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Present practices in the microscopic counting of phytoplankton to estimate the reliability of results rely on the
assumption of a random distribution of taxa in sample preparations. In contrast to that and in agreement with the
literature, we show that aggregated distribution is common and can lead to over-optimistic confidence intervals, if
estimated according to the shortcut procedure of Lund et al. based on the number of counted cells. We found a good
linear correlation between the distribution independent confidence intervals for medians and those for parametric
statistics so that 95% confidence intervals can be approximated by using a correction factor of 1.4. Instead, the
recommendation to estimate confidence intervals from the total number of counted cells according to Lund et al.
should be categorically rejected. We further propose the adoption of real-time confidence intervals during microscopic
counting as the criterion to define how long counting should be continued. Then each sample can be counted in its
individual way to reach the necessary reliability independent of highly different samples. Such a dynamic counting
strategy would be the most significant development in the quality control of phytoplankton counting since the early
ploneers established the present counting practices in the late 1950s.

KEYWORDS: confidence intervals; dynamic counting; microscopy; phytoplankton

available online at academic.oup.com/plankt
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

z220z Aenuer 0 uo Jasn ejAyseAAr Jo Alisiaaiun Ag Z2/2808£9/9%8/9/S/e01e/yue|d/woo dno olwepeoe//:sdyy wolj papeojumoq


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/plankt/fbab062
http://orcid.org/0000-0002-8788-7649
http://orcid.org/0000-0003-3247-2259

K. SALONEN ET AL. CONFIDENCE INTERVALS IN MICROSCOPIC COUNTING OF PHYTOPLANKTON

INTRODUCTION

Microscopic counting of phytoplankton is one of the
basic determinations used in the assessment of the ecolog-
ical status of aquatic environments. Generally, a settling
chamber technique (Utermohl, 1958) is applied accord-
ing to standardized approaches (e.g. EN 15204, 2006).
Significant effort has been made to ascertain the com-
parability of the results by various measures of quality
assurance (e.g. Rott ¢t al., 2007). Although there is a need
for universal counting approaches, it is illusory to believe
that all problems (Rott, 1981; Thackeray et al., 2013) can
be solved by adherence to any single standard. Despite
their merits, standardized approaches may even have
engendered a false feeling of adequate quality control of
counting results. For example, quality assurance is only
halfway towards good phytoplankton results and does not
guarantee their comparability (Duarte e al., 1990). Qual-
ity assurance increases the likelihood of achieving good
results, but only quality control can document whether
they are realized.

Many factors like sampling, preservation, subsampling,
settling and counting contribute to the total variation of
the results but have surprisingly rarely been taken into
account. Chemical, biological and physical (e.g. Blukacz
et al., 2009) factors can lead to patchy vertical and tempo-
ral distributions in water bodies so that sampling generally
contributes to the bulk of the variation in the results. Simi-
larly, the variation across lakes has been largely neglected.
Microscopic counting is typically the next most important
source of variation (Kirchman et al., 1982). In particular,
the rarity of confidence interval estimations weakens the
usefulness of phytoplankton count data.

Lund et al. (1958) emphasized the crucial importance of
the confidence intervals of microscopic counts. At a time
when no personal computers or even calculators were
available, they suggested a shortcut procedure to estimate
confidence intervals based on the assumption that the
spatial distribution of specimens on a settling chamber
is random (Poisson distributed). However, various factors
can lead to an aggregated (variance > mean) distribution
of phytoplankton on the settling chamber. Variation in
temperature during settling is one of the most critical
aspects, because it can produce density gradient currents
in the settling chamber so that lateral or radial differences
in cell density may develop (Sandgren and Robinson,
1984).

Count data of ecological studies regularly violate
the equidispersion constraint imposed by the Poisson
distribution (Lynch et al., 2014). Accordingly, empirical
observations (Nauwerck, 1963; Rott, 1981; Sandgren and
Robinson, 1984) and simulations (Edgar and Laird, 1993)

have demonstrated a common lack of spatial randomness

of settled phytoplankton. Nevertheless, when confidence
intervals are shown in the literature, they are generally
(Edgar and Laird, 1993) derived from the total number of
counts according to the shortcut procedure of Lund et al.
(1958). Even more often, no confidence intervals are given
at all (Edgar and Laird, 1993). Thus, despite convincing
evidence that the distribution of phytoplankton cells
on the settling chamber is often aggregated, it has not
been addressed in microscopic counting since the early
pioneers established the present counting practices more
than 60 years ago.

The purpose of this study was to have a deeper insight
into the distribution of phytoplankton cells on counting
chambers to find an objective basis to reach reliable
confidence limits of microscopic counts with minimum
work effort. We hypothesized that irrespective of the phy-
toplankton distribution on the settling chamber, a satisfac-
tory approach can be found to calculate the confidence
intervals of the results to advance the interpretation of
the results.

MATERIALS AND METHODS

Sample preparation

Lake water samples were preserved with Lugol’s iodine
(0.5-1 mL in 100 mL of water). Before settling (Uter-
mohl, 1958), samples were acclimated to the prevailing
laboratory temperature for 1 day and then the bottles
were gently mixed by turning them up and down for ca
2 min. The 25 mm diameter settling chambers were kept
on a table protected from direct sunlight and airflow for
at least 8 h (10 mL chambers) or 24 h (25 mL and 50 mL
chambers).

Counting of samples

Settled phytoplankton samples were counted by two
researchers. One counted winter samples from one lake
and the other counted summer samples from different
lakes. Both used an inverted light microscope with phase-
contrast optics (Wild M40, Switzerland and Olympus
IX50, Japan) with 300x, 400x or 600x magnification
depending on the size and abundance of taxa. Unicellular
phytoplankton species were counted from replicate
microscopic fields selected pseudorandomly, whereby
fields for counting were located by blindly moving
the microscope stage to a new position. In practice,
any area close to the margin of the settling chamber
was avoided. A proprietary computer program (open
version in preparation) was used to register the results
of individual fields of view.
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The results of this study were taken from routine
countings where phytoplankton biomass was the primary
object. We only used counts of solitary taxa with the total
number of counted specimens per sample >50, and the
number of counted fields at least 10 (up to 30, mean
14). Although the number of cells counted for individual
species often remained rather small, our results probably
represent well the reality of routine countings.

Statistical analyses

The relative 95% parametric confidence intervals (PClIs)
of the results as a percentage of the mean were calculated
according to:

to.025*\/5_2

mean * Jﬁ

PCI = 200 x (1)

where tg 995 1s the 97.5% percentile of the ¢-distribution
withn — 1 degrees of freedom, s* is sample variance and n
is the number of replicates. Because variance and mean
are equal in the Poisson distribution, Lund et al. (1958)
substituted the sample variance of equation (1) by the
sample mean and derived a shortcut equation to calculate
a confidence interval (LCI) as a percentage of the mean:

00
1l =24 20 @)

VN

where N = total number of counted specimens and the
t-value was set equal to 2, which is a practical approxima-
tion, if the number of counted fields is >30.

We also calculated confidence intervals for the median
and computationally simple BP median (Bonett and Price
2002), which are distribution independent and hence
robust. Lower and upper ranked values (RV) were cal-
culated according to Campbell and Gardner (2000) to
approximate the confidence intervals for medians:

RV =05n+1.96%/(n*05x(l —05) (3

where 7 =number of replicates.

IBM SPSS Statistics Version 20 (IBM, Armonk, NY;
USA) was applied for statistical analyses. The Student’s
t-test was used to test the differences between two inde-
pendent groups. Before all tests, Levene’s test was used
to test the equality of variances and Shapiro-Wilk’s test
was used to test normality. If the assumptions of the t-test
were not fulfilled, the Mann—Whitney U test was chosen.
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RESULTS

The results of phytoplankton (11 taxa) counted on settling
chambers (n=113) showed a rather high range of the
coeflicient of variation (mean CV 43%, range 16%-90%)
between replicate microscope fields. The median counts
were on average 4.3% lower (CV 219%) than the mean
counts (range 3—161) but the difference was not significant
(Mann—Whitney U test, P =0.52).

Different approaches to calculate confidence limits of
averages produced markedly different results. The rela-
tive confidence limits of means calculated according to
the parametric statistics (Fig. 1) were often several times
wider than those calculated according to the shortcut
procedure of Lund et al. (1958) independently of the
total number of counted cells. According to the Lund
approach confidence limits, roughly 10% of the mean,
were obtained when about 400 cells were counted, but in
reality the values were often 2—3 times wider. A compari-
son between the results of these two methods shows that
the discrepancy increased non-linearly with increasing
confidence interval (Fig. 2A). The respective relationship
for the median was linear and departed from the 1:1 ref-
erence line with a 40% steeper slope (Fig. 2B). BP median
similarly showed wider confidence intervals compared to
the parametric statistics but with only ~20% difference
(Fig. 2C).

The variance-to-mean ratio of the counts was often
>1, indicating an aggregated distribution of the cells
(Fig. 3A). The highest aggregation was due to a small
(diameter ca 5 um) Stephanodiscus cf. parvus diatom, which
was very abundant in an ice-covered lake. However, the
regressions between the logarithms of variance and mean
for Stephanodiscus and the other taxa were not far from each
other (<11% difference in regression coefficients). The
variance-to-mean ratio of microscopic counts of settled
phytoplankton taxa almost perfectly explained the differ-
ence between the confidence intervals based on paramet-
ric statistics and those based on the shortcut procedure
of Lund (I'ig 3B). In contrast, the respective compari-
son with median-based statistics showed no significant
relationship (R* < 0.01). The upper confidence limits for
mean, median and BP median were close to each other,
but the lower ones for median and BP median were on
average 29 3= 3% and 16 £ 4% (with 95% confidence lim-
its), respectively, wider than those of parametric statistics.

DISCUSSION

When the results of individual microscopic fields have sel-
dom been used to calculate the confidence limits, the only
indication of the reliability of the results has often been
through intercalibrations, where replicate subsamples
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Fig. 1. Comparison between Lund based (LCI/2, curve) and paramet-
ric statistics based (PC1/2, dots) 95% confidence limits in relation to the
number of counted cells. Black dots—Stephanodiscus samples.

have been counted by the same or several persons. Vuorio
et al. (2007) reported CVs for 20 fields of two samples
counted by the same person. In both cases of Rhodomonas
counting, GV was 13% and in those of Fragilaria counts
14% and 19%. Respective results of counts through the
diameter of the settling chamber were 10% and 15% as
well as 5% and 23%. Although the number of counted
cells was not reported, these results seem to represent the
lowest range of variation in our study.

When our results are compared with published
intercalibration results where parallel subsamples have
been counted by several microscopists (Willén 1976), the
CVs of our results were on average almost two times
higher (23% vs. 45%; n=90 vs. 113) in samples with
at least 50 counted cells. However, Hobro and Willén
(1977) who reported results of subsamples counted in
three laboratories (in each case 10 parallel subsamples)
found higher average CVs of 45% (rangel0%-57%),
31% (range 14%-90%) and 12% (range 4%—13%),
respectively, which rather closely corresponds our results.
Because the variation of the counts between counting
fields 1s inherently higher than the variation between
the mean counts of replicate fields, our results seem
to be in line with the intercalibrations. As our samples
originated from many different lakes with different taxa,
our counting results are likely representative of routine
phytoplankton counting in general.

Variance-to-mean ratios generally higher than unity
verified that the aggregated distribution of phytoplankton
on counting chambers is the rule rather than the excep-
tion (Iig. 3A). The observed extremely high variance-to-
mean ratios of Stephanodiscus diatoms may be explained
by delicate polysaccharide fibrils of diatoms (Svetlicic
et al., 2013), which in our samples were faintly visible
under a phase-contrast microscope. The preservation of
the samples may have facilitated the adherence of cells
together by the fibrils.

In agreement with the simulations of Edgar and Laird
(1993) and earlier field observations, in our samples, the
shortcut approach of Lund et al. (1958) often yielded
unrealistically low confidence intervals. At a time when
no calculators were available, the shortcut approach was
no doubt useful to indicate how much work should be
allocated for counting and the same is still true. How-
ever, in the computer age, the Lund approach should be
consigned to history as an indicator of the confidence
intervals of the results. Instead, counting programs capa-
ble of providing reliable confidence limits in real-time
should be preferred. Then it is possible to have a good
idea about the reliability of the results in so early a phase
that counting effort can be allocated to reach the desired
level of certainty or to focus on the most critical taxa
of the sample concerning the uncertainty of the results.
It is noticeable that dynamic counting does not increase
work but can make it more efficient. It is also more
motivating, as results can be seen immediately and their
processing can start already during counting. There are a
few phytoplankton counting programs in the market, but
their scope 1s limited to serve as a simple calculator rather
than to support the quality of the results. Thus, at the
moment the limiting factor is the availability of suitable
programs.

In the simulations of Edgar and Laird (1993), the range
of the variance-to-mean ratio was modest (0.6-2.2) and
parametric statistics based confidence limits produced a
reasonable agreement with an expected error rate of 0.05.
In our results, the range of the variance-to-mean ratio was
an order of magnitude higher (0.3-28.2) and the results
revealed on average much wider confidence intervals for
the median compared with parametric statistics based
ones. Thus, straightforward use of parametric statistics
can lead to a too optimistic interpretation of the results.
The confidence limits for the median are robust but asym-
metrical to the median value and computationally more
complicated (BP median is more convenient). Fortunately,
the linear relationship between the Cls of the mean and
the median allows the use of a simple empirical correction
factor of 1.4 to probably reach the most realistic estimates.
In comparison with the confidence limits based on the
Lund approach, the correction dramatically improves the
evaluation of the results of samples with high aggregation
of cells. Consequently, our findings verified the hypoth-
esis that distribution independent confidence intervals
for microscopic counts can be derived from parametric
statistics.

Implications for phytoplankton counting

Few words may be necessary to comment on what is the
most representative average value of microscopic counts.
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Because the median minimizes the effect of a significant
number of outliers in the data, it is sometimes favoured
as a robust average value. In our samples, with spuriously
high counts in microscopic fields as well as in samples
with empty fields, the median was typically smaller than
the mean, but the difference was in practice negligible.
Similarly, Rott (1981) has found that the elimination of
outliers does not markedly affect phytoplankton count-
ing results. Further, if we exclude clear mistakes, such
as typing errors, “outliers” in phytoplankton counts are
generally not real errors and hence their omission biases
the mean results. Consequently, outliers should not be
rejected without strong a priori reason. On the other
hand, because the calculation of the median does not

increase work, we suggest that in phytoplankton counting
both the arithmetic mean and median values should be
provided to assist the interpretation of results. Because of
the higher stability of the median, such a practice might
sometimes strengthen the conclusions.

Despite decades of extensive availability of computers,
their power has generally only been used for the same
routine calculations as 60 years ago. As emphasized by
the high variance-to-mean ratio of Stephanodiscus diatoms
in this study, not too much weight should be given to
the results of occasional intercalibrations, which have
no general validity for individual phytoplankton samples.
Instead, it should be mandatory to have an idea about the
quality of the results based on the statistics of observed
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results rather than on any assumptions. In this way, the
results could be most realistically interpreted. Here it
should also be noted that the counting of samples is only
one source of variation.

In the present European phytoplankton counting stan-
dard (EN 15204, 2006), confidence intervals calculated
from individual counts in microscopic fields are recom-
mended in parallel with the shortcut approach of Lund
et al. (1958). However, in practice the recommendation
remains largely unrealized, because the necessary cal-
culations are tedious. Thus, there is an urgent need for
phytoplankton counting programs, such as that used in
our study, which provide confidence intervals in real-time.

Phytoplankton counting instructions often advise ver-
ification that specimens are randomly distributed and
suggest the preparation of a new sample, if this is not
fulfilled. However, visual inspection of distribution is sub-
jective and is of value only for the most striking deviations
from randomness in quite dense phytoplankton samples.
Second, a strictly stable settling temperature to exclude
convective water circulation and its effect on the distri-
bution of cells in the settling chamber may be difficult
to achieve particularly in summer, when there is often
no compensation for diurnally fluctuating indoor temper-
ature. Hence, convection can affect the distribution of
cells (Berthold and Resagk 2012). Third, as demonstrated
by the Stephanodiscus diatom, sometimes the reason for
the aggregated distribution is an inherent feature of the
sample rather than the settling conditions. Maybe the only
efficient way to minimize an aggregated distribution of
cells is a careful acclimation of samples to the temperature
of the settling environment and to prevent vibrations as
well as temperature fluctuation.

In addition to the estimation of the uncertainty of
the results, the distribution of phytoplankton in a settling
chamber has important ramifications for how samples
should be counted. The finding of Sandgren and Robin-
son (1984) that cell abundances near the margin of the set-
tling chamber can be higher than around the centre poses
a significant challenge in microscopic counting. Com-
monly used so-called pseudorandom selection of fields for
counting tends to lead to the under-representation of the
marginal zone of the settling chamber and consequent
systematic underestimation of cell count. Four alternative
approaches might be used: stratified counting of the cen-
tral and marginal areas of the settling chamber, diameter
counting, true random selection of fields and stripe count-
ing. Stratified counting partly compensates for a radially
uneven distribution of cells, but because the proportion of
the chamber area non-linearly increases with the distance
from the centre, the problem is only alleviated, not con-
trolled. For the same reason, the widely applied diameter

counting cannot be recommended, although it has often
been erroneously assumed to compensate for differences
in the distribution of phytoplankton over the settling
chamber. Counting of truly random fields is theoretically
an ideal solution, but without a computer-run motorized
stage it remains by far too impractical. Instead, simple
counting of evenly distributed stripes, which compensates
for both laterally and radially non-random distributions
of phytoplankton cells, can be recommended. Interlaced
replicate sets of stripes might be used to estimate confi-
dence intervals. A new counterpart for random counting
might also be provided by Archimedean spirals marked
at equal distances along their lengths on the bottom glass
of the settling chamber. When all fields are counted at
even distances from each other through the whole spiral
the counting would represent the whole chamber area
in correct proportion. Compared with stripe counting,
this method is more flexible to cope with a range of
abundances, because the number of points to be counted
in the spiral can be varied.

CONCLUSIONS

Present phytoplankton counting practices cannot opti-
mally cope with various qualities of samples or different
goals of counting. Because an aggregated distribution of
specimens is common, and often technically unavoidable,
the deterioration of the quality of the results should
be compensated for by a proper counting procedure.
Our results suggest that confidence intervals derived from
parametric statistics can provide distribution independent
and reliable information on the quality of the results when
corrected by the empirical factor of 1.4.

In addition to how long the counting of each sample
or taxon should be continued to reach wanted confidence
intervals of abundance, dynamic counting has impor-
tant ramifications for the estimation of phytoplankton
biomass. It provides an unprecedented possibility to allo-
cate work effort so that the vast size and abundance range
of taxa can be taken into account. When necessary, any
taxon can be counted in its specific way. This 1s in striking
contrast with the paradigm that in routine counting a
fixed number of views or cells is assumed to produce
the most comparable results. Because of highly different
samples, it is not always the case. With an appropriate
counting program, complicated calculations are auto-
matic and there is no problem applying whatever mixture
of counting strategies within one sample without increas-
ing the work effort. We have successfully applied dynamic
counting for counting bacterioplankton and phytoplank-
ton (Salmi ¢t al., 2014) to adjust the quality of the results
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to the level necessary for the goal of the study during the
ongoing microscopy sessions, i.e. at the only time when it
is still possible.

Dynamic counting of phytoplankton allows the micro-
scopist to decide objectively how to balance work effort
between the quality of the results and available resources.
Thus, it can provide a universal and objective platform
suitable for any samples and targets. Future standardiza-
tion no longer needs to recommend how many counts (or
counted fields, etc.) are needed but rather what confidence
mtervals should be reached. We believe that dynamic
counting will be one of the greatest advances in micro-
scopic phytoplankton counting since the early pioneers
established the present settling chamber practices. Its
introduction would be quite straightforward, because the
creation of appropriate computer programs is not diffi-
cult.
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