
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Comparing interactive evolutionary multiobjective optimization methods with an
artificial decision maker

© 2021 the Authors

Published version

Afsar, Bekir; Ruiz, Ana B.; Miettinen, Kaisa

Afsar, B., Ruiz, A. B., & Miettinen, K. (2023). Comparing interactive evolutionary multiobjective
optimization methods with an artificial decision maker. Complex & Intelligent systems, 9(2),
1165-1181. https://doi.org/10.1007/s40747-021-00586-5

2023

Complex & Intelligent Systems
https://doi.org/10.1007/s40747-021-00586-5

ORIG INAL ART ICLE

Comparing interactive evolutionary multiobjective optimization
methods with an artificial decision maker

Bekir Afsar1 · Ana B. Ruiz2 · Kaisa Miettinen1

Received: 5 July 2021 / Accepted: 12 October 2021
© The Author(s) 2021

Abstract
Solving multiobjective optimization problems with interactive methods enables a decision maker with domain expertise
to direct the search for the most preferred trade-offs with preference information and learn about the problem. There are
different interactive methods, and it is important to compare them and find the best-suited one for solving the problem in
question. Comparisons with real decision makers are expensive, and artificial decision makers (ADMs) have been proposed to
simulate humans in basic testing before involving real decision makers. Existing ADMs only consider one type of preference
information. In this paper, we propose ADM-II, which is tailored to assess several interactive evolutionary methods and is able
to handle different types of preference information. We consider two phases of interactive solution processes, i.e., learning
and decision phases separately, so that the proposed ADM-II generates preference information in different ways in each of
them to reflect the nature of the phases. We demonstrate how ADM-II can be applied with different methods and problems.
We also propose an indicator to assess and compare the performance of interactive evolutionary methods.

Keywords Decision making · Preferences · Performance comparison · Many-objective optimization · Interactive methods

Introduction

Multiobjective optimization problems refer to optimizing
multiple conflicting objectives and arise in many application
areas such as engineering, economy, or industry. Usually, no
solution exists inwhich all objectives achieve their individual
optima at the same time. Instead, there exists a set of the so-
called Pareto optimal solutions, at which an improvement in
one objective is only possible at the expense of getting worse
values in, at least, one of the others. All Pareto optimal solu-
tions form the Pareto optimal set.

Pareto optimal solutions are mathematically incompara-
ble, so additional preference information, usually coming

B Bekir Afsar
bekir.b.afsar@jyu.fi

Ana B. Ruiz
abruiz@uma.es

Kaisa Miettinen
kaisa.miettinen@jyu.fi

1 University of Jyvaskyla, Faculty of Information Technology,
FI-40014 University of Jyvaskyla, Finland

2 Department of Applied Economics (Mathematics),
Universidad de Málaga, C/ Ejido 6, 29071 Málaga, Spain

from a decision maker (DM), who is an expert in the problem
domain, is required to identify the most preferred solution
(MPS) as the final solution. The role of theDM in the solution
process varies depending on the type of multiobjective opti-
mizationmethod [19]. In a priori methods, the DM expresses
her/his preferences before the solution process starts, while
in a posteriori methods, preferences are used in selection
once a representative set of Pareto optimal solutions has been
generated. On the contrary, solution processes with interac-
tive methods consist of iterations, where the DM is actively
involved by directing the searchwith preference information.
(S)he iteratively sees information about the solutions avail-
able, and expresses and fine-tunes or even changes her/his
preference information at each iteration until (s)he is satis-
fied with some of the solutions.

The main benefit of interactive methods is that the DM
can learn which types of solutions are feasible without deal-
ing with large amounts of data at once. At the same time,
(s)he can progressively adjust one’s preferences based on the
gained insight into the problem. Actually, in an interactive
solution process, we can often distinguish two phases [21]: a
learning phase, where the DM explores different solutions to
find a region of interest (ROI) formed by the Pareto optimal
solutions that satisfy her/him the most; and a decision phase,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00586-5&domain=pdf
http://orcid.org/0000-0003-3643-2342
https://orcid.org/0000-0003-0543-8055
https://orcid.org/0000-0003-1013-4689

Complex & Intelligent Systems

where (s)he fine-tunes the search within this ROI to select
her/his MPS.

Over the years, many interactive methods have been
proposed [18–20]. Among them, interactive evolutionary
multiobjective optimization (EMO) methods [4] are suitable
for problems with, e.g., discontinuous and non-differentiable
functions. EMO methods incorporate preference informa-
tion into an evolutionary process to generate a population
of solutions approximating the ROI best by reflecting the
given preferences [18,29]. To find a suitable method among
the many alternatives available, we must test and compare
different interactive methods to understand their potential to
fulfill different needs of the solution process successfully.
However, the quantitative assessment of interactive methods
involving real DMs is not a trivial task due to several rea-
sons [2,16].

It is expensive to involve many DMs with the appropriate
domain expertise to run a sufficient amount of tests. Nat-
urally, DMs learn about the problem during the interactive
solution process, and thus, the order in which methods are
applied affects their performance. To compensate for this,
we would need an even higher number of DMs. A survey
of published comparisons of interactive methods is given in
[2], where the need for characterizing desirable properties of
interactive methods is emphasized. Overall, the survey sup-
ports the need for improved means for comparing interactive
methods.

Overall, it is hard and time-consuming to design exper-
iments with human DMs to compare different interactive
methods due to their subjectivity, learning of the problem,
human fatigue, and other limiting factors. However, to some
degree, comparisons can be conducted without humans.
According to [26],we can divide interactivemethods intonon
ad-hoc and ad-hoc ones depending on whether a value func-
tion can be used to replace the DM or not, respectively. If the
preference information used in the method cannot be derived
from a value function, we need different means for assessing
interactive methods, and this is the focus of this paper. So-
called artificial DMs (ADMs) have been introduced in the
literature to replace the DM and run ad-hoc methods con-
veniently. However, they are suited for methods involving a
single type of preference information.

To thebest of our knowledge, there are only a fewADMs to
compare interactivemethods: [1,3,13,24]. The one suggested
in [13] simulates the learning of a DM by progressively nar-
rowing the angle of a cone, which is defined based on a
pre-defined MPS. In [3,24], ADMs are proposed for com-
paring reference point-based interactive methods (the former
directed at EMO methods). Both of them consist of a pre-
defined steady part that includes an aspiration point initially
set (formed by aspiration levels for the objectives), which
the solution process must converge to and which remains
unchanged, and a current context that evolves based on the

knowledge gained about the problem during the solution pro-
cess. Note that these ADMs are based on a goal point set
initially (anMPS in [13] and an aspiration point in [3,24]) and
their performance highly relies on this point. These ADMs
run each of the methods individually, which means that the
preferences used at each iteration with each of them are dif-
ferent, since they are generated based on the output of every
single method.

We focus here on ADMs for comparing interactive EMO
methods of ad-hoc type. We extend our previous ADM [1],
which was tailored to methods applying reference points, to
compare interactive EMO methods applying different types
of preference information. We call it ADM-II. Both ADMs
are designed to run all themethods to be compared simultane-
ously using similar preference information at each iteration.
Furthermore, these are the first ADMs that generate prefer-
ences depending on the phase (learning or decision) of the
interactive solution process to allow a better analysis of the
performance in each phase.

As said, the main novelty of ADM-II is its ability to gen-
erate different types of preference information, thus clearly
extending the scope of the existing ADMs. Besides a ref-
erence point, the following types of preferences can be
generated: selecting one or several preferred solution(s)
or non-preferred solution(s) among a set of alternatives,
specifying preferred ranges for the objective functions, and
performing pairwise comparisons among solutions. The
further novelty lies in the way preference information is gen-
erated in the decision phase (compared to [1]).

At each iteration, ADM-II generates preference informa-
tion based on the solutions obtained so far by all methods that
are compared. In this way, we adapt the preferences to the
insight gained during the solution process. To perform a fair
comparison, the same computational resources (i.e., number
of function evaluations or generations per iteration) are inter-
nally assigned to each interactive EMO method compared.

To evaluate the performance of a method, we must mea-
sure the quality of the solutions produced at each iteration
taking into account the preferences, and we propose a perfor-
mance indicator for this purpose. This indicator counts the
number of nondominated solutions which are in a composite
front consisting of the nondominated solutions of populations
of all compared methods. This composite front is updated,
while ADM-II is performing iterations. Our indicator mea-
sures the number of nondominated solutionswithwhich each
method has contributed to building the composite front. It
indicates the exploratory potential of each method and its
adaptation capacity to the changes in the preference infor-
mation in each phase. Furthermore, in the decision phase,
the quality (i.e., Pareto optimality) of the final MPS reached
can be evaluated using, e.g., an achievement scalarizing func-
tion [28], which provides a measurement of each method’s
convergence capability. It is important to note that the quality

123

Complex & Intelligent Systems

of the results obtained depends on the methods themselves,
not on ADM-II.

To summarize, our main contribution is proposing ADM-
II to provide a computational tool to gain deeper knowledge
about the performance of different interactive EMOmethods
without involving human DMs. This means that many repe-
titions can be done in stable conditions. Unlike [1], our ADM
is able to compare methods using different types of prefer-
ences, which has not been done earlier in the literature. Thus,
it can be used to test several interactive methods. We do not
claim that ADM-II can investigate all human biases that can
affect decision making, but ADMs provide good means for
finding viable candidate methods that can be further tested
with humans or directly applied to solve the problem in ques-
tion.

In addition, we demonstrate how ADM-II can be applied
by comparing some interactive EMO methods with a set of
benchmark problems with up to nine objectives. Besides the
new indicator, we also report the number of function eval-
uations used and apply a quality indicator developed for a
priori EMO methods.

The rest of the paper is organized as follows. We present
the background concepts of multiobjective optimization
in “Background concepts”. “Artificial decision maker for
interactive EMO” gives a detailed description of the pro-
posed ADM-II while, in “Computational experiments”, we
demonstrate the performance of ADM-II comparing several
interactive EMOmethods applying different types of prefer-
ence using benchmark problems. Finally, we conclude and
mention future research directions in “Conclusions”.

Background concepts

In general, amultiobjective optimization problem can be for-
mulated in the following form:

minimize { f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where fi : S → R are the k conflicting objective functions
(with k ≥ 2) to be optimized at the same time. The decision
vectors x = (x1, x2, . . . , xn)T belong to the feasible set S ⊂
R
n , whose images in the objective space, denoted by f(x) =

(f1(x), f2(x), . . . , fk(x))T , are called objective vectors.
Usually, the conflict degree among the objectives makes

it impossible to find a solution where all the objectives can
reach their individual optimum. Therefore, we are interested
in the so-called Pareto optimal solutions, at which no objec-
tive function value can be improved without impairing, at
least, one of the others. Given z1, z2 ∈ R

k , we say that
z1 dominates z2 if z1i ≤ z2i for all i = 1, 2, . . . , k and
z1j < z2j for, at least, one index j . If z1 and z2 do not dominate

each other, they are (mutually) nondominated. Furthermore,
a decision vector x∗ ∈ S is Pareto optimal if there does
not exist another x ∈ S, such that f(x) dominates f(x∗).
The corresponding objective vector f(x∗) is called a Pareto
optimal objective vector. The set formed by all Pareto opti-
mal solutions is called the Pareto optimal set, denoted by
E , and its image in the objective space is referred to as the
Pareto optimal front, denoted by PF. Since we deal here with
EMO methods, they cannot guarantee Pareto optimality, but
we deal with nondominated solutions approximating Pareto
optimal ones.

The ranges of the objective function values in the
PF are defined by the ideal and the nadir points. The
ideal point z� = (z�1, . . . , z

�
k)

T is obtained by z�i =
minx∈S fi (x) = minx∈E fi (x) (i = 1, . . . , k) and contains
the lowest objective function values. The nadir point znad =
(znad1 , . . . , znadk)T can be defined as znadi = maxx∈E fi (x)
(i = 1, . . . , k) and is formed by the highest (i.e., the worst)
objective function values between Pareto optimal solutions.
In practice, the nadir point is usually approximated, since its
computation is difficult as the set E is unknown (see, e.g.,
[9,19,27] and references therein). Alternatively, the DM can
also be asked for the worst possible objective function values
and consider them as the components of the nadir point.

There are different ways of expressing preferences [17,
19,25]. The options available for expressing preferences in
the ADM-II that we propose here are the following:

• Giving a reference point q = (q1, . . . , qk)T , where each
qi is a desirable aspiration value for the objective function
fi (i = 1, . . . , k).

• Selecting p (with p ≥ 1) solutions as the most preferred
ones among a set of solutions. Let us denote them by
PS1, . . . ,PSp.

• Selecting np (with np ≥ 1) solutions as the most non-
preferred (unacceptable) ones among a set of solutions.
Let us denote them by NPS1, . . . ,NPSnp.

• Specifying preferred ranges with desirable values for the
objective functions. We denote by [f li , f ui] the preferred
range for the objective function fi (i = 1, . . . , k). As a
result, the preferences are determined by a k-dimensional
hyper-box [f l1, f u1]×· · ·×[f lk , f uk] in the objective space.

• Performing pairwise comparisons of solutions, i.e., given
two solutions, the DM decides which one satisfies
her/him the most.

In the literature, there exists a plethora of interactive
methods for solving multiobjective optimization problems
(surveyed, e.g., in [4,18–20,29]). As mentioned in the intro-
duction, the solution process with interactive methods can
often be observed to have two phases aimed at different pur-
poses [21]. First, in the learning phase, the DM explores
the problem to learn about the conflict degree among the

123

Complex & Intelligent Systems

objectives and what kind of solutions are feasible reflect-
ing different preferences. At the end of this phase, an ROI is
identified according to the DM’s desires. Second, in the deci-
sion phase, (s)he further explores this ROI by progressively
fine-tuning her/his preferences to finally converge to her/his
MPS.

Artificial decisionmaker for interactive EMO

In this section, we describe the new ADM-II for comparing
the performance of interactive EMOmethods. Asmentioned,
ADM-II can handle various types of preference information
such as providing a reference point, selecting either the most
preferred or themost non-preferred solution(s) among a set of
alternative solutions, specifying desirable objective function
ranges, or performing pairwise comparisons. To compare the
methods in a meaningful way, all of them are run simultane-
ously using the same computational resources (i.e., number
of function evaluations or generations per iteration). If all of
the interactive methods being compared use the same pref-
erence type, ADM-II produces the preference information in
the same way for all methods. In case methods utilizing dif-
ferent types of preferences are compared, ADM-II generates
the preferences accordingly and produces the type of pref-
erence information each method expects, but the philosophy
underlying the generating procedure for the different types
is similar.

Internally, our ADM-II follows a different strategy to gen-
erate the preferences at the iterations of eachof the twophases
of the interactive solution process. In the learning phase,
it simulates an exploratory search in the objective space to
inspect possible solutions. To this aim, the preference infor-
mation for each iteration of this phase is generated in a way
that the search is oriented toward the least explored region of
the PF. At the last iteration of this phase, an ROI is found. In
the decision phase, the behavior of ADM-II pursues a finer
search within this ROI to find anMPS. Thus, at each iteration
of this phase, the preferences produced by ADM-II are gen-
eratedwithin the ROI to refine the solutions in it. The number
of iterations carried out in each phase is set at the beginning.
In what follows, we refer to the number of iterations in the
learning and the decision phases by L and D, respectively.
They are parameters of ADM-II.

To generate new preferences depending on the responses
of all the methods, ADM-II makes use of the solutions found
so far by allmethods included in the comparison.At each iter-
ation, the solutions generated by the methods are combined,
and a composite front is formed by deleting the dominated
ones, as can be seen in Fig. 1a. To be more specific, at each
iteration, the composite front is constituted by the nondom-
inated solutions generated so far by all the methods. It is

important to note that no information about the true PF is
required to generate new preferences.

The generation of preferences in ADM-II is based on
dividing the objective space into sub-areas. This is done fol-
lowing the philosophy of the so-called decomposition-based
EMOmethods (like [5]), although any other procedure allow-
ing us to have information about sub-areas of the PF can
also be used in ADM-II. EMO methods of this type usually
decompose the original problem into several sub-problems.
We use this idea to make a distinction between sub-areas of
the PF that have already been explored more or less (i.e., the
exploration degree of the different parts of the PF). Based
on this, we decide how to generate the preferences at each
iteration to guide the search for new nondominated solutions
toward a specific part of the PF.

Let us describe the algorithm designed to divide the com-
posite front into several sub-areas to identify the regions to be
explored at each iteration. Initially, ADM-II creates a set of
reference vectors uniformly distributed along the PF. To do
this, the canonical simplex-lattice design method [7] is used,
as suggested in [5,6]. In this method, the number of reference
vectors that are created is controlled by a lattice resolution,
which is given by

(l+k−1
k−1

)
, where l is a pre-fixed parameter.

Subsequently, at each iteration, ADM-II calculates the angles
between each solution in the composite front and each refer-
ence vector. Then, each solution is assigned to the reference
vector with the smallest angle. Figure 1b depicts an exam-
ple for a bi-objective problem, where two reference vectors
(V1 and V2) and three solutions (S1, S2 and S3) are shown.
Solution S1 is assigned to V1, given that the angle between
S1 and V1 (denoted by β) is smaller than the angle between
S1 and V2 (denoted by α). In the same way, S2 is assigned to
V1 and S3 is assigned to V2.

Once all solutions in the composite front have been
assigned to the reference vectors, ADM-II gets information
about the exploration degree of each region of the PF at the
current iteration by counting the number of assigned solu-
tions to each reference vector. The more solutions assigned
to a reference vector, the best explored the sub-area is, where
the reference vector lies. This information is conveniently
used in ADM-II to generate new preferences at each itera-
tion of the learning and decision phases depending on the
needs, as described in “Preference generation in the learning
and decision phases”.

ADM-II also considers how the interactive EMOmethods
compared reflect the preference information in the solutions
they produce. As described in “Performance evaluation”, it
employs performance indicators that internally consider the
preferences used along the iterations. Furthermore, cumu-
lative indicator values are also computed separately in the
learning and decision phases, since they allow us to evaluate
the performances of the methods in both phases. In addition,
we propose a new performance indicator, called contribution

123

Complex & Intelligent Systems

Fig. 1 Division of the PF internally performed in ADM-II

to CF, which is obtained as the number of nondominated
solutions each method has contributed to build/extend the
composite front along the iterations.

Algorithm 1 contains the main steps of ADM-II.

Algorithm 1 Main steps of ADM-II
Step 0: Initialize all methods and provide the first preferences ran-
domly.

Step 1: Run all methods with the same computational budget (number
of generations or function evaluations) and the previously generated
preferences.

Step 2: Build or update the composite front using the solutions obtained
by each method until this iteration.

Step 3: Evaluate the methods’ performances taking into account the
preferences used.

Step 4: Generate new preferences for the next iteration based on the
composite front and phase (learning or decision) of the iteration being
performed, according to the strategy designed for each preference
type:

a) In the learning phase, generate the new preferences for the least
explored area of the composite front. At the end of the learning
phase, identify the best explored area as the ROI.

b) In the decision phase, generate the new preferences within the
ROI identified at the end of the learning phase.

Step 5: If a termination criterion is met, terminate the process and cal-
culate cumulative indicator values for each phase. Else, continue with
Step 1.

Preference generation in the learning and decision
phases

As previouslymentioned, in the learning phase, themain pur-
pose of ADM-II is to explore the whole set of Pareto optimal
solutions. Therefore, it progressively inspects the sub-areas

of the PF that have been poorly covered so far. At each iter-
ation of this phase, a set of uniformly distributed reference
vectors on the composite front is first obtained, and the solu-
tions of the composite front are assigned to reference vectors,
as described before. Then, the least explored area of the com-
posite front is determined based on the reference vector that
has the lowest number of assigned solutions. ADM-II gen-
erates preferences for the next iteration to direct the search
for new nondominated solutions toward this region. In the
example of Fig. 2a, V2 would be selected as the vector defin-
ing the least explored area. It should be noted that ADM-II
does not consider the vectorswith no solutions assigned. This
prevents algorithms from being compelled to search for solu-
tions in areas where no solutions exist in the true PF. Once
the iterations corresponding to the learning phase have been
completed (until iteration L), ADM-II finds the reference
vector with the highest number of assigned solutions. Let us
refer to this vector as VD . The part of the PF where the vector
VD is located can be assumed to be the best explored area of
the composite front. Then, the ROI to be explored in detail at
the next D iterations (corresponding to the decision phase) is
formed by the solutions assigned to VD , and the preference
information is obtained at each iteration based on this vector.

As one can note, the way of generating the preference
information in both phases depends on the reference vector
selected. In what follows, we describe the strategy designed
to generate different types of preference information for the
two phases.

Giving a reference point

In the learning phase, the reference vector selected at each
iteration (identifying the least explored area) and the solu-

123

Complex & Intelligent Systems

Fig. 2 Reference point as preference information in ADM-II

tions assigned to this vector are used to find the location of
the new reference point. For this, the distances of these solu-
tions to the ideal point of the current composite front are
calculated, and the one with the minimum distance (denoted
by |d|) is identified. The next reference point is then located
on the selected reference vector according to this distance |d|.
Figure 2a graphically shows how the new reference point is
generated, which is denoted by q.

At the iterations of the decision phase, reference points
are generated to progressively converge toward the PF by
performing a finer search in the ROI identified at the end of
the learning phase to find anMPS. ADM-II finds the solution
assigned to the reference vector VD with the minimum dis-
tance |d| to the ideal point of the composite front. Then, |d|
allows us to generate the next reference point, as shown in
Fig. 2b. First, we obtain the point labeled as q̄ along the ref-
erence vector VD using |d|, and then, the new reference point
q is generated by applying a perturbation to each component
of this point. For the perturbation, the distance |d̄| between
q̄ and the nearest solution to q̄ from the composite front is
calculated, and then, each component of q is obtained as the
corresponding component of q̄ minus |d̄|. This way of pro-
ducing reference points in the decision phase assures that the
new reference point always dominates the previously gener-
ated points. In practice, this means that the reference points
generated in this phase get progressively closer to the ideal
point as the iterations are performed, since the solutions pro-
vided by themethods,which are used to update the composite
front, progressively converge to the PF.

It is noteworthy that theway of generating reference points
in the learning phase is similar to the procedure designed in
the previous ADM [1]. Nevertheless, in the decision phase,
the behavior of ADM-II for producing new reference points

is totally different from [1] (where the reference points gen-
erated in this phase always lie on the reference vector VD of
the ROI being explored).

Selecting the preferred solution(s)

At each iteration of the learning phase, the most preferred
solution(s) are selected among the solutions assigned to the
reference vector of the least explored area. First, the distance
of each solution to the ideal point of the current composite
front is calculated. Then, all the assigned solutions are ranked
in descending order according to their distances to the ideal
point, and the first p solutions are selected as the most pre-
ferred solutions PS1, . . . ,PSp. It may happen that ADM-II
has to find a higher number of preferred solutions than the
number of assigned solutions to the selected reference vector.
In this case, the reference vector of the second least explored
area is found, and ADM-II selects the necessary number of
preferred solutions from the solutions assigned to this vector,
in a similar way, based on their distances to the ideal point.

In the decision phase, ADM-II selects the most pre-
ferred solutions in a similar way, considering the solutions
assigned to the reference vectorVD (which represents the best
explored area at the end of the learning phase). If the number
of assigned solutions to VD is lower than the required number
of preferred solutions, the remaining preferred solutions are
the closest ones to VD based on the angle values, even if these
solutions are assigned to other reference vectors. Since the
purpose of ADM-II is to refine the search for solutions in the
ROI defined by VD , we provide the preference information
within this ROI and near to it if needed.

This preference generation in the learning phase is exem-
plified in Fig. 3a, where V3 is the vector representing the least

123

Complex & Intelligent Systems

Fig. 3 Selecting the p most preferred solutions as preference information in ADM-II

explored area (since it has the least number of assigned solu-
tions). If only one preferred solution is required by a method,
PS1 is the one selected given that it is the closest one to the
ideal point. If a method expects two preferred solutions, then
PS1 and PS2 are selected. If, e.g., four preferred solutions
have to be selected, as V3 has only two assigned solutions, the
reference vector V1 is found as the second least explored area.
Then, the remaining preferred solutions are chosen among
the ones assigned to V1 based on their distances to the ideal
point. In this case, besides PS1 and PS2, solutions PS3 and
PS4 are chosen as preferred solutions.

The behavior in the decision phase is shown in Fig. 3b.
If a method expects, e.g., four preferred solutions, ADM-II
selects the three solutions assigned to the reference vector of
the best explored area (V2 in this case), and the solution PS4
(even though it is assigned to V1), because it is the one with
the smallest angle to V2.

Selecting the non-preferred solution(s)

For finding non-preferred solutions, we follow a similar pro-
cedure to the previous one, but select the most unwanted
solutions, so that the methods would not converge to the
regions where unwanted solutions are. At each iteration of
the learning phase, ADM-II finds the reference vector of the
best explored area (with the highest number of assigned solu-
tions). Then, the non-preferred solutions are found among
the solutions assigned to this vector. In this way, in the learn-
ing phase, ADM-II avoids producing more nondominated
solutions in the best approximated area, so that the regions
with fewer solutions are emphasized. On the other hand, at
each iteration in the decision phase, ADM-II selects as the

non-preferred ones the solutions with the largest angles to
the reference vector VD representing the ROI that is being
explored. This means that ADM-II avoids selecting the solu-
tions outside the ROI or the furthest ones from VD .

Figure 4a represents a case where a method expects the
two most non-preferred solutions in the learning phase. As
shown, NPS1 and NPS2 are selected among the solutions
assigned to the vector V2 associated with the best explored
area.With this,ADM-II avoids gettingmore solutions around
V2 by selecting NPS1 and NPS2 as non-preferred solutions,
because the region where V2 is has already been explored. In
this way, ADM-II seeks to search for solutions from the least
explored areas, which is the purpose of the learning phase.
In Fig. 4b, the solutions selected in the decision phase are
shown. In this case, V2 is the vector that represents the ROI.
NPS1 and NPS2 are the furthest solutions from V2, based on
the angles to this vector, and ADM-II chooses them as the
two most non-preferred solutions.

Specifying preferred ranges

To generate preferred ranges for objective functions, first,
ADM-II generates a reference point q as indicated in “Giving
a reference point”, depending on the phase in question. Then,
the ranges are calculated at each iteration by perturbing the
components of q using the distance |d̄| of the nearest solution
of the composite front to q. That is, for every i = 1, . . . , k,
the desirable range for the objective function fi is defined as
[qi − |d̄|, qi + |d̄|], where qi is the component i of q. This
is illustrated in Fig. 5.

123

Complex & Intelligent Systems

Fig. 4 Selecting the np most non-preferred solutions as preference information in ADM-II

Fig. 5 Specifying desirable objective function ranges as preference
information in ADM-II

Performing pairwise comparisons

For pairwise comparisons, ADM-II compares the solutions
generated by each method in the following way. At each
iteration in the learning phase, the solution that is finally
chosen is the one with the minimum angle to the reference
vector of the least explored area. On the other hand, at each
iteration in the decision phase, from the two ones provided
by the method, the solution with the minimum distance to
the ideal point of the composite front is chosen.

Figure 6a illustrates the comparison of solutions in the
learning phase, where solution S1 is selected rather than S2,
since it has the smallest angle to V3 (which represents the

least explored area). In Fig. 6b, we show the behavior in the
decision phase. Between S1 and S2, ADM-II selects S2, since
it is closer to the ideal point.

Performance evaluation

To evaluate the performance of methods aimed at gener-
ating solutions reflecting preferences, it is not enough to
quantify the convergence (closeness to the PF) and diver-
sity (spread over the PF and uniformity among solutions)
among the nondominated solutions obtained. Basically, this
is the information that is assessed by commonly used per-
formance indicators of (a posteriori) EMO methods [15].
However, when preferences are considered, the performance
should also be assessed regarding the ROI defined by the
preferences.

Moreover, ideally, aspects in relation to the interaction
with the DM should also be considered to evaluate the
performance of interactive methods. Indeed, besides eval-
uating how well each method obeys the preferences (i.e., the
method’s ability to generate solutions reflecting the different
preferences), the quality of the solutions generated should be
measured differently in the two phases of the solution pro-
cess, since they have different goals. In the learning phase,
one should measure how well each method responses to the
given preference information at different parts of the PF; and
in the decision phase, how well the method converges when
exploring solutions within a specific ROI.

In the literature, we can find performance indicators for
EMO methods that incorporate preferences given a priori
(before the solution process starts) [12,14,23,30]. However,
to the best of our knowledge, quality indicators for measur-
ing the quality of the solutions found by interactive methods

123

Complex & Intelligent Systems

Fig. 6 Performing pairwise comparisons as preference information in ADM-II

are not available in the literature, and we propose a per-
formance indicator for this purpose here. This indicator is
named as contribution to CF, and it is aimed at evaluating
the contribution of each method being compared to build the
composite front. That is, our indicator quantifies the number
of nondominated solutions which each method has provided
for building the composite front. The more nondominated
solutions a method has contributed to forming the composite
front, the better the performance of this method is.

Note that the composite front is updated at each iteration,
and it is obtained by merging the nondominated solutions
produced by all the methods. Thus, this indicator offers an
insight into the exploratory potential of each method and its
capacity to adapt the search for new nondominated solutions
toward the area of the PF corresponding to the preferences
used (i.e., the responsiveness of each method for the gen-
erated preference information). Specifically, since ADM-II
generates preference information to explore different regions
of the PF during the learning phase, at the iterations of this
phase, the number of solutions provided by each method
to the composite front reflects its exploration potential. If
one method has contributed with a higher number of solu-
tions than other one(s), we could say that it has a better
exploration capability than the other(s). However, because
ADM-II focuses on finding better solutions in a specific ROI
during the decision phase, the method that provides more
solutions to the composite front in this phase has a stronger
convergence capability than the other(s). Furthermore, in the
decision phase, an achievement scalarizing function, such as
the one in [28], can be used to measure the quality of the final
solution(s) found by each method. This function projects the
final solution to the PF, and one can study the distance to
evaluate its closeness to the PF.

Additionally, ADM-II assesses the performance of all the
methods based on commonly used performance indicators as

follows. Let us denote bymi the value of a performance indi-
catorm at iteration i for a method. For each method, ADM-II
calculates the value of mi for the solution set obtained by
each method at each iteration i . When the solution process
has finished, cumulative indicator values are calculated for
all the methods to evaluate their performance for the learn-
ing and decision phases, separately. The performance in the
learning phase is evaluated as

∑L
i=1 mi , using the indicator

values until iteration L, while the one in the decision phase
is calculated as

∑L+D
i=L+1 mi , with the indicator values from

iteration L + 1 until the end.
Because of the way of generating preferences in the pro-

posed ADM-II, indicators developed for a priori reference
point-based EMO methods can be employed to measure the
performance of interactive methods based on some of the
preference types considered, like methods using preferred
ranges, because ADM-II internally produces a reference
point to generate this type of preferences (see “Specifying
preferred ranges”). We use the R-metric [14] that applies
regular performance indicators to measure the quality of a
set of solutions to approximate the ROI associated with a
reference point. Internally, a parameter � is employed to
control the size of the considered ROI. To be more specific,
we use the R-IGDmetric (i.e., R-metric using IGD), because
it allows quantifying both convergence and diversity of the
solutions and is computationally efficient for problems with
a high number of objectives. The lower the R-IGD value, the
better the quality of the solutions is to approximate the ROI.

Computational experiments

When it comes to choosing themost suited interactivemethod
for a specific problem, assessing and comparing the perfor-
mance of interactive methods are crucial. For this purpose,

123

Complex & Intelligent Systems

different experiments can be designed using our ADM-II
based on different needs. Here, we demonstrate its appli-
cability and usefulness to assess the performance of several
interactive EMO methods from different perspectives.

We have conducted two separate experiments. In the first
one, we use ADM-II to compare the performance of inter-
active reference point-based versions of the EMO methods
RVEA [5] andNSGA-III [8]. Themain purpose of this exper-
iment is to demonstrate the contributionsmade in comparison
to the previous ADM [1] in relation to the quality indica-
tors. Interactive RVEA (named as iRVEA) was proposed
in [11], and interactive NSGA-III (named as iNSGAIII)
has been implemented in a corresponding way. In the sec-
ond experiment, we compare iRVEA using preferred ranges
and reference points as preference information to illustrate
ADM-II’s ability to handle different types of preferences.
The Python implementations of the aforementioned meth-
ods and ADM-II are openly available under the DESDEO
framework [22] (https://desdeo.it.jyu.fi).

Experimental settings

In what follows, we describe the experimental settings for
the two experiments. We solved the DTLZ1-4 benchmark
problems [10] with 3–9 objectives (k), which implied a total
of 28 different problems. As recommended in [10], for each
problem, the number of decision variables was set as 10 +
k − 1. We provided the same computational budget to all the
methods: 100 generations per iteration. Besides, we used the
parameter values for iRVEA and iNSGAIII proposed in [5]
and [8], respectively.

We used the same parameter values in ADM-II as we
considered in [1] for the ADM proposed there. That is, the
number of iterations for the learning phase was L = 4, the
number of iterations for the decision phase D = 3, and the
lattice resolution 5. However, note that ADM-II can be easily
adapted to test different capabilities of interactive methods
according to the needs. If the method’s responsiveness for
learning purposes is to be assessed, the number of iterations
in the learning phase can be set to a high value. On the other
hand, if the purpose is to evaluate the convergence ability of
interactive methods, one can increase the number of itera-
tions in the decision phase. Furthermore, it is also possible
to apply ADM-II to test the methods in only one phase by
setting the number of iterations for the other one as zero. In
addition, ADM-II can be configured to run multiple phases
in different orders.We have conducted our experiments here,
so that the solution process begins with the learning phase
and continues with the decision phase, which is the typical
order followed in most real-world applications.

Last but not least, to apply the R-metric, we have to set a
value for the parameter �. We set � = 0.3 for the learning
phase and � = 0.2 for the decision phase, as suggested in

[1]. In the R-metric calculation, this parameter is utilized to
specify the ROI based on the reference point provided by the
DM and significantly affects the results. Therefore, we chose
a greater� for the learning phase, because theADM-II is still
exploring, and a slightly lower value for the decision phase,
because the ROI has already been found. However, there is
no widely accepted way to set � in the literature, and further
investigation and sensitivity analysis on this parameter are
required.

To ensure the reliability of the numerical results presented,
we performed 21 independent runs with ADM-II. We used
the same experimental settings for each experiment and each
problem.

Numerical results

As mentioned earlier, in addition to the R-IGD metric, we
evaluate the methods based on the new quality indicator con-
tribution to CF proposed in “Performance evaluation”. This
indicator helps understand the method’s responsiveness to
the provided preference information, which is generated in
ADM-II differently in both phases.

Even though we specified the same budget of 100 genera-
tions per iteration to all methods in the comparison, the actual
number of function evaluations varied among them due to the
way they internally handle populations of solutions. There-
fore, in addition toR-IGDand the proposed indicator, we also
show the number of function evaluations (denoted by FEs)
required by each method to comprehend the actual budget
utilized at every iteration. This information is crucial, since
it tells us more about the methods’ performance when we
combine it with the R-IGD results and the contribution to
CF. For example, if a method has a lower R-IGD value and
contributes with more solutions to build the composite front
using fewer function evaluations, this information indicates
that the method is preferable for that case.

As previously stated, we examine cumulative indicator
values for each phase, which means that we sum the results
of each iteration dedicated to the learning and decision
phases separately. Eventually, we list the mean and standard
deviations of the aforementioned indicator values of 21 inde-
pendent runs at the end of each phase.

iRVEA vs. iNSGAIII

In the first experiment, we compared iRVEAwith iNSGAIII,
both using reference points as preference information. Table
1 shows the mean and standard deviations of the results of
iRVEA and iNSGAIII for both phases (iterations 1–4 for the
learning phase, and iterations 5–7 for the decision phase) on
the DTLZ problems. To save space, we just show in Table 1
the results for 4, 7, and 9 objectives. The rest of the results

123

https://desdeo.it.jyu.fi

Complex & Intelligent Systems

Table 1 Cumulative results of the comparison of iRVEA and iNSGAIII

Problem k Phase R-IGD Contribution to CF FEs

iRVEA iNSGAIII iRVEA iNSGAIII iRVEA iNSGAIII

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

DTLZ1 4 Learning 2.426 0.153 2.418 0.132 94 99 442 74 123,402 21,742 192,000 0

Decision 2.071 0.359 2.059 0.349 273 79 358 4 136,582 6812 144,000 0

7 Learning 2.650 0.204 2.682 0.330 296 21 247 31 171,102 8327 235,200 0

Decision 2.005 0.200 2.093 0.200 266 3 141 74 172,995 5029 176,400 0

9 Learning 2.728 0.201 2.750 0.179 615 38 514 80 425,365 35,933 597,600 0

Decision 1.907 0.155 2.005 0.230 518 2 175 132 441,361 12,085 448,200 0

DTLZ2 4 Learning 0.418 0.289 0.199 0.167 285 35 478 4 119,035 16,010 192,000 0

Decision 0.554 0.540 0.247 0.273 188 114 346 6 85,133 56,111 144,000 0

7 Learning 1.198 0.532 0.602 0.116 246 75 334 4 132,682 30,634 235,200 0

Decision 1.210 0.200 0.543 0.454 134 116 245 3 92,069 77,792 176,400 0

9 Learning 0.657 0.419 0.536 0.233 579 115 650 12 379,611 84,929 597,600 0

Decision 2.061 1.908 0.949 0.419 371 220 490 6 310,989 179,610 448,200 0

DTLZ3 4 Learning 0.178 0.051 0.173 0.055 44 61 470 36 144,331 8773 192,000 0

Decision 0.185 0.415 0.079 0.041 268 86 358 3 126,203 29,540 144,000 0

7 Learning 0.450 0.214 0.457 0.165 269 26 217 31 195,078 11,585 235,200 0

Decision 0.222 0.091 0.324 0.109 259 12 78 34 173,449 12,571 176,400 0

9 Learning 0.610 0.307 0.857 0.464 475 69 495 46 411,815 76,073 597,600 0

Decision 0.327 0.136 0.960 0.807 432 111 225 63 343,458 94,103 448,200 0

DTLZ4 4 Learning 0.255 0.128 0.171 0.179 282 11 482 1 169,013 6052 192,000 0

Decision 0.636 0.437 0.617 0.430 336 8 356 2 142,216 2098 144,000 0

7 Learning 1.267 0.889 0.701 0.151 297 63 330 13 172,607 38,083 235,200 0

Decision 0.747 0.350 0.645 0.354 244 38 248 5 168,479 30,595 176,400 0

9 Learning 0.800 0.254 0.708 0.262 685 8 663 1 537,059 29,818 597,600 0

Decision 1.118 0.325 1.093 0.358 518 1 496 2 438,909 14,570 448,200 0

are available in Table 3 of the Appendix. We highlight the
best results in bold font in both tables.

Since we provided a fixed number of generations to both
methods, the number of function evaluations is proportional
to the population size. For iNSGAIII, there is no standard
deviation in the number of function evaluations, since its
internal procedure always assures the same population sizes,
and its total number of function evaluations varies depending
on the number of objectives of the problems. Because iRVEA
employs adaptive reference vector management, the popula-
tion size varies throughout the solution process, resulting in
a variation of the number of function evaluations.

In terms of DTLZ1 results, iRVEA performed better when
the number of objectives was high, and iNSGAIII had better
R-IGDvalues and contributedmore to building the composite
front with four objectives. However, it consumed more func-
tion evaluations. On the other hand, iRVEA outperformed
iNSGAIII in both R-IGD values and the number of solu-
tions contributing to the composite front for seven and nine

objectives. To attain this, iRVEA consumed fewer function
evaluations making its performance significantly better than
iNSGAIII. The same conclusions can bemade for theDTLZ3
problem.

The R-IGD values reached by iNSGAIII were better than
those of iRVEA for every DTLZ2 and DTLZ4 problem, but
it required a higher number of function evaluations. An inter-
esting observation can bemade for the nine-objectiveDTLZ4
problem. Despite the fact that iNSGAIII had higher R-IGD
values for both phases, iRVEA contributed more to the com-
posite front with fewer function evaluations.

These findings show that the quality indicators employed
serve a variety of purposes and complement one another. In
general, with iNSGAIII, a larger function evaluation budget
is required to ensure the quality of the solutions. On the other
hand, it appears that iRVEA is more efficient in terms of
budget utilization vs. contribution to the composite front.

123

Complex & Intelligent Systems

Table 2 Cumulative results of the comparison of reference point- and preferred range-based iRVEA

Problem k Phase R-IGD Contribution to CF FEs

iRVEA-RP iRVEA-Ranges iRVEA-RP iRVEA-Ranges iRVEA-RP iRVEA-Ranges

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

DTLZ1 4 Learning 2.762 0.096 2.896 0.152 210 114 177 108 157,746 6878 159,461 24,309

Decision 1.787 0.095 1.775 0.104 349 22 275 126 134,653 6757 167,615 3311

7 Learning 2.916 0.225 3.505 0.336 211 107 312 134 216,973 5618 256,392 21,765

Decision 2.035 0.375 2.025 0.336 200 57 185 142 180,099 5427 187,227 108,020

9 Learning 2.835 0.150 3.637 0.333 577 85 570 238 524,079 31,435 594,523 46,099

Decision 1.983 0.407 1.980 0.367 514 3 449 253 452,580 10,169 460,364 241,346

DTLZ2 4 Learning 0.564 0.421 0.710 0.476 257 99 208 97 100,852 34,106 102,171 43,516

Decision 0.997 0.792 0.879 0.838 131 135 59 59 62,446 61,676 59,605 69,507

7 Learning 0.486 0.216 0.940 0.343 248 62 276 87 136,385 37,755 184,031 45,542

Decision 1.155 1.565 0.897 1.369 177 109 166 99 122,086 73,071 177,301 93,222

9 Learning 0.528 0.274 0.908 0.213 510 142 423 221 341,056 112,124 389,291 180,654

Decision 2.909 2.381 1.562 1.444 222 215 397 231 172,533 162,562 358,663 204,173

DTLZ3 4 Learning 0.234 0.147 0.651 0.338 174 44 44 44 148,334 23,573 110,230 56,902

Decision 0.427 0.643 0.570 0.611 249 134 25 38 107,189 47,229 71,661 70,361

7 Learning 0.525 0.416 1.461 0.447 190 62 233 137 182,259 31,951 225,480 41,383

Decision 0.575 0.969 0.379 0.293 185 74 173 117 158,003 37,831 205,151 49,427

9 Learning 0.369 0.093 1.548 0.587 503 83 374 182 470,856 52,312 466,521 80068

Decision 0.658 0.544 0.330 0.248 323 217 296 150 275,755 184,561 471,451 173,463

DTLZ4 4 Learning 0.182 0.163 0.358 0.111 380 52 263 169 169,891 7496 116,161 56,912

Decision 0.268 0.342 0.313 0.364 318 13 127 40 141,123 3540 139,299 15,072

7 Learning 2.400 2.691 2.989 2.526 212 128 247 141 133,483 82,945 158,791 95,112

Decision 1.469 1.458 1.875 2.312 168 94 241 117 119,533 65,213 199,386 92,390

9 Learning 0.931 0.323 1.618 0.467 684 6 724 148 570,285 11,818 642,717 70788

Decision 0.743 0.346 0.539 0.509 515 3 462 155 446,762 13,336 510,922 59,213

iRVEA with reference points vs. preferred ranges

In the second experiment, we compared reference point-
based iRVEA (denoted by iRVEA-RP) and iRVEA using
preferred ranges (denoted by iRVEA-Ranges). The purpose
is to demonstrate the ability of ADM-II to handle different
types of preferences in the comparative study. The results are
summarized in Table 2. As in the previous experiment, we
report the results for 4, 7, and 9 objectives, while the remain-
ing results are available in Table 4 of the Appendix. In both
tables, we highlight the best results in bold font.

In relation to the R-IGD metric, we can see that iRVEA-
Ranges outperformed iRVEA-RP in the decision phase of
almost all the problems, while iRVEA-RP had better R-IGD
values in the learning phase of most of them. This means
that, on one hand, iRVEA-Ranges exploited and refined the
solutions better in the ROI than iRVEA-RP according to our
experimentwithADM-II. Besides, on the other hand, iRVEA
responded better to the drastic changes in the provided ref-
erence points than those in the provided preferred ranges.

Moreover, iRVEA-RP contributed more to the compos-
ite front than iRVEA-Ranges using slightly fewer function
evaluations in almost all cases, with a few exceptions. How-
ever, when iRVEA-Ranges contributed more solutions to
the composite front, it consumed more function evaluations
than iRVEA-RP. Therefore, a higher allocation of resources
is required to get better-qualified solutions using iRVEA-
Ranges.

With these experiments, we have demonstrated that the
preference generation in ADM-II and the quality indica-
tors introduced support comparing different perspectives of
interactive methods. Before applying interactive methods in
real-world applications, one can utilize our ADM to find
particular methods for various needs. For example, one can
apply iRVEA-RP to support the DM in exploring different
regions of the objective space, gaining insight into the prob-
lem, and understanding the feasibility of preferences. In this
experiment, we have seen that iRVEA-Ranges is more suit-
able to find better solutions in a specific ROI in the decision
phase. However, this was the case for DTLZ problems and

123

Complex & Intelligent Systems

the findings reached may differ in other problems, meaning
that some specific methods may be appropriate for specific
problems with different needs. It should be highlighted that
our intention is not to generalize our findings of methods
compared but rather demonstrate how to apply ADM-II in
various situations. Besides, our ADMdoes not alter the inter-
nal functioning of the interactive methods that are compared,
it just compares them by providing preference information
in a different manner for the learning and decision phases,
separately.

Conclusions

In this paper, we have proposed a novel artificial deci-
sion maker, ADM-II, to compare interactive EMO methods
without involving human DMs. As preference information,
ADM-II can generate reference points, preferred and non-
preferred solutions among a set of solutions, preferred ranges
for the objective functions, and pairwise comparisons. Thus,
it can be used to compare methods utilizing these types of
preferences. It generates preferences using a similar phi-
losophy to allow a fair comparison of interactive methods
handling different types of preference information. Besides,
ADM-II produces the preferences in different ways in the
learning and decision phases of interactive methods to reflect
their different goals in either exploring various solutions or
converging in the region of interest, respectively.

In addition, we have proposed a new performance indica-
tor. It counts howmany nondominated solutions eachmethod
contributes in building a composite front formed by non-
dominated solutions of all methods compared. This indicator
enables the evaluation of different capabilities of interactive
methods. Since the composite front is built and updated after
each iteration, this indicator informs about each method’s
responsiveness to the provided preference information.

Our two experiments have demonstrated the applicability
of ADM-II for different purposes. The benefits of the new
indicator, along with the R-IGD metric and the number of
function evaluations, were shown in the first experiment by
comparing two interactive methods using the same type of
preference information. Furthermore, a second experiment
was conducted to show the potential of ADM-II in generating
different types of preferences. Based on the results of these
experiments, we can say that ADM-II helps to understand
the methods’ ability to respond to the preference informa-
tion provided in the learning and decision phases. Before
involving a real DM in the solution process of real-world
problems, ADM-II can be applied with various candidate
interactive methods, even handling different types of pref-
erence information, and the most suited method(s) can be

found. It is also possible to select some methods based on a
particular preference type to gain insight into the problem in
the learning phase and then apply another method to find an
MPS in the decision phase.

Weusedfixedvalues for the number of iterations dedicated
to the learning and decision phases. In our future research,
we plan to make ADM-II adaptive, so that it automatically
decides when to switch from the learning phase to the deci-
sion phase and when to end the decision phase. Another
important future research topic is to develop new quality
indicators for measuring desirable properties of interactive
methods.

Acknowledgements The authors would like to express their gratitude
to Professor Francisco Ruiz for his helpful suggestions and comments
on this research. The authors would like to thank the financial sup-
port received from theSpanish government (Grant ECO2017-88883-R),
the regional government of Andalusia (Grant UMA18-FEDERJA-024
and PAI group SEJ-532), and the Academy of Finland (Grants 322221
and 311877). This work is related to the thematic research area Deci-
sion Analytic utilizing Causal Models andMultiobjective Optimization
(DEMO), https://jyu.fi/demo, at the University of Jyvaskyla.

Declaration

Conflicts of interest/competing interests Theauthors declared that they
have no conflicts of interest regarding the publication of thismanuscript.

Code availability The implementation of ADM-II in Python is openly
available under the DESDEO framework at https://desdeo.it.jyu.fi

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

We utilized the DTLZ1-4 problems with a number of objec-
tives ranging from 3 to 9 in the computational experiments.
The results of the comparison of the reference point-based
iRVEA and iNSGA-III methods and the comparison of the
reference point- and preferred range-based iRVEA methods
can be found in Tables 3 and 4, respectively. In both tables,
we highlight the best results in bold font.

123

https://jyu.fi/demo
https://desdeo.it.jyu.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems

Table 3 iRVEA vs. iNSGAIII: numerical results with 100 generations per iteration for the objectives ranging from 3 to 9

Problem k Phase R-IGD Contribution to CF FEs

iRVEA iNSGAIII iRVEA iNSGAIII iRVEA iNSGAIII

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

DTLZ1 3 Learning 2.502 0.091 2.470 0.119 5 10 418 5 77,863 5871 127,200 0

Decision 1.797 0.147 1.792 0.146 180 49 311 17 91,137 2744 95,400 0

4 Learning 2.426 0.153 2.418 0.132 94 99 442 74 123,402 21,742 192,000 0

Decision 2.071 0.359 2.059 0.349 273 79 358 4 136,582 6812 144,000 0

5 Learning 2.446 0.172 2.396 0.109 269 100 347 147 137,139 45,616 252,000 0

Decision 1.876 0.108 1.846 0.186 333 58 356 27 159,539 29,086 189,000 0

6 Learning 2.516 0.133 2.795 0.326 420 99 253 96 218,453 14,184 302,400 0

Decision 1.875 0.086 1.964 0.156 386 24 280 107 220,743 12,253 226,800 0

7 Learning 2.650 0.204 2.682 0.330 296 21 247 31 171,102 8327 235,200 0

Decision 2.005 0.200 2.093 0.200 266 3 141 74 172,995 5029 176,400 0

8 Learning 2.724 0.114 3.014 0.230 427 31 369 48 268,776 19,937 384,000 0

Decision 2.211 0.263 2.770 0.432 380 1 319 33 286,155 6493 288,000 0

9 Learning 2.728 0.201 2.750 0.179 615 38 514 80 425,365 35,933 597,600 0

Decision 1.907 0.155 2.005 0.230 518 2 175 132 441,361 12,085 448,200 0

DTLZ2 3 Learning 0.173 0.119 0.132 0.056 147 25 422 1 89,746 6321 127,200 0

Decision 0.271 0.492 0.067 0.035 176 65 312 4 68,667 24,823 95,400 0

4 Learning 0.418 0.289 0.199 0.167 285 35 478 4 119,035 16,010 192,000 0

Decision 0.554 0.540 0.247 0.273 188 114 346 6 85,133 56,111 144,000 0

5 Learning 0.949 0.487 0.499 0.398 280 91 501 3 126,647 30,617 252,000 0

Decision 0.766 0.751 0.318 0.332 159 141 364 5 74,435 62,600 189,000 0

6 Learning 0.512 0.324 0.337 0.048 443 80 498 4 202,037 45,378 302,400 0

Decision 0.412 0.269 0.386 0.251 345 50 369 6 191,934 39,591 226,800 0

7 Learning 1.198 0.532 0.602 0.116 246 75 334 4 132,682 30,634 235,200 0

Decision 1.210 0.200 0.543 0.454 134 116 245 3 92,069 77,792 176,400 0

8 Learning 0.680 0.306 0.517 0.076 409 117 469 5 247,429 70,769 384,000 0

Decision 0.458 0.162 0.483 0.243 288 78 349 7 195,865 68,138 288,000 0

9 Learning 0.657 0.419 0.536 0.233 579 115 650 12 379,611 84,929 597,600 0

Decision 2.061 1.908 0.949 0.419 371 220 490 6 310,989 179,610 448,200 0

DTLZ3 3 Learning 0.280 0.241 0.135 0.062 21 25 391 33 86,658 17,667 127,200 0

Decision 0.116 0.070 0.128 0.073 149 111 309 10 83,371 5569 95,400 0

4 Learning 0.178 0.051 0.173 0.055 44 61 470 36 144,331 8773 192,000 0

Decision 0.185 0.415 0.079 0.041 268 86 358 3 126,203 29,540 144,000 0

5 Learning 0.248 0.183 0.353 0.135 121 65 476 52 199,067 30,650 252,000 0

Decision 0.109 0.016 0.081 0.070 347 72 328 94 186,264 7447 189,000 0

6 Learning 0.372 0.046 0.473 0.193 346 70 333 83 231,555 8571 302,400 0

Decision 0.238 0.074 0.225 0.128 385 4 294 99 221,365 9023 226,800 0

7 Learning 0.450 0.214 0.457 0.165 269 26 217 31 195,078 11,585 235,200 0

Decision 0.222 0.091 0.324 0.109 259 12 78 34 173449 12571 176400 0

8 Learning 0.588 0.100 1.017 0.430 357 74 245 44 280,347 45,752 384,000 0

Decision 0.559 0.397 1.246 1.592 299 135 117 48 233,937 104,281 288,000 0

9 Learning 0.610 0.307 0.857 0.464 475 69 495 46 411,815 76,073 597,600 0

Decision 0.327 0.136 0.960 0.807 432 111 225 63 343,458 94,103 448,200 0

123

Complex & Intelligent Systems

Table 3 continued

Problem k Phase R-IGD Contribution to CF FEs

iRVEA iNSGAIII iRVEA iNSGAIII iRVEA iNSGAIII

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

DTLZ4 3 Learning 0.105 0.029 0.070 0.025 157 31 421 2 107,486 4066 127,200 0

Decision 0.085 0.047 0.077 0.040 222 29 307 6 89,427 3968 95,400 0

4 Learning 0.255 0.128 0.171 0.179 282 11 482 1 169,013 6052 192,000 0

Decision 0.636 0.437 0.617 0.430 336 8 356 2 142,216 2098 144,000 0

5 Learning 0.747 0.748 0.536 0.358 425 83 505 3 224,266 38,507 252,000 0

Decision 0.627 0.404 0.650 0.445 361 45 373 2 186,999 22,702 189,000 0

6 Learning 0.523 0.199 0.471 0.247 484 15 504 2 280,748 3146 302,400 0

Decision 0.554 0.462 0.519 0.460 385 2 376 3 230,480 1674 226,800 0

7 Learning 1.267 0.889 0.701 0.151 297 63 330 13 172,607 38,083 235,200 0

Decision 0.747 0.350 0.645 0.354 244 38 248 5 168,479 30,595 176,400 0

8 Learning 2.260 1.383 0.665 0.089 393 92 483 1 259,205 74,122 384,000 0

Decision 0.842 0.453 0.694 0.476 380 1 360 1 281,918 10,469 288,000 0

9 Learning 0.800 0.254 0.708 0.262 685 8 663 1 537,059 29,818 597,600 0

Decision 1.118 0.325 1.093 0.358 518 1 496 2 438,909 14,570 448,200 0

Table 4 iRVEA-RP vs. iRVEA-Ranges: numerical results with 100 generations per iteration for the objectives ranging from 3 to 9

Problem k Phase R-IGD Contribution to CF FEs

iRVEA-RP iRVEA-Ranges iRVEA-RP iRVEA-Ranges iRVEA-RP iRVEA-Ranges

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean std.

DTLZ1 3 Learning 2.473 0.106 2.604 0.196 150 69 34 52 102,132 11,138 72,373 31,324

Decision 1.859 0.216 1.873 0.203 292 48 64 46 91,521 2117 95,012 20,800

4 Learning 2.762 0.096 2.896 0.152 210 114 177 108 157,746 6878 159,461 24,309

Decision 1.787 0.095 1.775 0.104 349 22 275 126 134,653 6757 167,615 3311

5 Learning 2.780 0.117 2.977 0.180 302 86 234 135 214,526 23,343 225,120 20,445

Decision 2.106 0.241 2.103 0.239 358 59 291 148 189,002 5388 212,499 46,312

6 Learning 2.805 0.127 3.170 0.154 331 75 376 173 262,012 9682 288,029 32,166

Decision 1.959 0.332 1.961 0.291 384 17 352 155 220,375 7395 247,406 96,321

7 Learning 2.916 0.225 3.505 0.336 211 107 312 134 216,973 5618 256,392 21,765

Decision 2.035 0.375 2.025 0.336 200 57 185 142 180,099 5427 187,227 108,020

8 Learning 2.964 0.163 3.627 0.412 347 112 350 244 337,488 26,067 388,893 39,496

Decision 1.953 0.342 2.011 0.277 348 62 203 206 287,031 8905 220,664 189,815

9 Learning 2.835 0.150 3.637 0.333 577 85 570 238 524,079 31,435 594,523 46099

Decision 1.983 0.407 1.980 0.367 514 3 449 253 452,580 10,169 460,364 241,346

DTLZ2 3 Learning 0.195 0.207 0.362 0.195 204 56 62 62 89747 17,216 24,349 22,056

Decision 0.319 0.481 0.881 0.597 192 79 14 5 70,330 28,593 15,228 21,819

4 Learning 0.564 0.421 0.710 0.476 257 99 208 97 100,852 34,106 102,171 43,516

Decision 0.997 0.792 0.879 0.838 131 135 59 59 62,446 61,676 59,605 69,507

5 Learning 0.280 0.190 0.560 0.148 396 59 301 117 169,164 30,901 140,704 66,235

Decision 0.530 0.517 0.751 0.614 309 124 126 96 157,756 61,041 153,731 81,323

6 Learning 0.529 0.337 0.566 0.090 394 118 372 118 188971 62,602 205,655 71,323

Decision 1.689 1.849 1.414 1.583 269 162 242 129 159,317 94,462 195,966 100,939

123

Complex & Intelligent Systems

Table 4 continued

Problem k Phase R-IGD Contribution to CF FEs

iRVEA-RP iRVEA-Ranges iRVEA-RP iRVEA-Ranges iRVEA-RP iRVEA-Ranges

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean std.

7 Learning 0.486 0.216 0.940 0.343 248 62 276 87 136,385 37,755 184,031 45,542

Decision 1.155 1.565 0.897 1.369 177 109 166 99 122,086 73,071 177,301 93,222

8 Learning 0.476 0.267 0.784 0.285 362 55 335 142 209,208 36,673 224,348 104,465

Decision 2.458 2.049 0.969 0.424 182 140 385 180 127,167 99,390 322,144 108,602

9 Learning 0.528 0.274 0.908 0.213 510 142 423 221 341,056 112,124 389,291 180654

Decision 2.909 2.381 1.562 1.444 222 215 397 231 172,533 162,562 358,663 204,173

DTLZ3 3 Learning 0.188 0.237 0.649 0.440 88 44 16 14 91,701 9474 53,486 27128

Decision 0.213 0.305 0.172 0.175 175 102 27 31 71,843 33,198 61,302 41,075

4 Learning 0.234 0.147 0.651 0.338 174 44 44 44 148,334 23,573 110,230 56,902

Decision 0.427 0.643 0.570 0.611 249 134 25 38 107,189 47,229 71,661 70,361

5 Learning 0.464 0.174 1.094 0.667 175 84 155 156 185,903 28,649 140,813 77,061

Decision 0.223 0.291 0.533 0.402 283 113 94 128 157,741 49,214 81,671 93,460

6 Learning 0.707 0.451 1.079 0.273 224 109 157 118 205,280 44,914 209,504 56,752

Decision 0.272 0.120 0.432 0.409 293 85 117 106 171,301 37,604 192,897 114,324

7 Learning 0.525 0.416 1.461 0.447 190 62 233 137 182,259 31,951 225,480 41,383

Decision 0.575 0.969 0.379 0.293 185 74 173 117 158,003 37,831 205,151 49,427

8 Learning 0.732 0.418 1.548 0.675 323 51 260 189 288,271 35,718 354,430 79,190

Decision 0.710 0.873 0.482 0.773 190 154 180 104 154,163 123,620 272,603 125,257

9 Learning 0.369 0.093 1.548 0.587 503 83 374 182 470,856 52,312 466,521 80,068

Decision 0.658 0.544 0.330 0.248 323 217 296 150 275,755 184,561 471,451 173,463

DTLZ4 3 Learning 0.065 0.035 0.634 0.723 258 46 99 97 107,643 2929 50,189 28,180

Decision 0.097 0.052 0.157 0.081 251 19 80 34 90,690 1392 88,773 6430

4 Learning 0.182 0.163 0.358 0.111 380 52 263 169 169,891 7496 116,161 56,912

Decision 0.268 0.342 0.313 0.364 318 13 127 40 141,123 3540 139,299 15,072

5 Learning 0.777 1.239 0.834 0.699 433 109 410 129 212,099 57,517 208,734 63783

Decision 0.577 0.626 0.628 0.537 332 78 134 69 174,246 41,674 146,119 52,942

6 Learning 0.552 0.169 1.101 0.667 500 12 511 97 286,270 13,417 291,382 57,995

Decision 0.657 0.423 0.635 0.489 381 8 319 96 226,506 7408 259,833 11,953

7 Learning 2.400 2.691 2.989 2.526 212 128 247 141 133,483 82,945 158,791 95112

Decision 1.469 1.458 1.875 2.312 168 94 241 117 119,533 65,213 199,386 92,390

8 Learning 1.446 2.097 1.561 1.054 457 141 561 85 343,166 103,225 423,696 70,082

Decision 0.885 0.359 0.664 0.518 368 32 407 113 281,463 27,964 353,865 69,693

9 Learning 0.931 0.323 1.618 0.467 684 6 724 148 570,285 11,818 642,717 70,788

Decision 0.743 0.346 0.539 0.509 515 3 462 155 446,762 13,336 510,922 59,213

References

1. Afsar B, Miettinen K, Ruiz AB (2021) An artificial decision maker
for comparing reference point based interactive evolutionary mul-
tiobjective optimization methods. In: Ishibuchi H, Zhang Q, Cheng
R, Li K, Li H, Wang H, Zhou A (eds) Evolutionary multi-criterion
optimization, 11th international conference, EMO 2021, Proceed-
ings. Springer, pp 619–631

2. Afsar B, Miettinen K, Ruiz F (2021) Assessing the performance
of interactive multiobjective optimization methods: a survey. ACM
Comput Surv 54(4):85

3. Barba-González C, Ojalehto V, García-Nieto J.M, Nebro AJ, Miet-
tinen K, Aldana-Montes JF (2018) Artificial decision maker driven
by PSO: an approach for testing reference point based interac-
tive methods. In: Auger A, Fonseca CM, Lourenço N, Machado
P, Paquete L, Whitley D (eds) Parallel problem solving from
nature—PPSN XV, 15th international conference, Proceedings,
Part I. Springer, pp 274–285

4. Branke J, Deb K, Miettinen K, Slowinski R (eds) (2008) Multi-
objective optimization. Interactive and evolutionary approaches.
Springer, Berlin

123

Complex & Intelligent Systems

5. Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector
guided evolutionary algorithm for many-objective optimization.
IEEE Trans Evol Comput 20(5):773–791

6. Chugh T, Jin Y, Miettinen K, Hakanen J, Sindhya K (2018) A
surrogate-assisted reference vector guided evolutionary algorithm
for computationally expensive many-objective optimization. IEEE
Trans Evol Comput 22(1):129–142

7. Cornell JA (2011) Experiments with mixtures: designs, models,
and the analysis of mixture data. Wiley, New York

8. Deb K, Jain H (2013) An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part I: solvingproblemswith box constraints. IEEETrans
Evol Comput 18(4):577–601

9. Deb K, Miettinen K, Chaudhuri S (2010) Towards an estimation
of nadir objective vector using a hybrid of evolutionary and local
search approaches. IEEE Trans Evol Comput 14(6):821–841

10. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-
objective optimization test problems. In: 2002 congress on evolu-
tionary computation, Proceedings, pp 825–830

11. Hakanen J, Chugh T, Sindhya K, Jin Y, Miettinen K (2016) Con-
nections of reference vectors and different types of preference
information in interactive multiobjective evolutionary algorithms.
In: 2016 IEEE symposium series on computational intelligence,
Proceedings. IEEE, pp 1–8

12. HouZ,YangS,Zou J, Zheng J,YuG,RuanG (2018)Aperformance
indicator for reference-point-based multiobjective evolutionary
optimization. In: 2018 IEEE symposium series on computational
intelligence, Proceedings. IEEE, pp 1571–1578

13. Huber S, Geiger MJ, Sevaux M (2015) Simulation of preference
information in an interactive reference point-based method for the
bi-objective inventory routing problem. JMulti-CriteriaDecisAnal
22(1–2):17–35

14. LiK,DebK,YaoX (2018)R-metric: evaluating the performance of
preference-based evolutionary multiobjective optimization using
reference points. IEEE Trans Evol Comput 22(6):821–835

15. Li M, Yao X (2019) Quality evaluation of solution sets in multiob-
jective optimisation: a survey. ACM Comput Surv 52(2):26

16. López-Ibánez M, Knowles J (2015) Machine decision makers as a
laboratory for interactive EMO. In: Gaspar-Cunha A, Henggeler-
Antunes C, Coello CC (eds) Evolutionarymulti-criterion optimiza-
tion, 8th international conference, Proceedings, Part II. Springer,
pp 295–309

17. LuqueM, Ruiz F, Miettinen K (2011) Global formulation for inter-
active multiobjective optimization. OR Spectrum 33(1):27–48

18. Meignan D, Knust S, Frayret JM, Pesant G, Gaud N (2015) A
review and taxonomy of interactive optimization methods in oper-
ations research. ACM Trans Interact Intell Syst 5(3):171–1743

19. MiettinenK (1999)Nonlinearmultiobjective optimization. Kluwer
Academic Publishers, Boston

20. Miettinen K, Hakanen J, Podkopaev D (2016) Interactive nonlin-
ear multiobjective optimization methods. In: Greco S, Ehrgott M,
Figueira J (eds) Multiple criteria decision analysis: state of the art
surveys, 2 edn. Springer, pp 931–980

21. Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multi-
objective optimization: interactive approaches. In: Branke J, Deb
K, Miettinen K, Słowiński R (eds) Multiobjective optimization:
interactive and evolutionary approaches. Springer, Berlin, pp 27–
57

22. Misitano G, Saini BS, Afsar B, Shavazipour B, Miettinen K (2021)
DESDEO: Themodular and open source framework for interactive
multiobjective optimization. IEEE Access 9:148277–148295

23. Mohammadi A, Omidvar MN, Li X(2013) A new performance
metric for user-preference basedmulti-objective evolutionary algo-
rithms. In: 2013 IEEE congress on evolutionary computation,
Proceedings. IEEE, pp 2825–2832

24. Ojalehto V, Podkopaev D, Miettinen K (2016) Towards automatic
testing of reference point based interactive methods. In: Handl J,
Hart E, Lewis PR, López-IbánezM,OchoaG, Paechter B (eds) Par-
allel problem solving from nature—PPSN XIV, 14th international
conference, Proceedings. Springer, pp 483–492

25. Ruiz F, Luque M, Miettinen K (2012) Improving the computa-
tional efficiency in a global formulation (GLIDE) for interactive
multiobjective optimization. Ann Oper Res 197(1):47–70

26. Steuer RE (1986) Multiple criteria optimization: theory, computa-
tion and application. Wiley, New York

27. Szczepanski M, Wierzbicki AP (2003) Application of multiple
criteria evolutionary algorithm to vector optimization, decision
support and reference-point approaches. J Telecommun Inf Tech-
nol 3(3):16–33

28. Wierzbicki AP (1980) The use of reference objectives in multi-
objective optimization. In: Fandel G, Gal T (eds) Multiple criteria
decisionmaking, theory and applications. Springer, Berlin, pp 468–
486

29. Xin B, Chen L, Chen J, Ishibuchi H, Hirota K, Liu B (2018) Inter-
active multiobjective optimization: a review of the state-of-the-art.
IEEE Access 6:41256–41279

30. Yu G, Zheng J, Li X (2015) An improved performance metric for
multiobjective evolutionary algorithms with user preferences. In:
2015 IEEE congress on evolutionary computation, Proceedings.
IEEE, pp 908–915

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
	Abstract
	Introduction
	Background concepts
	Artificial decision maker for interactive EMO
	Preference generation in the learning and decision phases
	Giving a reference point
	Selecting the preferred solution(s)
	Selecting the non-preferred solution(s)
	Specifying preferred ranges
	Performing pairwise comparisons

	Performance evaluation

	Computational experiments
	Experimental settings
	Numerical results
	iRVEA vs. iNSGAIII
	iRVEA with reference points vs. preferred ranges

	Conclusions
	Acknowledgements
	Appendix
	References

