
The same idea works when q > p and σq ∈ Sq(K), but now we first have to take

into account the Whitney forms corresponding to small simplices of the faces of σq

whose coefficients have been solved earlier. Therefore we first subtract their integrals

over elements of ˆ̊
S

p
k (σ q) from the vector X[ ˆ̊

S
p
k (σ q)]. Then multiplying by A(p, q)−1

yields the correct coefficients corresponding to small p-simplices in ˆ̊
S

p
k (σ q).

At first glance, this approach might seem inefficient because we have to integrate
functions and invert matrices to even solve the coefficients of the interpolant. How-
ever, we stress that the integrals of higher order Whitney forms over small simplices
are affine invariant quantities, and hence, it suffices to build the matrices A(p, q)

only once! Of course, in practice we can use the LU decomposition of A(p, q) to
solve the coefficients instead of explicitly computing the inverse; this yields better
numerical accuracy. We write A(p, q)−1 only for notational simplicity.

The integrals of the basis functions corresponding to small simplices of faces of

σq over elements of ˆ̊
S

p
k (σ q) can also be precomputed. We only have to remember that

the vertices of the faces may be in different possible orders, and these yield different
integrals. For this, let us define matrices B(p, σq, σ r), where σ r is an r-face of σq ,
such that

B(p, σq, σ r)ij =
∫

υi

w(υj ), υi ∈ ˆ̊
S

p
k (σ q), υj ∈ ˆ̊

S
p
k (σ r).

This time the matrix B(p, σq, σ r) is not the same for all σq and σ r since it depends
on which face σ r is and on the order of its vertices. However, there is only a finite
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number of possibilities we have to precompute, and then the matrix B(p, σq, σ r)

will always be one of these. For example, consider B(1, σ 3, σ 2). There are four 2-
faces of σ 3, and there are six permutations for the vertices for σ 2. Hence, there are
24 possibilities for the matrix B(p, σq, σ r). In 3D, the number of possibilities never
exceeds 24 (see Table 1).

Having precomputed these matrices B(p, σq, σ r), we do not have to integrate
anything when solving the coefficients. When σ r is a face of σq and we wish to take
the Whitney forms corresponding to small simplices of σ r into account, we use the
matrix B(p, σq, σ r) (the one appropriate for σq and σ r ) and the coefficients we have
solved in σ r earlier. Matrix-vector multiplication yields the integrals over elements

of ˆ̊
S

p
k (σ q).

The integrals of higher order Whitney forms over small simplices that are needed
for the matrices A(p, q) and B(p, σq, σ r) can be computed analytically; we elab-
orate on this in Appendix B. Another option is to use at least kth-order quadrature
formulas for numerical integration. The matrices are formed only once, and hence,
we can precompute them in as high numerical precision as desired.

Algorithm 2 summarises our strategy for solving the coefficients of the interpolant.

Table 1 The number of
different possibilities for the
matrix B(p, σ q, σ r )

#B(p, σ q, σ r )

p = 0, q = 1, r = 0 2

p = 0, q = 2, r = 0 3

p = 0, q = 3, r = 0 4

p ∈ {0, 1}, q = 2, r = 1 6

p ∈ {0, 1}, q = 3, r = 1 12

p ∈ {0, 1, 2}, q = 3, r = 2 24
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6.3 Evaluating the interpolant at a given point

Suppose we have solved the coefficients c[υi] of the interpolant in the chosen basis
for W

p
k (K) and we wish to evaluate the interpolant at a given point x ∈ �. In this

subsection, we discuss how to compute the value of
∑

υi∈Ŝ
p
k (K)

c[υi]w(υi) at x. Note

that this is not an entirely trivial task, for we have used the decomposition (5.2) when
forming a basis and hence have to accumulate contributions of W̊

p
k (σ q) for different

σq ∈ Sq(K), p ≤ q ≤ 3.
We assume it is possible to search for a 3-simplex σ 3 ∈ S3(K) that contains x (or

one is known in advance). Notice that w(υ) is zero in σ 3 if υ is not contained in σ 3,
and hence, it suffices to consider the basis forms corresponding to small simplices of
σ 3. If x happens to be in multiple 3-simplices, their intersection is some q-simplex
σq ∈ Sq(K) for q < 3. In this case we may either compute the value in σq (consid-
ering only the small simplices of σq ) or choose one of them and compute the value
there; the trace on σq agrees with the value computed in σq .

Supposing we have found a 3-simplex σ 3 containing x, the next step is to compute
the barycentric coordinates of x and the values of the lowest order Whitney forms corre-
sponding to p-faces of σ 3. These can then be used with the coefficients c[υi] to compute
the value of the interpolant. Indeed, since the basis forms are products of barycentric
functions and lowest order Whitney forms, we can write the interpolant as

∑

υi∈Ŝ
p
k (σ 3)

c[υi]w(υi) =
∑

σ
p
i ⊂σ 3

diWσ
p
i ,

where the second sum is over p-faces σ
p
i of σ 3 and di is a linear combination of

products of barycentric functions. To compute di , recall the decomposition (5.1) and
accumulate the contributions from all faces of σ 3 using the coefficients c[υi]. Taking
orientations into account, our strategy for evaluating the interpolant at a given point
is formulated in Algorithm 3.
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7 Numerical examples

To show that our algorithms can be implemented in practice, we provide numerical
examples with higher order Whitney forms. In all of the test cases, our domain �

is the rhombic dodecahedron with vertices (±1, ±1, ±1), (±2, 0, 0), (0, ±2, 0), and
(0, 0, ±2). We build a simplicial mesh K in � and its refinement Kk . For a p-form
ω, the cochain Ckω is obtained by integrating ω using high-order quadrature formulas
for p-simplices. Then we can approximate ω with the kth-order Whitney form VCkω.
We compute the L2 norm (again using quadrature formulas) of the error |VCkω −ω|.
The experiments are performed for k ∈ {1, . . . , 12} using several test functions ω.
All test functions have L2 norm close to one so that the use of absolute error is
appropriate. To study convergence properly before running out of machine accuracy,
computations are done in quadruple precision.

First, we confirm that our algorithms work as expected using polynomial test func-
tions on a coarse mesh. The mesh has 24 tetrahedra and the maximum edge length is
2.0. Our test functions ωp,j are (where the label j ∈ {1, 2, 3})

ω0,1(x, y, z) = 0.25, ω0,2(x, y, z) = 64

75
x2y2z − 8

75
z5,

ω0,3(x, y, z) = 32

11
x4y4z2 − 1

176
z10, ω1,1(x, y, z)= 30

128
dx− 10

128
dy+ 10

252
dz,

ω1,2(x, y, z) = x2y2zdx + x2yz2dy + xy2z2dz,

ω1,3(x, y, z) = 20

9
(x2y4z4dx + x4y2z4dy + x4y4z2dz),

ω2,1(x, y, z) = 30

128
dy ∧ dz − 10

128
dz ∧ dx + 10

252
dx ∧ dy,

ω2,2(x, y, z) = x2y2zdy ∧ dz + x2yz2dz ∧ dx + xy2z2dx ∧ dy,

ω2,3(x, y, z) = 20

9
(x2y4z4dy ∧ dz + x4y2z4dz ∧ dx + x4y4z2dx ∧ dy),

ω3,1(x, y, z) = 0.25dx ∧ dy ∧ dz,

ω3,2(x, y, z) =
(

64

75
x2y2z − 8

75
z5

)

dx ∧ dy ∧ dz,

ω3,3(x, y, z) =
(

32

11
x4y4z2 − 1

176
z10

)

dx ∧ dy ∧ dz.

The results are displayed in Table 2. As expected, the approximation becomes
exact as soon as the test function is in the space of kth-order Whitney forms.

We also study the convergence of the approximations with respect to the maximum
edge length h of the initial mesh K . Our test function is the 1-form

ω(x, y, z) = 1

4

(

sin(2y) cos(2z)ex2/4dx + sin(2z) cos(2x)ey2/4dy

+ sin(2x) cos(2y)ez2/4dz

)

.
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Table 3 Values of ‖|VCkω − ω|‖L2(�) using four meshes with maximum edge length h

h = 2.0 h = 1.0 h = 0.5 h = 0.25

k = 1 9.0649e-01 4.4526e-01 2.2121e-01 1.1029e-01

k = 2 3.3087e-01 8.0654e-02 1.9448e-02 4.8134e-03

k = 3 9.8547e-02 1.2599e-02 1.5579e-03 1.9377e-04

k = 4 2.6463e-02 1.4660e-03 8.9684e-05 5.5870e-06

k = 5 4.5029e-03 1.5825e-04 4.9643e-06 1.5484e-07

k = 6 9.9236e-04 1.3688e-05 2.1085e-07 3.2889e-09

k = 7 1.2736e-04 1.0950e-06 8.5536e-09 6.6710e-11

k = 8 2.0474e-05 7.2193e-08 2.8066e-10 1.0957e-12

k = 9 2.2874e-06 4.7448e-09 9.2150e-12 1.7954e-14

k = 10 2.9958e-07 2.6627e-10 2.5915e-13 2.5269e-16

k = 11 2.9673e-08 1.5551e-11 7.5258e-15 3.6695e-18

k = 12 3.4667e-09 7.9114e-13 1.9458e-16 4.7636e-20

We approximate ω using four meshes that have 24, 192, 1536, and 12288 tetrahedra
with maximum edge lengths 2.0, 1.0, 0.5, and 0.25 respectively. The results are dis-
played in Table 3 and illustrated in Fig. 3 (in log–log scale). We conclude that higher

Fig. 3 Illustration of the results displayed in Table 3
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order convergence as predicted theoretically by Theorem 5.1 can also be attained in
practice with the help of our algorithms.

Appendix A. Some combinatorial results

This Appendix contains some combinatorial results that are used in this paper.

Lemma A.1 For integers l > 0 and m ≥ 0, we have

#I(l, m) =
(

l + m − 1
m

)

.

Proof This is seen using the well-known stars and bars technique from combina-
torics.

Lemma A.2 Let τ be a p-face of σq = x0 . . . xq . We have

#{k ∈ I(q + 1, k) | ki �= 0 if xi /∈ τ } =
(

p + k

q

)

.

Proof

#{k ∈ I(q + 1, k) | ki �= 0 if xi /∈ τ } = #I(q + 1, k − (q + 1 − (p + 1)))

= #I(q + 1, p + k − q) =
(

p + k

p + k − q

)

=
(

p + k

q

)

,

where Lemma A.1 was applied in the second to last step.

Lemma A.3 Let S̊
p
k (σ q) denote the set of those small simplices in S

p
k (σ q) that are

not contained in the boundary of σq . The cardinality of S̊p
k (σ q) is

#S̊
p
k (σ q) =

⎧
⎪⎪⎨

⎪⎪⎩

(
k − 1

q

)

, p = 0,
(

q + 1
p + 1

) (
p + k − 1

q

)

, p > 0.

Proof When a p-face σp of σq is mapped through kσq with k ∈ I(q + 1, k − 1),
the image kσq (σp) is not contained in the boundary of σq precisely when ki �= 0 if

xi /∈ σp. By Lemma A.2, the number of such k is

(
p + k − 1

q

)

. When p = 0, the

small simplices not in the boundary are all obtained as image of one vertex; when

p > 0, the images of the

(
q + 1
p + 1

)

p-faces are distinct.
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Appendix B. Integrating higher order Whitney forms over small
simplices

This Appendix discusses how the integrals of higher order Whitney forms over small
simplices can be computed analytically. We start with a well-known integration rule
for products of barycentric functions [30].

Lemma B.1 Let σ = x0 . . . xq be a q-simplex and k ∈ I(q + 1, k). The average of
λkσ over σ is

1

|σ |
∫

σ

λkσ =
∏q

i=0 ki !
(q + k)! .

This result is extended for small q-simplices in [27, Proposition 3.6]. We extend
the result further for small p-simplices, p ≤ q. For k ∈ I(q + 1, k), we say r ≤ k if
r = (r0, . . . , rq) is a multi-index such that ri ≤ ki for all i. In this case we can define
(k
r

) = ∏q

i=0

(
ki

ri

)
. With these notations, Lemma B.1 generalises for small p-simplices

as follows.

Lemma B.2 Let σ = x0 . . . xq be a q-simplex, and suppose τ = xi0 . . . xip is a p-
face of σ and xip+1 , . . . , xiq are the vertices of σ that are not in τ . Let k ∈ I(q+1, k),

k′ ∈ I(q + 1, k′), k̃ = (ki0 , . . . , kip ), and υ = k′
σ (τ ). The average of λkσ over the

small p-simplex υ is

1

|υ|
∫

υ

λkσ = 1

(k′ + 1)k

( q∏

j=p+1

(k′
ij
)
kij

)∑

r≤k̃

(
k̃
r

)( p∏

j=0

(k′
ij
)
kij

−rj

)
1

|τ |
∫

τ

λrτ .

Proof Recall that k′
σ maps the point x with barycentric coordinates λi to the point

whose barycentric coordinates are
λi+k′

i

k′+1 . Hence, the λij with j > p are constant on
υ and we can write

∫

υ
λkσ =

(
k′
ip+1
k′+1

)kip+1 · . . . ·
(

k′
iq

k′+1

)kiq ∫

υ
λ

ki0
i0

· . . . · λ
kip

ip
,

∫

υ
λ

ki0
i0

· . . . · λ
kip

ip
= ∫

τ

(
λi0+k′

i0
k′+1

)ki0 · . . . ·
(

λip +k′
ip

k′+1

)kip

· 1
(k′+1)p

,

where 1
(k′+1)p

is the Jacobian determinant of k′
σ considered as a map from τ onto υ.

Since |υ| = |τ |
(k′+1)p

, we get

1

|υ|
∫

υ

λkσ =
( k′

ip+1

k′ + 1

)kip+1 · . . . ·
( k′

iq

k′ + 1

)kiq 1

|τ |
∫

τ
(

λi0 + k′
i0

k′ + 1

)ki0 · . . . ·
(λip + k′

ip

k′ + 1

)kip
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= 1

(k′+1)k

( q∏

j=p+1

(k′
ij
)
kij

)
1

|τ |
∫

τ

(λi0 +k′
i0
)ki0

︸ ︷︷ ︸
∑ki0

r0=0 (
ki0
r0

)λ
r0
i0

(k′
i0

)
ki0

−r0

· . . . · (λip + k′
ip

)
kip

︸ ︷︷ ︸
∑kip

rp=0 (
kip
rp

)λ
rp
ip

(k′
ip

)
kip

−rp

= 1

(k′ + 1)k

( q∏

j=p+1

(k′
ij
)
kij

)∑

r≤k̃

(
k̃
r

)( p∏

j=0

(k′
ij
)
kij

−rj

)
1

|τ |
∫

τ

λrτ .

With Lemmas B.1 and B.2 we can compute averages of barycentric products over
small simplices. The integrals of higher order Whitney forms over small simplices
are then easily obtained using the following result.

Proposition B.3 Let σq be a q-simplex, τ ∈ Sp(σq) a p-face of σq , and ω a smooth
0-form. For any p-simplex υ ⊂ σq , we have

∫

υ

ωWτ =
(

1

|υ|
∫

υ

ω

)

〈Wτ(x), vect(υ)〉,

where 1
|υ|

∫

υ
ω is the average of ω over υ, x is any point in υ, and vect(υ) is the

p-vector of υ.

Proof The quantity 〈Wτ(x), vect(υ)〉 is constant in υ (see [20]), and hence,
∫

υ

ωWτ =
∫

υ

〈

ω(x)Wτ(x),
vect(υ)

|υ|
〉

dx =
(

1

|υ|
∫

υ

ω

)

〈Wτ(x), vect(υ)〉.
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