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ABSTRACT
The generalized Kadanoff–Baym ansatz (GKBA) offers a computationally inexpensive approach to simulate out-of-equilibrium quantum
systems within the framework of nonequilibrium Green’s functions. For finite systems, the limitation of neglecting initial correlations in
the conventional GKBA approach has recently been overcome [Karlsson et al., Phys. Rev. B 98, 115148 (2018)]. However, in the context
of quantum transport, the contacted nature of the initial state, i.e., a junction connected to bulk leads, requires a further extension of the
GKBA approach. In this work, we lay down a GKBA scheme that includes initial correlations in a partition-free setting. In practice, this
means that the equilibration of the initially correlated and contacted molecular junction can be separated from the real-time evolution. The
information about the contacted initial state is included in the out-of-equilibrium calculation via explicit evaluation of the memory integral
for the embedding self-energy, which can be performed without affecting the computational scaling with the simulation time and system size.
We demonstrate the developed method in carbon-based molecular junctions, where we study the role of electron correlations in transient
current signatures.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040685., s

I. INTRODUCTION

State-of-the-art electronic components are engineered from
nanoscale building blocks with emerging quantum phenomena.1–5

These devices are not isolated but affected by a wide variety of
environmental conditions and external perturbations, such as tem-
perature variations, structural defects, and chemical contamination
on the samples. The device operation is typically ultrafast; there
is no guarantee for an instant relaxation to a static configuration
once the device is switched on. Emerging transient effects depend
on quantum dynamics and correlations,6–14 system geometry and
topology,15–22 and the response to external perturbations or thermal

gradients.23–35 Recently, pump–probe spectroscopic methods have
grown in number rapidly, leading to the current field of ultrafast
materials science with the sub-picosecond temporal resolution being
routinely achieved.36–43

To address these methods, a fully time-dependent quantum
description including many-body correlations is necessary, as the
individual components of the systems are operating on ultrafast
time scales at the quantum level. The nonequilibrium Green’s
function (NEGF) approach44–49 is a natural choice: The dynam-
ical information about the system, e.g., electric currents or the
photoemission spectrum, is encoded into the NEGF. Access-
ing this information requires solving the equations of motion
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for the NEGF, which is computationally expensive. However,
this can be made computationally more tractable by reducing
the two-time-nature of the NEGF into a single-time-description.
This approach, the generalized Kadanoff–Baym ansatz (GKBA),50

is a well-established procedure and it has been successfully
applied in molecular junctions11,26,32,51–53 and spectroscopical
setups for atomic,31,54–56 molecular,57–60 and condensed matter
systems.14,61–65

In the language of the Keldysh formalism,46–48 the GKBA
approach concerns with real-time Green’s functions, namely, the
lesser and greater Keldysh components. A drawback in this approach
is that the so-called mixed Keldysh components, with one of the time
arguments being imaginary and the other one being real, are not
included. The role of these mixed components is to relate the equi-
librium (Matsubara) calculation to the out-of-equilibrium one, and
therefore, a consistent description of the initial correlations (IC) is
troublesome. It has been shown to be possible to include the initial
correlations in the GKBA approach as a separate calculation32,66–68

although it has been customary to use a noncorrelated initial state
and build up correlations via a time evolution excluding external
perturbations.69,70

For transport setups, also the initial contacting of the
molecular junction contributes to the initial correlations. In the
partitioned approach,71,72 the initial state is uncontacted, and the
molecular region is suddenly brought into contact with the leads.
In this case, the initial correlation collision integral due to the
contact or embedding self-energy vanishes. The contacted ini-
tial state can be constructed by a sudden or adiabatic switching
(AS) of the contacts and evolving the system without external
fields to a contacted equilibrium. In the partition-free approach,73

the initial state is contacted, and there is a unique thermo–
chemical equilibrium. The information about this coupled equi-
librium is then encoded in the initial correlation (IC) collision
integral I ic

(t). In this paper, we derive an expression for I ic
(t)

in closed form for the embedding self-energy. This calculation
can be separated from the time evolution, similar to Ref. 32.
The derived expression can directly be combined with many-body
self-energies, resulting in a partition-free approach to the GKBA
time evolution for an initially correlated and contacted transport
setup.

This paper is organized as follows: In Sec. II, we introduce the
model system and the governing equations of the GKBA approach
(with the underlying NEGF theory detailed in Appendix A). We
outline the calculation of the initial contacting collision integral
in Sec. III and defer the implementation details to Appendixes B
and C. Then, in Sec. IV, we present numerical simulations for
time-resolved electronic transport in carbon-based molecular junc-
tions. We draw our conclusions and discuss future prospects in
Sec. V.

II. MODEL AND METHOD
We consider an electronic junction consisting of a quantum-

correlated molecular device (C), which is connected to an arbi-
trary number of noninteracting metallic leads (α); see Fig. 1. The
molecular junction is described in terms of the second-quantized
Hamiltonian,

FIG. 1. Schematic molecular junction described by Eq. (1). The molecular struc-
ture is represented by the single-particle matrix elements hmn and the interaction
vertex vmnpq, which is taken into account by the many-body self-energies Σmb.
The molecular device is connected to α leads (only two depicted, α ∈ {L, R}) via
the tunneling matrix elements Tmkα represented by the embedding self-energies
(Σem)α.

Ĥ = ∑
kα,σ

ϵkαĉ
†
kα,σ ĉkα,σ + ∑

mn,σ
hmnĉ†m,σ ĉn,σ + ∑

mkα,σ
[Tmkαĉ

†
m,σ ĉkα,σ + h.c.]

+
1
2 ∑mnpq

σσ′

vmnpqĉ†m,σ ĉ
†
n,σ′ ĉp,σ′ ĉq,σ , (1)

where m, n, p, and q label a complete set of single-electron states
in the molecular device, α labels the leads, ϵkα describes the single-
electron energy state k in the αth lead, hmn are the single-particle
matrix elements for the molecular region, Tmkα are the tunneling
matrix elements between the molecular device and the leads, and
vmnpq are the two-electron Coulomb integrals for the molecular
device. The annihilation (creation) operator ĉ(†)x,σ removes (creates)
an electron from (to) state x with spin orientation σ ∈ {↑, ↓}, and
they obey the fermionic anti-commutation rules {ĉx,σ , ĉ†y,σ′} = δxyδσσ′
for indices x and y belonging either to the leads or to the molecular
device.

We note that all objects introduced in Eq. (1) are diagonal in
spin space. However, the following consideration could straightfor-
wardly be extended to cases with spin–orbit or Zeeman terms in
the molecular Hamiltonian22 or ferromagnetic leads.74 In addition,
it would be possible to include a contribution from a thermome-
chanical field to the lead energy dispersion, giving rise to a relative
temperature shift in the leads.28,75–78

To access time-dependent nonequilibrium quantities for the
system described by Eq. (1), we consider the equation of motion
for the single-particle density matrix ρ (see Appendix A for back-
ground),

d
dt
ρ(t) + i[hHF(t), ρ(t)] = −[I(t) + I ic

(t) + h.c.], (2)

where hHF is the single-particle Hamiltonian supplemented with the
time-local Hartree–Fock (HF) self-energy. The time-nonlocal self-
energies due to many-particle and embedding effects appear in the
collision integrals,

I(t) = ∫
t

t0
dt̄[Σ>(t, t̄)G<(t̄, t) − Σ<(t, t̄)G>(t̄, t)], (3)

I ic
(t) = −i∫

β

0
dτΣ⌉(t, τ)G⌈(τ, t), (4)
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where t0 marks the time when the system is driven out of equilib-
rium and β is the (equilibrium) inverse temperature. We refer to
Appendix A for the description of the different components, e.g.,
the greater (>) and lesser (<) functions. Solving Eq. (2) is compu-
tationally demanding due to the full two-time history of the func-
tions in Eqs. (3) and (4) and because of the self-energies’ functional
dependency on the Green’s functions Σ[G].

To reduce the computational complexity, the Green’s functions
are commonly approximated by the GKBA,

G≶(t, t′) = ∓GR
(t, t′)ρ≶(t′) ± ρ≶(t)GA

(t, t′), (5)

with ρ< ≡ ρ and ρ> ≡ 1 − ρ, and the propagators are described for the
coupled system at the HF level,

GR/A
(t, t′) = ∓iθ[±(t − t′)]Te−i ∫ t

t′ dt̄[hHF(t̄)∓iΓ/2], (6)

where T is the chronological time-ordering and Γ is the tunnel-
ing probability matrix from the leads to the molecular region.
Here, we have used the wideband approximation (WBA) for the
retarded/advanced embedding self-energy (see Appendix B). This
choice guarantees the same mathematical structure for the propaga-
tors as for the free-particle (or the HF) propagator, and it is expected
to provide an accurate description when the retarded/advanced
embedding self-energy depends weakly on the frequency around the
Fermi level and when the electrochemical potential is well inside
the lead bandwidth. We note, however, that the WBA is not a crit-
ical restriction since the frequency dependence of the lesser/greater
embedding self-energy can be included in Eq. (3) [cf. Eq. (B7)]. Only
the approximation in Eq. (6) becomes better the more we are within
the WBA.

While Eq. (2) in combination with Eq. (5) [also the self-energies
in Eqs. (A10), (A11), and (A8)] represents a closed set of equa-
tions, it only applies to the GKBA in the absence of initial con-
tact and correlations [I ic

= 0 in Eq. (4)]. This is because the
GKBA does not provide an approximation for the mixed func-
tions in Eq. (4). It is possible to pass over this issue by starting
the time evolution from an initially noncorrelated state and then
building up correlations by adiabatically switching on the many-
particle and embedding effects.69,70 This procedure may, however,
lead to unpractically long propagation times, putting the com-
putational gain of the GKBA in jeopardy compared to the full
Kadanoff–Baym equations (KBEs).14,32,79 However, the inclusion of
the initial correlations has been shown to be possible also within
GKBA.32,66–68

In Ref. 32, a closed-form expression for I ic in terms of ρ was
derived for a closed system where electron–electron interactions
were described by the second-order Born self-energy. In Sec. III, we
will outline a similar procedure to evaluate I ic

(t) for the embedding
self-energy. This procedure can directly be combined with many-
body self-energies, making it possible to perform GKBA time evolu-
tion for an initially correlated and contacted transport setup. This
constitutes a partition-free framework for electronic transport in
terms of the GKBA.

III. INITIAL CONTACTING COLLISION INTEGRAL
Let us start by separating the collision integral in Eq. (4) for the

correlation and contacting contributions as

I ic
(t) = I ic

mb(t) + I ic
em(t). (7)

For the first term (mb), we directly use the result derived in Ref. 32
employing the second-order Born self-energy. For the second term
(em), we take the self-energies as the embedding ones,

I ic
em(t) ≡ −i∫

β

0
dτΣ⌉em(t, τ)G

⌈
(τ, t). (8)

The objects in Eq. (8) satisfy the same analytic structure as in Ref. 32,
enabling us to write a generalized fluctuation–dissipation theorem
for the Green’s function and self-energy. This further allows for writ-
ing Eq. (8) equivalently in terms of the real-time lesser and greater
functions,32

I ic
em(t) = ∫

0

−∞
dt̄[Σ>em(t, t̄)G

<
(t̄, t) − Σ<em(t, t̄)G

>
(t̄, t)], (9)

where the GKBA in Eq. (5) is to be employed for the Green’s func-
tions and Eq. (B7) for the embedding self-energy. In general, Eq. (9)
involves a convergence factor eηt̄ in the integrand (see Ref. 32).
However, with contacted infinite leads, this factor can be left out
as the embedding self-energy accounts for proper convergence due
to the presence of a continuum of lead states. We notice that for
t̄ ∈ (−∞, 0), we have t̄ < 0 < t, i.e., the retarded Green function,
GR
(t̄, t) ∝ θ(t̄ − t), vanishes, whereas the advanced Green func-

tion, GR
(t̄, t) ∝ θ(t̄ − t), does not [cf. Eq. (6)]. Importantly, for

times t̄ < 0 < t, the single-particle density matrix is static, given
by some equilibrium value, ρ(t̄) ≡ ρeq. In this time interval, the HF
Hamiltonian also becomes static, hHF(t̄) = hHF[ρ(t̄)] = hHF[ρeq

]

≡ heq
HF. These time intervals may then be separated using the group

property

GA
(t̄, t) = −iGA

(t̄, 0)GA
(0, t) = e−i(heq

HF+iΓ/2)t̄GA
(0, t). (10)

Note that here, the equilibrium system is taken as coupled and Γ
appearing in the exponent is due to the WBA, in accordance with
Eq. (6).

With these considerations, Eq. (9) can be expanded as

I ic
em(t) = ∫

0

−∞
dt̄{−i∑

α
e−iψα(t,t̄)

∫

dω
2π
[1 − f (ω − μ)]Γα(ω)

× e−iω(t−t̄)ρeqe−i(heq
HF+iΓ/2)t̄GA

(0, t)

+ i∑
α

e−iψα(t,t̄)
∫

dω
2π

f (ω − μ)Γα(ω)e−iω(t−t̄)
(1 − ρeq

)

× e−i(heq
HF+iΓ/2)t̄GA

(0, t)}, (11)
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where ψα(t, t̄) ≡ ∫
t
t̄ dt′Vα(t′) is the bias voltage phase factor (see

Appendixes A and B). Here, it is worth noting that the frequency-
dependence of Γα(ω) results from the lesser/greater embedding self-
energy in Eq. (B7), which itself is of general form and does not
require the WBA. For t̄ ∈ (−∞, 0), the system is in equilibrium,
i.e., external fields are not switched on. For the bias voltage phase
factor, we therefore have ψα(t, t̄) = ψα(t, 0). Then, by canceling and
combining some terms, we may isolate the t̄ integration,

I ic
em(t) = i∑

α
e−iψα(t,0)

∫

dω
2π

Γα(ω)[f (ω − μ) − ρeq
]e−iωt

× [∫

0

−∞
dt̄ei(ω−heq

HF−iΓ/2)t̄
]GA
(0, t). (12)

The time integration is now straightforward to perform and we are
left with a frequency integral only. This gives us as the final result for
the initial contacting collision integral

I ic
em(t) = ∑

α
e−iψα(t,0)

∫

dω
2π

Γα(ω)[ f (ω − μ) − ρeq
]

×
e−iωt

ω − (heq
HF + iΓ/2)

GA
(0, t), (13)

where we used the notation c − A ≡ c1 − A and 1/A ≡ A−1 for a scalar
c and a matrix A.

Importantly, we are left with no time integrations, so Eq. (13)
can be evaluated at any time t with minor computational cost, pro-
vided that GA(0, t) is already available during the time evolution.
We discuss in Appendix C the case of taking explicitly the WBA
for Eq. (13), which lightens the computational cost even more. If, in
addition, we consider a specific but frequently used harmonic bias
voltage profile, Vα(t) = V0

α + Aα cos(Ωαt + ϕa), also the phase factor
e−iψα(t,0) can be expanded in terms of Bessel functions.80–82

The time-dependent current between the molecular region and
the leads can be calculated by the Meir–Wingreen formula,80,83

Iα(t) = 4ReTr∫
t

t0
dt̄[(Σ>em)α(t, t̄)G

<
(t̄, t) − (Σ<em)α(t, t̄)G

>
(t̄, t)].

(14)

This needs to be adjusted to include the effect from the initial con-
tacting collision integral in Eq. (13). The adjustment can be obtained
by writing Eq. (13) as I ic

em(t) = ∑α(I ic
em)α(t) and then identifying

the time-dependent current as

Iα(t) Ð→ Iα(t) + 4ReTr(I ic
em)α(t). (15)

We note that a corresponding contribution arising from the many-
body self-energy vanishes due to conservation laws and the self-
consistent solution to the equations of motion.12

IV. RESULTS
We now demonstrate the protocol derived in Sec. III. In all the

numerical simulations presented, we consider two separate cases:
(1) the standard GKBA time evolution where the correlated and

contacted initial state is prepared by an adiabatic switching pro-
cedure for t ∈ [−T, 0] and then switching on the bias voltage at
t = 0 and (2) the GKBA time evolution supplemented with the initial
correlations and contacting collision integral, starting the simulation
directly at t = 0 with the bias voltage. We refer to the former case
as “GKBA|AS” and to the latter as “GKBA|IC.” As we wish to ana-
lyze the validity of the initial contacting protocol, we consider the
electronic interactions at the HF and 2B level. Note that in the HF
case, I ic

mb = 0 in Eq. (7), and in the 2B case, this contribution is
evaluated using the approach of Ref. 32.

We consider two different molecular junctions where the
“molecule” being coupled to macroscopic metallic leads is (i)
cyclobutadiene and (ii) a graphene nanoflake. The modeling for
the molecular regions is done at the Pariser–Parr–Pople84,85 (PPP)
level, where the kinetic and interaction matrix elements are obtained
semi-empirically by fitting to more sophisticated calculations.

The macroscopic metallic leads are described as noninteracting
semi-infinite tight-binding lattices. The role of the leads is to act as
particle reservoirs and as biased electrodes accounting for a potential
drop across the molecular region. The potential drop is modeled by
a symmetric bias voltage VL = −VR ≡ V (see Appendix A). We also
consider the zero-temperature limit at which we derive in Appendix
B a fast and accurate analytical representation of the embedding
self-energy in terms of Bessel and Struve functions. The matrix struc-
ture of the embedding self-energy is specified by the coupling matrix
elements between the molecular region and the leads: In all the cases
considered, the left-most atoms of the molecular region are coupled
to the left lead and the right-most atoms of the molecular region
are coupled to the right lead with equal coupling strength tαC, where
α = L, R. The energy scale in the lead is specified by the hopping
strength between the lead sites tα.

A. Cyclobutadiene
We consider a cyclobutadiene molecule attached to donor–

acceptor-like leads. This is a circular molecule of four atomic sites,
and it is modeled by PPP parameters obtained by fitting to an effec-
tive valence shell Hamiltonian method.86 The single-particle matrix
is taken as (in atomic units)

h = −
⎛

⎜
⎜
⎜

⎝

0.903 0.119 0 0.098
0.119 0.903 0.098 0

0 0.098 0.903 0.119
0.098 0 0.119 0.903

⎞

⎟
⎟
⎟

⎠

, (16)

and the two-body interaction is of the form vmnpq = vmnδmqδnp with
(in atomic units)

v =

⎛

⎜
⎜
⎜

⎝

0.433 0.201 0.165 0.202
0.201 0.430 0.202 0.165
0.165 0.202 0.433 0.201
0.202 0.165 0.201 0.430

⎞

⎟
⎟
⎟

⎠

. (17)

Note the slightly asymmetric structure of the hopping and interac-
tion matrix elements due to cyclobutadiene being a rectangle, not
a square.87 The coupling between the molecule and the leads is of
equal strength tαC = −0.06 a.u. from the molecular sites 1 and 4
to the left lead and from the molecular sites 2 and 3 to the right
lead. The hopping energy in the leads is tα = −0.24 a.u., which
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FIG. 2. Time-dependent densities [pan-
els (a) and (b)] and currents [panels (c)
and (d)] in a cyclobutadiene molecular
junction under the influence of voltage
biases V = 0.06 (weak) and V = 0.24
(strong) at the HF [panels (a) and (c)] and
2B [panels (b) and (d)] level. The GKBA
time evolution with adiabatic switching is
shown with the solid line and the switch-
ing time extends over the figure frame to
t =−T =−500. The GKBA time evolution
starting from t = 0 with the initial con-
tacting protocol is shown with the dashed
line, and a benchmark solution to the full
KBE is shown with the dotted line. The
densities in panels (a) and (b) for the
strong bias case are shifted upwards by
0.03 for clarity.

gives for the tunneling rate Γα = 2t2
αC/∣tα∣ = 0.03 a.u. The chemi-

cal potential is set between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO),
μ = −0.119 a.u., of the isolated molecule with two electrons. Such
simplified modeling of the molecular junction enables us to address
the new approach with mathematical transparency, also comparing
the GKBA with the full Kadanoff–Baym equation (KBE) approach of
Ref. 88.

In Fig. 2, we show the time-dependent densities (at the first site)
and currents (through the left lead interface) in the cyclobutadiene
molecular junction. We see that the restart protocol of GKBA with
the initial contacting (GKBA|IC) is in excellent agreement with the
adiabatic switching (GKBA|AS) for both the density and the current
and for both weak and strong bias. In addition, we have checked
(not shown) that in the absence of bias, the GKBA|IC time evolution
remains stable and unchanged from the state described by ρeq. Even

though the bias window in the strong-bias case extends up to half the
bandwidth, we still observe a satisfactory agreement between GKBA
and KBE at the HF level. At the 2B level compared to full KBE, we
find a typical mismatch of the steady-state density and current. This
can be addressed in terms of the out-of-equilibrium spectral func-
tion, which is calculated as a Fourier transformation with respect to
the relative-time coordinate tr ≡ t − t′,

A(ω) = i∫ dtreiωtr Tr[G>(Tc + tr/2,Tc − tr/2)

− G<(Tc + tr/2,Tc − tr/2)], (18)

where we set the center-of-time coordinate, Tc ≡ (t + t′)/2, to half
the total propagation time so that the relative-time coordinate spans
the maximal range diagonally in the two-time plane. In Fig. 3, we

FIG. 3. Energy diagrams of the cyclobu-
tadiene molecular junction. Panel (a)
shows the energy-dependence (vertical
axis) of the imaginary part of the embed-
ding self-energy, i.e., the lead density of
states with tα = −0.24 as the lead hop-
ping. The HF energy levels of the iso-
lated molecule are shown as horizontal
lines. Panels (b) and (c) show the out-of-
equilibrium spectral functions in the weak
(V = 0.06) and strong (V = 0.24) bias
cases, respectively. The vertical energy
axes of the spectral functions are aligned
with the energy axis in panel (a).
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show the energy diagram together with the out-of-equilibrium spec-
tral functions. As the GKBA in Eq. (5) satisfies the exact condition
G> − G< = GR

− GA, the GKBA spectral function adheres to the
form of the HF propagators in Eq. (6). This is generally in agreement
with Refs. 88 and 89 for similar systems. Here, the interaction is rela-
tively strong, so the KBE 2B spectral function is completely smeared
out.

B. Graphene nanoflake
We then consider a graphene nanoflake, which has more struc-

tural complexity (see Fig. 4). The molecular region is a notched
armchair graphene nanoribbon of a width of 9 and a length of 8
similar to Ref. 90 where a generalized tight-binding model was pro-
posed. It was found that a single parameter set with first-, second-,
and third-nearest neighbor hoppings t1 = −2.7 eV, t2 = −0.20 eV,
t3 = −0.18 eV, respectively, and a Hubbard interaction U = 2.0 eV
accurately reproduced density-functional theory based results for
both the band structure and the conductance. We choose these val-
ues as the PPP parameters along the hexagonal lattice in Fig. 4
for Eq. (1): hmn = t1, t2, t3 for first-, second-, and third-nearest
neighbors, respectively, and vmnpq = Uδmnδmpδmq. Here, we describe
the interactions at the 2B level. We note that, as we include next-
nearest neighbor hoppings, the electron–hole symmetry is not pre-
served.91 In addition, the nanoflake is coupled to the left and right
leads from the left-most and right-most carbon atoms, respectively
(see Fig. 4). We consider two cases of tunneling rates between the
graphene nanoflake and the leads Γα ∈ {0.02|t1|, 0.2|t1|}, and we
fix the bias voltage to V = |t1| with respect to the chemical poten-
tial μ = 1.44 eV, which is set in the middle of the HOMO–LUMO
gap of the isolated graphene nanoflake. As the energies are in elec-
tron volts, ε = 1 eV, we convert the units for time to seconds by
t = ̵h/ε ≈ 6.582 ⋅ 10−16 s, and the units for current to amperes by
I = eε/̵h ≈ 2.434 ⋅ 10−4 A.

The restart protocol with the initial contacting (GKBA|IC)
relies on a converged initial state. In Fig. 5, we show the time-
dependent currents (through the left lead interface) for the graphene
nanoflake molecular junction, and we study the role of the switching

FIG. 4. Graphene nanoflake molecular junction. The left-most carbon atoms
(black) are connected to the left lead (yellow) with tunneling rate ΓL, and the
right-most carbon atoms (black) are connected to the right lead (yellow) with tun-
neling rate ΓR. Only the terminal sites of the leads are depicted. Red, green,
and blue arrows signify the hopping energies between first-, second-, and third-
nearest neighbors, respectively. Electron–electron interaction is of Hubbard type
with strength U.

FIG. 5. Time-dependent currents through the left lead interface of a graphene
nanoflake in (a) weak and (b) intermediate coupling regimes. The GKBA time evo-
lution with the 2B self-energy and with adiabatic switching (GKBA|AS) is shown
with the solid line and the indicated switching time t = −T extends over the figure
frame. The GKBA time evolution with the 2B self-energy starting from t = 0 with
initial contact and correlations (GKBA|IC) is shown with the dashed line. A compar-
ative time evolution with the HF self-energy is shown with the dashed-dotted line.
A sudden switch-on of both correlations (2B) and voltage at t = 0 (GKBA|sudd) is
shown with a dotted line. For clarity, we apply an upward shift of 0.04 mA for the
T = 60 fs case in panel (a) and 0.3 mA for the T = 20 fs case in panel (b). The
cases T = 10 fs and T = 30 fs are intentionally not converged to illustrate the
importance of a properly converged initial state.

time t = −T and the tunneling rate Γα. First, the initial contact-
ing (GKBA|IC) is in excellent agreement with the adiabatic switch-
ing (GKBA|AS) for both weak and intermediate coupling. Second,
the relaxation time of the switching procedure is longer for weaker
coupling.11 This is reflected on the initial contacting protocol, which
requires an equilibrium density matrix ρeq as the input. If this
ρeq does not result from a properly converged calculation, then
GKBA|IC starts deviating from GKBA|AS, as shown by the cases
T = 10 fs and T = 30 fs in Fig. 5. We emphasize that the com-
putational cost for the GKBA|IC is independent of how long the
preparation stage takes: With one prepared ρeq, as many out-of-
equilibrium simulations as desired may be performed (e.g., voltage
sweep).

In Fig. 5, we also show a simulation with the HF self-energy:
Compared to the 2B case, the transient oscillation is roughly sim-
ilar and only the steady-state value is affected within the GKBA
description. For this size of the graphene structure and this model
of interaction, this is reasonable as monolayer graphene devices are
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known to have fairly large coherent transport lengths.91 In Fig. 5,
we also show, for comparison, an ill-advised simulation of a simul-
taneous and sudden switch-on of both many-body correlations and
contacts with voltage at t = 0. Clearly, the transient features are com-
pletely misrepresented in this case, but the long-time limit coincides
with the AS and IC results due to the loss of memory of the initial
state.92 Generally, with the chosen parameters for voltage and cou-
pling, we find the absolute values of the stationary currents in the
10 μA–1 mA range and the transient signature characterized in the
1 fs–100 fs temporal range.

The dominant transient oscillation observed in Fig. 5 is inde-
pendent of the tunneling rate Γα and corresponds to a frequency
of |t1|, which is equal to the applied bias voltage. Therefore, these
oscillations represent transitions between the biased Fermi level of
the leads and the zero-energy states of the graphene nanoflake.93,94

These zero-energy states correspond to surface states along the
zigzag segments of the graphene nanoflake.95,96 This is confirmed
in Fig. 6 where the excited zero-energy modes are spatially focused
along the surface during the initial transient. Interestingly, this effect
therefore seems to be robust against electronic interactions. While

FIG. 6. Temporal snapshots of spatial charge-density variation (color map) along
the graphene nanoflake with respect to the equilibrium density. Relative strength
of the nearest-neighbor bond current is indicated by the line thickness along the
hexagonal lattice. The calculation corresponds to Fig. 5(a) with weak coupling Γα
= 0.02|t1|. Panel (a) shows the initial transient at t = 5 fs, while panel (b) is closer
to the stationary state at t = 30 fs.

it is outside of the scope of the present work, this effect could be
associated with nontrivial spin polarization or antiferromagnetic
alignment at the edges of the system.97–99 As the system relaxes
toward the stationary state, the density response becomes more
delocalized along the nanoflake. In Fig. 6, we also show the rela-
tive strength of the bond current between nearest-neighbor carbon
atoms. Due to the notched geometry, the current is appreciably
stronger in the lower part of the nanoflake. We suspect that larger
graphene nanostructures would show even more pronounced sepa-
ration of the charge and current density between the bulk and the
surface during the initial transient.18

V. CONCLUSION
We have extended the GKBA approach for open quantum sys-

tems to a partition-free setting in electronic transport. We formu-
lated the initial state for a molecular junction, before applying a
bias voltage driving, as correlated and contacted. In practice, the
contacted initial state was resolved as a separate calculation, which
could be included to the out-of-equilibrium calculation via the initial
contacting collision integral with a minor computational cost. This
approach could directly be combined with the initial correlations in
Ref. 32, making it possible to perform GKBA time evolution for an
initially correlated and contacted transport setup.

The inclusion of the initial contacting collision integral is
very general. Since it only concerns the embedding self-energy,
extensions to more sophisticated correlation self-energies, such as
the T-matrix100 or the GW approximation,101 are directly appli-
cable. In addition, extensions to correlated approximations to the
propagators are applicable as long as they can be represented by
GR/A
(t, t′) ∝ exp{−i ∫

t
t′ dt̄[hqp(t̄) ∓ iΓ/2]}, where hqp ≡ hHF + Σ̃

includes some quasiparticle effects.11,78 Even though we only con-
sidered constant bias voltage profiles, the driving could also be
modulated in time.80–82

We demonstrated the developed method by studying transient
current signatures in carbon-based molecular junctions. A compact
system of a cyclobutadiene molecule allowed for a transparent com-
parison of the new approach to adiabatic switching GKBA and even
to the full Kadanoff–Baym equation. Time-resolved densities and
currents via the initial contacting approach were found to be in
excellent agreement with the adiabatic switching approach in both
weak- and strong-bias regimes. A more structurally complex system
of a graphene nanoflake addressed both the potential and the limita-
tions of the new approach. While the comparison with the adiabatic
switching approach was found to be successful, it was important to
verify the convergence of the initially correlated and contacted state
before initiating an out-of-equilibrium simulation. We also found
predominant oscillations in the transient current signal associated
with virtual transitions between the graphene surface states and the
biased Fermi levels of the lead. Together with the recent experimen-
tal developments in ultrafast techniques, these findings highlight the
potential of addressing transiently emerging topological phenom-
ena in molecular junctions out of equilibrium. For example, slowly
oscillating Majorana modes in superconducting nanowires22,102,103

with interaction effects could be investigated using the methodology
presented here.
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APPENDIX A: BACKGROUND FOR THE NEGF
EQUATIONS

Generally, the Hamiltonian in Eq. (1) is described with an argu-
ment z referring to a time parameter on the Konstantinov–Perel’
time contour104 γ ≡ γ− ⊕ γ+ ⊕ γM ≡ (t0, t) ⊕ (t, t0) ⊕ (t0, t0 − iβ),
where t0 marks the beginning of a transport process generated by a
voltage switch-on, t is the observation time, and β = 1/(kBT) is the
inverse temperature. The molecular junction Hamiltonian may then
be specified for all contour times as105

ϵkα(z) = {
ϵkα + Vα(t) when z ∈ γ− ⊕ γ+,
ϵkα − μ when z ∈ γM,

(A1)

hmn(z) = {
hmn + umn(t) when z ∈ γ− ⊕ γ+,
hmn − μδmn when z ∈ γM,

(A2)

where we introduced a bias voltage profile Vα(t) for the lead energy
dispersion, a nonlocal potential profile umn(t) for the molecular
device, and the equilibrium chemical potential μ. The coupling
Tmkα(z) and interaction vmnpq(z) matrix elements can be set either
equal and nonzero for all z or zero for z ∈ γM and proportional to a
switching function f (t) for z ∈ γ− ⊕ γ+ on the horizontal branches.

The one-electron Green’s function is defined on the time con-
tour as48

Gxy(z, z′) = −i⟨Tγ[ĉx(z)ĉ†y(z′)]⟩, (A3)

where Tγ is the contour-time-ordering, the creation and annihilation
operators are represented in the Heisenberg picture, and the ensem-
ble average ⟨⋅⟩ is taken as a trace over the density matrix. The Green’s
function satisfies the equation of motion (in matrix form),48

[i∂z1 − h(z)]G(z, z′) = δ(z, z′)1 + ∫
γ

dz̄Σmb(z, z̄)G(z̄, z′), (A4)

and the corresponding adjoint equation. In Eq. (A4), we introduced
a block matrix structure with respect to the basis of single-electron
states,

h(z) = (hαα
′(z) hαC(z)

hCα′(z) hCC(z)
), (A5)

where the lead part is diagonal, (hαα′)kk′(z) = δαα′δkk′ϵkα(z), the
tunneling is through the molecular device, (hCα)mk(z) = Tmkα(z),

and (hCC)mn(z) = hmn(z). In Eq. (A4), we also wrote the many-body
self-energyΣmb accounting for the electronic interactions. While this
interaction is constricted to the molecular region only, the Green’s
function matrix has nonzero entries everywhere,

Σmb = (
0 0
0 (Σmb)CC

), G = (Gαα′ GαC
GCα′ GCC

). (A6)

The integration in Eq. (A4) is performed over the Konstantinov–
Perel contour through the Langreth rules.106,107 In this procedure,
the contour-time functions are represented in real-time compo-
nents: lesser (<), greater (>), retarded (R), advanced (A), left (⌈),
right (⌉), and Matsubara (M) depending on the contour-time argu-
ments.48

We now consider the molecular region C and take the projec-
tion of the equation of motion (A4) onto these states. This procedure
leads to88

[i∂z − hCC(z)]GCC(z, z′)

= δ(z, z′) + ∫
γ

dz̄[(Σmb)CC(z, z̄) + (Σem)CC(z, z̄)]GCC(z̄, z′)

(A7)

and a similar adjoint equation. In Eq. (A7), we defined the embed-
ding self-energy as

(Σem)CC(z, z′) = ∑
α
hCα(z)gαα(z, z′)hαC(z′), (A8)

where the Green’s function of the noninteracting lead gαα satisfies
[i∂z − hαα(z)]gαα(z, z′) = δ(z, z′). As we are mainly considering the
dynamical quantities within the molecular region, we will drop the
CC subscript for simplicity.

We consider the electronic interaction at the Hartree–Fock
(HF) and second-order Born (2B) level, which are time-local and
time-nonlocal, respectively,

Σmb(z, z′) = ΣHF(z)δ(z, z′) + Σ2B(z, z′). (A9)

This separation allows us to remove the time-local part from the col-
lision integral on the right-hand side of Eq. (A7) and couple it with
the single-particle Hamiltonian on the left-hand side. Using the basis
of single-electron states, the HF self-energy reads

(ΣHF)ij(z) = ∑
mn
[2vimnj(z)ρnm(z) − vimjn(z)ρnm(z)], (A10)

where ρ(z) ≡ −iG(z, z+) is the single-particle density matrix. The 2B
self-energy takes the form

(Σ2B)ij(z, z′) = ∑
mnpqrs

virpn(z)vmqsj(z′)

× [2Gnm(z, z′)Gpq(z, z′)Gsr(z′, z)

− Gnq(z, z′)Gpm(z, z′)Gsr(z′, z)], (A11)
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where the summation over the basis states can be reorganized for
efficient computation.108–110

Taking the equal-time limit, z = t− and z′ = t+, in Eq. (A7) and
its adjoint and employing the Langreth rules, we obtain the equation
of motion (2) for the single-particle density matrix in the main text.

APPENDIX B: EMBEDDING SELF-ENERGY
Since the leads are treated as noninteracting, they can be incor-

porated non-perturbatively into the equation of motion (A7) using
the embedding self-energy in Eq. (A8). On the real-time branch, the
relevant lead Green’s functions are48

gR/A
kα (t, t

′
) = ∓iθ[±(t − t′)]e−i ∫ t

t′ dt̄[ϵkα+Vα(t̄)], (B1)

g≶kα(t, t
′
) = ±if [±(ϵkα − μ)]e

−i ∫ t
t′ dt̄[ϵkα+Vα(t̄)], (B2)

where f (x) = 1/(1 + eβx) is the Fermi function at inverse temperature
β with the property f (−x) = 1 − f (x). The retarded and advanced
embedding self-energies are then given by81

(ΣR/A
em )α(t, t

′
) = e−iψα(t,t′)

∫

dω
2π

eiω(t−t′)
[Λα(ω) ∓ iΓα(ω)/2], (B3)

where ψα(t, t′) ≡ ∫
t
t′ dt̄Vα(t̄) is the phase factor originating from

the bias voltage profile, and we wrote the level-shift and level-width
matrices as

(Λα)mn(ω) = ∑
k
TmkαP(

1
ω − ϵkα

)Tkαn, (B4)

(Γα)mn(ω) = 2π∑
k
Tmkαδ(ω − ϵkα)Tkαn, (B5)

respectively. In Eqs. (B4) and (B5), we used 1/(ω − ϵkα ± iη)
= P(1/(ω−ϵkα))∓ iπδ(ω−ϵkα), with η being a positive infinitesimal
and P denoting the principal value.

In the wideband approximation (WBA), the level width is taken
to be independent of frequency, Γα(ω) ≈ Γα. This amounts to approx-
imating the lead density of states being practically featureless in the
energy scale of the molecular system. In this approximation, the
level-shift matrix vanishes due to Kramers–Kronig relations, and the
retarded/advanced embedding self-energy becomes time-local,

ΣR/A
em (t, t

′
) ≡ ∑

α
(ΣR/A

em )α(t, t
′
) = ∓i∑

α
Γαδ(t − t′)/2

= ∓iΓδ(t − t′)/2. (B6)

In a similar manner, we obtain the lesser/greater embedding self-
energy as23

(Σ≶em)α(t, t
′
) = ±ie−iψα(t,t′)

∫

dω
2π

f [±(ω−μ)]Γα(ω)e−iω(t−t′). (B7)

Even though we set ourselves in the regime where the WBA holds,
in Eq. (B7), we keep the frequency dependency of Γα to ensure
convergence of the frequency integral.

The matrix structure of the embedding self-energy is deter-
mined by the corresponding structure of the level-width matrix Γα,
which is specified by the coupling and lead Hamiltonians in Eq. (B5).
We now address the frequency integral in Eq. (B7) and consider
the effective form of the level-width matrix for a one-dimensional
semi-infinite tight-binding lead,88

Γα(ω) ∝

¿

Á
ÁÀ1 − (

ω − aα
2∣ta∣

)

2

, (B8)

where aα is the on-site energy of the sites in lead α and tα is the hop-
ping energy between the sites in lead α. This form also limits the
integration range to ω ∈ [aα − 2|tα|, aα + 2|tα|] [see Fig. 3(a)]. We
also consider the zero-temperature limit at which the Fermi func-
tion becomes a Heaviside step function, f (ω− μ)→ θ(μ−ω), and this
introduces a further cutoff to the integral. We also write tr = t − t′

for brevity and obtain

∫

∞

−∞

dω
2π

f (ω − μ)Γα(ω)e−iω(t−t′)

∝ ∫

μ

aα−2∣tα ∣

dω
2π

¿

Á
ÁÀ1 − (

ω − aα
2∣tα∣

)

2

e−iωtr . (B9)

We make the identification that the on-site energies in the leads
are aligned with the equilibrium chemical potential, μ = aα, result-
ing in half filling for the leads’ energy continua. Making a change of
variables x ≡ (ω − aα)/(2|tα|), we obtain

∫

μ

aα−2∣tα ∣

dω
2π

¿

Á
ÁÀ1 − (

ω − aα
2∣tα∣

)

2

e−iωtr

=
∣tα∣
π

e−iaαtr
∫

0

−1
dx
√

1 − x2e−2ix∣tα ∣tr

=
e−iaαtr

4tr
[J1(2∣tα∣tr) + iH1(2∣tα∣tr)], (B10)

where, on the last line, we used an integral representation of the
Bessel and Struve functions of the first kind.111,112 We remind that
the final result for the lesser embedding self-energy at the zero-
temperature limit, obtained by inserting Eq. (B10) in Eq. (B7), needs
to be supplemented with the appropriate matrix structure. We also
note that at the equal-time limit, tr → 0, Eq. (B10) reduces to a
value of |tα|/4. The case of the greater embedding self-energy with
f [−(ω − μ)] in Eq. (B7) results in the integral ∫

1
0 dx
√

1 − x2e−2ix∣tα ∣tr ,
which has otherwise the same representation as in Eq. (B10), but the
sign in front of the Struve function is changed. The Struve function
can be evaluated using an approximate expansion in terms of the
Bessel functions113,114 or as a direct combination of power series and
continued fraction.115

APPENDIX C: EVALUATION OF THE FREQUENCY
INTEGRAL AT THE WIDEBAND APPROXIMATION

In practice, we evaluated Eq. (13) by numerical integration for
all the simulations presented. However, we can make some further
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analytical progress by taking explicitly the WBA. We show here
how, in this case, the frequency integral in Eq. (13) can further be
expressed in terms of the hypergeometric function,111 which can be
evaluated using a fast and accurate numerical algorithm.116 Now,
Γα(ω) due to the lesser/greater embedding self-energy is also taken
to be independent of frequency, and Eq. (13) can be written as

I ic
em(t) = ∑

α
Γαe−iψα(t,0)

∫

dω
2π

f (ω − μ)e−iωt

ω − (heq
HF + iΓ/2)

GA
(0, t). (C1)

Here, we used the fact that the frequency integral is performed over
the full real axis ω ∈ (−∞, ∞), and it can be evaluated using con-
tour integration techniques. The exponential factor in the numerator
converges only in the lower half of the complex plane. In this region,
the contribution ∼ ρeqe−iωt

/(ω − heq
HF − iΓ/2) from Eq. (13) does

not contain any poles, so this contribution to the integral vanishes.
The other contribution contains the Matsubara poles of the Fermi
function in the lower half of the complex plane, keeping the integral
nonzero.

We may then expand the result in the (right) eigenvector basis
of the non-Hermitian matrix,

(heq
HF + iΓ/2)∣ψR

j ⟩ = ϵj∣ψ
R
j ⟩. (C2)

We recall that the left/right eigenvectors of a non-Hermitian matrix
form a biorthogonal basis set. The frequency integral of Eq. (C1) in
this basis reads

⟨ψR
j ∣ ∫

dω
2π

f (ω − μ)
e−iωt

ω − (heq
HF + iΓ/2)

∣ψR
k ⟩

= ⟨ψR
j ∣ψ

R
k ⟩∫

∞

−∞

dω
2π

e−iωt

(eβ(ω−μ) + 1)(ω − ϵk)
. (C3)

Due to the exponential factor in the numerator, we close the inte-
gration contour in the lower-half plane. Since ϵk is an eigenvalue
of heq

HF + iΓ/2, it is located on the upper-half plane (Γ is a positive-
definite matrix). Then, in the lower-half plane, only the residues at
the Matsubara poles, ω = ωn = iπ(2n + 1)/β + μ (with n integer), con-
tribute to the integral. This consideration is very similar to Ref. 22,
and also here, it is possible to show that the result can be written in
terms of the hypergeometric function,111

∫

∞

−∞

dω
2π

e−iωt

(eβ(ω−μ) + 1)(ω − ϵk)

=
e−i(μ−iπ/β)t

iβ(ϵk − μ) − π

× 2F1[1,
1
2
−

iβ(ϵk − μ)
2π

,
3
2
−

iβ(ϵk − μ)
2π

, e−2πt/β
]. (C4)

After this manipulation, Eq. (C4) can simply be inserted back into
Eq. (C1) with a suitable rotation of the left/right eigenvectors.22

While, in this approach, the restart protocol (GKBA|IC) is con-
sistent with the adiabatic switching (GKBA|AS) only when the WBA
is a good approximation, this is still a fairly practical way of comput-
ing the initial contacting collision integral in Eq. (13) because it is

considerably faster than numerical integration and can be performed
to arbitrary numerical precision.116 In addition, the GKBA approach
is expected to be accurate in this regime due to the choice of propaga-
tors at the level of WBA. We have checked that the transient features
presented in Figs. 2 and 5 are very well represented also when using
Eq. (C1) with Eq. (C4).
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