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Abstract: A new spirooxindole hybrid engrafted imidazo[2,1-b]thiazole core structure was designed
and achieved via [3+2] cycloaddition reaction approach. One multi-component reaction between
the ethylene derivative based imidazo[2,1-b]thiazole scaffold with 6-Cl-isatin and the secondary
amine under heat conditions afforded the desired compound in a stereoselective manner. The relative
absolute configuration was assigned based on single-crystal X-ray diffraction analysis. Hirshfeld
calculations for 4 revealed the importance of the H . . . H (36.8%), H . . . C (22.9%), Cl . . . H (10.4%)
and S . . . H (6.6%), as well as the O . . . H (4.7%), N . . . H (5.3%), Cl . . . C (1.6%), Cl . . . O (1.0%)
and N . . . O (0.5%) contacts in the crystal stability. DFT calculations showed excellent straight-line
correlations (R2 = 0.9776–0.9962) between the calculated and experimental geometric parameters.
The compound has polar nature (3.1664 Debye). TD-DFT and GIAO calculations were used to assign
and correlate the experimental UV-Vis and NMR spectra, respectively.

Keywords: spirooxindole; imidazo[2,1-b]thiazole; azomethine ylide; [3+2] cycloaddition (32CA) reaction

1. Introduction

Imidazo [2,1-b]thiazole is an important bicyclic nitrogen and sulfur containing com-
pound in some natural as well as synthetic pharmacologically active compounds and agro-
chemicals [1,2]. Many compounds reported in the literature incorporating imidazothiazole
exhibited pharmaceutical targets such as antihelminthic [3], antifungal [4] and antibacte-
rial [5], and also in cancer research development as anti-tumor agents [6–8]. Levamisolum
is one of the representative pharmaceutically relevant molecules for immunomodulatory
and antihelminthic agents which have partially hydrogenated imidazo[2,1-b]thiazole as a
core constituent (Figure 1). Due to a drug-resistant bacterial infection and in the effort to
develop a novel antimicrobial agent, Li et al. reported a new series of bicyclic incorporating
dihydroimidazothiazole scaffold and exhibited high potency against methicillin-resistant
S. aureus (MERSA) [9].

Indeed, Miyazaki et al. reported a lead compound comprising imidazo[2,1-b]thiazole
scaffold for cancer treatment, targeting p53–MDM2 protein–protein interaction inhibitors [10].
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The Éric Marsault and Emanuel Escher research group designed, synthesized and
studied the biological evaluation of the imidazo[2,1-b]thiazole system against CXCR4
antagonists [11]. The chemical and biological studies of this privileged structure have
gained a lot of attention from the researchers.

Figure 1. Representative examples of biologically active compounds having imidazothiazole and
spirooxindole derivatives.

Spirooxindole is an important pharmacophore exhibiting a lot of pharmaceutical
targets including anti-tumor [12], and anti-inflammatory targets [13], but also for treating
Alzheimer’s disease [14,15], and other pharmacological activity [16]. Recently, Barakat
et al. reported a spirooxindole lead compound for cancer treatment targeting p53–MDM2
protein–protein interaction inhibitors [17,18]. The combination of these two spirooxindole
and imidazo [2,1-b]thiazole pharmacophores may integrate the biological properties of both.

In the area of synthetic and medicinal chemistry research, multi-component reactions
(MCRs) became important methodological arsenal as they were eco-friendly, had less
reaction time, had a step-/atom economy and provided high-chemical yields. Additionally,
for drug discovery and development, MCRs acted as an amenable tool for the generation of
a library of new chemical entities. The [3+2] Cycloaddition (32CA) reaction [19–22] is a class
of the multi-component reactions which afford a diversity of highly complex molecules
efficiently and with a straightforward transformation.

In this text, we have reported the straightforward synthesis of a new compound having
two pharmacophores based on the spirooxindole and imidazothiazole scaffolds via [3+2]
cycloaddition (32CA) reaction. The crystal structure and the physical properties of the
synthesized molecule were studied.

2. Materials and Methods

All technical instruments and chemicals used in this study are provided in the Supple-
mentary Materials. The synthesis of imidazo[2,1-b]thiazole derivative 1 followed by the
reported procedure [23].

(2S,7a’S)-6”-Chloro-7’-(4-chlorophenyl)-5,6-diphenyl-7’,7a’-dihydro-1’H,3H,3’H-dispiro
[imidazo[2,1-b]thiazole-2,6’-pyrrolo[1,2-c]thiazole-5’,3”-indoline]-2”,3-dione 4

A mixture of imidazo[2,1-b]thiazole derivative 1 (207 mg, 0.5 mmol), 6-Cl-isatin
(90.5 mg, 0.5 mmol) and (R)-thiazolidine-4-carboxylic acid (66.5 mg, 0.5 mmol) in methanol
(10 mL)/dichloromethane (DCM) (10 mL) was refluxed on an oil bath for the appropriate
time of 5 h. After the completion of the reaction as evident from TLC, the reaction was
kept at room temperature overnight and the solid precipitate was filtered off without any
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further purification in 92% chemical yield. Crystalline compound was obtained by slow
evaporation in methanol.

1H NMR (400 MHz, CDCl3) δ 8.74 (s, 1H), 7.55–7.16 (m, 14H), 7.14 (d, J = 5.0 Hz, 1H),
6.98 (d, J = 8.0 Hz, 1H), 6.76 (s, 1H), 4.88 (q, J = 7.6 Hz, 1H), 4.15 (d, J = 9.0 Hz, 1H), 3.76
(d, J = 5.9 Hz, 1H), 3.58 (d, J = 5.9 Hz, 1H), 2.96 (dd, J = 9.8, 5.5 Hz, 1H), 2.84–2.73 (m, 1H);
13C NMR (101 MHz, CDCl3) δ 176.3, 168.7, 149.9, 146.1, 143.5, 137.3, 134.7, 134.6, 132.0,
131.5, 130.7, 129.5, 129.3, 128.7, 128.4, 128.4, 127.4, 127.3, 124.9, 123.1, 120.8, 111.7, 82.4, 75.7,
71.0, 56.2, 46.8, 32.9, 14.2; IR (KBr, cm−1): 3419, 3318, 2921, 2855, 1730, 1620, 1511, 1210;
Chemical Formula: C35H24Cl2N4O2S2.

3. Results and Discussion
3.1. Chemistry

The target spirooxindole compound based imidazo[2,1-b]thiazole scaffold was de-
signed and synthesized from the starting material named (Z)-2-(4-chlorobenzylidene)-5,6-
diphenylimidazo[2,1-b]thiazol-3(2H)-one 1 with the 6-chloroisatin 2 and (R)-thiazolidine-
4-carboxylic acid in MeOH/DCM (1:1) under reflux for 5 h (Scheme 1). The generated
azomethine ylide was involved in the reaction as the intermediate which further moved
to the [3+2] cycloaddition (32CA) reaction with the ethylene derivative based imidazo
thiazole to afford the new bis-spiro compound 4 (Scheme 2). The transition states were
proposed to afford the only regioisomer and diastereoisomer based on the recent litera-
ture [19–22,24] (Scheme 2). The chemical feature of the bis-spiro compound 4 was assigned
based on 1H-NMR, 13C-NMR, IR and single-crystal X-ray diffraction analysis. The data
analysis revealed that the chemical structure fully agreed with the designed structure. The
1H-NMR spectrum showed the characteristic protons in the proposed structure as follows:
NH proton assigned at δ 8.74 ppm as a singlet signal; in the aromatic region δ 7.55–7.16 ppm
appeared for the overlapped 14 protons of the aromatic rings (two phenyl rings plus p-Cl-
Ph); the three protons of the oxindole ring shown as two protons doublet and one proton
singlet in the chemical shift at δ 7.14, 6.98 and 6.76 ppm, respectively. The protons of the
fused cyclic ring appeared in the region between δ 4.88 until 2.73 ppm. 13C-NMR spectrum
exhibited the assigned carbons of the synthesized compound in very good manner. IR
spectrum showed most functional groups existing in the proposed structure, such as NH,
C-H, C=O, C=C, C=N, C-S, C-N, stretching as well as the pending vibrational assignment.

Scheme 1. Synthesis of spirooxindole based imidazo[2,1-b]thiazole scaffold 4.
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Scheme 2. Proposed approach of AY to ethylene derivative 1, explaining the regio- and stereoselective
synthesis of 4.

3.2. Crystal Structure Description of 4

The X-ray single-crystal structure analysis of 4 revealed the expected structure based
on the spectral characterizations very well (Figure 2). The compound crystallized in a
monoclinic crystal system and centrosymmetric P21/c space group with lattice parameters:
a = 6.57040(10) Å, b = 29.6357(5)Å, c = 15.5008(4), β = 96.898(2)◦ (Table 1). The molecule
comprised many ring systems, for more clarity these rings were designated as A to H as
shown in Figure 2. The two fused rings A and B are nearly coplanar where both rings
deviated from one another by 3.27◦. Similarly, the two rings C and D deviated from one
another by only 1.78◦, indicating a coplanar fused-ring system. In contrast, the two fused
five membered rings H and I are not perfectly coplanar where the perfectly planar parts
of these rings are C8C7C19C11 and C8C9S1C10, respectively. It is clear that both rings
have envelope conformation where the N atom is located out of the plane of each ring by
distances of 0.700 and 0.644 Å, respectively. As expected, the three phenyl moieties are
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perfectly planar where the two rings E and F make angles of 22.78 and 64.07◦ with the
mean plane of C8C7C19C11 atoms. The molecular structure of this compound is stabilized
by the three intramolecular C8-H8...O1, C1-H1...O1 and C17-H17...O2 with donor–acceptor
distances of 2.953(2), 3.423(3) and 3.129(2) Å (Table 2). For better clarity, this hydrogen
bonding interaction is presented as the turquoise-dotted line in the left part of Figure 3.

Figure 2. (A) AM1 semiempirical optimization (4−ortho-endo); (B) X−ray structure of 4.

Table 1. Crystal Data of compound 4.

Contact 4

CCDC 2075,962
empirical formula C35H24Cl2N4O2S2

fw 667.60
temp (K) 120(2)

λ (Å) 1.54184
cryst syst Monoclinic

space group P21/c
a (Å) 6.57040(10)
b (Å) 29.6357(5)
c (Å) 15.5008(4)

α (deg) 90
β (deg) 96.898(2)
γ (deg) 90
V (Å3) 2996.44(10)

Z 4
ρcalc (Mg/m3) 1.480

µ(Mo Kα) (mm−1) 3.589
No. reflns. 25,495

Unique reflns. 6231
GOOF (F2) 1.025

Rint 0.0466
R1

a (I ≥ 2σ) 0.0400
wR2

b (I ≥ 2σ) 0.0975
a R1 = Σ||Fo|–|Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo

2–Fc
2)2]/Σ[w(Fo

2)2]]1/2.
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Figure 3. Hydrogen bond contacts in 4.

The molecules of 4 are packed by three hydrogen bonds presented as red-dotted lines
in Figure 3. The molecules are packed via strong N2-H2...O2 with donor–acceptor distances
of 2.826(2) Å (Table 3). Additionally, the N2-H2...N1, C7-H7...O1 and C9-H9B...O1 have
longer interactions distances of 3.470(3), 3.419(2) and 3.207(2) Å, respectively (Figure 3,
right part).

Table 2. Hydrogen bond parameters (Å and ◦) for 4.

D-H . . . A D-H H . . . A D . . . A D-H . . . A

N2-H2...O2 1 0.87(3) 2.50(3) 2.826(2) 103(2)
N2-H2...N1 1 0.87(3) 2.60(3) 3.470(3) 176(2)
C1-H1...O1 0.95 2.58 3.423(3) 147

C7-H7...O1 2 1.00 2.55 3.419(2) 145
C8-H8...O1 1.00 2.23 2.953(2) 128

C9-H9B...O12 0.99 2.25 3.207(2) 162
C17-H17...O2 0.95 2.40 3.129(2) 133

Symm. Code. 1-1 + x,y,z; 2 1 + x,y,z.

Table 3. Bond lengths (Å) and angles (◦) for 4.

Bond Length/Å Bond Length/Å

Cl1-C3 1.744(2) C8-C9 1.527(3)
Cl2-C15 1.738(2) C11-C18 1.515(3)
S1-C10 1.828(2) C11-C12 1.563(3)
S1-C9 1.846(2) C11-C19 1.579(3)
S2-C35 1.741(2) C13-C14 1.385(3)
S2-C19 1.8403(19) C13-C18 1.394(3)
O1-C12 1.222(3) C14-C15 1.387(3)
O2-C20 1.197(2) C15-C16 1.386(4)
N1-C10 1.449(3) C16-C17 1.396(3)
N1-C11 1.467(2) C17-C18 1.389(3)
N1-C8 1.473(2) C19-C20 1.541(3)

N2-C12 1.352(3) C21-C28 1.368(3)
N2-C13 1.404(3) C21-C22 1.478(3)

Bonds Angle/◦ Bonds Angle/◦

C10-S1-C9 93.42(9) C16-C15-Cl2 119.00(18)
C35-S2-C19 91.24(9) C14-C15-Cl2 118.04(19)
C10-N1-C11 119.55(16) C15-C16-C17 119.4(2)
C10-N1-C8 108.89(16) C18-C17-C16 119.3(2)
C11-N1-C8 105.30(15) C17-C18-C13 119.11(19)
C12-N2-C13 110.93(17) C17-C18-C11 132.67(19)
C35-N3-C20 116.22(16) C13-C18-C11 108.03(17)
C35-N3-C21 106.91(16) C20-C19-C11 107.31(15)
C20-N3-C21 135.89(17) C20-C19-C7 108.93(15)
C35-N4-C28 104.18(16) C11-C19-C7 104.53(15)
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3.3. Analysis of Molecular Packing

The Hirshfeld surfaces of 4 are shown in Figure 4 while the intermolecular contacts
are presented in Figure 5. The molecular packing is dominated by H . . . H (36.8%),
H . . . C (22.9%), Cl . . . H (10.4%) and S . . . H (6.6%) contacts where the majority of these
interactions have longer interaction distances than the vdWs radii sum of the interacting
atoms except for the H . . . C contacts. In addition to the short H . . . C contacts, the packing
is controlled by many other short contacts such as O . . . H (4.7%), N . . . H (5.3%), Cl . . . C
(1.6%), Cl . . . O (1.0%) and N . . . O (0.5%) contacts. The shortest interactions along with
the corresponding distances are listed in Table 4. Most of these interactions are short with
characteristic sharp peaks in the fingerprint plot (Figure 6) and red regions in dnorm map
indicating significant interactions (Figure 7).

Figure 4. Hirshfeld surfaces of 4.

Table 4. Intermolecular interactions and their distances in 4 a.

Contact Distance Contact Distance

N2 . . . O2 2.826 N4 . . . H23 2.631
C13 . . . O2 3.16 N1 . . . H2 2.463
O2 . . . H2 2.476 H10B . . . C35 2.73
O1 . . . H5 2.572 Cl1...C16 3.432
O1 . . . H7 2.487 Cl1...Cl2 a 3.586

O1 . . . H9B 2.162
a longer distances than the vdWs radii sum.
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Figure 5. Intermolecular interactions in 4.

Figure 6. Decomposed fingerprint plots for the important interactions in 4.
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Figure 7. Decomposed dnorm surfaces for the important interactions in 4.

3.4. DFT Studies

Using a B3LYP method, the structure of 4 was optimized (Figure 8). The computed
structure of 4 showed good matching with the experimental geometry. The list of bond
distances and angles depicted in Table S1 (Supplementary Data) reveal the good agreement
between the calculations and the experiment. In this regard, the correlation graphs shown
in Figure 9 indicated an excellent straight-line relation (R2 = 0.9776–0.9962) between the
calculated and experimental values. The presence of intermolecular interactions in the
solid state could be the main reason for such deviations.

Figure 8. The calculated geometry using a B3LYP method (left) and its overlay with an experimental
one (right) for 4.

The results of the charge calculations indicated the electropositive nature of both
S-atoms (Table S2 (Supplementary Data)). It is clear that the S-atom (0.3759 e) located in
the five membered ring which contain the carbonyl group, has a higher positive charge
than the other S-site (0.1929 e). In addition, the two chlorine atoms have very small natural
charges of −0.0040 and 0.0075 e. All nitrogen and oxygen atomic sites are electronegative
where the carbonyl oxygen atom of the cyclic amide has the highest negative charge of
−0.6032 e. In contrast, the hydrogen atoms have positive charge where the NH proton has
the highest positive natural charge of 0.4481 e. The net dipole moment of 4 is calculated
to be 3.1664 Debye. In MEP, the intense blue region close to the NH proton reveals its
electropositive nature while the intense red regions (most electronegative) are close to the
carbonyl oxygen atoms (Figure 10).
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Figure 9. Correlations between the calculated and the experimental geometric parameters.

Figure 10. The MEP, HOMO and LUMO of 4. Black arrow indicates the direction of the dipole
moment vector.

On the other hand, the HOMO and LUMO presentations are explored in Figure 10.
The HOMO level is mainly located over the S-atom of the thiazolidinyl ring while the
LUMO one is localized over the π-system of one of the aryl groups which indicate n-π*
excitation for the HOMO→LUMO intramolecular charge transfer. Based on the HOMO
and LUMO energies, the ionization potential (I =−EHOMO), electron affinity (A =−ELUMO),
chemical potential (µ = −(I + A)/2), hardness (η = (I − A)/2) as well as electrophilicity
index (ω = µ2/2η) were calculated [25–31]. These reactivity parameters are calculated to be
5.6663, 1.8719, −3.7691, 3.7944 and 1.8720 eV, respectively.

Experimentally, three electronic transitions at 339, 246 and 221 nm in the electronic
spectra of the studied molecule were detected as shown in Figure S1 (Supplementary
Data). Obviously, the electronic spectra showed very little changes due to solvent effects.
The longest wavelength band observed at 335 nm in ethanol was calculated using the
TD-DFT calculations at 331.9 nm (f = 0.031) which was assigned to the HOMO-2→LUMO
(63%)/HOMO-1→LUMO (23%) mixed excitations. Hence, this band could be assigned as
mixed π-π* and n-π* transitions (Figure 11).
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Figure 11. MOs included in the longest wavelength electronic absorption band for the studied system.

On the other hand, NMR calculations were used to compute the 1H and 13C chem-
ical shifts (Table S3 (Supplementary Data)). In Figure 12, the computed chemical shifts
correlated well with the experimental values (R2 = 0.96–0.97).

Figure 12. 1H and 13C NMR correlations between the calculated and experimental data.

4. Conclusions

The new spirooxindole hybrid incorporating the imidazo[2,1-b]thiazole derivative
was designed, synthesized and elucidated its chemical structure successfully. Based on
Hirshfeld calculations, many intermolecular contacts such as H . . . H, H . . . C, Cl . . . H
and S . . . H, as well as O . . . H, N . . . H, Cl . . . C, Cl . . . O and N . . . O interactions affect
the molecular pacing of 4. The studied compound has polar nature (3.1664 Debye). The
NMR chemical shifts correlated well with the experimental results. The UV-Vis electronic
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spectral bands observed experimentally were assigned based on TD-DFT calculations.
DFT calculations were used to compute the electronic and spectroscopic properties of the
studied system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst12010005/s1, Figures S1–S4: 1HNMR, 13CNMR, IR and UV-Vis spectrum, Tables S1–S3:
computational investigations.
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