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EMB ODIED METE R REV ISI TED: ENTRAIN MENT, MUSICAL CON TEN T,
AND GENRE IN MUSIC-INDUCED MOVEMENT

PE TRI TOIVIA IN EN, & EMILY CARL SO N

University of Jyväskylä, Jyväskylä, Finland

PREVIOUS RESEARCH HAS SHOWN THAT HUMANS

tend to embody musical meter at multiple beat levels
during spontaneous dance. This work that been based
on identifying typical periodic movement patterns, or
eigenmovements, and has relied on time-domain analy-
ses. The current study: 1) presents a novel method of
using time-frequency analysis in conjunction with
group-level tensor decomposition; 2) compares its results
to time-domain analysis, and 3) investigates how the
amplitude of eigenmovements depends on musical con-
tent and genre. Data comprised three-dimensional
motion capture of 72 participants’ spontaneous dance
movements to 16 stimuli including eight different genres.
Each trial was subjected to a discrete wavelet transform,
concatenated into a trial-space-frequency tensor and
decomposed using tensor decomposition. Twelve move-
ment primitives, or eigenmovements, were identified,
eleven of which were frequency locked with one of four
metrical levels. The results suggest that time-frequency
decomposition can more efficiently group movement
directions together. Furthermore, the employed group-
level decomposition allows for a straightforward analysis
of interstimulus and interparticipant differences in
music-induced movement. Amplitude of eigenmove-
ments was found to depend on the amount of fluctuation
in the music in particularly at one- and two-beat levels.

Received: November 17, 2020, accepted August 18, 2021.

Key words: music and dance, entrainment, music infor-
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T HE TERM RHYTHMIC MOVEMENT CAN BE USED

to describe motor behaviors ranging from the
beating flagella by which microorganisms move

through water to the drumming of a woodpecker
against a hollow tree. In contrast with discrete move-
ments such as reaching and grasping, rhythmic move-
ment is more efficient and accurate (Smits-Engelsman
et al., 2002) and requires less cortical control (Schaal

et al., 2004). Rhythmic movement pervades everyday
human life in forms we share in common with our
phylogenetic ancestors, such as walking, chewing our
food, or knocking on a closed door.

While rhythmic movement is found across the animal
kingdom, humans possess a unique ability to adapt such
movement to be in time with an external signal (Bisp-
ham, 2018). This process of entrainment is manifested
in the precisely simultaneous steps of a marching band,
the clapping and chanting games of children at a play-
ground, and, more subtly, in the ebb and flow of speech
between conversation partners (Hawkins, 2014; Ogden
& Hawkins, 2015). Research suggests a significant rela-
tionship between this ability and our similarly unparal-
leled abilities for social cognition including empathy,
shared intentionality, and prosocial behavior (Feldman,
2006; Herrmann et al., 2007; Kirschner & Tomasello,
2010; Tomasello, 2020). While examples of rhythmic
entrainment have been identified in a small number of
nonhuman species (Merchant & Honing, 2014; Patel
et al., 2009), these are comparatively crude when com-
pared the full breadth of human rhythmic entrainment,
which can be a simple as tapping a finger to a metro-
nome or a complex as dance movements which engage
the whole body and multiple beat levels.

The complexity of human entrainment is manifest in
and, most likely, profoundly related to the rhythmic
complexity and ordered structures found in human
music. A significant and pervasive aspect of this is the
concept of meter. In the Western music theoretical
tradition, meter is defined, for example, by the Grove
Dictionary of Music as a ‘‘temporal hierarchy of subdi-
visions, beats and bars that is maintained by performers
and inferred by listeners which functions as a dynamic
temporal framework for the production and compre-
hension of musical durations” (London, 2001). London
goes on to suggest that meter can therefore be under-
stood an aspect of human behavior, rather than of music
per se. It is not necessary, however, to parse such a dense
explanation in order to understand what is meant by
meter; a crowd gathered in a sports stadium experiences
meter when stomping and clapping along to Queen’s
‘‘We Will Rock You,” as does an elderly couple swept
along in dance by the strains of The Beautiful Blue
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Danube. Meter provides structure to a steady beat. For
example, a common pattern in Western music is that of
four-beat structures. In such a sequence, the first beat
receives the most stress, the third beat receives a smaller
amount of stress, and the second and fourth beats are
relatively unstressed. The waltz, a three-beat meter in
which the first beat is stressed provides another familiar
example. Musical rhythm is derived from the hierarchi-
cal segmentation of such beat and bar structures.

Fitch (2016) has noted that ‘‘meter cannot be prop-
erly understood without reference to movement and
dance” (p. 2). Music is, in many ways, inextricable
from human movement; dance of some form is among
very few cultural universals in music identified by eth-
nomusicological studies (Nettl, 2001), and movement
is among the most commonly reported responses to
heard music (Lesaffre et al., 2008). Not only do we
naturally move in response to music, even from a very
young age (Eerola et al., 2006), such movements have
been shown to vary in relation to rhythmic and timbral
music features of whatever music is heard (Burger
et al., 2013). Movement appears even to play a role is
our perception of music; Phillips-Silver and Trainor
(2007), for example, showed that when adults were
trained to move to a metrically ambiguous (unac-
cented) rhythmic pattern in a way that reflected either
a march or a waltz, they subsequently identified unam-
biguous waltz or march patterns as similar to the pre-
viously heard music.

Such findings are frequently framed in reference to
embodied cognition, a philosophical and research per-
spective that emphasizes a two-way relationship
between cognition and bodily states, movements, and
postures (Mahon, 2015). Leman (2008) has defined
a theory of embodied music cognition in which
music-induced movements are seen as embodied reso-
nances with musical fluctuations, which ultimately
allow listeners to comprehend and experience empathic
reactions to heard music. That is, listeners become
entrained to heard music through covert (mental or
‘‘internal”) or overt (bodily) imitation of, and synchro-
nization with, musical sounds; these movements in imi-
tation of music bring to mind emotional states
associated with similar movements, allowing the listener
to empathically experience emotion expressed by the
music (Leman, 2008, p. 122) This description borrows
heavily from theoretical models of empathy between
humans, in which the visual stimulus of another per-
son’s movement triggers covert imitation in the
observer, and thus the understanding and even experi-
ence of the observed person’s cognitive or emotional
state (Zahavi, 2001).

Given that spatial and temporal hierarchy is pervasive
within biology (probably necessarily so, see Mobus &
Kalton, 2015) it is not surprising that the temporal hier-
archies of musical rhythm are reflected in, and perhaps
influenced by, the hierarchical patterns of movement in
the human body. Leman and Naveda (2010) used top-
ical gesture analysis of the movements of two profes-
sional and two student dancers performing the samba
and Charleston, captured using temporal-spatial
motion capture, and found that their movements
encoded multiple beat levels. Using principal compo-
nent analysis (PCA) decomposition of motion capture
data taken from participants’ free, improvised dance
movements, Toiviainen et al. (2010) extracted hierarchi-
cal eigenmovements from dancers’ movements that cor-
responded to multiple metrical levels; a mediolateral
body sway at the four-beat level (whole note), the sway-
ing of limbs at the two-beat level (half note), and vertical
bouncing at the one-beat level (quarter note). Support
for this finding was found by Burger et al. (2014),
although rather than performing eigenmovement
decomposition they analyzed only synchronization
along different movement directions. It must be noted
that Toiviainen et al. (2010) used only one musical stim-
ulus, and therefore the degree to which eigenmove-
ments within dance movement manifest across
musical styles, or vary between musical styles, is thus
not yet fully understood.

In previous work (Amelynck et al., 2014; Toiviainen
et al., 2010), eigenmovements were obtained using
a time-domain analysis, in which the obtained time
series data were subjected to PCA. This approach
groups variables based on their mutual covariance
structure, and therefore, when applied to time series
data, they group together variables that are phase-
locked, either in-phase or anti-phase. By comparison,
time series that display a mutual phase shift of, say, 90
degrees do not covary and thus are not grouped
together. In spontaneous dance, different body parts are
often frequency-locked but have mutual phase shifts.
For instance, in hip hop dance the periodic motion of
the head often shows a phase difference with that of the
other body parts (Sato et al., 2015). Furthermore, dif-
ferent movement directions of a body part may exhibit
mutual phase shifts. Samba dancers, for example, often
use periodic circular hand movements (Leman &
Naveda, 2010; Naveda & Leman, 2010). To group
together movement components that comprise such
movement patterns it may be more efficient to group
the movement variables based on their degree of
frequency-locking instead, thus ignoring their mutual
phase relationships. Time-frequency analysis provides
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a method to obtain such decompositions. This kind of
analysis can be carried out using, for instance, short-
term fourier transform (STFT), or discrete wavelet
transform (DWT), both of which provide a representa-
tion of the signal’s instantaneous amplitude and phase
at a given time point and frequency. The main differ-
ence between the two is that the former uses a linear
frequency division while the latter uses a logarithmic
one. In the present study we chose to use DWT for two
reasons. First, a logarithmic frequency division corre-
sponds better to our perception in various modalities, in
line with the Weber-Fechner law, according to which the
just noticeable difference in a stimulus feature is pro-
portional to the initial stimulus. Second, DWT has been
used to model various musical activities, including per-
ception of rhythm (Smith & Honing, 2008) and melody
(Velarde et al., 2016), as well as movement interaction
(Eerola et al., 2018).

To extract eigenmovements, Toiviainen et al. (2010)
relied on participant-level decomposition of movement
data followed by clustering. That is, each participants’
movements were analyzed using principal components
analysis (PCA), and only afterwards compared to
attempt to identify commonalities via clustering. This
method, however, does not lend itself well to easy com-
parison between participants and musical stimuli, as
these individual patterns identified by PCA are bound
to vary between dancers. Comparing dancers’ move-
ment components is then likely, at least in some cases,
to be an instance of the proverbial problem of compar-
ing apples and oranges, or at least comparing the twist
to the dougie. The significance of this is highlighted by
the finding of Carlson et al. (2020) that individual
movement patterns in free dance are indeed so unique
that the application of machine learning to a set of
dance data was able to identify individual dancers from
a group of 72 with an accuracy rate of 94.1%, startlingly
higher than the chance rate of 1.37%. Thus, if the aim of
an analysis is to identify commonalities in movement
patterns across dancers, it is more useful to identify
commonalities across the group first, before determin-
ing how they are manifested in individual dancers.

Fortunately, such group-level decomposition analysis
techniques already exist, having been usefully applied
to, for example, EEG data (Huster et al., 2015; Wang
et al., 2020; Wang et al., 2018) and fMRI data (Calhoun
et al., 2009). With EEG data, these approaches start with
a frequency decomposition based on STFT or DWT. In
group-level decomposition, data is divided into its
participant-specific components only after being sub-
jected to analysis, meaning that each component is
extracted from the group data as a whole. This allows

for patterns of movement to be detected across the
entire group, which may be manifested to a greater or
lesser degree within different individuals within the
group. More importantly, since this approach estimates
a set of components that is common to all subjects along
with their respective strengths (analogously to PCA or
factor scores), it facilitates to population-level infer-
ences and can easily be applied to comparisons between
participants, participant groups, or stimuli.

Various variants of tensor decomposition provide
suitable methods to perform group-level decomposition
to data obtained by applying time-frequency analysis to
whole-body dance movement with several musical
stimuli and multiple subjects. These methods can be
regarded as generalizations of more commonly used
dimensionality reduction methods such as PCA and
factor analysis in the sense that they are able to decom-
pose data arrays that have a dimensionality higher than
two (the latter also referred to as matrices). Tensor
decomposition of time-frequency representations of
multidimensional time series have been successfully
applied, for instance, in the domain of EEG and MEG
analysis (Cong et al., 2015; Kolda & Bader, 2009). In the
present study we will use non-negative tensor
decomposition.

The current paper revisits the question of eigenmove-
ments within complex dance movement using group-
level decomposition and wavelet analysis to examine the
movements of participants dancing to a variety of musi-
cal genres. The first goal is to compare decompositions
performed in time- and time-frequency-domains. More
specifically, the first research question is:

1) How do time-domain and frequency-domain
decomposition of dance movement data differ
in terms of their dimensionality?

Additionally, we will address the following research
questions related to the nature of eigenmovements and
their dependence on musical content and genre:

2) Which eigenmovements are most associated with
entrainment (that is, are frequency-locked with
the music) and which are more gestural?

3) How do eigenmovements in dance movement
resonate with musical structure?

4) What are the most universal eigenmovements
across musical genres, and what, if any, differ-
ences are there in salience of eigenmovements
between genres?

In light of theoretical considerations presented above,
we assume that frequency-domain decomposition pro-
vides a more compact decomposition (i.e., with lower
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dimensionality) than time-domain decomposition. In
light of previous research, we hypothesize that the exis-
tence of eigenmovements within dance movement at
a range of metrical levels will be supported, and include
eigenmovements related to bodily sway at the four-beat
level, limb sway at the two-beat level, and vertical
bounce at the beat level. Eigenmovements are expected
to correspond to the hierarchical organization of the
human body; that is, slower eigenmovements are
expressed via larger bodily components and faster
eigenmovements such as the torso and faster
eigenmovements by smaller components such as the
arms and hands. We also hypothesize that the strength
of the eigenmovements is mostly affected by the fluctu-
ation (i.e., strength of periodic patterns) at one-beat
level in the musical stimulus, in the vicinity of the most
dominant frequency of human locomotion, 2 Hz
(McDougall & Moore, 2005) and preferred pulse period
of 500–600 ms (Fraisse, 1982; London et al., 2019;
McAuley, 2010). We did not attempt to formulate spe-
cific hypotheses about the relationship of specific
eigenmovements to particular genres, but rather consid-
ered this part of the analysis as exploratory, as we did
not have a priori knowledge about which eigenmove-
ments would be identified, and previous analysis of
eigenmovements in dance movement has not yet exam-
ined different genres.

Method

DATA COLLECTION

A motion capture study was designed to collect free
dance movement data from participants using natural-
istic (commercially available) musical stimuli represent-
ing different genres (see Procedure). Full details of the
experiment can be found in Carlson et al. (2018).1

Participants
A total of 73 participants (54 females) completed the
motion capture experiment. Participants ranged in age
from 19 to 40 years (M¼ 25.74, SD¼ 4.72). Thirty held
Bachelor’s degrees while 16 held Master’s degrees.
Thirty-three reported having received some formal
music training; six reported one to three years, eleven
reported seven to ten years, while 16 reported ten or
more years of training. Seventeen participants reported
having received some formal dance training; ten
reported one to three years, five reported four to six

years, while two reported seven to ten. Participants were
of 24 different nationalities, with Finland, the United
States, and Vietnam being the most represented. For
attending the experiment, participants received two
movie ticket vouchers each. All participants spoke and
received instructions in English.

Apparatus
Participants’ movements were recorded using a twelve-
camera optical motion capture system (Qualisys Oqus
5þ) tracking, at a frame rate of 120 Hz, the three-
dimensional positions of 21 reflective markers attached
to each participant. Markers were located as follows (L¼
left, R ¼ right, F ¼ front, B ¼ back) 1: LF head; 2: RF
head; 3: B head; 4: L shoulder; 5: R shoulder; 6: sternum;
7: stomach; 8: LB hip; 9: RB hip; 10: L elbow; 11: R elbow;
12: L wrist; 13: R wrist; 14: L middle finger; 15: R middle
finger; 16: L knee; 17: R knee; 18: L ankle; 19: R ankle;
20: L toe; 21: R tow, visible in Figure 1A. The musical
stimuli were played in a random order in each condition
via four Genelec 8030A loudspeakers and a subwoofer.
The direct (line-in) audio signal of the playback and the
synchronization pulse transmitted by the Qualisys cam-
eras when recording were recorded using ProTools soft-
ware so as to synchronize the motion capture data with
the musical stimulus afterwards.

Stimuli
The stimuli comprised 35-second excerpts from 16
musical pieces from eight genres: Blues, Country,

FIGURE 1. Marker and joint locations. (A) Anterior view of the marker

locations a stick figure illustration; (B) anterior view of the locations of

the secondary markers/joints used in animation and analysis of the data.

1 The motion capture data and scripts for the calculation and
decomposition of wavelet tensors are available at https://jyx.jyu.fi/
handle/123456789/74858
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Dance, Jazz, Metal, Pop, Rap, and Reggae. The stimuli
were selected using a computational process based on
social-tagging and acoustic data. The selection pipeline
was designed to select naturalistic stimuli that were
uncontroversially representative of their respective gen-
res, which would also be appropriate to use in a dance
setting. To this end, a total of 2,407 tracks were collected
from online music service Last.fm from those tagged by
users as ‘‘danceable,” ‘‘dancing,” ‘‘head banging,” or
‘‘headbanging,” and which had been tagged with only
one genre label (e.g., ‘‘Country” or ‘‘Jazz”). Tracks were
retained only if they had a non-zero danceability score
according to Echo Nest (the.echonest.com, an online
music and data intelligence service where music catego-
rization is deter- mined by computational analysis of
a given track’s acoustic features, including beat strength,
tempo, and loudness). Two randomly selected excerpts
from each of the eight genres were checked for tempo
and stylistic consistency by the researchers. For
a detailed description of the stimulus selection process,
see Carlson et al. (2017). The musical stimuli used in
this study are listed in Appendix A.

Procedure
Groups of three or four dancers at a time attended the
experiment and were instructed to move freely to the
randomized musical stimuli, as they might in a dance
club or party setting. They moved both individually
(without seeing any other dancers) and in dyads,
although only individual data is considered in the cur-
rent analysis. They were asked to listen to the music and
move freely as they desired, staying within the marked
capture space. The aim of these instructions was to
create a naturalistic paradigm, such that participants
would feel free to behave as they might in the real world.
To limit the effects of fatigue, participants were
informed that they were free to ask for a break or stop
the experiment at any time, and were additionally
offered water, juice, and biscuits as light refreshments.

DATA ANALYSIS

Data Preprocessing
Using the Motion Capture (MoCap) Toolbox (Burger &
Toiviainen, 2013) in MATLAB, movement data of the
21 markers were first trimmed to match the duration of
the musical excerpts. Gaps in the data were linearly
filled. Following this, the data were transformed into
a set of 20 secondary markers—subsequently referred
to as joints. The locations of these 20 joints are depicted
in Figure 1b. The locations of joints B, C, D, E, F, G, H, I,
M, N, O, P, Q, R, S, and T are identical to the locations of
one of the original markers, while the locations of the

remaining joints were obtained by averaging the loca-
tions of two or more markers; Joint A: midpoint of the
two back hip markers; J: midpoint the shoulder and hip
markers; K: midpoint of shoulder markers; and L: mid-
point of the three head markers.

For each trial, the motion capture data were trimmed
to contain the interval between 10 and 20 s from the
beginning of the recording. Subsequently, the data
were transformed to a local coordinate system in
which, for each frame, the origin was located at the
vertical projection on the floor level of the midpoint
between the ankle markers (H and D) and the medio-
lateral axis was perpendicular to the line joining the
hip markers F and B. Finally, the velocities of each joint
and direction were estimated using numerical differ-
entiation with a Savitzky-Golay smoothing FIR filter
with a window length of seven samples and a polyno-
mial order of two.

Wavelet Transform
For each trial (i.e., subject and stimulus), the velocity
data of each spatial component (i.e., for each joint in
each of the three directions) were subjected to DWT
using Morse wavelets (the most commonly used wavelet
type) with sixteen voices per octave, and ranging over
eight octaves. We used Matlab (version R2020b) and
wavelet Toolbox (version 5.5) for the calculations. The
obtained wavelet transforms were subsequently trans-
formed from absolute frequencies to frequencies relative
to the tactus beat frequency of each respective stimulus,
with the range of relative frequencies spanning four
octaves, from 1=8ð Þ

ffiffiffi
2
p

times beat frequency to 2
ffiffiffi
2
p

times beat frequency, thus covering the four, two, one,
and half beat levels. Following this, the wavelet trans-
forms of each spatial component were stacked to form
a three-way tensor with dimensions of 65 (frequency) x
1201 (time) x 60 (space) for each subject and stimulus
presentation (see Figure 2A).

For the purpose of subsequent tensor decomposition,
the absolute values of the wavelet tensor were then
averaged across time, yielding a 65 x 60 matrix of wave-
let spectra for each subject and stimulus presentation
(see Figure 2B). Averaging across time was performed to
allow stability and convergence of the subsequent tensor
decomposition, as including the time dimension in the
data was found to prevent the tensor decomposition
from converging to a stable solution (see, e.g., Wang
et al., 2018, for a discussion of this issue). Subsequently,
these wavelet spectra were concatenated to yield a third-
order non-negative tensor W 2 R65x60x1168

þ , consisting
of frequency, space, and trial factors (see Figure 2C).
This kind of tensor allowed us to extract how different
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body parts move in different directions at different fre-
quencies, and how these patterns vary across the differ-
ent musical stimuli.

Tensor Decomposition
To extract eigenmovements of movement, nonnegative
polyadic tensor decomposition (Kim & Park, 2012), as
implemented in the Matlab Tensor Toolbox (Bader &
Kolda, 2019) and the Nonnegative Matrix and Tensor
Factorization Algorithms Toolbox (Kim & Park, 2014)
was applied to the data tensor W. This decomposition
method attempts to find components that minimize the
cost function

kW �
Xm

i¼1
�i fi � si � ti k (1)

where the vectors fi; si; ti � 0 are the frequency, space,
and trial factors of component i, respectively, and �
denotes the outer product. For each component, the
frequency factor represents the amplitude spectrum, the
space factor the individual contribution of each joint
and movement direction, and the trial factor the ampli-
tude of the respective eigenmovement in each
participant-stimulus combination. The tensor decom-
position is depicted schematically in Figure 3. The
extracted components will be subsequently referred to
as eigenmovements.

Model order selection, that is, selection of the number
of components used in the decomposition, was deter-
mined by maximizing its explained variance and con-
vergence (Hu et al., 2019). To this end, the tensor
decomposition was run 1000 times with a range of

model orders2, and the maximal model order for which
at least 95% of the runs converged was selected. This
method suggested 12 components, which were used in
all subsequent analyses. The obtained 12-component
decomposition yielded a relative error (i.e., cost function
divided by the norm of the tensor) of 0.31 and con-
tained 79% of variance in the data.

Intrinsic Dimensionality Estimation
The amount to which a decomposition compresses data
can be estimated in various ways. In the present study
we used effective dimensionality (Del Giudice, 2020),
which we estimated by the Rényi entropy of the eigen-
value spectrum (Pirkl et al., 2012):

n ¼
XN

i¼1
�i

� �2

XN
i¼1
�2

i

(2)

where �i is the i’th eigenvalue. Small effective dimension-
ality indicates a compact decomposition of data in the
sense that a large proportion of the variance in the data is
accommodated in a small number of components. A
specific example of time- and time-frequency-domain
decompositions of movement data and their intrinsic
dimensionalities is provided in Appendix B.

FIGURE 2. Forming of the group wavelet tensor. (A) Space-by-frequency-by-time wavelet tensor of a single participant; (B) space-by-frequency

matrix obtained by averaging the wavelet tensor across the time dimension; (C) space-by-frequency-by-trial group tensor obtained by concatenating

space-by-frequency matrices for all participants and stimulus presentations.

2 Tensor decomposition, like many other data decomposition methods
such as independent component analysis and factor analysis, are based on
numerical optimization with random initial conditions, and different
decompositions often yield slightly different results. Moreover, if the
number of components is too large, the procedure may fail to converge
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Musical Features
To investigate the relationship between the amplitude
of eigenmovements and acoustic properties of the
music stimuli, we estimated for each stimulus the
intensity of pulsation at different metrical levels using
the fluctuation spectrum (Pampalk et al., 2002) using
the mirfluctuation function of MIRToolbox (Lartillot
& Toiviainen, 2007) with the ‘‘summary” option. A
fluctuation spectrum indicates the strength of periodi-
cities in the music as a function of frequency between
0 and 10 Hz. For the purpose of subsequent analyses,
we used fluctuation values at frequencies correspond-
ing to four-, two-, one-, and half-beat levels of each
stimulus. Figure 4 shows fluctuation spectra for two
stimuli used in the study.

Statistical Analysis on Genre Differences
For statistical analysis of differences in the amplitude of
different eigenmovements between genres, the trial fac-
tor of each component was reorganized to form a par-
ticipant-by-stimulus matrix. Subsequently the values for
the two stimuli representing each genre were averaged
to yield a participant-by-genre matrix (73 x 8) for each
of the twelve eigenmovements. These matrices were
subjected to Friedman tests with Bonferroni correction
to assess the degree to which the respective amplitude
values varied across genres.

Results

INTRINSIC DIMENSIONALITY OF TIME-DOMAIN AND TIME-

FREQUENCY-DOMAIN DECOMPOSITIONS

We compared the effective dimensionalities of the time-
domain and time-frequency-domain representations by

performing a PCA, separately for each participant and
stimulus, on the time- and frequency-domain represen-
tations of the whole data as explained in sections Data
Preprocessing and Wavelet Transform, and calculating
effective dimensionality of the obtained eigenvalue
spectra using Rényi entropy. Figure 5 shows the distri-
bution of the effective dimensionality values for each
domain. The mean effective dimensionalities were
14.40 (SD ¼ 2.61) and 5.68 (SD ¼ 1.00) for time- and
time-frequency-domain, respectively, t(1167) ¼ 126.58,
p < .0001. Consequently, the time-frequency-domain
representation provides a more compact decomposition

FIGURE 3. Decomposition of the wavelet tensor into a sum of outer products of frequency (black lines), space (black bar graphs), and trial (red bar

graphs) factors.

FIGURE 4. Fluctuation spectra of the excerpts of (A) My Maria by

Brooks & Dunn; and (B) Redneck by Lamb of God used in this study.

Dashed vertical lines show, from left to right, the frequencies

corresponding to four-, two-, one-, and half-beat levels of each stimulus.
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of the data in the sense that more variance is contained
in fewer number of components.

EIGENMOVEMENTS

Example animations of extracted eigenmovements
are available at the URL https://jyx.jyu.fi/handle/
123456789/74855 and the method for reconstructing
them is presented in Appendix C. Each animation com-
prises twelve eigenmovements as represented in the
movements of four different dancers for a given
stimulus.

Frequency Factors
The frequency factors of the twelve extracted
eigenmovements are depicted in Figure 6A. In the sub-
plots, the abscissa is logarithmic and the labels indicate
frequency relative to that of the main beat (tactus).
Figure 6B shows the peak frequencies of each
eigenmovement. As can be seen, 11 out of the 12
eigenmovements (depicted as black bars) are centered
around one of the metrical levels, with +5% tolerance.
Thus, the majority of the participants’ movement
energy is frequency-locked (entrained to the musical
beat) at one of the metrical levels. The frequency factors
of the components, however, vary in terms of the width
of energy distribution, with some frequency compo-
nents showing narrower distributions than others.
Thus, the eigenmovements differ in terms of their
degree of frequency-locking (see below).

Spatial Factors
Figure 7 displays the spatial factors of each component,
divided into medio-lateral (mp, black bars), antero-

posterior (ap, dark grey bars), and vertical (v, light grey
bars) movement directions, and Table 1 summarizes for
each eigenmovement the most prominent body part and
movement direction, based on the magnitude of the spa-
tial factors, as well as the metrical level in beats corre-
sponding to the peak in the frequency factor. As can be
seen, each of the one-, two-, and four-beat metrical levels is
associated with both hand- and torso-based eigenmove-
ments with several different movement directions.

Frequency Locking of Eigenmovements
To assess the degree of frequency locking of each
eigenmovement, we calculated the relative Shannon
entropy of the frequency modes. A frequency spectrum
with low entropy has a peaked distribution; that is, high
concentration of energy around a frequency, and thus
represents high degree of frequency-locking and quasi-
periodic structure. The entropies are displayed in Fig-
ure 8. In accordance with Figure 1, the eigenmovements
differ in terms of their entropy. In particular,
eigenmovements 1, 5, and 9 have the smallest entropies
and thus are the most frequency-locked. It is notable
that these eigenmovements correspond closely to those
found in our earlier study (Toiviainen et al., 2010): med-
iolateral sway of the torso on four-beat level, anteropos-
terior movement of hands on two-beat level, and
vertical bouncing of the torso on one-beat level.

Eigenmovement Amplitude and Rhythmic Structure
To investigate the relationship between the amplitude of
eigenmovements and the rhythmic structure, we averaged
the eigenmovement amplitudes across participants and
correlated these averages with the fluctuation values of the
stimuli at half-, one-, two-, and four-beat levels. Figure 9
shows the obtained correlations. As can be seen, the cor-
relations tend to be positive, indicating that overall the
eigenmovements tend to become more salient when the
music contains a high amount of fluctuation. In particular,
fluctuation at one-beat level has the strongest effect on
eigenmovement amplitude. Of the eigenmovements with
the highest frequency coupling, modes 1 and 5 tend to
show low correlations for all fluctuation levels, suggesting
that they are resonating less with the musical structure,
and thus might be more serving the function of beat
maintenance at their respective metrical levels (4 and 2
beats). Eigenmovement 9, however, displays high correla-
tions with the fluctuation strength at several metrical
levels, suggesting that it can rather be considered as a res-
onance phenomenon.

Eigenmovement Amplitude and Genre
To investigate the differences in eigenmovement ampli-
tudes between musical genres, we performed a Friedman

FIGURE 5. Distribution of effective dimensionality values across

participants and stimuli for time- and frequency-domain PCA

decompositions of the data.
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test, that is, a nonparametric one-way ANOVA. To this
end, we averaged, for each participant and mode, ampli-
tude values across the two stimuli representing each
genre. The result is shown in Figure 10. We used Bon-
ferroni correction to correct for multiple comparisons.

As can be seen in Figure 10, eigenmovements 2, 5, and
8 show highest inter-genre differences for metrical levels
on four, two, and one beats, respectively. These
eigenmovements are mostly associated with horizontal
hand and lower arm movements. Moreover, eigenmove-
ments 2 and 8 have high spectral entropy (see Figure 8),
indicating that they manifest a low degree of frequency-
locking. This suggests that genre-specific movement
patterns could be associated with hand gestures.
Additionally, eigenmovement 12 shows significant
inter-genre differences, suggesting that genre-specific
movements can also be characterized by the presence
or absence of fast movements at the half-beat level.

Figure 11 displays the medians and interquartile
ranges for amplitudes of eigenmovements 2, 5, 8, and
12. Most notably, jazz tends to have high amplitude
values for eigenmovements 5, 8, and 12, suggesting that
it is associated with fast movements of hands in partic-
ular. Moreover, the country stimuli display an opposite
pattern, suggesting that it elicits movement on slower
metrical levels. The metal stimuli overall tend to have
a low amplitude for all these eigenmovements, suggest-
ing they elicit less of these kinds of gestural movements.
The medians and interquartile ranges of all 12
eigenmovements are displayed in Appendix D.

Discussion

In the current paper, we used group-level decomposi-
tion paired with time-frequency analysis using discrete
wavelet transform to investigate patterns in spontane-
ous dance movement across eight distinct musical gen-
res. We found that performing decomposition in time-
frequency-domain yielded more compact (i.e., lower-
dimensional) representations of dance movement over
time-domain decomposition. This is because the former
groups variables based on their frequency-locking,
instead of phase-locking, thus allowing body parts and
movement directions with similar frequency but differ-
ing phases to be grouped together. Therefore, if the aim
of research is to find movement patterns that comprise
body parts and movement directions that are
frequency-locked but not necessarily phase-locked, per-
forming decomposition in the time-frequency domain
can be considered to be superior to time-domain-based
decomposition. If, however, we are interested in phase
locking of movement, an example of which could be
quantifying synchronization accuracy of music-
induced movement with a musical stimulus, time-
domain-based decomposition methods may prove more
efficient.

This novel method allowed us to identify twelve
movement primitives (eigenmovements) that appear
consistently at the group level, the metrical levels with
which each eigenmovement was associated, and the
degree to which eigenmovements were rhythmically

FIGURE 6. A) Frequency factors of eigenmovements. The abscissa is logarithmic and the labels indicate frequency relative to that of the main beat

(tactus); B) peak frequencies of each component.
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entrained at these levels. The group-level decomposition
method used allows a straightforward analysis of how
the amplitude of each eigenmovement depended on the
temporal structure of each musical stimulus, and com-
parison of the amplitude of eigenmovements between
genres.

We found that spontaneous movement to music
shows a hierarchical organization in the sense that it
tends to be simultaneously entrained with several met-
rical levels. Moreover, we characterized various move-
ment patterns, or eigenmovements, associated with
these metrical levels, and showed that the amplitude
of these movement patterns depends on the content of
the musical stimulus. Out of the twelve identified
eigenmovements, two were associated with the four-
beat (whole note) level, four were associated with the

FIGURE 7. Values of spatial factors (horizontal axes) of components 1—12 for each joint and movement direction (vertical axes). ml ¼ mediolateral;

ap ¼ anteroposterior; v ¼ vertical.

TABLE 1. Summary of Spectrospatial Properties of the
Eigenmovements

Eigenmovement Body Part Direction Beat level

1 Torso ml 4
2 Hands ap/v 4
3 Hands ap —
4 Torso ml/ap 2
5 Hands ap 2
6 Hands v 2
7 Hands ml 2
8 Hands ml/ap 1
9 Torso v 1
10 Hands v 1
11 Torso ap 1
12 Torso v 0.5

Note: Includes the most prominent body part and movement directions, as well as
the beat level. ml ¼ mediolateral; ap ¼ anteroposterior; v ¼ vertical.
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two-beat (half note) level, four with the one-beat (quar-
ter note) level, and one with the half-beat (eight-note)
level, leaving only one eigenmovement not associated
with a metrical level. This non-rhythmic mode was
characterized primarily by anterioposterior movement
of the torso, suggesting that it may be related to self-
correction movements necessary for maintaining bal-
ance during standing and dancing (Day et al., 1997;
Johnson et al., 2010). That the majority of eigenmove-
ments did, however, appear to be entrained to metrical
levels corroborates the previous findings of Toiviainen
et al. (2010) and notably extend their generalizability.
This finding furthermore suggests that dance move-
ments which are not metrically entrained (that is, which
are more gestural), tend not to be consistent at the
group level.

While most of the eigenmovements were entrained at
metrical levels, they varied in their degree of phase- and
frequency-locking. The eigenmovements showing the
highest frequency locking (eigenmovements 1, 5, and
9) are spatially quite similar to those identified in Toi-
viainen et al. (2010) using time-domain methods; the
current eigenmovement 1 to the mediolateral sway of
the torso at the four-beat level, eigenmovement 5 to
anteroposterior movement of hands on two-beat level,
and eigenmovement 9 to the vertical bouncing of the
torso on one-beat level. Thus, these particular
eigenmovements are predominantly associated with
rhythmic entrainment to the musical stimulus at their
respective metrical levels, while the other eigenmove-
ments are more loosely associated with the rhythmic
structure of the music, and are thus not easily identified

using time-domain analysis only. Most of these newly
identified eigenmovements were dominated by hand
movement, suggesting the upper limbs tend to show
greater flexibility of movement in relation to the beat.
Hand movements are associated with expressive ges-
tures during verbal conversation (Goldin-Meadow,
2006; Wong & So, 2018), thus the flexibility of these
eigenmovements may reflect expressive functionality,
such as the emphasis of meaningful lyrical content.
Although the current findings reflect individual move-
ment only, previous work has found hand movement to
be associated with responsiveness to a partner in dyadic
dance (Carlson et al., 2018), such that in dyadic or
group contexts the relative flexibility of these
eigenmovements may additionally afford social entrain-
ment (Phillips-Silver et al., 2010).

The current analysis additionally corroborated previ-
ous results from Burger et al. (2013) suggesting that
a greater amount of rhythmic fluctuation in music tends
to elicit more movement. This is particularly notable at
the one-beat level, or a frequency of approximately
2 Hz, which has been shown to be the strongest fre-
quency in human locomotion (McDougall & Moore,
2005) as well as corresponding closely to the range of
most salient pulse sensations (Fraisse, 1982) and spon-
taneous tapping rate or preferred tempo (Fraisse, 1982;
London et al., 2019; McAuley, 2010).

This association highlights the close relationship
between human physiology, culture, and behavior, as
it is certainly no accident that we tend to move to music
that allows for easy motoric resonance with our pre-
ferred tempo. Eigenmovements associated with lower
beat levels were less affected by rhythmic fluctuation
of the music, specifically those related to mediolateral
sway at the four-beat level (eigenmovement 1), and
those associated with anteroposterior upper limb sway
at the two-beat level (eigenmovement 5), suggesting
these may represent more fundamental modes of
entrainment, a standard ‘‘ground” against which the
one- and half-beat level movements of the hands are
more free to create a ‘‘figure.”

The difference found in eigenmovement amplitude
between genres may reflect behaviors influenced by cul-
tural norms as well as acoustic differences between
stimuli. Luck et al. (2010) has shown associations
between Techno, Latin, and Metal stimuli and genre-
stereotypical movement patterns, while Carlson et al.
(2020) showed that Metal and Jazz were the most read-
ily identifiable genres based on dancers’ movement pat-
terns. Specific dance moves reflecting cultural
associations, such as ‘‘headbanging” for Metal or the
Charleston in the case of Jazz, may contribute to

FIGURE 8. Power spectral entropies of the frequency factors of each

eigenmovement.
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differences in the amplitude of different eigenmove-
ments in these genres; the strong amplitude of
eigenmovement 12, hand movement at the half-beat

level, would seem to support this notion. However, the
influence of genre on individual movement not associ-
ated with group-level eigenmovements should be
explored in future work.

The current results have both methodological and
theoretical implications. Comparison of current results
with earlier findings suggests that time-frequency
analysis indeed allows for a more fine-grained decom-
position of dance movement than do time-domain
methods alone. One reason for this is that time-
domain methods use correlation between time series,
which only allows for signals to be grouped based on
having identical or opposite phases, while time-
frequency methods allow for the detection of non-
zero phase differences. This also allows the degree of
frequency locking with the music, or lack thereof, to be
easily quantified. The use of group-level tensor decom-
position presented here simultaneously identifies
eigenmovements common within the group while esti-
mating the strength of the eigenmovement for each
participant and stimulus, allowing us a greater degree
of confidence in generalizing results beyond the cur-
rent sample.

FIGURE 9. Correlations between the amplitude of each eigenmovement and fluctuation strength at different metrical levels.

FIGURE 10. Result of Friedman test on the amplitude of each

eigenmovement. *p < .05, **p < .01, ***p < .001, Bonferroni corrected.
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The apparently universal presence of metrically hier-
archical eigenmovements in spontaneous dance move-
ment (at least within participants representing
a generally Western culture) is tempting to interpret this
straightforwardly as evidence that music and dance are
great equalizers. However, these results should also be
interpreted in the light of findings by Carlson et al.
(2020), derived from the same data set as used in the
current study, that cross-correlation matrixes derived
from participants’ three-dimensional movements could
be used to identify individual dancers with a startling
degree of accuracy. Thus, we are forced to understand
that, without apparent conflict or paradox, spontaneous
dance movement can be understood and interpreted
both as profoundly individual and profoundly universal.
The theoretical framework perhaps best suited to this
understanding is that of floating intentionality, which
has been proposed and developed by Cross (e.g., 2006,
2008, 2013). Music (and by association, dance), Cross
argues, is a mode of human communication that privi-
leges emotion and interaction over specificity of mean-
ing; that is, music can be ‘‘experienced quite differently
by different participants at the same time without the
integrity of the music being significantly compromised”

(Cross, 2009, p. 185). Thus, music and dance, unlike
regular speech, provides a mode of engagement that
allows individuals to simultaneously, indeed synchro-
nously, participate in an interaction that need not have
identical meaning or psychosocial affordances. The cur-
rent findings provide support for this idea in that they
show that dancers may move in similar ways, and in
time with the music (and, most likely, each other) with-
out sacrificing individuality.

The presented approach has some potential limita-
tions. We used a local coordinate system in the analysis
to increase the degree of stationarity of the data. This
approach however, ignores certain kinds of movement,
such as translation and rotation. By grouping body parts
and movement directions based on frequency-locking,
the phase information is lost and therefore movement
patterns displaying different phase relations are
grouped together. For instance, the method does not
make a distinction between in-phase and anti-phase
hand movement. However, if these kinds of distinctions
are important, the phase relations can be recovered
using the method explained in Appendix C. Averaging
the absolute values of wavelet transforms across time is
based on the assumption that the movement patterns be

FIGURE 11. Median amplitude values and interquartile ranges per genre for eigenmovements 2, 5, 8, and 12.
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stationary in terms of their frequency and amplitude
(but not necessarily phase). If this condition is not met,
such as when the dancer switches from one movement
pattern to another during the analysis window, it is not
possible to disentangle the two patterns directly from
the time-averaged representation. The group-level
decomposition, while being straightforward and provid-
ing direct measures for statistical comparisons between
participants and/or stimuli, disentangling within- and
between-subject variation in the obtained decomposi-
tions may be difficult. For instance, a high entropy in
a frequency factor may be a result of either all partici-
pants showing a low degree of frequency-locking in the
respective eigenmovement, or different participants
showing high degree of frequency-locking but at slightly
different frequencies. Finally, the data consisted of only
two pieces of music per each genre. Although they were
selected using a computational algorithm to maximize
their typicality, one should be cautious about drawing
too general conclusions about typical dance patterns for
these genres.

Of course, the degree to which this may or may not be
truly universal cannot be known without future
research that includes participants from majority-
world cultures. Future research could also expand the

types of musical stimuli used, and assess the degree to
which social context, such as dancing with a partner or
in a group, affected the presence of eigenmovements in
dance movement. The current results are based on
spontaneous dance movements only, and thus may not
generalize to choreographed or highly stylized types of
dance such as Tango or Swing. Investigating the degree
to which universal eigenmovements, as well as individ-
ual differences, can be capture in such contexts is nec-
essary for developing a more thorough understanding
the relationship between the current findings and cul-
tural norms related to musical styles. The novel meth-
ods present in the current study offer an effective means
by which many such questions can be addressed and, it
is hoped, will find further applications with which to
contribute to our understanding of human musicality.
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Appendix A

Musical Stimuli Used in the Study

Appendix B

Example of Time- and Time-Frequency-Domain Decompositions of Hand Movement Data

The following example aims to help provide insight into
the differences of time- and time-frequency-domain
representations in terms of their decomposability into
latent variables. Figure 12 shows an example of a rather
typical movement pattern during spontaneous dance, in
which the dancer moves her hands circularly. We
applied PCA to the time-domain representation as
depicted in Figure 12A, as well as to a time-
frequency-domain representation obtained by concate-
nating the absolute values of the wavelet transforms
obtained for the movement data of each hand and
direction.

Both representations thus had an equal number of
variables (six). Figure 12C displays the proportion of
variance contained in each principal component for
the two representations. As can be seen, the first eigen-
value of the time-frequency-domain data is remark-
ably higher than that of the time-domain data. This
implies that the former manages to accommodate
a higher proportion of variance into the first compo-
nent. This can be explained by the fact that the

mediolateral and vertical movement directions, due
to their circular movement pattern, have a relative
phase shift and thus do not covary. Figure 12D shows
the loadings for the first three principal components.
As is evident, for the time-frequency-domain repre-
sentation all movement components load significantly
to the first component, which for the time-domain
representation they are more distributed between the
components. Because PCA groups variables based on
their mutual covariance, with the time-domain repre-
sentation of the present data it fails to group the med-
iolateral and vertical hand movements although they
clearly belong to the same gesture. The time-
frequency-domain representation, on the other hand,
ignores the phase shift and groups them into the same
component based on their frequency-locking.

For the present example, the effective dimensional-
ities of the time-domain and time-frequency-domain
representations are 5.00 and 2.95, respectively, suggest-
ing a more compact decomposition of the movement
data with the time-frequency representation.

Genre Artist Track Tempo (bpm)

Blues The Paul Butterfield Blues Band Mystery Train 126
Blues Keb’ Mo’ She Just Wants to Dance 113
Country Dixie Chicks Goodbye Earl 123
Country Brooks & Dunn My Maria 124
Dance/Electronica M People Sight For Sore Eyes (Dance Remix) 122
Dance/Electronica Lady GaGa LoveGame (The Gaga Bender Mix) 128
Jazz Jimmie Lunceford Lunceford Special 120
Jazz Sidney Bechet Muskrat Ramble 96
Metal Lamb of God Redneck 131
Metal White Zombie Thunder Kiss 113
Pop Christina Aguilera Come On Over 118
Pop Duran Duran Want You More! 132
Rap/Hip-Hop Run-DMC, Jason Nevins It’s Like That 130
Rap/Hip-Hop DJ Laz Move Shake Drop (Remix) 127
Reggae Sean Paul Temperature 126
Reggae Shaggy Oh Carolina 126
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Appendix C

Reconstruction of Eigenmodes for Visualization

For the purpose of reconstructing eigenmode i of trial j,
we define the frequency-by-space-by-time scaling tensor
�ji by

�ji ¼ �itji fi � si � e (3)

where �i denotes the scaling constant of mode i in the
tensor decomposition, tji the salience of mode i in trial j,
e a vector of ones with a dimensionality equal to the
number of time points in the reconstructed data, and �
outer product.

The velocity matrix for reconstructed mode i of trial
j, V̂ ji, is obtained by

V̂ ji ¼W�1 �ji �W Vj
� �� �

(4)

where Vj denotes the velocity data matrix for trial j, W
the wavelet transform, W�1 the inverse wavelet trans-
form, and � the Hadamard product (element-wise
product).

Finally, the position data for time point t of eigen-
mode i of trial j, X̂ ji tð Þ, is obtained by temporal integra-
tion according to

X̂ ji tð Þ ¼ Xjt þ
Xt

�¼1

V̂ ji �ð Þt (5)

where Xjt is the column-wise mean of Xj, that is, the
mean posture across time for trial j, V̂ ji �ð Þ is the row
corresponding to time point � of V̂ ji, and t the sampling
interval of motion capture data.

FIGURE 12. (A) Five seconds of velocity data of hands of a dancing participant (LH: left hand; RH: right hand; ML: mediolateral; AP: anteroposterior; V:

vertical); (B) visualization of hand movement between 2 and 3 seconds (red traces), showing a circular trajectory; (C) proportion of variance contained

by each principal component; and (D) principal component loadings obtained by PCA from time-domain (black bars) and time-frequency-domain

representations (white bars).
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Appendix D

Median Salience Values and Interquartile Ranges Per Genre for All 12 Eigenmodes

FIGURE 13. Median salience values and interquartile ranges per genre for all 12 eigenmodes.
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