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Abstract 
 
The recent financial crisis and sovereign debt crisis in Europe have highlighted the need 
for systemic risk measures for macroprudential policy purposes. This thesis implemented 
three frameworks proposed by Billio et al. (2012) and Diebold & Yilmaz (2009, 2012, 2014) 
to investigate the interconnectedness of the European banking system as measures of sys-
temic risk. The frameworks are applied using market data of a sample of 28 largest banks 
in Europe from 2001 to 2018. The empirical results show that systemic risk measures based 
on market data can identify periods of financial distress in the market. Besides, I also find 
that the European banking system in overall has become more connected, especially dur-
ing the sovereign debt crisis. Different frameworks seem to depict quite different charac-
teristics of the system connectedness. Moreover, the ranking of banks according to their 
contribution to the aggregate connectedness is not precisely consistent within itself over 
different periods. Nor is the banks’ ranking consistent among different frameworks. The 
forecast error variance decomposition framework in Diebold & Yilmaz (2009, 2012, 2014) 
has the best out of sample performance in terms of identifying banks with the biggest 
losses during the crisis period. In consistent with previous literature, I do not find a strong 
relationship between the connectedness measures and other measures such as MES and 
Delta-CoVaR. Therefore, the results call for a more systematic view of systemic risk at 
multiple aspects. 
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1 INTRODUCTION 

The financial crisis 2008 and the sovereign debt crisis in Europe have put forward 
a crucial need for understanding systemic risk and regulatory reform to monitor 
it within the financial system. The crises have shown us the shortcomings of the 
microprudential regulation when it comes to systemic events. Microprudential 
policies such as bank closure policy and capital adequacy requirements (under 
Basel I and Basel II) are not sufficient to deal with systemic risk. In fact, Acharya 
(2009) has shown that such policies can even intensify systemic events because 
they fail to account for the interactions among individual institutions. Since 
banks do not internalize the cost of failure of other banks in their own risk mon-
itoring, they can actually be incentivized to take strategies that lead to failure 
when other banks fail. In other words, microprudential regulation is seriously 
inadequate by not accounting for the correlation risk, the consequence could be 
a default cascade scenario as described in Battistion et al. (2012b). Moreover, 
when there is a negative shock to the asset side of the balance sheet, micropru-
dential capital requirements force banks to reserve more capital, which can lead 
to a funding crisis in the banking system or a credit crunch in other words. Con-
sequently, the asset price shock is amplified and may result in a liquidity crisis 
in the system (Brunnermeier & Pedersen, 2009). 

Given these limits of microprudential policies, the macroprudential regu-
lation takes the viewpoint of the financial system as a whole. This macro view is 
of crucial importance when monitoring systemic risk since there are particular 
properties of the system that can only be seen from a system viewpoint. For ex-
ample, Danielsson, Shin & Zigrand (2013) showed that a large part of the volatil-
ity during times of financial crisis was due to the amplification within the system. 
In general, the philosophical background for studying systemic risk is referred to 
as the fallacy of composition. It means that the aggregate system is different from 
the sum of each individual constituting the system. Therefore, for macropruden-
tial purposes, systemic events must be examined at the system level.  

The literature on the mechanism of systemic events is extensive. Accord-
ing to the 4 “L”s classification of Billio, Getmansky, Lo, & Pelizzon (2012), there 
are typically four main elements in a financial crisis: leverage (Adrian & Shin, 
2010; Acharya & Thakor, 2016), liquidity (Cifuentes et al., 2005; Diamond & Rajan, 
2005; Brunnermeier & Pedersen, 2009), loss (Adrian & Brunnermeier, 2016; 
Acharya et al., 2017) and linkages (Battiston et al., 2012a; Cai et al., 2018). Princi-
pally, the common feature among these papers is that they demonstrate the fi-
nancial system as including financial stakeholders being connected with one an-
other by their operating activities and/or the common exposure (the systematic 
risk). A systemic event occurs when there is a negative shock to the first 3 “L”s 
which is then amplified throughout the system through the linkages between 
firms. The results could be defaults of a large number of financial institutions 
(Nier et al.,2007; Upper, 2011; Battiston et al., 2012b), a significant increase in the 
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tail event of the aggregate system (Segoviano & Goodhart, 2009), or a spillover 
effect on the real economy (He & Krishnamurthy, 2019). It is worth noting that 
the contagion risk would not exist if not due to the linkages among the financial 
institutions. In other words, financial interconnectedness has a crucial role in sys-
temic events. However, it does not mean that connectedness has only an adverse 
effect on the system.  

In fact, it has been well documented that financial interconnectedness has 
its benefit and detrimental impact on the system’s stability (Elliott et al., 2014; Gai 
& Kapadia, 2010; Glasserman & Young, 2016). On the one hand, bilateral expo-
sures in the interbank market and integration in the financial asset market at cer-
tain levels enhance the risk-sharing effect and are necessary for the liquidity cre-
ation of banks. On the other hand, in times of crisis, it is usually the same linkages 
that amplify initial shocks and increase the contagion risk (Allen et al., 2012; La-
dley, 2013; Elliott et al., 2014; Gai & Kapadia, 2010; Glasserman & Young, 2016). 
In other words, even though interconnectedness has an irrefutable role in the 
transmission of shocks between financial institutions, there has not been much 
empirical evidence showing whether it increases the magnitude and likelihood 
of losses compared to less interconnected ones (Glasserman & Young, 2015).  

Crucially important as it is, empirically measuring systemic risk has still 
been a challenging topic. As Betz et al. (2016) have pointed out, the high dimen-
sionality of the connectedness in the underlying system makes it very difficult to 
identify the propagation channels of financial shocks, as well as the quantifica-
tion of their relevance. The problem is even more difficult to solve due to the lack 
of propriety data on the direct linkages between firms. Moreover, an applicable 
framework for systemic risk analysis should incorporate both the time-series as-
pect and cross-sectional aspect. The time-series aspect of systemic risk is to serve 
as an early warning indicator of the system’s vulnerability to prevent the build-
up of systemic risk especially during the expansionary phases of the credit cycles. 
The cross-sectional aspect is needed to decompose the overall risk to each insti-
tution’s marginal contribution so that the regulator can target the more systemi-
cally important ones (Black et al., 2016). Several papers have attempted to solve 
these issues by proposing measures of systemic risk using market data; see, for 
example, Billio et al. (2012), Diebold and Yilmaz (2014), Brownlees and Engle 
(2017), Adrian & Brunnermeier (2016), Acharya et al. (2017). However, these mar-
ket-based measures have their disadvantages. First, they rely on the efficient mar-
ket hypothesis to be true. Obviously, the measures can only be effective if the 
input market data; for example, stock prices, CDS spreads, equity option price, 
which contains information about the firms’ riskiness. In other words, no matter 
how intricate a measure is, it can only be as good as the input data is. Fortunately, 
previous empirical studies have shown that market-based systemic measures 
could be relatively effective at giving early warning signals of distress in the sys-
tem. Second, these market-based risk measures face a bigger problem in identi-
fying systemically important firms. Benoit et al. (2013) showed that different 
measures suggested different rankings of systemically important firms. Löffler & 
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Raupach (2018) demonstrated that these measures could produce counterintui-
tive assessments of individual firms' contribution to the system’s riskiness under 
certain assumptions about the distribution of the input data. More specifically, in 
cases of return model with multivariate normal risk factors or when returns are 
drawn from heavy-tailed distributions, Delta-CoVaR (Adrian & Brunnermeier, 
2016) and marginal expected shortfall (Acharya et al., 2017) may suggest a de-
crease in a firm’s systemic risk contribution to the system even though the firm’s 
systematic risk, idiosyncratic risk, size or contagiousness increases. 

The main objective of this thesis is to provide an extensive analysis of mar-
ket-based connected measures of systemic risk in the European banking sector. 
To this purpose, the principal component analysis (PCA), the Granger causality 
analysis frameworks proposed by Billio et al. (2012), and the generalized variance 
decomposition developed by Diebold and Yilmaz (2009, 2012, 2014) are imple-
mented during the sample period from January 2001 to December 2018. PCA 
framework is meant to capture the extent to which the financial institutions are 
unified concerning a certain number of common factors. Intuitively, the conta-
gion risk is higher when the institutions become more unified in a smaller num-
ber of common factors (Allen et al., 2009; Ibragimov et al., 2011). The rationale for 
Granger causality analysis in financial interconnectedness is that short-term re-
turns on financial assets should not be Granger caused by the returns on other 
assets when the market is efficient. However, in times of market turmoil, there 
would be some market frictions such as restriction on the short sale, borrowing 
constraints, and regulatory constraints such as value at risk constraint, marked-
to-market balance sheet. Under these constraints and frictions, a negative shock 
to the return on certain assets can be propagated throughout the system (Zigrand, 
Danielsson & Shin, 2013; Diamond & Rajan, 2011; Elliott et al., 2014). Similar to 
the Granger causality analysis, the variance decomposition approach is also built 
up from a vector autoregression framework to investigate the spillover or the 
contagion effect. Moreover, while the Granger causality analysis can only meas-
ure the direction of the connectedness, the variance decomposition is supplemen-
tary to that by calibrating both the direction and the strength of such relationships. 

Different from Billio et al. (2012) who analyse the relationships between 
different financial sectors, I focus only on the banking sector in this thesis. The 
motivation is that the European financial system is traditionally more bank-based, 
unlike the United States financial system who is more market-based (Allen & 
Gale, 1995). Moreover, the integrated banking system is the main contagion chan-
nel in the recent European sovereign debt crisis (Bolton & Jeanne, 2011). The data 
set includes the 28 largest European banks determined by the market capitaliza-
tion in 2018. The 3 abovementioned frameworks are applied using the banks’ 
weekly stock return from January 2001 to December 2018. In accordance with the 
“consistent” criterion for a systemic risk framework suggested by Borio & 
Drehmann (2009) and Black et al., (2016), the analysis is done on both the time-
series dimension to examine the development of aggregate systemic of the 
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system as a whole and on the cross-sectional dimension to identify the marginal 
contribution of individual banks. 

The main findings of this thesis are as follows. First, the times series anal-
yses performed with all three frameworks document that the aggregate connect-
edness of the European banking system increases dramatically during both the 
financial crisis and the sovereign debt crisis. Second, the connectedness of the 
European banking system seems to involve multiple aspects. Accordingly, the 
three frameworks are in disagreement with each other in terms of identifying 
systemically important banks. Third, contrary to Billio et al. (2012), I did not find 
a strong out of sample performance of the connectedness measures in predicting 
banks’ losses during the crisis. The results in overall call for cautious use of a 
single measure of systemic risk. Instead, macroprudential regulation should 
monitor the systemic risk at multiple aspects in order to make informed decisions. 

The remainder of the thesis proceeds as follows. Section 2 discusses the 
theoretical background on systemic risk in general and on the contagion risk in 
particular. Section 3 outlines some previous empirical research. Section 4 ex-
plains the three frameworks employed. Section 5 presents the empirical results, 
and the last section concludes. 
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2 THEORETICAL FRAMEWORK 

2.1 Definition of financial systemic risk 

There has been no universal definition of financial systemic risk. Different au-
thors intentionally allow for different aspects in their definition of systemic they 
set out to deal with in their work from the start.  

In general, there are three different approaches how systemic risk is de-
fined in academic literature (Hansen, 2012). Freixas, Parigi & Rochet (2000), Dia-
mond & Rajan (2005) define systemic risk as a bank run like instability of the 
financial system triggered by liquidity concerns about one or several banks in the 
system. In this first approach, the main focus is on how the contagion effect man-
ifest itself throughout the system. The analysis of systemic risk in this first ap-
proach is of particular importance in the discussion about the role of the central 
bank as the lender  of last resort. When the contagion risk is high, there is a strong 
incentive for central bank to act as the lender  of last resort (Huang & Goodhart, 
1999). In another strand of literature, Allen & Gale (2000), Shin (2008), Gai & Ka-
padia (2010), and Drehmann & Tarashev (2013) refer to systemic risk as the vul-
nerability of a financial net-work due to the interlinkages among the financial 
institutions in the network. Here the challenge is to identify when a financial net-
work is potentially vulnerable and the nature of the disruptions that can trigger 
a problem. Alternatively, some other authors use the term in the context of 
“macroprudential regulation” to investigate certain proposed policies in their pa-
pers. Even though some economists have highlighted the importance of macro-
prudential regulation much already earlier (for example Borio, 2003), this strand 
of literature has become more and more popular after the Subprime crisis. 
Archrya (2009) argues that policies such as bank closure policy and capital ade-
quacy requirements which usually operate at the individual level fails to mitigate 
systemic risk and may actually accentuate it. Similarly, Zhou (2013) argues that 
an unregulated system would has lower systemic risk than a system regulated at 
the micro level. 

The definition of de Bandt , Hartmann, & Peydró (2012) is one of the most 
cited one since it can synthesize the above three notions. The authors de-fine sys-
temic risk as the risk of experiencing a systemic event which impairs the effi-
ciency and effectiveness of the financial system’s main function as the channel to 
transmit savings into investment. A systemic event is defined in the narrow sense 
as an adverse event which affects several banks in a sequential manner, and 
through this contagious process impairs severely functioning of the financial sys-
tem). In the broad sense, a systemic event means that a large number of banks in 
the system are in jeopardy as the consequence of severe and widespread (‘sys-
tematic’) shocks or the unravelling of significant imbalances that have built up 
over time. In this regard, de Bant et al. (2012) agree with Billio et al., (2012) that 
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the bottom line in the definition of systemic risk is the contagion risk that impairs 
the stability of or the public confidence in the financial system. This thesis follows 
this definition of systemic risk. Especially, the focus is on the interconnectedness 
among the banks since it plays the crucial role in the occurrence of a systemic 
event (Bluhm & Krahnen, 2014).   

2.2 The fragile nature of the financial system 

de Bant et  al. (2012) lay out three typical feature of the financial industry 
which makes it more vulnerable to systemic risk than other industries. First, the 
typical maturity transformation activity of banks exposes them to liquidity risk, 
which could be further amplified by the network effect to the whole system. Tra-
ditionally, banks take deposits, which can be withdrawn any time after very short 
notice, and then invest in projects with longer maturity date. Although this ma-
turity mismatch of banks provides liquidity to the economy, it makes banks ex-
posed to bank runs by depositors (Diamond & Rajan, 2001). More specifically, 
the stability of banks depends not only on the depositors’ valuation of banks’ 
investment profitability but also on the confidence that other depositors will not 
run the banks (Goldstein & Pauzner, 2004). However, this type of depositor-by-
bank run can be fairly restrained by a depositor insurance scheme. The recent 
financial crisis shows how sever the liquidity problem caused by too strong reli-
ance on short term wholesale funding can be. 

Brunnermeier  (2009) identifies two trends in the banking industry in  the 
period leading up to the crisis that expose banks to a funding liquidity risk. The 
first trend is the strategy of structured investment vehicles (SIVs) or conduits 
which funds long term investment project by selling short term commercial pa-
per (backed by a pool of mortgages, loans, or CDOs). The idea of this strategy is 
to transfer the maturity mismatch from the banks to these off balance sheet vehi-
cles. However, the sponsor banks still need to provide it affiliated SIVs with a 
liquidity backstop to ensure funding liquidity for the vehicles. Therefore, banks 
still bear the liquidity risk from the conceived maturity mismatch even though it 
does not appear on the banks’ balance sheet. On top of that, under the Basel I, 
banks do not have to hold any capital requirement for this liquidity backstop, 
which is basically has the same nature as a loan, this allows them to take even 
more risk. The liquidity risk of this strategy is due to their heavy reliance on the 
possibility of roll over short term debts by issuing new asset backed commercial 
papers. The second trend is the increasing constituent of repo funding in the 
banks’ balance sheet. A repo contract allows banks to raise short term funding by 
selling collaterals with the promise to buy back in the future at a discount. The 
fact that overnight repo constitutes most of the increase in the banks’ balance 
sheet puts a heavy bur-den on them to roll over their funding on a daily basis.  

The second feature explaining the fragility of the financial industry iden-
tified by de Bant et al. (2012) is the highly  connected interlinkages among the 
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financial institutions which can arise from different sources such as interbank 
market, credit market, or asset market. Even though higher connections among 
banks can improve liquidity allocation and improve risk sharing in normal times, 
in times of crisis it is the same connections that aggravate the problem by ampli-
fying an external shock (Georg, 2013). Since this feature is the main focus of this 
thesis, it will be investigated in more detail in the next section.  

The third feature is the fact that progressively growing financial innova-
tions may increase market uncertainty and put credibility of financial con-tracts 
in question in times of a market turmoil, and lead to a disruption of the financial 
system. For example, in the summer of 2007, when there was a significant doubt 
about the viability of structured finance products, investors simultaneously 
stopped buying commercial paper. This prevented the in-vestment vehicle from 
rolling over their short term funding. Or, after the bankruptcy of Lehman Broth-
ers, the TED spread  reached an all-time high, which reflects a loss of confidence 
in the interbank market. Banks actually re-fused to lend to each other, and instead 
started to hoard funding. This disabled even healthy banks from finding secured 
funding and as a consequence prompted a contagious system event. Petersen et 
al. (2011) argue that the securitization of mortgage loans is the main cause sub-
prime mortgage crisis. Due to the increasingly intricately designed structured 
products such as mort-gage backed securities , collateralized debt obligations and 
to the complicated securitization process, serious issues related to information 
and valuation emerge d, which eventually resulted in ineffective risk mitigation. 
Moreover, Dang, Gorton, & Holmström (2010) point out that information sensi-
tive debt can amplify an aggregate shock into a systemic crisis in the credit mar-
ket since lenders seek to avoid adverse selection due to the increased asymmetric 
information problem. Furthermore, in a study of subprime mortgage market in 
the United States, Keys, Mukherjee, Seru, & Vig (2010) offer empirical evidence 
that increased securitization led to a decline in credit quality. One possible expla-
nation is that securitization may reduce lenders’ incentives to carefully screen 
and monitor borrowers by creating distance between a loan’s originator and the 
bearer of the loan’s default risk. Caccioli, Marsili, & Vivo (2009) study the impact 
of the proliferation of financial instruments on the market stability in a dynamic 
model of interacting agents . They find out that even though the proliferation of 
financial instruments enhanced the efficiency and completeness of the market, it 
accelerates market susceptibility, increasing return fluctuations and correlations 
among the risks in the banking system. The results therefore propose an adapta-
tion of  the interaction among trading activities in studies on financial market as 
a whole. 

2.3 Contagion 

As mentioned in the previous part, at the essence of analysis in systemic risk is 
the notion of contagion. This refers to the possibility that the distress of one 
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financial institution propagates to others in the financial system, thus leading ul-
timately to a systemic crisis. Moreover, the contagion risk is often the justification 
for central bank intervention. Various theoretical studies have been done on sys-
temic risk, taking into account different aspects of the topic. The theoretical liter-
ature on contagion effect can be roughly divided into two approaches including 
direct linkages (or financial contagion) and indirect balance sheet linkages (Allen 
& Carletti, 2013). It is worth mentioning that the channels described below do not 
occur separately but more often than not intertwine with one another in crises.  

2.3.1 Financial contagion 

2.3.1.1 Bank run 
Early theoretical literature on banking crisis approach es the problem as a coor-
dination game in which depositors either withdraw their funds from their ac-
counts or keep funds on the accounts. A bank run may lead to realization of the 
contagion risk if failure of one bank triggers runs on other banks and in this way 
causes liquidity shortage in the interbank market. According to Allen, Babus, & 
Carletti (2009) the research on bank run can be divided into two dis-tinct groups 
according to whether or not the withdrawal panics by depositor are caused by 
fundamental changes in the real economy. 

The first line of bank run literature describes it as purely panic based crisis. 
Bryant (1980) and Diamond & Dybvig (1983) model bank runs as self-fulfilling 
prophecies caused by random deposit withdrawals unrelated to changes in the 
real economy. In these models, while banks provide liquidity to the market by 
transforming illiquid assets to liquid liabilities, agents privately allocate their 
wealth unequally across different states  and are at the same time constantly con-
cerned about the cost of early asset liquidation of banks. The optimal equilibrium 
exists where agents withdraw their funds according to their private information. 
In this case, their demand can be met without costly liquidation of assets. How-
ever there also exists an undesirable equilibrium where bank run occurs because 
of the observation by all depositors that a large enough number of other deposi-
tors will withdraw.  

The uncertainty about the fundamental knowledge can generate an un-
desirable equilibrium in these types of coordination games. Carlsson & van 
Damme (1993) study an incomplete information game, which they call a global 
game, in which the actual payoff structure of the game is randomly drawn from 
a given class of games and the players act according to their private noisy obser-
vations of the game to be played. They show that the lack of common knowledge 
about the underlying payoff structure creates a unique risk-dominant equilib-
rium for the game. Morris & Shin (1998) find similar results in the context of cur-
rency crises, when there is uncertainty about economic fundamentals. In the 
same way, Rochet & Vives (2004) adapt the global game in their analysis of the 
banking system and show that when there is uncertainty about the fundamental 
value of the banks’ assets, there exists a unique Bayesian equilibrium where even 
a solvent bank may fail because it cannot find liquidity support from the market. 
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Thus, the authors justify the rationale for the public intervention as lender of last 
resort. 

The second group of literature on bank run characterize it as an integral 
part of the business cycle. Apparently, the value of bank assets decreases in time 
of economic contraction. This raises concern among the depositors about the 
banks’ ability to meet the demand to withdraw funds. If the depositors anticipate 
a big enough downturn in the real economy, they will withdraw their funds from 
banks (Allen et al., 2009). Accordingly, this strand of literature refers to bank run 
as an information based event, in contrast to the view of bank panics as random 
events described previously. Gorton (1988) provides empirical evidence support-
ing the view that banking panics are systematic events linked to the business cy-
cle. He finds the information measure based on the liabilities of failed businesses 
is a strong predicting variable for banking panics during the national banking 
area. Allen & Gale (1998) develop a theoretical model in which the depositors 
make the decision to withdraw based on their observations of the return on the 
risky investments of the bank. It was concluded that the possibility of a bank run 
can sometimes be desirable by allowing for the optimal risk sharing and con-
sumption allocation. However, when a bank run forces a too large early liquida-
tion of the safe asset, the amount of consumption available to depositors is re-
duced and central bank intervention is needed. In a more recent theoretical paper, 
Goldstein & Pauzner (2004) adapt the global game approach to study banking 
crises under the assumption that the fundamentals of the economy are stochastic 
and the agents can only obtain privately noisy information about the economic 
fundamentals. The result is that there is a unique Bayesian equilibrium, in which 
a bank run occurs if and only if the fundamentals are below some critical value. 
Furthermore, they also compute the ex-ante probability of a bank run and find 
that it in-creases as banks offer higher short-term payment. Chari & Jagannathan 
(1988) demonstrate how asymmetric information can trigger a banking crisis. 
They show  that bank runs can occur even if there is no depositor having any ad-
verse information about the fundamentals. It is simply because the depositors 
cannot distinguish the long lines waiting to withdraw at banks are because of 
individual consumption need or due to the fact that informed depositor are get-
ting out.  

In sum, early literature on banking crisis mostly attempts to model it as a 
bank run phenomenon. This literature can be divided into two different strands 
base on whether bank runs are modelled as random self-fulfilling events, or as 
fundamental information based events related to the business cycle. However, 
the major weakness in this strand of literature is that since the contagion effect is 
simply captured so that the failure of one bank induces depositors of other banks 
to withdraw their funds, the network effect among banks is not examined thor-
oughly. More recent literature on the interbank markets deals with this issue. 

 
2.3.1.2 Interbank market 
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The interbank market has an important role in maintaining the financial stability 
of the system since its main function is to deliver liquidity from the banks that 
have excess of liquidity to the ones that are in shortage of liquidity. 

Haldane & May (2011) characterized the interbank network as having a 
robust yet fragile or “knife-edge” property. It means that the direct connections 
between banks have the benefit of increasing the risk sharing and improving li-
quidity allocation in normal times at the expense of increasing the risk of shock 
amplification in times of crisis. Acharya & Bisin (2014) attributed this property of 
interbank markets to a counterparty risk externality, which is an inherent feature 
of over-the-counter markets. Counterparty risk refers to the increased default 
risk of a counterparty on one contract when the counterparty has the same con-
tract with another agent. This second contract of the counterparty has the risk of 
weakening its ability to perform on the first contract (Acharya & Engle, 2009). 
Moreover, the opacity of this externality increases as banks’ interbank lending 
network grows since banks are unaware of the connections of its affiliated banks. 
Consequently, this can lead to default cascades in the interbank credit market 
(Battiston et al., 2012a). 

An extensive strand of literature endeavours to examine the network 
structure that is less prone to this type of systemic risk in the interbank market 
and the extent to which diversification can mitigate systemic risk. In this strand 
of literature, Allen & Gale (2000) provide one the most influential analysis of the 
financial contagion through credit interlinkages among banks. Using a model in 
which the banks are connected to each other by exchanging interbank deposits, 
they show that the adverse effect of liquidity shocks on systemic risk can be mit-
igated by increasing the interconnectedness among banks in the complete net-
works, the network structure in which the amount of interbank deposit held by 
each bank is evenly spread over all banks. However, when the network structure 
is incomplete, the case in which each bank is connected to only a few number of 
other banks, higher connectivity is no longer desirable, and the system becomes 
more susceptible to contagion risk. The reason is that in the complete network, 
the liquidity shortage shocks are shared by every bank in the system: each bank 
pays its share by liquidating a small amount of its assets and hence there is no 
significant loss in the value of asset, which is one of the shock propagation chan-
nels in the model. In contrast, in the incomplete network, only the banks in the 
troubled region liquidate their assets, which results in losses in asset value. In the 
same spirit, Freixas et al. (2000) arrive at the same conclusion , that increasing 
interbank connections can enhance the system’s resilience to a shock caused by 
insolvency of one bank caused by deposit withdrawal. However, the enhance-
ment comes with a cost of several inefficient outcomes such as the excessive liq-
uidation of productive investment, the reduced incentive to liquidate insolvent 
banks and the inefficient liquidation of solvent banks. Nier, Yang, Yorulmazer, 
& Alen-torn (2007) show that increasing interbank connectivity increases the con-
tagion effect at first; however, after a certain threshold value is reached, higher 
connectivity makes the system more robust to shocks. 
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In contrast, there is another stream of work suggesting that full integration 
is not optimal in reducing contagion risk. Battiston et al. (2012b) use a continuous 
time dynamic agent-based model where banks are connected to each other 
through credit network. They show that the connectivity is optimal for the net-
work resilience when it is at a moderate level, once exceeding this level, higher 
connectivity will increase both the probability and the magnitude of system fail-
ure. The main external effect in their model is the variation of financial robustness 
resulting from idiosyncratic shock of agents in the network i.e. “financial accel-
eration” and its positive feedback, which persists over time. After the optimal 
level of connectivity is reached, the adverse effect of this financial acceleration 
will outweigh the benefit of risk sharing and amplify the financial distress. Simi-
larly, Stiglitz (2010) argue that full integration is also not optimal in the context 
of global financial markets. In a model where the connections between banks are 
created as a result of banks exchanging their projects, Allen, Babus, & Carletti 
(2012) find that systemic risk in the unclustered network structure is lower than 
that in the clustered asset network structure. In the clustered network, banks 
form several independent banking groups, while in the unclustered network, 
each bank connects to only two other banks in a circle. The rationale is that in the 
clustered structure, when there is a negative information regarding the solvency 
of one agent, the investor would deduce that the conditional probability of sys-
tem failure is higher as defaults are more concentrated. Thus, the investors are 
more reluctant to roll over their short term funding and banks are forced to liq-
uidate their assets. In other words, the main source of systemic risk in this model 
is the failure of banks to roll over short term debt, which put them into a liquidity 
crisis. This is in line with the depiction of Brunnermeier (2009) of the financial 
crisis. Furthermore, several earlier works have also shown that financial integra-
tion can facilitate the risk of financial contagion (Goldstein & Pauzner, 2004; Al-
len & Carletti, 2006). 

At the same time, there are also several works expressing a more moderate 
view of the impact of financial integration on systemic risk. These works 
acknowledge the benefit of interbank connection to a certain degree while at the 
same time referring to conditions under which it can have adverse impact on the 
system stability. Applying techniques from the literature on complex networks 
into a financial system setting, Gai & Kapadia (2010) finds that while high con-
nectivity help absorbing shocks by the dispersing the losses from the failure of 
one institution and hence reducing the probability of a default cascade event, it 
also magnifies the magnitude of the crisis once it does occur. In addition, they 
also highlight the fact that the system reacts differently to shocks of similar size 
depending on where the shocks hit the network. A smaller sized shock can have 
a more damaging impact on the system stability if it hit at critically pressure 
points. This provides justification for the classification of systemic events by Bilio 
et al. (2012). For example, Billio et al. (2012) classify the failure of the $5 billion 
hedge fund Long Term Capital Management as a systemic event but not the 2006 
collapse of the $9 billion hedge fund Amaranth Advisors because the former puts 
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more threat on a wider range of financial institutions. Moreover, Ladley (2011) in 
a static network setting finds that interbank connectivity is useful in sustaining 
system’s stability by risk sharing only for small shocks; while for larger systemic 
shock, in the broad sense as in de Bant et al. (2012), it has the reverse effect. This 
result is in line with the observations made by Acemoglu, Ozdaglar, & Salehi 
(2015) who also reason that weak interconnection, in the case of a large shock, 
protects the system from a cascading default by limiting most of the losses to the 
more senior creditors of a distressed bank. 

2.3.2 Contagion via indirect linkages 

The second approach to contagion effect focuses on the systemic risk arising from 
the common asset exposure. The contagion mechanism of this channel is as fol-
lows. Institutions hold the same asset in their portfolios. Due to some exogenous 
shocks, one institution in the system has to liquidate the asset, which drives down 
the price of the asset. This has a negative impact on the portfolio value of other 
institutions in the system. In some cases, the affected institutions may have to 
liquidate other assets to meet certain constraints. If the impact would be large 
enough, there would be a systemic event in which contagion occurs across seem-
ingly unrelated assets and across seemingly unrelated institutions (Braverman & 
Minca, 2014). 

Previous literature has investigated different sources of initial shocks and 
types of constraint. Adrian & Shin (2010) point out empirically that procyclical 
leverage, a result of banks’ active adjustment of balance sheet, can exert a signif-
icant impact on the aggregate market volatility and risk pricing which in turn 
leads to a dry up of market liquidity and a spiral of losses as depicted by 
Brunermeier & Pederson (2009). For example, there is a negative shock to the 
market value of some securities in a bank’s portfolio, a shock large enough that 
the bank faces funding issues such as a run by its creditors or a failure to roll over 
its short term debt. As a consequence, the bank is forced to liquidate at least part 
of its portfolio to reimburse debt. If the securities are sold below the market price, 
the asset side of the balance sheet decreases more than the liability side and the 
bank’s leverage goes up unintentionally (Battiston et al., 2012a). 

Similarly, Greenwood, Landier, & Thesmar (2015) show that the contagion 
risk is worse when the illiquid assets in the market are held by the most levered 
banks. More specifically, a negative shock has a bigger impact on the system 
when the assets are held by more levered banks as due to the leverage constraint 
the more levered banks have to sell more in a fire sale. Gorton & Metrick (2012) 
examine the role of so called “securitized banking”, which refers to securitization 
activities and repo funding, in the financial crisis. They argue that what caused 
the systemic crisis in 2008 is similar to a run in the repo market. Pointedly, in-
creasing uncertainty about the counterparty risk lowers the value of assets in 
repo contracts. This in conjunction with the increasing repo haircuts caused by 
growing concerns about the liquidity of markets for the underlying products ef-
fectively put the banking system into a solvency crisis.  
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Besides, over-the-counter (OTC) contracts used by banks to hedge their as-
set risk can create a contagion channel. Zawadowski (2013) shows that entering 
into OTC contracts reduce the default risk of individual banks significantly. 
However, this asset risk reduction benefit has the side effect that makes banks 
more connected to each other in a network of OTC contracts. In other words, 
counterparty risk emerges as a by-product of asset risk hedging. The counter-
party risk can be hedged by holding more equity. Nevertheless, Zawadowski 
(2013) shows that since banks do not internalize the benefit other banks get from 
their counterparty risk hedging activities, they do not have a strong incentive  to 
hedge the counterparty risk arising from the OTC con-tracts. More specifically, 
when the probability of counterparty default is low even though it is optimal for 
the system as a whole that banks pay for holding excess equity for example by 
buying counterparty insurance, at the individual level, it is more costly to do so 
and hence not optimal for banks. 

In this regard, liquidity crisis arising from fire sales of assets is one im-
portant contagion channel. Cifuentes, Shin, & Ferrucci (2005) presented a model 
where the banks’ balance sheets are connected both directly through interbank 
market and indirectly through common assets holding. They find that the conta-
gion effect from the failure of one bank in the system is mainly driven by asset 
price linkages. At certain values of the model parameters, a price shock can be 
amplified by the regulatory solvency constraints under the form of capital re-
quirement to induce a downward spiral asset price effect. They also show that 
contagion is worst when the number of interconnections is at a moderate level 
and liquidity requirement can help prevent a systemic contagion through asset 
prices from occurring. Similarly, Kapadia, Drehmann, Elliott, & Sterne (2013) de-
pict how asset price contagion can cause a liquidity crisis in the system due to 
cash flow  constraints. Furthermore, Diamond & Rajan (2011) show how a liquid-
ity crisis can build up ex ante due to contagion via required rates of return. They 
argue that in the face of a probable insolvency issue, illiquid banks can have a 
private incentive to hold and even load up more illiquid assets rather than selling 
them for the reason that the marginal cost is low. 

In addition, there exists a strand of literature examining the effects of port-
folio diversification at financial institutions on the stability of the system. In a two 
bank model where each bank invests in different activities, Wagner (2010) shows 
that while diversifying into the other bank’s activities reduces the failure likeli-
hood of each individual bank, it also increases the likelihood a joint failure. More 
specifically, as diversification increases, the marginal rate at which the variance 
of a bank’s portfolio declines (the benefit of diversification) while the cost of di-
versification represented by early liquidation of assets in the economy increases. 
The reason is that diversification reduces the idiosyncratic risk of each bank port-
folio while at the same time exposing them to similar sources of market risk. 
Hence, for a sufficiently large degree of diversification, the cost of diversification 
exceeds its benefits. Therefore, full  diversification is not optimal. In the same 
way, Ibragimov, Jaffee, & Walden (2011) show that diversification is not desirable 
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for the system even though it may be optimal for individual institutions when 
the probability distribution of the risk factors is moderately fat-tailed. Especially 
in the case of extremely heavy tailed risks, asset diversification is not optimal 
from both the system and individual perspective. This result is in consonance 
with De Vries (2005)’s model where banks are directly connected via interbank 
deposit and syndicated loans.  

Another possible channel through which diversification can lead to sys-
temic events is by reducing the welfare of the economy. For example, Goldstein 
& Pauzner (2004) applies a global game model, where two countries have inde-
pendent fundamentals but share the same group of investors, to demonstrate that 
portfolio diversification can induce a self-fulfilling crisis by reducing the real 
wealth of the investors and making them more risk averse. Consequently, inves-
tors decide to withdraw their funding from other countries and crisis occurs. In 
addition, Acharya & Yorulmazer (2005) point out that banks are privately incen-
tivized to invest in correlated assets to prevent costs arising from potential infor-
mation spill over effect because they do not internalize the costs of a joint failure 
due to limited liability. 

In sum, there are different forms under which a systemic event manifests 
itself. The common thread among different forms of systemic event is the notion 
of contagion. A systemic bank run occurs when where the failure of one bank 
induces the depositors of other banks to withdraw their funds. Direct connection 
via interbank lending and indirect connection via common asset exposure are 
two important contagion channels. Research has found that both the direct and 
indirect financial networks exhibit a robust-yet-fragile nature. Connections helps 
reducing the probability of a systemic event thanks to risk sharing. However, 
when a systemic event does occur, the consequences would be more calamitous 
due to the very same connectivity that helps prevent some events. 
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3 PREVIOUS EMPIRICAL STUDIES 

There are several different approaches in the empirical studies of systemic risk 
measures. One strand of research attempts to estimate the direct bilateral link-
ages between financial institutions with the limited available data to build an in-
tricate financial network. This strand of literature mostly investigates the rela-
tionship between the network topology and the financial stability of the system. 
Soramäki, Bech, Arnold, Glass, & Beyeler (2007) and Cont, Moussa, & Santos 
(2010) have documented power-law distributions for the connectedness degree 
in the US system and Brazilian interbank network, respectively. As a result, the 
financial network is scale-free, which means that a few institutions are account-
ing for most of the connections in the network. This result supports the “robust 
yet fragile” feature of the financial network argued by Gai & Kapadia (2010) and 
Caccioli, Catanach, & Farmer (2011). By contrast, using data on overnight inter-
bank lending in Italia during the period 1999–2010, Fricke & Lux (2014) find that 
distributions with an exponential tail are a better description of the network con-
nections and hence, refute the scale-free network structure. 

Another strand of literature measures systemic risk by focusing on tail de-
pendence over a given horizon. Betz, Hautsch, Peltonen, & Schienle (2016) apply 
a penalized two-stage fixed-effects quantile approach using the equity and CDS 
prices of 51 large European banks and 17 sovereigns to examine their intercon-
nectedness based on their tail risk dependencies. They confirm that interconnect-
edness is an important factor in assessing the firm’s systemic risk contribution. 
Segoviano & Goodhart (2009) treat the banking system as a portfolio of banks. 
They first construct the probability of distress for each bank using market data 
such as CDS and/or out-of-the-money option prices. Then, they construct the 
banking system multivariate density (BSMD) which is supposed to capture the 
distress linear and nonlinear dependence among the banks in the system. From 
the BSMD, they produce various measures of system stability. The main ad-
vantage of this method is that it can feature the dynamic changes in the distress 
dependence. Their empirical results suggest that the risk of joint distress of the 
European banks was lower than that of the US investment banks during the 2008 
financial crisis. During the same period, UBS was the European bank under the 
highest stress. The distress of UBS exerted the highest stress on Barclays. Besides, 
the stability of the European banks was most reliant on the distress of Credit 
Suisse in September 2008. In addition, the probability of one US bank under dis-
tress conditional on one European bank becoming distressed is lower than the 
conditional probability of one European bank under distress given a US bank 
under distress, which suggests that the failure of the European financial system 
is more problematic for the global system. In a similar vein, Adrian & Brun-
nermeier (2016) suggest the use of Delta-CoVaR (ΔCoVaR) as a measure of the 
marginal contribution of individual banks to the riskiness of the system. A bank’s 
ΔCoVaR is defined as the difference between the system’s value at risk 



 
 

21 

conditional on that bank at distress and the system’s value at risk conditional on 
the bank's median state. They show that ΔCoVaR is dependent on leverage, size, 
and the business cycle. Acharya et al. (2017) measure systemic risk as firms' ex-
pected capital losses conditional on a negative tail event of the system, denoted 
as marginal expected shortfall (MES). They show that MES, together with lever-
age, can explain the cross-sectional returns of banks during the crisis better than 
traditional risk measures such as beta, volatility, and expected shortfall, which 
do not involve the tail dependence between the institution and the system. How-
ever, Idier, Lamé, & Mésonnier (2014) empirically show that standard balance 
sheet ratios are better predictors of firms’ equity losses during the financial crisis 
than the MES. Kleinow, Moreira, Strobl, & Vähämaa (2017) perform empirical 
comparisons of MES and ΔCoVaR using the US data from 2005-2014. They find 
that the two measures provide different rankings of systemically important insti-
tutions. 

In the spirit of this literature strand, Engle, Jondeau, & Rockinger (2015) 
investigate the systemic risk of European financial institutions over the 2000-2012 
period. They measure systemic risk as the expected capital shortfall conditional 
on a significant stock market decline, estimated by the biggest 6-month market 
decline over the sample period, approximately 40%. This measure has a nice pru-
dential meaning which is the equity buffer measured ex-ante that would be suf-
ficient for the firm to face a systemic event. From the policy maker’s point of view, 
this measure also corresponds to the minimum cost, in addition to the firm’s en-
dorsed debt, should the government decide to bail out the troubled firm. In this 
sense, the measure easily allows for the ranking of systemically important finan-
cial institutions. Their study sample includes 196 European financial firms from 
different sectors such as banks, insurance firms, financial services, and real estate 
firms. However, the results show that almost most of the systemic risk in Europe 
is composed of banks and insurance firms, approximately 83% and 15% respec-
tively at the end of the sample period 2012. The reason is that financial services 
and real estate companies used comparatively much lower financial leverage, 
which is an important factor in the estimation of capital shortfall. This result 
seems counterintuitive considering the fact that the recent financial crisis origi-
nated from the real estate sector. However, these results actually pointed out that 
the fragility of the system is caused by the highly leveraged financial structure of 
the stakeholders, rather than that of the real estate companies themselves. At the 
individual institution level, the five most systemically important institutions are 
Deutsche Bank, Credit Agricole, Barclays, Royal Bank of Scotland, and BNP Pari-
bas, accounting for 37% of the system’s total expected shortfall in the case of a 
systemic event. It is worth noticing that while BNP has a relatively large market 
capitalization rate and low leverage, Credit Agricole has relatively small market 
capitalization and high leverage. This implies that there are different determi-
nants of the systemic risk measure. At the country level, France and the UK to-
gether contributed to approximately 52% of the European financial sector’s total 
exposure. Furthermore, industrial production and business confidence index are 
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shown to be Granger caused by the aggregate measure in most countries. There-
fore, this measure could be a promising early warning signal of distress in the 
real economy. In addition, 3-month interbank rate is found to be the main deter-
minant of systemic measures in most countries. This is understandable because 
3-month interbank rate is an important factor affecting the banks’ balance sheet 
and the banking sector is the biggest contributor to systemic measures in most 
countries as mentioned earlier. The authors also have found that Europe has a 
more fragile financial system than the US does. In case of a new world crisis, the 
expected capital shortfall of the European financial system is larger than that of 
the US system. Besides, the relative ratio between the expected shortfall of the 
four riskiest banks to the GDP is slightly higher in Europe (3.7%) than in the US 
(2.7%). More importantly, the expected shortfall of the four riskiest banks in Eu-
rope is 4.45 times their total market capitalization rate while the same figure for 
the US is only 1.16. This implies that the European bank is much more undercap-
italized than the banks in the US. Therefore, should a world crisis occur, it is 
much more difficult and costly to rescue the European banks. 

Another strand evaluates the interconnectedness among the financial in-
stitutions to measure systemic risk. This strand extracts the information from the 
market data which is in theory supposed to capture both the direct linkages (via 
for example interbank market) and indirect linkages (via common exposures). 
Abbassi, Brownlees, Hans, & Podlich (2017) investigate the credit interconnect-
edness of German banks using a unique proprietary dataset from January 2006 
to December 2013 and relate the results to the interconnectedness measure esti-
mated from CDS data. They found that the interconnectedness retrieved from 
market data can capture banks’ linkages via wholesale market and common as-
sets holding.    

Billio et al. (2012) propose the use of the principal component analysis and 
vector autoregression methods to quantify the interconnectedness as a measure 
of systemic risk. Applying the methods to the month equity return from January 
1994 to December 2008, they empirically examine the interdependence of the 25 
largest (determined by market capitalization) financial firms in each of the 4 sec-
tors in the US including banks, insurance, brokerage, and hedge funds, each of 
which supposedly has a different role in the financial crisis. They were able to 
show that their measures can capture periods of financial distress in the system. 
Specifically, the proportion in the sample’s return variation explained by the first 
principal component peaked in August 1998 and October 2008, the two most tur-
bulent periods in the sample. The Granger causality relationships significant at 
5% level increased dramatically in the 2006-2008 crisis period. The number of 
significant connections in 2006-2008 constituted 13% of all possible connections, 
which was more than twice of that during the tranquil 2002-2004 period. It is 
documented that in overall there is a positive correlation between the aggregate 
connectedness indicators and the empirical variance of the system. The correla-
tions were strongest during the crisis period LTCM 1998 and the financial crisis 
2008. However, during the 2001-2006 period, it seems that while the empirical 
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system variance was decreasing, the connectedness aggregate indicators were in-
creasing slowly. It is also worth mentioning that the banking sector was the most 
systemically important in the sense that it had the greatest number of Granger 
causality to and from the other sectors. To examine the predictive power of the 
connectedness measures, Billio et al. (2012) run regressions of Max%loss rankings 
on the rankings of the connectedness measures. Max%loss is defined as the max-
imum percentage loss in market capitalization during the crisis period from July 
2007 to December 2008. The connectedness measures are estimated for two sep-
arate 3-year pre-crisis periods, October 2002–September 2005 and July 2004–June 
2007, which respectively represent high and low levels of aggregate system con-
nectedness. Their results showed that there was a significant positive relationship 
between the firms’ PCAs measure and the losses firms suffered during the 2008 
crisis. This result indicates that firms more exposed to the overall system are 
more likely to suffer large losses during the crisis. However, this result only 
stands for the PCAs measures of the October 2002–September 2005 period. A sim-
ilar out-of-sample test using the Granger causality measures shed a clearer light 
on the direction of the relationship among the firms and their losses in the crisis. 
It is interesting to see that firms which Granger cause others during both of the 
pre-crisis periods suffered the most significant losses during the crisis, but not 
the firms which are Granger caused by others. Furthermore, the authors also 
found that firms with more Granger causality connections to the worst per-
formed firms suffered larger losses than firms having fewer connections to them. 
These results suggest that Granger causality analysis can capture the spillover 
effects from firms with significant losses to firms with larger exposure to them. 

Diebold & Yilmaz (2014) suggest using variance decomposition as a uni-
fied framework for measuring connectedness as a systemic risk measure. In es-
sence, they measure connectedness as the proportion of forecast error variance of 
a variable accounted by each of the other variables in the system. This approach 
has the advantage that it allows for measuring both the strength and direction of 
connectedness. Similar to the Granger causality framework in Billio et al. (2012), 
the variance decomposition method can identify the direction of the connected-
ness at a pairwise and a system-wide level. In addition, it can also quantify the 
strength of each connectedness, which is not possible in the Granger causality 
framework. Parallel to the notion of Granger cause, the directional connectedness 
“to” others measures the impact of a shock to a variable on each of the other var-
iables. The directional connectedness “from” others measures the impact a vari-
able received coming from shocks to each of the other variables, this is compara-
ble to the notion of being Granger caused in a VAR framework. Diebold & Yilmaz 
(2014) applied the framework to study the connectedness of a sample including 
thirteen major financial institutions in the US. Different from Billio et al. (2012), 
Diebold & Yilmaz used the stock return volatilities as input to their analysis. 
Their justification is that because volatility tends to be associated with investors’ 
fear and uncertainty, studying volatility connectedness would help identify the 
crisis period more easily. An important finding in this paper is that there was a 
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distinctive difference between the distributions of ”to” and “from” connected-
ness measures. Specifically, the estimated “to” connectedness measures vary 
more substantially across the variables than the estimated “from” connectedness 
measures do. The authors explained this difference as follows. Because the cho-
sen institutions are the largest ones in the industry, they are expected to be inter-
connected. Therefore, a volatility shock to one institution would be distributed 
to most of the other institutions. As a result, the size of the volatility shock re-
ceived by each stock will be relatively small. On the other hand, the directional 
“to” connectedness measures vary across stocks as the size of the volatility shocks 
and the centrality of the stocks from which the volatility shocks originate vary. 
From this result, it can be suspected that the “to” connectedness rather than the 
“from” connectedness measure would be the decisive factor in identifying the 
systemically important institutions. Besides, the authors have noticed that there 
could be some institutions that received little shocks from the others while sim-
ultaneously transmitting vastly to the others. Detecting these firms is a crucial 
task from the macro-prudential point of view because they are the potential 
threats to the system stability. 
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4 METHODOLOGY 

In this thesis, I apply three frameworks proposed by Billio et al., (2012) and 
Diebold & Yilmaz (2009, 2012, 2014) to investigate the interconnectedness among 
the 28 largest banks in Europe as of the end of the study period December 2018. 
The principal component analysis is to assess the increase in the correlation 
among the assets return of the banks. Granger causality analysis provides a di-
rectional connection analysis among the banks’ returns. The forecast error vari-
ance decomposition in Diebold & Yilmaz (2009, 2012, 2014) is analogous to the 
Granger causality framework in Billio et al., (2012) in the way that it also identi-
fies the direction of the connections among the banks. In addition, it comple-
ments the Granger causality framework by allowing for the quantification of the 
strength of the directional connections. These three frameworks are useful as 
each of them provides both an aggregate indicator to assess the overall connect-
edness of the system in the time-series dimension and measures for individual 
banks’ contribution in the cross-sectional dimension.  

4.1 Principal component analysis (PCA). 

Let 𝒓𝑖 be the stock return of bank i; i=1,…,n. Define 𝒛𝑖 ≡ (𝒓𝑖 − μ
𝑖
)/σ𝑖, where μ

𝑖
=

𝐸(𝒓𝑖) , and 𝜎𝑖
2 = 𝑉𝑎𝑟(𝒓𝑖). Then the variance of the system 𝜎𝑆

2can be written as: 
𝜎𝑆

2 = ∑ ∑ σ𝑖σ𝑗𝐸(𝒛𝑖𝒛𝑗)𝑛
𝑗=1

𝑛
𝑖=1       (1) 

Let 𝒘𝑖 = (𝑤𝑖1 … 𝑤𝑖𝑛) transposed be a n-dimensional real-valued vector. Then the 
principal components can be defined as follow: 

• The first principal component of r is the linear combination 𝒚1 =𝑤1
𝑇 . 𝑟 that 

maximizes Var(𝒚1) subject to the constraint 𝑤1
𝑇𝑤1 = 1. 

• The second principal component of r is the linear combination 𝒚2 =𝑤2
𝑇 . 𝑟 

that maximizes Var( 𝒚2 ) subject to the constraint 𝑤2
𝑇𝑤2 = 1 and Cov 

(𝒚1, 𝒚2) = 0.  

• And so on to component n-th. 
As a consequence, we have: 

 𝐸(𝒚𝑖𝒚𝑗) = λ𝑖 𝑖𝑓 𝑖 = 𝑗;  𝑎𝑛𝑑 𝐸(𝒚𝑖𝒚𝑗) = 0, if  𝑖 ≠ 𝑗 ,  

where λ𝑖 is the i-th eigenvalue.       (2)  
The purpose of PCA is to yield an eigendecomposition of the variance covariance 
matrix of returns of the n banks into the orthonormal matrix of loadings W, con-
sisting of the eigenvectors of the correlation matrix of returns, and the diagonal 
matrix of eigenvalues Λ: 

 𝒛𝑖 = ∑ 𝑊𝑖𝑗
n
𝑘=1 𝐲𝑗, since W orthonormal.     (3) 

From (2) and (3): 𝐸(𝒛𝑖𝒛𝑗) = ∑ ∑ 𝑊𝑖𝑘𝑊𝑗𝑙𝐸(𝒚𝑘𝒚𝑙)
𝑛
𝑙=1

𝑛
𝑘=1 = ∑ 𝑊𝑖𝑘𝑊𝑗𝑙λ𝑘

𝑛
𝑘=1  (4) 

From (1) and (4):  𝜎𝑆
2 = ∑ ∑ ∑ σ𝑖σ𝑗𝑊𝑖𝑘𝑊𝑗𝑙λ𝑘

𝑛
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=1     (5) 

 𝑊𝑖𝑗 is a factor loading of the j-th principal component on the returns of bank i. 
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Since the variance covariance matrix is positive definite, all of its eigenval-
ues are positive. In some cases, the eigenvector may give meaningful interpreta-
tion about the underlying factors. For example, the values of a certain eigenvector 
may show strong exposure to a certain country and weak exposure to the other 
country, then we can interpret this eigenvector is a proxy the economic condition 
of that particular country. On the other hand, an eigenvector can also be a reflec-
tion of several intertwined underlying factors unique to the studied sample. In 
this case, it is not easy to identify the underlying factors other than as a statistical 
artifact. Moreover, the compositions of the eigenvector may not be persistent 
over time since the interactions among the underlying factors are likely to change 
periodically (Kritzman et al., 2010).  

Now, let (λ1, 𝑊1),...,(λ𝑛, 𝑊𝑛) be the eigenvalue–eigenvector pairs of the cor-
relation matrix. We have: 

 ∑ 𝑉𝑎𝑟 (𝒓𝑖)
𝑘
𝑖=1 = ∑ λ𝑖

𝑘
𝑖=1 = ∑ 𝑉𝑎𝑟 (𝒚𝑖)

𝑘
𝑖=1 ; for all 𝑘 from 1 to n (6) 

 To evaluate the aggregate connectedness of the system Billio et al. (2012) 
suggest the use of the following measure:   

 
∑ 𝑉𝑎𝑟 (𝒚𝑖)𝑘

𝑖=1

∑ 𝑉𝑎𝑟 (𝒓𝑖)𝑛
𝑖=1

=
∑ λ𝑖

𝑘
𝑖=1

∑ λ𝑖
𝑛
𝑖=1

       (7) 

The idea is that when the system is highly interconnected, a small number of 
principal components can explain most of the volatility in the system since the 
underlying sources of risk become more unified. However, this is simply an in-
dication of market fragility in the sense that a negative shock is likely to propa-
gate more quickly and broadly throughout the system because of higher connec-
tivity. In other words, a high absorption ratio does not necessarily lead to market 
turbulence or financial distress.  
 Concerning the measure attributed to each individual bank, Billio et al. 
(2012) adopt the following measure of connectedness for each bank i. Conditional 
on the first k strong common components across the returns of all banks:  

𝑃𝐶𝐴𝑖,𝑘 =
𝜎𝑖

2

𝜎𝑠
2 ∑ 𝑊𝑖𝑗

2λ𝑗
𝑘
𝑗=1             (8)  

According to Billio et al. (2012), 𝑃𝐶𝐴𝑖,𝑘 measures both the contribution and the 
exposure of the i-th bank to the aggregate risk of the system given a strong com-
mon exposure on the first k components among all banks’ equity returns. In ad-
dition, when the fourth co-moments are finite, this also captures the contribution 
of the i-th institution to the multivariate tail dynamics of the system. 

4.2 Granger-causality  

First, to separate contagion and common factor exposure and filter out heteroske-
dasticity, I use the following model GARCH (1,1) for each bank i: 

   𝑅𝑡
𝑖 = μ

𝑖
+ 𝑐𝑖𝑅𝑡

𝑚 + 𝑎𝑖𝑡;    𝑎𝑖𝑡 = σ𝑖𝑡 . ϵ𝑖𝑡 

σ𝑖𝑡
2 = ω𝑖 +  𝛼𝑖𝑎𝑖,𝑡−1

2 + β
𝑖
σ𝑖,𝑡−1

2      (9)
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;𝑅𝑡
𝑚 is the return on the STOXX Europe 600 index used as proxy for the market. 

I perform granger causality test on the standardized series: 𝑟𝑖𝑡̂ = 𝑎̂𝑖𝑡/σ̂𝑖𝑡 
where 𝑎̂𝑖𝑡 is the residual from the mean equation and σ̂𝑖𝑡 is fitted standard devia-
tion from the above model. In essence, a time series j “Granger cause” another 
time series i if the predictions of the values of time series i based on both the past 
values of time series i and of time series j are better than based on only the past 
values of times series i. Specifically, consider a VAR(1) model of two standard-
ized return series: 

    𝑅𝑡
𝑖 = 𝑏𝑖𝑅𝑡

𝑖 + 𝑐𝑖𝑗𝑅𝑡−1
𝑗

+ 𝑒𝑡
𝑖, 

 𝑅𝑡
𝑗

= 𝑏𝑗𝑅𝑡
𝑗

+ 𝑐𝑗𝑖𝑅𝑡−1
𝑖 + 𝑒𝑡

𝑗
,      (10) 

; 𝑒𝑡
𝑖  and 𝑒𝑡

𝑗
 are two white noise processes and 𝐶𝑜𝑣(𝑒𝑡

𝑖, 𝑒𝑡
𝑗
) = 0. Then, we say j 

Granger causes i if 𝑐𝑖𝑗  is statistically different from zero. Similarly, i Granger 

causes j if 𝑐𝑗𝑖 is statistically different from zero.   
In an efficient financial market, we should not detect Granger causality. 

However, due to the contagion channels described in the literature review, we 
may detect some Granger causality depending on the degree of  the connections 
and integration among banks. 

To evaluate the aggregate connectedness of the system, Billio et al. (2012) 
define degree of Granger causality (DGC) as follows. 

 𝐷𝐺𝐶 ≡  
1

𝑛(𝑛−1)
∑ ∑ (𝑗 →𝑗≠𝑖 𝑖𝑛

𝑖=1 )     (11) 

; where (𝑗 → 𝑖) = {
1 𝑖𝑓 𝑗 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

For each bank i, the following variables assessing its systemic importance 
is computed: 

• Number of out Granger cause (#out): the number of other banks that bank 
i Granger causes divided by 27: 

  #𝑜𝑢𝑡 =  
1

(𝑛−1)
∑ (𝑖 →𝑗≠𝑖 𝑗)      (12) 

• Number of in Granger caused (#in): the number of other banks that 
Granger cause bank i divided by 27. 

   #𝑖𝑛 =  
1

(𝑛−1)
∑ (𝑗 →𝑗≠𝑖 𝑖)      (13) 

4.3 Forecast error variance decomposition. 

Diebold & Yılmaz (2009, 2012, 2014) propose a framework for empirically esti-
mating connectedness using variance decompositions from an approximated 
VAR model. The framework is briefly presented here, more detailed explanation 
of the framework can be found in the above referent papers. 

Consider a first order VAR(1) model:  
 𝒙𝑡 =  𝚽𝒙𝑡−1 + 𝐞𝑡        (14) 

where 𝒙𝑡 = (𝑥1𝑡, 𝑥2𝑡 … , 𝑥𝑛𝑡) , 𝚽  is a n-by-n parameter matrix, and {𝐞𝑡}  is a se-
quence of serially uncorrelated random vectors with mean zero and covariance 
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matrix Σ. Assuming that the model is weakly stationary, apply the Cholesky de-
composition to express the moving average presentation in terms of orthogonal 
innovations 𝛆𝑡 as:  

 𝒙𝑡 =  ∑ 𝐀𝑖
∞
𝑖=0 𝛆𝑡−𝑖,        (15) 

where:  
𝛆𝑡 = 𝐿−1𝐞𝑡; L is the lower triangular Cholesky factor of Σ, E(𝛆𝑡𝛆𝑡

′ ) = I 

𝐀0 = 𝐿; 𝐀𝑖 = 𝚽𝑖𝐿 for i =1,…,∞. 
Now consider forecasting of 𝒙𝑡+ℎ and the associated forecast error condi-

tional on the observed value of 𝒙𝑡. 
The 1-step-ahead forecast is 𝒙𝑡+1 =  𝚽𝒙𝑡 with forecast error 𝐀0𝛆𝑡+1 
The 2-step-ahead forecast is 𝒙𝑡+2 =  𝚽2𝒙𝑡 with forecast error 𝐀0𝛆𝑡+2 +  𝐀1𝛆𝑡+1 

In general, the h-step-ahead forecast is 𝒙𝑡+ℎ =  𝚽ℎ𝒙𝑡 and the associated forecast 
error is: 

   ∑ 𝐀𝑖
h−1
𝑖=0 𝛆𝑡+ℎ−𝑖.                          (16) 

The idea of Diebold & Yılmaz’s framework is to use variance decomposi-
tion to separate the forecast error variance of each variable into parts attributable 
to its “own” shocks versus shocks to the other variables. For example, focusing 
on the {𝑥1𝑡} we can see that the h-step-forecast error is: 

 ∑ ∑ 𝐚1𝑗
h−1
𝑖=0 (𝑖)ε𝑗𝑡+ℎ−𝑖

𝑛
𝑗=1       (17) 

; 𝐚1𝑗(𝑖) is the j-th value in the first row of 𝐀𝑖.  

Since the sequence {𝛆𝑡} is serially uncorrelated its components are also un-
correlated, the h-step-ahead forecast error variance of 𝑥1𝑡+ℎ denoted by: 

σ𝑥1(ℎ)2 = ∑ ∑ 𝐚1𝑗
ℎ−1
𝑖=0 (𝑖)2𝑛

𝑗=1 .      (18) 

Now we can decompose σ𝑥1(ℎ)2  into proportions due to each type of 
shock. The proportion of σ𝑥1(ℎ)2due to shocks to 𝜀𝑗𝑡 is:  

   
∑ 𝐚1𝑗

ℎ−1
𝑖=0 (i)2

σ𝑥1(ℎ)2  for j = 1,2,…,n      (19) 

When j=1 the above ratio is the proportion of σ𝑥1(ℎ)2  due to its own shocks ε1𝑡. 
The summation of (19) for j from 2 to n tells us the proportion of the movements 
in the sequence {𝑥1𝑡}  caused by shocks to the other variables.   

In general, Diebold & Yılmaz (2009) measure the total spillover effect re-
ceived by 𝑥𝑖𝑡 from all the others as:  

   
∑ ∑ 𝐚𝑖𝑗

ℎ−1
𝑘=0 (𝑘)2𝑛

𝑗=1,𝑗≠𝑖

σ𝑥𝑖(ℎ)2
       (20) 

Diebold & Yılmaz (2009) suggest that this measure can be used to rank the sys-
temic importance of banks because it expresses how each bank is sensitive to 
shocks from the other institutions. This measure is comparable to the #in Granger 
causality measure in Billio et al. (2012) in that sense that the #in measure counts 
the number of banks that Granger cause bank i using the presentation of VAR 
model while this measures the fraction of movement in bank i’s returns explained 
by shocks to the returns of all the other banks using the VMA presentation. In 
this thesis, I denote the measure in (20) by from_others. 
Similarly, the analog of the #out measure in Billio et al. (2012), the number of 
other banks in the system that are Granger caused by bank i, is the total spillover 
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effect from bank i to all other banks. This measure is denoted as to_others in this 
thesis and is constructed as follows:  

   
∑ ∑ 𝐚𝑗𝑖

ℎ−1
𝑘=0 (𝑘)2𝑛

𝑗=1,𝑗≠𝑖

∑ ∑ 𝐚𝑗𝑖
ℎ−1
𝑘=0 (𝑘)2𝑛

𝑗=1

       (21) 

This captures the total fraction of forecast error variances in all other banks that 
are contributed by shocks to bank i. 

Besides, Diebold & Yılmaz (2009), Diebold & Yılmaz (2012) suggest using 
the total connectedness measure as an indicator of systemic risk. 

   
∑ ∑ 𝐚𝑖𝑗

ℎ−1
𝑘=0 (𝑘)2𝑛

𝑖,𝑗=1,𝑖≠𝑗

∑ σ𝑥𝑖(ℎ)2𝑛
𝑖=1

       (22) 

 Simply put, (22) is the sum of off diagonal elements in the variance decomposi-
tion matrix divided by n (the number of banks). It represents the proportion of 
forecast variance of the system constituted by the interaction of the banks within 
the systems. 

It is important to note that the above illustration relies on Cholesky de-
composition which crucially depends on the ordering of the variables and hence, 
so is the resulting variance decompositions. Diebold & Yılmaz (2012) circumvent 
this problem by using the generalized variance decomposition (GVD) framework  
Koop, Pesaran, & Potter (1996) and Pesaran & Shin (1998). In contrast to Cholesky 
decomposition, the GVD framework no longer orthogonalizes shocks, but  allows 
for correlated shocks by accounting for the empirical correlation. The GVD has 
the desirable advantage that it is robust to the ordering of the variables. However, 
the Cholesky decomposition is implemented in this paper for the sake of calcula-
tion simplicity. Moreover, Diebold & Yılmaz (2012) pointed out that the total con-
nectedness is often robust to the ordering empirically. 

4.4 The data 

In this thesis, I analyze the connectedness at the individual bank level. It is also 
possible to apply the same frameworks to data at a larger level; for example, 
Black et al. (2016), Gibson et al. (2018) studied the systemic risks of European 
banks at the country level. I decided to follow Billio et al. (2012) and Betz et al. 
(2016) to study at the individual bank level for the reason that different banks 
have different idiosyncratic shocks which are likely to get average out when ag-
gregating.  

I decided to use only the largest banks in Europe with a minimum market 
capitalization of five billion euros at the end of study period, December 2018. The 
reason for choosing only the largest banks is to control for bank size as in Billio 
et al., (2012) and focus only on the banks’ degree of connectedness. Further, banks 
with missing data were dropped. This selection process results in a study sample 
of 28 European banks. Names of the banks can be seen in the Appendix. For the 
main analysis, weekly stock prices of these banks were retrieved from 
Datastream. STOXX Europe 600 Banks (SX7P) index is used as proxy for the 
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market. The studied period starts from January 2001 to December 2018. Follow-
ing Billio et al. (2012), the sample data was partitioned into subsamples reflecting 
periods with different characteristics.  

• Period 1: From January 2001 to December 2003. 

• Period 2: From January 2004 to August 2007 when BNP Paribas an-
nounced the redemption suspension on three of its investment funds.  

• Period 3: From September 2007 to December 2011, the peak of the Eu-
ropean debt crisis, the first longer-term refinancing operations was an-
nounced by the ECB. 

• Period 4: From January 2012 to June 2014 when the ECB for the first 
time lower its deposit facility rate (DFR) into negative territory. 

• Period 5: From July 2014 to December 2018, the end of the sample pe-
riod. 
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5 RESULTS AND DISCUSSION 

5.1 Summary statistics 

Table 1 reports some basic descriptive statistics about the financial market 
(STOXX Europe 600 Banks) index for each different time periods and the full 
sample period. 
 
TABLE 1. Summary statistics for weekly returns of market value weighted bank index 

  Mean 
(%) 

SD 
(%) 

Min (%) Max 
(%) 

Median 
(%) 

Skew. Kurt.  

Full Sample -0.12 3.95 -24.21 24.31 0.12 -0.54 5.92 

Period 1 -0.14 3.87 -13.74 11.21 -0.29 -0.3 1.57 

Period 2 0.22 1.79 -6.63 3.93 0.42 -0.96 1.68 

Period 3 -0.62 5.88 -24.21 24.31 -0.57 -0.22 3.05 

Period 4 0.33 3.35 -8.63 10 0.44 0.17 0.38 

Period 5 -0.18 3.31 -18.94 7.25 0.02 -1.14 4.95 

 
Overall, the financial market during the full study period is characterized 

by low negative average return, high standard deviation, wide range between 
min and max return, and high kurtosis. The first subperiod from January 2001 to 
December 2003 has high volatility and wide range between the max and the min 
return observations. The second period represents the most tranquil subperiod 
as it is characterized by positive mean return, the lowest standard deviation, and 
the smallest return min-max range. Not surprisingly, the crisis period from Au-
gust 2007 to December 2011 is the one with the lowest average return and the 
highest standard deviation. The rescue programs executed by the ECB during 
period 4 seem to be effective at elevating the overall performance of the banking 
market since this period has the highest weekly mean return in the study sample 
even though the market uncertainty remains to be relatively high. The negative 
interest rate scheme has an adverse effect on the banking performance as we can 
see that the observed mean return is negative during period 5. More notably, pe-
riod 5 has the highest kurtosis and lowest negative skewness. This means that 
during this period the return distribution has fat tail and some significant nega-
tive outliers. 
           Figure 1 depicts the time series of the market variance estimated from the 
GARCH (1,1) model. The market was quite volatile at the beginning until the 
middle of 2003, the volatility dropped dramatically, and the market stayed im-
pressively tranquil. August 2007 marked the beginning of an extremely turbulent 
period. The market volatility peaked in around April 2009 and then fell to the 
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level of just before the financial crisis for a short time until it rose significantly 
again in 2010 due to the unfolding sovereign debt crisis. The Brexit news in July 
2016 was a big shock to the financial market as it drove up the market volatility 
to the second highest level during the whole study period.   

 
FIGURE 1. Banking index (SX7P ) variance estimated from the GARCH(1,1) model 

5.2 Principal component analysis 

Figure 2 describes the estimates of cumulative risk fraction corresponding to the 
proportion of total variance explained by the principal components (the absorp-
tion ratio explained in (7) ). The time series for the aggregate connectedness were 
constructed by applying (7) to 795 144-week rolling windows of the banks’ 
weekly standardized returns. The return series are standardized by dividing each 
bank’s returns by the fitted standard deviations from GARCH (1,1) model. The 
standardization step is to filter out the volatility clustering effect in the return 
series. 
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FIGURE 2. Principal components analysis of the standardized weekly returns of the 28 banks 

 Figure 2 shows the dynamic of the first principal component. It captures 
from 37% to 62% of the system return variation. For most of the study period, the 
first principal component captured more than 50% of return variation. The lowest 
level of the PC1 contribution was observed in January 2006. From that time, the 
PC1 eigenvalue started to increase rapidly along with the unfolding of the finan-
cial crisis, reaching its highest level in August 2010 due to sovereign debt crisis, 
dropping gradually from its peak, increasing quickly again in 2015 as a result of 
the negative interest rate regime and the fear caused by the Brexit news in 2016, 
and rising to near its previous crisis peak in January 2017. This result is in line 
with the empirical findings of Longin & Solnik (2001) who found that the co-
movement among the equity markets is stronger during the financial distress pe-
riod than in booming and normal periods. In distress times, the increased corre-
lation among equity assets intensifies the connectedness through the common 
exposure channel.  

The first five PCs have contributed to more than 70% of system variation 
for most of our study period except for the tranquil period 2. It is noteworthy that 
while the PC1’s contribution started to fall from its peak in August 2010, the con-
tribution of the PC1-PC5 kept staying at their relatively high level throughout the 
sovereign debt crisis and only started to decrease from January 2013. As a conse-
quence, the contribution of the PC2-PC5 increased during the crisis period. This 
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suggests that since the crisis occurred, the European banks became connected to 
each other at more layers than just the systematic or market impact. This obser-
vation advocates Aldasoro & Alves (2016) who highlighted the importance of the 
connections at multiple layers in studying financial interconnectedness. Under 
this scope, the popular systemic measures such as MES, ΔCoVaR could be inad-
equate to capture the multi facets of the connectedness as Benoit et al. (2013) have 
empirically shown that a one-factor model could explain from 83% to 100% of the 
variation in these estimates.  

Table 2 presents cross-sectional mean, standard deviation, minimum, and 
maximum values of PCAS 1, PCAS 1–5 measures. The PCAS 1, PCAS 1–5 
measures are calculated as presented in (8) for each subperiod with k=1, 5 respec-
tively. These measures are based on the banks’ weekly returns being divided by 
fitted standard deviation from GARCH(1,1) model to control for heteroskedas-
ticity. In addition, cumulative risk fraction (or the absorption ratio) is calculated 
for PC 1, PC 1–5, and PC 1–15 for each subperiod. 

 
TABLE 2. Summary statistics for PCAS measures 

  
  

PCAS 1×10^3 PCAS 1–5×10^3 

Period 1 Mean 1.49 1.88 

Min 0.1915 0.22 

Max 4.49 4.98 

Sd  1.16 1.08 

Period 2 Mean 1.32 1.85 

Min 0.42 0.70 

Max 2.52 4.03 

Sd  0.49 0.73 

Period 3 Mean 1.38 1.89 

Min 0.40 0.65 

Max 4.26 6.72 

Sd  0.95 1.64 

Period 4 Mean 1.31 2.88 

Min 0.27 0.38 

Max 2.82 22.65 

Sd  0.78 4.50 

Period 5 Mean 1.30 2.47 

Min 0.34 0.56 

Max 3.39 15.64 

Sd  0.65 3.41 

 

Cumulative Risk Fraction (%) 

 Component 1 
 

Components 1-5 
 

Components 1-15 
 



 
 

35 

Period 1 52.6 72.1 92 

Period 2 46.8 64.1 87.6 

Period 3 60.9 77.6 93.4 

Period 4 51.8 73.2 92.4 

Period 5 56.7 74.2 92.1 

  
Comparing the standard deviation over mean ratio of the PCAS 1 and 

PCAS 1-5, we can see that for all subperiods except for period 1, there were larger 
variations in the estimated PCAS 1-5 measures than in the PCAS 1 measures. This 
should not be surprising because the differences in the contribution and expo-
sures among banks are more substantial when taking into account more common 
components. The implication is that there are more contagion channels of sys-
temic risk than just the common market channel.       

Different from Billio et al. (2012) who found that the mean, min and max 
of the PCAS measures for the US institutions are relatively persistent over time, 
we observe that except for the mean, there were significant variations in these 
measures of the European banks. Most notably, PCAS 1-5 had two extreme max 
values 22.65 and 15.64 observed in period 4 and period 5. Eurobank Holdings 
was the one associated with these max values. The interesting thing is that the 
large difference in the range between the min and max value of PCAS measures 
did not exist for PCAS 1, only for the PCAS 1-5 in period 4 and period 5. It means 
that the contribution and exposure of European banks to component 2 to compo-
nent 5 increased during period 4 and period 5. 

We can arrive at the same interpretation by looking at the cumulative risk 
fraction. The first principal component explains 52.6%, 46.8%, 60.9%, 51.8%, 56.7% 
of the banks’ return variation in the five subperiods, respectively. The first five 
principal components captured 72.1%, 64.1%, 77.6%, 73.2%, 74.2% of the variabil-
ity in bank’s stock return during these five subperiods, respectively. There was a 
sharp decrease in the contribution of the first component from 60.9% at period 3 
to 51.8% and 56.7% at period 4 and period 5, respectively. However, the contri-
bution of the first five components altogether did not decline as much. It only fell 
by 4.4% from the level of 77.6% at period 3. It means that the return variation 
explained by the second to the fifth components together increased during period 
4 and period 5. 

All in all, the analysis of interconnectedness among European banks based 
on principal component analysis suggests that the contribution and exposure of 
the European banks to the other components increased relative to those to the 
first component representing the common market factor. These principal compo-
nents could represent different risk factors. One prominent candidate is the do-
mestic risk which arises from the residing country of the banks or the geograph-
ical area where the banks have their business. For example, Black et al. (2016) 
documented that there were notable differences in terms of the systemic risk con-
tribution of European countries during the financial crisis and sovereignty debt 
crisis. This might be due to the traditional business model and portfolio holdings 
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of different banking systems. This result is in line with Paltalidis, Gounopoulos, 
Kizys, & Koutelidakis (2015) who found that the northern euro area banking sys-
tem was relatively robust to systemic risk while the southern euro area banking 
system was more vulnerable to a systemic event. The implication is that the in-
terconnectedness within the European banking system has involved more facets 
since the financial crisis. 

5.3 Granger causality analysis 

Figure 3 depicts the time series of degree of Granger causality (DGC) measure as 
described in (11). For each of the 795 144-week rolling window, a VAR(1) is esti-
mated for the standardized residual series 𝑟𝑖𝑡̂ as presented in 4.2. The DGC meas-
ure is calculated as the number of significant linear Granger causality relation-
ships at 5% level as a percentage of all possible connections, which is equal to 756 
(28 multiplied by 27).  
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FIGURE 3. Number of connections as a percentage of all possible connections (Degree of 
Granger causality measure) 

 According to figure 3, the number of connections was small during the 
2004-2006 period. The connections within the European banking system started 
to increase quickly from the beginning of 2006. In 2006, the total number of con-
nections as a percentage of all possible connections was around 5%. It escalated 
dramatically since July of 2008 to reach its peak of the whole study period in May 
2009 at 12%. Different from the result from the PCA part where the interconnect-
edness, for the most part, stayed at a high level for a longer period after the peak 
period, the number of statistically significant Granger causality relationships as 
a percentage of all possible connections fell off quickly to the same level at the 
precrisis in 2012 at around the 5.5% level, increased sharply again in 2013 to 
around 8.5%. The period from 2013 to 2015 witnessed a markedly decrease in the 
number of connections, despite some temporarily sudden increase in the middle 
of 2013 and the beginning of 2014. The DGC fluctuated around the 2% to 4.5% 
range during the 2015-2017 period, more than doubled from 2017 to nearly 9% of 
total connections in April 2018. This increase might be a reflection of market con-
cerns about the negative interest rate regime and the Brexit news, which might 
have an adverse impact on the profitability of the banking business.  
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Table 3 contains the counting measures of Granger causality relationship 
for each bank in each sub-period as presented in (12) and (13). 

 
TABLE 3. Summary statistics of the number of Granger causality relationships 

 
Period 1 Period 2 Period 3 Period 4 Period 5 

 
#In #Ou

t 
#In+Ou
t 

#In #Ou
t 

#In+Ou
t 

#I
n 

#Ou
t 

#In+Ou
t 

#I
n 

#Ou
t 

#In+Ou
t 

#I
n 

#Ou
t 

#In+Ou
t 

HSBC 
HOLDINGS 

5 2 7 2 0 2 7 1 8 1 1 2 2 1 3 

BNP PARI-
BAS  

3 6 9 2 2 4 6 2 8 3 0 3 3 1 4 

BANCO 
SANTAN-
DER 

3 0 3 1 0 1 4 1 5 1 0 1 1 2 3 

UBS 
GROUP 

2 1 3 1 4 5 2 2 4 0 0 0 3 2 5 

NATWEST 
GROUP 

4 10 14 2 2 4 5 13 18 1 0 1 4 6 10 

ING 
GROEP 

4 0 4 3 0 3 4 12 16 0 0 0 1 12 13 

UNICREDI
T 

1 2 3 0 0 0 2 0 2 1 0 1 3 0 3 

BARCLAYS 2 12 14 2 0 2 5 0 5 1 5 6 2 0 2 

CREDIT 
SUISSE 
GROUP 

3 4 7 4 14 18 5 1 6 0 1 1 4 0 4 

BBV.AR-
GENTARIA 

4 1 5 2 0 2 2 2 4 2 1 3 3 3 6 

SOCIETE 
GENER-
ALE 

2 0 2 2 0 2 3 3 6 1 1 2 3 0 3 

DEUTSCHE 
BANK 

5 0 5 2 0 2 2 8 10 1 0 1 2 0 2 

LLOYDS 
BANKING 
GROUP 

4 0 4 4 0 4 7 6 13 1 1 2 3 1 4 

KBC 
GROUP 

1 2 3 0 13 13 5 0 5 2 0 2 2 0 2 

INTESA 
SANPAOL
O  

1 0 1 3 0 3 1 1 2 2 0 2 2 0 2 

STAND-
ARD 
CHAR-
TERED 

7 1 8 4 0 4 6 1 7 2 0 2 1 1 2 

NORDEA 
BANK  

2 0 2 5 0 5 5 1 6 2 0 2 2 8 10 

DANSKE 
BANK  

2 1 3 2 0 2 3 1 4 2 2 4 0 0 0 

COM-
MERZBAN
K 

7 1 8 1 0 1 1 11 12 1 2 3 2 8 10 

AIB 
GROUP 

2 0 2 0 0 0 4 0 4 3 4 7 4 0 4 

SVENSKA 
HANDELS-
BANKEN A 

2 2 4 1 8 9 7 0 7 1 0 1 2 21 23 

BANK OF 
IRELAND 
GROUP 

2 0 2 0 0 0 4 7 11 0 12 12 2 0 2 

SWEDBAN
K A  

1 1 2 2 4 6 5 0 5 0 3 3 5 0 5 

ERSTE 
GROUP 
BANK 

2 1 3 2 0 2 2 6 8 1 2 3 5 1 6 

NATIXIS 1 2 3 0 0 0 3 9 12 2 0 2 1 0 1 

ALPHA 
BANK  

2 6 8 0 1 1 3 15 18 1 1 2 3 2 5 

BANCO 
COMR.POR
TUGUES 

2 18 20 1 2 3 5 0 5 4 2 6 0 0 0 

EURO-
BANK 
HOLDINGS  

0 3 3 2 0 2 1 6 7 2 0 2 5 1 6 

Total 
Connec-
tion 

76 50 109 38 70 

 
Similar to the results of Billio et al. (2012), we can see that the Granger 

causality relationships were truly dynamic. There were only 50 connections be-
tween European banks in the pre-crisis period. This figure more than doubled in 
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the crisis period to 109 connections, encompassing 14.41% of all possible connec-
tions. In period 4, the total number of connections was only 38 (5% of total possi-
ble connections). Period 4 was also the one with the smallest number of connec-
tions among the 5 subperiods. This is at odds with the results from the PCA part, 
where the pre-crisis period was the least connected and the interconnectedness 
remained to be high after its peak in the crisis. The total connections increased by 
84% to 70 connections (9.26% of all possible connections) during the negative in-
terest rate and Brexit period. 

  The counting measures of Granger causality connections among individ-
ual European banks show that the number of connections of individual banks 
changed substantially in different periods. In the 2001-2003 period, Banco Comer-
cial Portugues alone accounted for 26% of the number of total connections. Out 
of 20 significant Granger causality connections, Banco Comercial Portugues 
Granger caused 18 banks and being Granger caused by only 2 banks. However, 
in the subsequent periods, the number of its connections with the other banks 
decreased significantly to 3, 5, 6, 0 total connections with the other banks in pe-
riod 2, period 3, period 4, period 5 respectively. The pattern is the same with 
Barclays. It was the bank with the second highest number of connections in the 
first period with 14 Granger causality connections. In the subsequent periods, it 
connected with only 2, 5, 6, 2 banks. On the other hand, the story was opposite 
with NatWest Group. In the 2001-2003 period, NatWest Group also had 14 
Granger causality connections. This figure shrank to 4 connections in the second 
subperiod. However, in the crisis period 2007-2011, NatWest Group became the 
bank with the highest number of total connections, 18. In the following period, 
the number of total Granger connections of NatWest receded to 1, and then rose 
dramatically again to 10 in the 2014-2018 period. 

A quite surprising finding is that the ranking of banks according to their 
total number of connections is not consistent over different periods. For example, 
in the precrisis period 2004-2007, the number of connections of Credit Suisse 
Group is 18. However, in the crisis period, this figure decreased by three times to 
6 connections, which is opposed to the prevailing surge in the number of connec-
tions. The second most connected bank in the precrisis period also became less 
connected during the crisis with a fall from 13 to 5 Granger relationships. Con-
versely, Alpha bank had only 1 connection in the precrisis period; but during the 
crisis, it Granger caused 15 banks and was Granger caused by 3 banks. Alpha 
bank, together with NatWest Group were the most connected banks during the 
crisis with 18 Granger connections. The second most connected bank during the 
crisis was ING Groep, Granger causing 12 banks and being Granger caused by 4 
banks. However, it did not have any Granger connections in the next period and 
swiftly became connected to 13 banks in the last period of the sample. Hypothesis 
testing performed on the correlations of the measures between each subsequent 
period showed that the strongest correlation was found between the total num-
ber of connections of period 5 and period 4. Yet, the Kendall’s rank correlation 
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was -0.24 but with the corresponding p-value of 0.11, meaning it was not statisti-
cally significant. 

Besides, it is noteworthy that for most of the cases of banks with the great-
est number of total connections, the Granger causing relationships, #out, consti-
tuted a disproportionate part of their connections. As a result, we can see that the 
number of “in” connections is spread out more evenly while the number of “out” 
connections is distributed in a way that a small number of banks accounted for 
most of the connections. The top 3 banks with the greatest number of Granger 
causing connections together comprised 53%, 70%, 37%, 55%, 59% of the total 
number of Granger causality relationships during the first, the second, the third, 
the fourth, and the fifth period respectively. This result is in agreement with the 
findings of previous empirical studies on the topology of interbank networks; for 
example, Boss et al., (2003) on the Austrian interbank market; Degryse, & Nguyen 
(2007) on the Belgium banking system. These studies show that interbank net-
works are often characterized by a so-called “money centre network” meaning 
that a few banks form many interconnections and there are many banks with a 
few connections in the network. According to Georg (2013), this type of network 
topology is more favourable for the system stability than a purely random net-
work because it can contain the contagion effect better.  

5.4 Connectedness measures based on forecast error variance de-
composition.  

Figure 4 describes the dynamic estimates of total connectedness described in (22) 
based on 795 144-week rolling windows, the forecast horizon for variance decom-
position is 4 weeks. The estimates are calculated using the residual returns being 
filtered out heteroskedasticity with GARCH (1,1) model similar to the Granger 
causality analysis part. 
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FIGURE 4. 144-week rolling window estimates of total connectedness measure defined in 

(6). 

   
The total connectedness has some vivid patterns. It started at around 62% 

in  2004  and fell off quickly until 2006 to the level of 50% during the market 
booming period. Starting from early 2007, coinciding with the first signs of the 
financial crisis, the total volatility connectedness index increased continuously to 
71% at the peak of the sovereign debt crisis at the end of 2011. The first three-year 
LTRO conducted by the ECB in December of 2011 in an effort to inject liquidity 
into the European banking system seemed to have a short term effect in reducing 
the connectedness since the total connectedness index was reduced to approxi-
mately 67% in the beginning of 2012 but then it started to rise again in 2012 and 
2013 along with the market’s concern about the potential default of Spain and 
Italy to reach close to the level of its peak in 2011 at 71%. A series of rescuing 
packages and plans to restructure the banking system helped recover the market 
from the end of 2013 to 2015. The total connectedness declined to 64% by 2015. 
Following the Brexit referendum in June 2016, the total connectedness increased 
dramatically, surpassing the highest level of the sovereign debt crisis to reach 
close to 74% in 2018. 

Comparing figure 1, 2, 3, and 4, we can see that all of these aggregate risk 
indicators, the system variance, the contribution of the first principal component, 
the number of Granger relationships as a percentage of all possible connections, 
and the total connectedness index correlate have very high positive correlations 
during the financial crisis from 2007 to 2009. However, these indicators exhibit 
different patterns during the sovereign debt crisis from 2009 onwards. The sys-
tem variance and the number of Granger connections reached their highest 
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points in the whole sample period in mid-2009 and declined close to the level of 
the precrisis period quickly in early 2011. They rose again at the end of 2011 but 
were still far from their peaks in 2009. On the other hand, the system connected-
ness measured by the first principal component stayed at relatively the same 
level after the peak of the financial crisis in 2009 and slowly decreased from its 
peak in mid-2010 but never returned to the precrisis level. The total connected-
ness by variance decomposition kept increasing at the same speed after mid-2009 
and only reached its sample climax at the end of 2011. It only started subsiding 
from the end of 2013 but still being higher than the 2009 level throughout the 
study period. A similar observation was made in Billio et al. (2012). It may sug-
gest the fact these measures are capturing different facets of system connected-
ness.  

Table 4 summarizes the forecast variance decomposition results for the 28 
sample banks at each subperiod. The decomposition is based on the VAR (1) as 
suggested by AIC. The Cholesky factorisation was used with the variable order-
ing as in the column heading in Appendix A. From_others captures the fraction of 
the 4-week ahead forecast error variance contributed by the innovations to re-
turns of all the other 27 banks. By definition, it is equal to 100% minus the forecast 
variance proportion constituted by the bank’s idiosyncratic shocks. To_others 
gauges the total contribution of a bank’s innovations to the forecast error vari-
ances of all the other banks’ returns. This measure is not constrained to be lower 
than 100%. The total connectedness estimated as the mean of all banks’ from_oth-
ers (or equivalently, to_others) measures the overall fraction of all banks’ return 
movement due to the spill-over effect. In addition to Table 4, Appendix A pre-
sents the estimation results for each bank at each period.  

 
TABLE 4. Summary statistics of return connectedness analysis for each subperiod. 

  
  

Period 1 Period 2 Period 3 Period 4 Period 5 

From_ot
hers 

To_ot
hers 

From_ot
hers 

To_ot
hers 

From_ot
hers 

To_ot
hers 

From_ot
hers 

To_ot
hers 

From_ot
hers 

To_ot
hers 

Min  39.99 30.45 15.77 16.42 38.31 25.62 36.42 23.49 38.68 12.81 

1st 
Quan-
tile 

51.97 44.61 44.62 38.15 62.84 55.79 59.53 49.41 61.67 44.57 

Me-
dian 

61.39 55.97 52.91 47.57 67.89 64.19 69.07 67.77 75.14 75.61 

3rd 
Quan-
tile 

68.93 70.07 59.54 61.59 72.4 81.12 76.41 82.79 79.13 88.54 

Max 78.55 127.95 66.55 89.98 77.24 101.21 82.37 127.87 84.12 122 

Total 
Con-
nected-
ness 

60.04 50.27 65.80 66.55 69.13 

 
 Some notable features of connectedness can be seen from table 2 and ap-
pendix A. First, different from the previous frameworks, the aggregate connect-
edness of the system according to variance decomposition did not decrease dur-
ing the period right after the crisis period. It remained at relatively the same level 
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and even increased during the last subperiod - period 5 with the negative interest 
rate regime and Brexit event. Second, different from the Granger relationship 
counting measures above where we observed that the “#out” measure was dis-
proportionately greater than the “#in” measure, these measures based on vari-
ance decomposition produced relatively more proportional results for “from_oth-
ers” and “to_others”. In addition, we can notice the two measures exhibit a strong 
correlation. The lowest correlation between them was 0.86, detected in Period 1. 
The crisis period had the strongest correlation between the two connectedness 
measures, 0.94. Furthermore, the ranking of banks according to the two measures 
over subsequent periods was also more consistent over time. Although the cor-
relations between the first three periods were found to be not significant, Ken-
dall’s rank correlations between period 4 and period 3 were 0.59 and 0.50 for the 
“from_others” and the “to_others” respectively. Period 5 and period 4 had even 
stronger rank correlations, 0.66 and 0.64 for the “from_others” and the “to_others” 
respectively. Nevertheless, the fact that the forecast variance decomposition 
method produced a more consistent ranking of banks over subperiods than the 
Granger causality relationship counting measures did does not necessarily mean 
that one is a better framework than the other. It may be because each method 
reflects different aspects of the connectedness between banks. And while the un-
derlying connectedness of the Granger relationship is more unstable over time, 
the variance decomposition reflects the connectedness features that have become 
more persistent.   

Third, the spread of the “to_others” directional connectedness measure is 
clearly wider than that of the “from_others” measure. For example, during the cri-
sis period, the difference between the bank with the highest “from_others” meas-
ure (KBC group) and the bank with the lowest one (Standard Chartered) is 
38.93%, while the difference between the max and min values of “to_others” meas-
ure is 75.59%, nearly twice as much the range of “from_others” measure. In period 
4 and period 5, the same figure for “from_others” measure is 45.95% and 45.44%, 
for “to_others” measure is 104.38% and 109.39%. The discrepancy in ranges of the 
two measures deepened as the total aggregate connectedness increased. Diebold 
& Yilmaz (2014) found a qualitatively similar result regarding the volatility con-
nectedness within the US financial system. Their analysis produced an even 
greater difference between the variation in the “to_others” measure and in the 
“from_others” measure. In their volatility connectedness analysis, even the differ-
ence between the median and the first quantile of the “to_others” measure is 
larger than the min-max range of the “from_others” measure. According to 
Diebold & Yilmaz (2014), the large variation in the “to_others” measure can be 
explained as follow. When an idiosyncratic shock hits a particular stock, the spill-
over effect it creates within the system varies greatly depending on its centrality 
in the network. A bank’s centrality can be determined by the on and off balance 
sheet connections it has with the other banks in the system. In addition to the 
varying size of the shock hitting a specific bank, since the banks are vastly differ-
ent in their balance sheet structures, the directional connectedness “to_others” 
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also varies across banks to large extent. Besides, it’s worth remembering that a 
similar observation was made earlier with the analogue of these measures using 
the Granger causality framework. We have noticed that the “#out” measure had 
a larger variation than the “#in” did. These results imply that the difference in 
the systemic importance ranking of a bank depends on the strength of the impact 
it had on the other banks more than the effect it receives. 

5.5 Out of sample results 

A useful systemic risk measure should be applicable to provide early warning 
signals to the regulators. In this part, I examined the out-of-sample performance 
of the three studied frameworks in two ways. First, following the common ap-
proach as in Billio et al. (2012) and Idier et al. (2014), I investigate the ability of 
the individual banks’ connectedness measures to identify ex-ante the banks that 
suffer the most during the crisis. Second, following the approach of Engle et al. 
(2015),  I explored the ex-ante predictive power of the aggregate connectedness 
indicators on several financial economic variables including annual industrial 
production growth rates, annual changes in the unemployment rate, and the fi-
nancial market returns.  

5.5.1 Do the connectedness measures predict bank losses during the recent cri-
sis? 

In this part, I investigate the relationship between the individual banks’ connect-
edness measures estimated before the crisis and several loss measures including 
the empirical banks’ maximum losses, MES, and ΔCoVaR estimated historically 
during the crisis. According to Benoit et al., (2017), there are two approaches in 
the literature of quantitatively measuring systemic risk. While the first approach 
aims to provide indicators discerning the specific sources of systemic risks such 
as contagion, bank runs, or liquidity crises, the second approach is not built upon 
a particular source of risk. But rather, the second approach aims to support 
macroprudential tools that act as “Pigovian systemic risk taxes” whose purpose 
is to govern banks’ risk-taking so that they act in a way that would be optimal for 
the system as a whole. In this way, the connectedness measures can be sorted into 
the first approach since they measure the potential for contagion between banks. 
Marginal Expected Shortfall (MES) in Acharya et al. (2017) and ΔCoVaR in 
Adrian & Brunnermeier (2016) are two prominent measures in the second cate-
gory. From another perspective in Billio et al. (2012), the connectedness measures 
are concerned with the linkages between banks in the system while MES and 
ΔCoVaR can be regarded as loss-based measures because they quantify the ex-
pected losses of the individual institutions (or the system) conditional on a dis-
tress event of the system (or the individual institutions). 
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 The three measures for historical losses during the crisis period are com-
puted as follow: 

• Max%loss (as used in Billio et al., 2012): This is the maximum percentage 
loss suffered by each bank. It is computed as the difference between the 
market capitalization of each bank at the end of August 2007 and the min-
imum market capitalization during Period 3 divided by the market capi-
talization at the end of August 2007. 

• Marginal expected shortfall (MES) of bank 𝑖 is estimated empirically as in 

Acharya et al. (2010) according to the following equation: 

 𝑀𝐸𝑆𝑖 = −
1

#𝑑𝑎𝑦𝑠
∑ 𝑅𝑑

𝑖
𝑑 ;  

d is the 5% worst days of the market index in period 3. #𝑑𝑎𝑦𝑠 is the number of 
days where the market had the biggest 5% losses in period 3. The minus sign is 
to interpret MES as losses. Simply put, this represents the average return of each 
bank in the worst 5% days of the market. 

• Delta-CoVaR is estimated by quantile regression as in Adrian & Brun-
nermeier (2016) according to the following steps: 

➢ Run a q% quantile regression of the system returns on each bank’s 

returns 𝑅𝑖 and estimate β̂
𝑞

𝑖
; the coefficient on the bank return 𝑅𝑖. 

➢ Estimate the q% sample quantile 𝑉𝑎𝑅̂𝑞
𝑖  and the median 𝑉𝑎𝑅̂

0.5

𝑖
 us-

ing each bank’s returns. 

➢ Estimate ΔCoVaR𝑞
𝑖 = −β̂

𝑞

𝑖
(𝑉𝑎𝑅̂𝑞

𝑖 − 𝑉𝑎𝑅̂0.5
𝑖 ). q is chosen to be 5 in the 

calculation. This can be understood as the contribution of bank i to 
the system’s Value at Risk.  

Following Billio et al. (2012), each bank is assigned a ranking according to 
each connectedness measure and loss measures separately. I run univariate re-
gressions of each loss measure rankings computed during the crisis period (pe-
riod 3)  on the connectedness rankings estimated during the two precrisis periods 
(period 2 and period 1). As illustrated in the previous parts, the two precrisis 
periods (period 1, period 2) reflect different connected properties of the system. 
While period 1 witnesses high market volatility and connections between banks, 
period 2 is characterized by tranquil market movement and low connectivity. For 
each regression, the coefficients on the connectedness measure ranking, the cor-
responding p-value and Kendal rank coefficient are investigated to see which 
measures perform well in terms of identifying ex-ante the most severely hit banks 
during the crisis. 

Table 5, Table 6, and Table 7 present the regression results with Max%loss 
rankings, MES rankings, and ΔCoVaR rankings respectively as the dependent 
variable. There are several notable points. First, most of the statistically signifi-
cant coefficients are on the PCAS measures and the measures based on variance 
decomposition framework. Specifically, from table 5 we can see that the coeffi-
cient of from_others and to_others rankings are 0.559 and 0.504 respectively, both 
of these estimates are significant at 1% level, indicating that there is a strong 
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positive relationship between the from_others and to_others measures of banks 
and their losses during the crisis. The exposure of banks to the overall risk of the 
system entailed by the first principal component during period 1 also had a pos-
itive coefficient significant at the 10% level. 

Second, table 7 reported counterintuitive results on the relationship be-
tween connectedness based on variance decomposition and ΔCoVaR. The coeffi-
cient on the from-others ranking for period 1 is -0.524 and is statistically signifi-
cant at the 1% level. The negative sign of the coefficient suggests that the banks 
that received the most impact from the other banks during the precrisis tend to 
have less negative effect on the system if they fail. The negative sign of the coef-
ficient on to-others is even more counterintuitive because it indicates that the sys-
tem is less harmed conditional on a tail event of the banks whose shocks exert the 
more adverse impact on the other banks. However, the coefficient on to-others is 
only significant at the 10% level. These results, in conjunction with some previous 
papers such as Jaeger-Ambrozewicz (2013), Löffler & Raupach (2017), and Benoit 
et al. (2013), demonstrated that a critical issue with the use of some market-based 
systemic measures is that sometimes they can produce very different rankings 
on the systemically important institutions. A possible explanation for the contra-
dicting results of ΔCoVaR is provided by Jaeger-Ambrozewicz (2013). He 
showed that Delta-CoVaR can be problematic when the return distribution is not 
Gaussian. And it is common knowledge that the return distribution is far from 
being Gaussian during crisis time. Another reason could be that as demonstrated 
in Benoit et al. (2013), the rankings of Delta-CoVaR measured empirically by 
quantile regression is equivalent to the rankings of individual institutions’ value 
at risk in isolation and hence, not fully reflecting the dependence structure be-
tween the system and individual bank. Moreover, Kleinow et al. (2017) did em-
pirical research comparing different systemic measures with a study sample of 
122 US financial institutions from 2004-2015. They also found that ΔCoVaR pro-
duced very different rankings than the other systemic measures including MES, 
codependence risk, and the lower tail risk. 

Third, we can see that the connectedness measures estimated during the 
booming period just before the crisis occurred did not perform well in terms of 
identifying banks’ losses during the crisis. PCAS 1-5 was the best measure in 
terms of detecting banks that suffered the most during the crisis with the associ-
ated p-value at 0.051. Granger causality measure #Out of period 2 also seemed 
to be weakly associated with Max%loss in crisis with the corresponding p-value 
of the ranking coefficient at 0.096 and Kendall τ correlation at 0.258. Billio et al. 
(2012) found a similar result indicating that the financial institutions that greatly 
affected other institutions are more likely to suffer large losses during the crisis. 
All the other measures estimated during period 2 did not have any forecasting 
performance on any of the loss measures. Billio et al. (2012) ‘s result also showed 
that the explanatory power of the individual institutions’ PCAS and Granger cau-
sality measures decreased notably in comparison with the same measures com-
puted during the previous period. This result highlights the main weakness of 
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systemic measures estimated during tranquil periods. The reason could be that 
during booming periods, the volatility is low. Therefore, the beneficial risk-shar-
ing effect of connectedness is more dominant. The detrimental contagion effect 
due to the same connections only become more powerful as the magnitude of 
shocks increases during volatile periods as described in Gai & Kapadia (2010) 
and Ladley (2013). 
 

TABLE 5. Predictive power of the connectedness measures on Max%loss 

 Max%loss 

Coeff p-value Kendall τ 

Period 1 

PCA 1 0.320* 0.097 0.201 

PCA 1-5 0.123 0.532 0.074 

#In 0.324 0.105 0.237 

#Out -0.080 0.696 -0.064 

#In+Out 0.106 0.598 0.082 

From_others 0.559*** 0.002 0.407*** 

To_others 0.504*** 0.006 0.365*** 

Period 2 

PCA 1 0.011 0.954 0.021 

PCA 1-5 0.372* 0.051 0.217 

#In 0.023 0.923 0.018 

#Out 0.334* 0.096 0.258* 

#In+Out 0.259 0.190 0.189 

From_others 0.201 0.304 0.164 

To_others 0.228 0.244 0.164 
 

TABLE 6. Predictive power of connectedness measures on MES. 

 MES 

Coeff p-value Kendall τ 

Period 1 

PCA 1 0.202 0.303 0.148 

PCA 1-5 0.214 0.274 0.148 

#In 0.068 0.740 0.053 

#Out -0.158 0.434 -0.111 

#In+Out -0.029 0.885 -0.025 

From_others 0.222 0.257 0.132 

To_others 0.190 0.332 0.122 

Period 2 

PCA 1 0.253 0.193 0.190 

PCA 1-5 0.021 0.914 -0.005 

#In 0.094 0.649 0.060 

#Out -0.119 0.617 -0.083 

#In+Out 0.011 0.956 0.014 
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From_others 0.273 0.160 0.185 

To_others 0.264 0.175 0.175 
 

TABLE 7. Predictive power of connectedness measures on Delta_CoVaR 

 Delta_CoVaR 

Coeff p-value Kendall τ 

Period 1 

PCA 1 0.250 0.200 0.159 

PCA 1-5 0.210 0.284 0.148 

#In -0.062 0.763 -0.059 

#Out 0.033 0.870 0.035 

#In+Out -0.059 0.768 -0.037 

From_others -0.524*** 0.004 -0.333** 

To_others -0.342* 0.075 -0.206 

Period 2 

PCA 1 0.200 0.308 0.106 

PCA 1-5 -0.037 0.851 -0.048 

#In 0.124 0.545 0.090 

#Out 0.121 0.611 0.083 

#In+Out 0.097 0.630 0.071 

From_others 0.007 0.971 0.026 

To_others -0.022 0.912 0.016 

5.5.2 The aggregate connectedness indicators and the macroeconomy 

So far, we have studied interconnectedness as a measure of systemic risk within 
the banking system. However, it is also important to examine the measures in 
relation to the macroeconomy because from the regulator’s perspective the ad-
verse impact of a financial crisis on the economic stability and public welfare is 
why containing systemic risk is so crucial. Indeed, The European Central Bank 
(ECB) (2015) defines systemic risk as a risk of financial instability “so widespread 
that it impairs the functioning of a financial system to the point where economic growth 
and welfare suffer materially”. Or according to The Global Financial Stability Report 
of the IMF (2009), systemic risk is: “the risk of disruption to financial services that is 
caused by an impairment of all or parts of the financial system and that has the potential 
to cause serious negative consequences for the real economy." 
 Therefore, this part aims to explore the interactions between the aggregate 
connectedness indicators defined in (7), (11), (22) and a set of economic variables 
including industrial production index for the Euro area, Euro area unemploy-
ment, and the STOXX Europe 600 Banks Index return. All these variables are con-
ducted in annual changes. More specifically, the following VAR (1) is imple-
mented: 

𝒀𝑡 =  𝝁 + ∑ 𝐀𝑖

p

𝑖=1

𝒀𝑡−𝑖 + 𝛆𝑡 
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Where: 𝒀𝑡 are the endogenous variables including the annual industrial produc-
tion growth rate, annual changes in the unemployment rate, the market index 
return, and the aggregate connectedness indicators defined in (7), (11), (22). p = 
1. 

Table 8 reports the t-statistics for the Granger causality tests between the 
variables. There are 182 monthly observations for each variable from October 
2003 to December 2018. The observations for monthly connectedness indicators 
are taken as the average of the weekly estimations for that month. PCA1 and 
PCA5 are computed according to (7) with k=1 and 5 respectively. DGC is com-
puted according to (11). Total_con is estimated by applying (22) to the banks’ 
standardized returns.  

From table 8, we can see that the only aggregate connectedness measures 
that Granger cause annual changes in industrial production index and annual 
unemployment rate come from the principal component analysis framework. 
The signs of the coefficients indicate that common exposure to the first principal 
component is favorable for the macroeconomy. However, increasing exposure to 
the components at more layers can be harmful to the real economy.   
 

TABLE 8. Test statistics on the coefficients of the VAR(1) model. 

Variables Equation 

IPI  Urate Ma_re PC1 PC5 DGC Total_con 

IPI -1.95 -3.89 -0.34 0.57 0.18 -0.32 1.23 

Urate -5.25 5.13 -0.21 0.00 -0.09 1.61 -0.19 

Ma_re 1.23 -2.22 -6.41 -2.83 -3.22 -1.06 -0.94 

PC1 3.65 -2.59 -1.15 0.05 -1.08 -0.13 -1.19 

PC5 -3.83 2.86 1.23 2.36 3.36 -0.15 1.30 

DGC 0.27 1.08 -0.10 -0.64 -0.19 0.03 2.00 

Total_con 0.46 -0.78 -0.21 0.98 1.48 0.83 3.50 
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6 CONCLUSION 

This thesis provides a dynamic analysis of the connectedness within the Euro-
pean banking system as measures of systemic risk with a focus on the recent fi-
nancial crisis and the sovereign debt crisis period. The principal component anal-
ysis, Granger causality relationship, and forecast error variance decomposition 
are implemented to assess different aspects of connectedness. 

The results from principal component analysis imply that the nature of the 
connectedness itself can be very dynamic. Specifically, the contribution of more 
components other than the exposure to the common market has increased after 
the financial crisis and seems to become more relevant factors during the sover-
eign debt crisis. Accordingly, these results suggest a more cautious use of the 
popular systemic risk measures such as MES, and Delta-CoVaR. As Benoit et al. 
(2017) demonstrated that under certain assumptions about the covariance matrix 
and dependence structure between the individual banks and market returns, 
these measures can become one dimensional in the sense they rank systemically 
important banks in the order equivalent to the rankings based on individual ex-
posure to systematic risk or value at risk in isolation. Consequently, the regula-
tory implication is that the regulators should incorporate different layers of the 
connectedness structure when monitoring systemic risk similar to the spirit put 
forward by Aldasoro & Alves (2018). 

The directional connectedness frameworks including Granger causality 
relationship and forecast error variance decomposition are both built upon a vec-
tor autoregressive framework. For this reason, they are comparative and comple-
mentary to each other. While the Granger causality approach expresses the con-
nectedness only in a binary sense, whether or not there is a connection between 
two banks in which way, the forecast error variance decomposition keeps track 
of not only the direction but also the magnitude of the connectedness. On the 
other hand, the forecast error variance decomposition is more restrictive because 
certain identification assumptions are necessary while the Granger causality 
framework does not require such assumptions. The analysis based on these 
frameworks showed that while banks were relatively heterogeneous in the influ-
ence they have on all the other banks in the system, there was less variation in 
the potential impact they receive from the system. This result contributes to the 
literature strand regarding the financial network literature in two ways. First, the 
previous empirical literature studying the effect of financial structure on system 
stability finds that the financial network often exhibits scale-free topology, mean-
ing that a few institutions are having a large number of connections and a large 
number of institutions have a few connections. In this case, the system is more 
robust to a failure of a random institution. Or in other words, there is less likeli-
hood of a financial contagion (Caccioli et al., 2011; Georg, 2013). The results of 
Granger causality and forecast error variance decomposition suggest that more 
thorough studies in the same fashion need to be done with a clear distinction 
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between the distributions of in-degree and out-degree because it is plausible that 
the relationship between the connection distribution and system stability is de-
pendent on the type of connection (in or out) examined. Indeed, Avella et al. 
(2016) showed that the case where the network is more concentrated in the dis-
tribution of #in links is a better scenario for the system stability than one where 
#out link distribution is more concentrated. In this regard, the empirical results 
in this thesis documented that the European banking network is more concen-
trated in the #out link distribution, which is not an ideal situation for the system 
stability. 

Second, as indicated in Diebold & Yilmaz (2014), a natural consequence of 
the heterogeneity in #out connections and the homogeneity in #in connections at 
the same time is that there could be banks that exert high impact on the other 
banks while simultaneously receiving little impact from the others. Regulators 
should identify these banks because they could be the systemically important 
ones in the sense that they pose potential contagion risk to the system while hav-
ing little shock dampening beneficial effect of the connections. However, the dif-
ficulty is that the banks with such properties identified according to the two net-
work methods are different. For example, during the crisis period, according to 
the Granger causality network, they were Natwest Group and Alpha bank, while 
the variance decomposition framework identified BNP Paribas and KBC group 
as such banks. Therefore, in agreement with previous literature comparing dif-
ferent systemic measures (Kleinow et al., 2017; Benoit et al., 2017), this thesis ad-
vocates that systemic risk assessment should be approached with multiple 
measures in order to provide a comprehensive diagnosis of the system stability. 

The out-of-sample analysis showed that the forecast error variance decom-
position framework was the most capable one in terms of identifying firms that 
declined the most during the crisis. However, the connectedness measures based 
on this framework only performed well when measured during the period of 
high market volatility but not in the tranquil period. This may be because high 
connectedness indicates the potential for contagion and only manifests itself 
when there is a strong shock to the system, while the same connectedness may 
have the shock stabilizing benefit by risk-sharing in the case of small system 
shocks, as indicated by Ladley (2013) and Acemoglu et al., (2015). Besides, there 
was no significant positive relationship between the connectedness measures and 
other measures including MES and Delta-CoVaR. This again confirms the mis-
match between different market-based systemic measures in terms of identifying 
systemically important institutions as have been demonstrated in previous em-
pirical studies such as Benoit et al., (2017) and Kleinow et al., 2017. 

To sum up, this thesis has investigated the interconnectedness between 
European banks as measures of systemic risk. The results showed that connect-
edness measures based on market data can capture fairly well the periods of fi-
nancial distress and have moderate out-of-sample performance. In the meantime, 
from a regulatory perspective, this thesis resonates with previous literature in 
calling for cautious use of a single systemic measure since different methods may 
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pick up different connectedness features and hence provide very different rank-
ings of systemically important banks.  

Lastly, further research is recommended in two ways. First, an empirical 
study implementing the same framework but with the inclusion of the insurance 
sector should be considered as Billio et al., (2012) documented that it was also a 
significant source of connectedness in the US financial system. Second, studies 
investigating the relationship between the connectedness measures and banks’ 
characteristics are recommended, as Löffler & Raupach (2017) has shown that 
market-based measures such as MES and Delta-CoVaR can run into bizarre cases 
in which these measures are positively associated with individual banks’ idio-
syncratic risk and systematic risk. Such cases, if exists for the connectedness 
measures, should be inspected carefully because if the measures are applied in 
regulation, they can actually incentivize banks to take more risk in order to have 
a lower systemic risk contribution ranking in the eyes of the regulators. 
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APPENDIX 

From_other and To_other measures based on return forecast error variance de-
composition.  

Period 1 Period 2 Period 3 Period 4 Period 5 
 

From_oth
ers (%) 

To_oth
ers (%) 

From_oth
ers (%) 

To_oth
ers (%) 

From_oth
ers (%) 

To_oth
ers (%) 

From_oth
ers (%) 

To_oth
ers (%) 

From_oth
ers (%) 

To_oth
ers (%) 

HSBC 
HOLDINGS 

50.82 42.76 53.89 49.06 49.97 37.84 36.42 24.77 43.89 24.25 

BNP PARI-
BAS  

52.35 45.43 57.66 60.49 76.89 96.44 76.30 80.97 84.12 122.00 

BANCO 
SANTAN-
DER 

48.31 62.48 55.96 49.91 74.36 76.79 76.72 79.46 80.07 100.20 

UBS GROUP 39.99 32.58 59.43 58.35 65.52 64.46 71.05 65.45 73.37 66.47 

NATWEST 
GROUP 

71.38 86.94 65.19 89.98 68.28 63.92 67.39 69.17 75.59 79.36 

ING GROEP 40.97 30.45 61.35 68.72 72.13 81.37 77.20 85.69 82.15 109.19 

UNICREDIT 67.07 64.72 59.87 69.51 76.84 94.01 77.26 87.19 80.41 100.99 

BARCLAYS 63.06 67.62 54.85 50.48 71.62 81.66 65.13 64.08 74.70 80.52 

CREDIT 
SUISSE 
GROUP 

46.38 30.96 51.94 45.55 62.96 54.46 74.70 81.82 76.39 78.62 

BBV.AR-
GENTARIA 

47.76 49.16 54.67 50.59 75.96 87.09 79.09 96.04 77.61 79.60 

SOCIETE 
GENERALE 

52.88 51.67 65.26 81.88 76.14 95.41 82.37 127.87 83.32 115.93 

DEUTSCHE 
BANK 

53.45 45.14 49.04 40.41 73.21 81.03 75.82 89.48 76.69 75.33 

LLOYDS 
BANKING 
GROUP 

56.23 43.18 62.70 71.57 62.86 66.98 65.53 59.29 72.25 63.86 

KBC GROUP 70.74 69.43 44.75 38.26 77.24 101.21 75.03 78.42 80.18 95.91 

INTESA 
SANPAOLO  

40.22 30.88 56.57 46.07 71.87 69.01 79.64 100.50 78.81 87.73 

STANDARD 
CHAR-
TERED 

64.70 64.36 34.17 30.88 38.31 25.62 49.24 23.49 52.61 32.81 

NORDEA 
BANK  

60.24 44.49 51.38 42.90 62.76 58.48 54.48 54.97 66.08 58.07 

DANSKE 
BANK  

68.34 58.76 45.74 37.80 47.09 31.44 44.81 24.89 58.54 37.07 

COM-
MERZBANK 

57.80 48.52 30.66 18.39 65.81 56.24 78.88 103.12 80.38 90.97 

AIB GROUP 74.37 87.03 59.91 64.87 62.56 52.20 61.12 37.01 38.68 12.81 

SVENSKA 
HANDELS-
BANKEN A 

65.89 54.54 44.22 44.96 49.50 34.00 54.29 52.39 62.71 55.43 

BANK OF 
IRELAND 
GROUP 

75.89 106.92 66.55 84.56 64.44 61.54 62.06 49.31 76.87 82.20 

SWEDBAN
K A  

74.80 84.96 49.91 56.01 59.04 54.04 52.61 49.44 63.13 52.65 

ERSTE 
GROUP 
BANK 

70.70 76.13 21.62 16.42 68.55 69.93 70.75 61.14 65.83 44.63 

NATIXIS 78.55 127.95 42.47 36.49 64.50 61.71 74.79 79.63 76.46 75.89 

ALPHA 
BANK  

62.55 57.40 42.37 37.37 67.59 60.40 61.91 56.04 49.03 44.41 

BANCO 
COMR.POR-
TUGUES 

57.36 44.64 15.77 23.39 68.19 59.85 59.23 35.81 55.51 28.76 

EUROBANK 
HOLDINGS  

68.30 71.99 49.74 42.75 68.33 65.42 59.64 46.01 50.29 40.03 

Total 
Connect-
edness 

60.04 50.27 65.80 66.55 69.13 
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