
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Introduction to software product lines : Engineering, service, and management
minitrack

© 2013 IEEE

Published version

Käkölä, Timo; Leitner, Andrea

Käkölä, T., & Leitner, A. (2013). Introduction to software product lines : Engineering, service,
and management minitrack. In 2013 46th Hawaii international conference on system sciences :
(HICSS 2013) Wailea, Hawaii, 7-10 January 2013 (pp. 4984). IEEE Computer Society Press. Annual
Hawaii International Conference on System Sciences. https://doi.org/10.1109/HICSS.2013.327

2013

Introduction to Software Product Lines: Engineering, Service, and
Management Minitrack

 Timo Käkölä Andrea leitner
 University of Jyväskylä, Finland Graz University of Technology, Austria

 timokk@jyu.fi andrea.leitner@tugraz.at

Software has become the key asset for competitive
products and services in all industries. Thus, competiti-
veness in software development, maintenance, and
related services has become a concern for organiza-
tions. Competitiveness can be increased through (1)
internal strategies such as the strategic creation and
reuse of software assets and (2) external strategies such
as outsourcing software development, maintenance,
and/or services from third party service providers and
acquiring off-the-shelf components from providers and
open source communities. A viable third strategy is to
enact both strategies in parallel. This minitrack focuses
on the first and third strategy.

Software product line engineering (SPL) is an in-
dustrially validated methodology for developing soft-
ware-intensive systems and services faster, at lower
costs, and with better quality and higher end-user satis-
faction. It differs from single system development:
1. It needs two development processes to work

optimally: domain engineering and application
engineering. Domain engineering defines and
realizes the commonality and variability of the
product line by establishing a common software
platform. Application engineering derives
applications by exploiting the commonality and
binding variability built into the platform.

2. It needs to explicitly define and manage variabili-
ty. During domain engineering, variability is intro-
duced in all assets such as requirements, architec-
tural models, components, and test cases. It is
exploited during application engineering to mass-
customize applications to the needs of customers.

Software product line research has mostly focused
on the modeling and management of variability in the
context of embedded systems (e.g., cellular phones).
Most software product line experiences have been ob-
tained from large government and private organiza-
tions. This minitrack welcomes contributions from the
mainstream product line research. It also acknowledges
that the extant body of knowledge in the field is
fragmented. More holistic and integrative research
approaches are needed to help practitioners leverage
the research results in establishing and improving soft-
ware product lines. Indeed, experienced practitioners
have sometimes established innovative product lines

and enabling practices and systems with limited aware-
ness of the software product line body of knowledge.

This minitrack accepted five papers this year. One
of them appears in another minitrack and another paper
was cancelled. The minitrack consists of three papers.

Groher and Weinreich note that variability
management and architecture design and
implementation are mostly separate activities in the
extant literature. Existing variability management
approaches support architecture design only to the
extent it is necessary for product derivation. Existing
architecture design and implementation tools lack
support for variability tracing and modeling. Groher
and Weinreich present an approach for integrated
variability management during software architecture
design and implementation.

The paper of Hou, Makarov, Samaan, and Etingov
focuses on a standardized forecast error analysis and
prediction tool that can be implemented into a software
package that predicts the uncertainty range for
generation resources involved in the power grid
balancing service. The tool has deliberately been
designed in order to be reusable in various current and
future applications. Different sources of uncertainty
and variability are to be supported, while providing an
efficient and accurate prediction tool.

Fant, Gomaa, and Pettit describe a pattern-based
approach to specify product line variability at a high
level of granularity through architectural design
patterns. This approach requires less modeling and
design during domain engineering but necessitates
additional modeling and design during application
engineering. It is argued to work well in situations
where all the variability is not known during domain
engineering or when each application needs unique
variant components. In such situations application
engineering plays a significant role anyway.

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.327

4982

2013 46th Hawaii International Conference on System Sciences

1530-1605/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2013.327

4984

Authorized licensed use limited to: Jyvaskylan Yliopisto. Downloaded on March 09,2022 at 10:21:44 UTC from IEEE Xplore. Restrictions apply.

