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a b s t r a c t

The R package walker extends standard Bayesian general linear models to the case where the effects
of the explanatory variables can vary in time. This allows, for example, to model the effects of
interventions such as changes in tax policy which gradually increases their effect over time. The Markov
chain Monte Carlo algorithms powering the Bayesian inference are based on Hamiltonian Monte Carlo
provided by Stan software, using a state space representation of the model to marginalize over the
regression coefficients for efficient low-dimensional sampling.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0.3-1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_212
Code Ocean compute capsule none
Legal Code License GPL3
Code versioning system used git
Software code languages, tools, and services used R, Stan, C++.
Compilation requirements, operating environments & dependencies R version 3.4.0 and up, C++14, R packages bayesplot, BH, coda, dplyr, ggplot2,

Hmisc, KFAS, loo, methods, RcppParallel, rlang, rstan, rstantools, StanHeaders,
Rcpp, RcppArmadillo, RcppEigen

If available Link to developer documentation/manual https://cran.r-project.org/web/packages/walker/walker.pdf
Support email for questions jouni.helske@iki.fi

1. Motivation and significance

Assume a time series of interest y1, . . . , yT which is linearly
dependent on the some other predictor time series X1, . . . , XT ,
where X ′

t = (x1t , . . . , xpt )′ are the predictor variables at the time
point t , and define linear-gaussian time series regression model
as

yt = X ′

tβt + ϵt , t = 1, . . . , T , (1)

where ϵt ∼ N(0, σ 2
ϵ ) and β is a vector of p unknown regression

oefficients (first one typically being the intercept term).
It is not always reasonable to assume that the relationship be-

ween yt and some predictor xit stays constant over t = 1, . . . , T ,
the time period of interest. The convenient linear relationship
approximation may hold well for only piecewise if the underlying
relationship is nonlinear or when there are some unmeasured

E-mail address: jouni.helske@jyu.fi.

confounders that alter the relationship between the measured
variables. Allowing the regression coefficients to vary over time
can in some instances alleviate these problems. It is also possible
that our knowledge of the phenomena of interest already leads
to suspect time-varying relationships (see, e.g., Chapter 1 in [1]).

The basic time series regression model (1) can be extended to
allow the unknown regression coefficients βt to vary over time.
This can be done in various ways, for example, by constructing
a semiparametric model based on kernel smoothing [2], or para-
metrically by using dynamic Bayesian networks [3] or state space
models [4]. We follow the state space modelling approach and
define a gaussian time series regression model with random walk
coefficients as

yt = X ′

tβt + ϵt ,

βt+1 = βt + ηt ,
(2)

where ηt ∼ N(0,D), with D being p × p diagonal matrix with di-
agonal elements σ 2

i,η , i = 1, . . . , p, and define a prior distribution
for the first time point β as N(µ , σ 2 ). The bottom equation in
1 β1 β1
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2) defines a random walk process for the regression coefficients
ith D defining the degree of variability of the coefficients (with
= 0 the model collapses to basic regression model).
Our goal is a Bayesian estimation of the unknown regression

oefficients β1, . . . , βT and standard deviations σ = (σϵ, σ1,η, . . . ,

σp,η). Although in principle we can estimate these using the
general-purpose Markov chain Monte Carlo (MCMC) software
such as Stan [5] or BUGS [6], these standard implementations
can be computationally inefficient and prone to severe problems
related to the convergence of the underlying MCMC algorithm
due to the nature of our models of interest. For example in
(block) Gibbs sampling approach we target the joint posterior
p(β, σ |y) by sampling from p(β|σ , y) and p(σ |β, y). But because
of strong autocorrelations between the coefficients β at different
time points, as well as with the associated standard deviation
parameters, this MCMC scheme can lead to slow mixing. Also,
the total number of parameters to sample increases with the
number of data points T . Although the Hamiltonian Monte Carlo
algorithms offered by Stan are typically more efficient exploring
high-dimensional posteriors than Gibbs-type algorithms, we still
encounter similar problems.

An alternative solution used by the R [7] package walker
is based on the property that model (2) can be written as a
linear gaussian state space model (see, e.g., Section 3.6.1 in [8]).
This allows us to marginalize the regression coefficients β during
the MCMC sampling by using the Kalman filter leading to a fast
and accurate inference of marginal posterior p(σ |y). Then, the
corresponding joint posterior p(σ , β|y) = p(β|σ , y)p(σ |y) can be
btained by simulating the regression coefficients given marginal
osterior of standard deviations. This sampling can be performed
or example by simulation smoothing algorithm [9].

The marginalization of regression coefficients cannot be di-
ectly extended to generalized linear models such as Poisson
egression, as the marginal log-likelihood is intractable. However,
t is possible to use Gaussian approximation of this exponential
tate space model [10], and the resulting samples from the ap-
roximating posterior can then be weighted using the importance
ampling type correction [11], leading again to asymptotically
xact inference.
When modelling the regression coefficients as a simple ran-

om walk, the posterior estimates of these coefficients can have
arge short-term variation which might not be realistic in prac-
ice. One way of imposing more smoothness for the estimates
s to switch from random walk coefficients to integrated second
rder random walk coefficients, defined as

t+1 = βt + νt ,

νt+1 = νt + ξt ,

ith ξt ∼ N(0,Dξ ). This is a local linear trend model [12] (also
nown as an integrated random walk), with the restriction that
here is no noise on the β level. For this model, we can apply the
ame estimation techniques as for the random walk coefficient
ase. More complex patterns for β are also possible. For example,
e can define that βt+1 ∼ N(βt , γtση) where γ1, . . . , γT is known
onotonically decreasing sequence of values leading to a case
here βt gradually converges to constant over time.

. Software description

A stable version of walker is available at CRAN,1 while the
urrent development version can be installed from Github.2 The
CMC sampling is handled by rstan, the R interface to Stan,

1 https://cran.r-project.org/package=walker.
2 https://github.com/helske/walker.

while the model definitions and analysis of the results are per-
formed in R, leading to fast and flexible modelling.

For defining the models, the walker package uses similar
Wilkinson–Rogers model formulation syntax [13] as, for example,
basic linear model function lm in R, but the formula for walker
also recognizes two custom functions, rw1 and rw2 for random
walk and integrated random walk respectively. For example, by
typing

fit <- walker(y ~ 0 + x +
rw1(~ z, beta = c(0, 1), sigma = c(2, 1)),
sigma_y = c(2, 1))

we define a model with time-invariant coefficient for predictor x,
and first order random walk coefficients for z and time-varying
intercept term. Priors for β (including the intercept) and σ are
defined as vectors of length two which define the mean and
standard deviation of the normal distribution and shape and rate
of the Gamma distribution respectively.

Function walker creates the model based on the formula
and the prior definitions, and then calls the sampling function
from the rstan package. The resulting posterior samples can
be then converted to a data frame format using the function
as.data.frame for easy visualization and further analysis.

In addition to the main functions walker for the Gaussian
case and walker_glm for the Poisson and negative binomial
models, the package contains additional functions for visualiza-
tion of the results (e.g., plot_coef and pp_check) and out-
of-sample prediction (function predict). Also, as the modelling
functions return the full stanfit used in MCMC sampling, this
object can be analysed using many general diagnostic and graph-
ical tools provided by several Stan related R packages such as
ShinyStan [14].

3. Illustrative examples

As an illustrative example, let us consider a observations y of
length n = 100, generated by random walk (i.e. time varying
intercept) and two predictors. First we simulate the coefficients,
predictors and the observations:

set.seed(1)
n <- 100
beta1 <- cumsum(c(0.5, rnorm(n - 1, 0, sd = 0.05)))
beta2 <- cumsum(c(-1, rnorm(n - 1, 0, sd = 0.15)))
x1 <- rnorm(n, mean = 2)
x2 <- cos(1:n)
rw <- cumsum(rnorm(n, 0, 0.5))
signal <- rw + beta1 * x1 + beta2 * x2
y <- rnorm(n, signal, 0.5)

Then we can call function walker. As noted in Section 2 the
model is defined as a simple formula object, and in addition to the
prior definitions we can pass various arguments to the sampling
method of rstan, such as the number of iterations iter and
the number of chains chains to be used for the MCMC (default
values for these are 2000 and 4 respectively).

fit <- walker(y ~ 0 + rw1(~ x1 + x2,
beta = c(0, 10), sigma = c(2, 4)),
sigma_y = c(2, 4), chains = 2, seed = 1)

The output of walker is walker_fit object, which is essen-
tially a list with stanfit from Stan’s sampling function, the
original observations y and the covariate matrix xreg. This allows
us to use all the postprocessing functions for stanfit objects.
2
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Fig. 1. Posterior means (solid lines) and 95% posterior intervals (shaded areas) of the time-varying regression coefficients and the true data generating values (dashed
lines) of the illustrative example.

Fig. 1 shows how walker recovers the true coefficient pro-
cesses relatively well: The posterior intervals contain the true co-
efficients and the posterior mean estimates closely follow the true
values. For drawing the figure, we first use function
as.data.frame to extract our posterior samples of the co-
efficients as data frame, then use packages dplyr [15] and
gplot2 [16] to summarize and plot the posterior means and
5% posterior intervals respectively:

ibrary(dplyr)
ibrary(ggplot2)
umr <- as.data.frame(fit, type = "tv") %>%
group_by(variable, time) %>%
summarise(mean = mean(value), lwr = quantile(value, 0.025),
upr = quantile(value, 0.975))

umr$true <- c(rw, beta1, beta2)

gplot(sumr, aes(y = mean, x = time, colour = variable)) +
geom_ribbon(aes(ymin = lwr, ymax = upr, fill = variable),
colour = NA, alpha = 0.2) +

geom_line(aes(linetype = "Estimate"), lwd = 1) +
geom_line(aes(y = true, linetype = "True"), lwd = 1) +
scale_linetype_manual(values = c("solid", "dashed")) +
theme_bw() + xlab("Time") + ylab("Value") +
theme(legend.position = "bottom",
legend.title = element_blank())

More examples can be found in the package vignette and func-
ion documentation pages (e.g. typing vignette(‘‘walker’’)
r ?walker_glm in R), including a comparison between the
arginalization approach of walker and ‘‘naive’’ implementation
ith Stan, and an example on the scalability.

. Impact and conclusions

The walker package extends standard Bayesian generalized
linear models to flexible time-varying coefficients case in a com-
putationally efficient manner, which allows researchers in eco-
nomics, social sciences and other fields to relax the sometimes
unreasonable assumption of a stable, time-invariant relationship
between the response variable and (some of) the predictors.
Similar methods have been previously used in maximum likeli-
hood setting for example in studying the diminishing effects of
advertising [17] and demand for international reserves [18].

There are several ways how walker can be extended in the
uture. There are already some plans for additional forms of
ime-varying coefficients (such as a stationary autoregressive pro-
ess), support for more priors and additional distributions for the
esponse variables (e.g., negative binomial).
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