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Artificial	Intelligence	in	Protecting	Smart	Building’s	Cloud	Service	
Infrastructure	from	Cyberattacks	
	
	
Petri	Vähäkainu,	Martti	Lehto,	Antti	Kariluoto	and	Anniina	Ojalainen	
	
	
Abstract	Gathering	and	utilizing	stored	data	is	gaining	popularity	and	has	become	a	crucial	
component	of	smart	building	infrastructure.	The	data	collected	can	be	stored,	for	example,	
into	private,	public,	or	hybrid	cloud	service	infrastructure	or	distributed	service	by	utilizing	
data	platforms.	The	stored	data	can	be	used	when	implementing	services,	such	as	building	
automation	(BAS).	Cloud	services,	IoT	sensors,	and	data	platforms	can	face	several	kinds	of	
cybersecurity	 attack	 vectors	 such	 as	 adversarial,	 AI-based,	 DoS/DDoS,	 insider	 attacks.	 If	 a	
perpetrator	can	penetrate	the	defenses	of	a	data	platform,	she	can	cause	significant	harm	
to	 the	 system.	 For	 example,	 the	 perpetrator	 can	 disrupt	 a	 building’s	 automatic	 heating	
system	or	break	the	heating	equipment	by	using	a	suitable	attack	vector	for	a	data	platform.	
This	 chapter	 focuses	on	examining	possibilities	 to	protect	 cloud	storage	or	data	platforms	
from	 incoming	 cyberattacks	 by	 using,	 for	 instance,	 artificial-intelligence-based	 tools	 or	
trained	neural	networks	that	can	detect	and	prevent	typical	attack	vectors.	
	
	
Keywords	artificial-intelligence-based	applications	·artificial	intelligence	·cloud	service	·data	
platform	·attack	vectors	
	
	
1 Introduction	

Artificial	 intelligence	 is	a	major	buzzword	nowadays	and	 is	 considered	as	 the	new	“oil”	of	
the	future	with	the	potential	for	great	societal	impact.	AI	has	been	under	research	for	many	
decades,	and	it	was	originally	presented	as	a	novel	way	to	mimic	the	cognitive	functions	of	
the	human	brain.	AI	has	 the	capacity	 to	process	vast	amounts	of	data,	 it	has	 far-reaching	
applications,	 and	 it	 has	 been	 used	 in	 armed	 forces,	 construction,	 education,	 healthcare,	
space	exploration	and	transportation	around	the	world.	In	the	healthcare	sector,	AI	has	suc-	
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ceeded	 in	 providing	 accurate	 diagnoses	 to	 prevent	 skin	 cancer,	 treatment	
recommendations,	and	provided	surgical	aid.	In	the	field	of	smart	buildings,	AI	can	assist	in	
finding	anomalies	and	providing	future	forecasting	in	order	to	reduce	maintenance	costs.	

Artificial	intelligence	can	be	defined	as	a	system	that	thinks	and	acts	rationally	thinks	and	
acts	 in	 such	 a	 way	 as	 to	 mimic	 rational	 humanlike	 behavior	 (Deshpande,	 2008).	 AI	 is	 a	
combination	 of	 information	 technology	 and	 physiological	 intelligence,	 which	 can	 be	
computationally	 used	 to	 reach	 goals	 defined.	 Intelligence	 is	 the	 ability	 to	 think	 through	
memory	 formation,	 pattern	 recognition,	 adaptive	 decision-making	 and	 experimental	
learning.	 Artificial	 Intelligence	 can	make	machines	 behave	 like	 humans	 and	 even	 surpass	
them	in	efficiency.	(Lehto,	2015)	

Artificial	 intelligence	 can	be	 applied	 to	 a	 range	of	 fields,	 such	 as	 healthcare,	 predictive	
building	 maintenance,	 military	 and	 cybersecurity.	 Cybersecurity	 provides	 the	 means	 to	
access	 the	 data	 and	 the	 data	 stored	 on	 them.	 Effective	 cybersecurity	 controls	 provide	 a	
cyberspace	infrastructure,	which	is	reliable	and	resilient.	Lacking	or	absent	controls	lead	to	
an	 insecure	 cyberspace.	 According	 to	 Bayuk,	 Healey,	 Rohmeyer,	 Sachs,	 Schmidt	 &	Weiss	
(2012)	cybersecurity	applied	to	prevent,	detect	and	recover	from	damage	to	confidentiality,	
integrity,	 and	 availability	 of	 information	 in	 cyberspace.	 In	 order	 to	 use	 all	 these	 factors,	
people,	processes	and	technologies	are	utilized.	

Smart	 buildings	 can	 be	 seen	 as	 a	 cyber-physical	 system	 (CPS)	 in	 which	 smart	 sensors	
automatically	 measure	 usage,	 functions,	 and	 variables	 describing	 the	 state	 of	 a	 building	
(Schmidt	&	Åhlund,	2018).	Energy,	electricity,	and	water	consumption,	inside	temperature,	
humidity,	and	other	relevant	variables	are	examined	and	used	to	automatically	adjust,	 for	
instance,	the	heating	system	of	a	smart	building.	A	building	can	be	considered	smart,	even	if	
only	some	of	these	variables	are	measured.	

Cyber-physical	systems	provide	a	way	to	gather	relevant	data	through	smart	sensors.	The	
data	has	 to	be	stored	privately,	 securely,	and	 it	has	 to	be	available.	Cloud	services	enable	
data	replication	and	strategic	storage	on	multiple	servers	spread	across	various	geographical	
locations	 (Shahapure	&	Jayarekha,	2015).	Replication	 improves	data	availability,	 reliability,	
and	 ensures	 fault	 tolerance.	 Smart	 services,	 such	 as	 AI-assisted	 data-intensive	 automatic	
heating	 adjustment	 system,	 can	 be	 developed	 using	 the	 stored	 data.	 In	 order	 for	 such	
services	 to	work,	 they	need	working	business	models	and	replication	 functions	 to	operate	
globally.	

Cybercriminals	 are	 constantly	 looking	 for	 new	 ways	 to	 exploit	 vulnerabilities.	 Data	
gathered	and	stored	 into	cloud	storage,	or	distributed	data	platforms	need	to	be	secured.	
Cybercriminals	 today	are	able	 to	 leverage	 sophisticated	attack	 vectors,	 including	artificial-
intelligence-based	 attacks,	 in	 determining	 exploitable	 vulnerabilities.	 These	 days,	
cybercriminals	 can	 utilize	 even	 more	 sophisticated	 attack	 vectors	 such	 as	 artificial	
intelligence-based	 attacks	 in	 looking	 for	 vulnerabilities	 they	 can	 exploit.	 An	 insider	 threat	
can	be	a	significant	threat	to	the	system.	An	insider	threat	causes	one	of	the	most	 if	even	
the	most	significant	threat	to	the	system.	A	malicious	insider	familiar	with	an	organization’s	
security	 practices,	 data,	 and	 computer	 systems	 can	 circumvent	 security	 controls	 to	 gain	
access	to	the	system	and	the	data.	This	motivates	the	need	to	research	novel	ways	to	detect	
exploitable	vulnerabilities	and	prevent	these	high-risk	cyberattacks.	

IoT	devices	can	be	used	for	the	collection	of	data	to	be	stored	on	cloud	services.	Artificial	
intelligence	 and	machine	 learning	 can	be	used	 in	 optimizing	 data	 usage	 efficiency.	 This	 is	
why	 this	 chapter	 is	 organized	 as	 follows:	 Section	 2	 examines	 the	 basics	 of	 artificial	
intelligence	 and	 machine	 learning.	 Section	 3	 deals	 with	 the	 basics	 of	 cyberspace	 and	
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cybersecurity.	Section	4	 introduces	smart	buildings	and	services.	Section	5	examines	cloud	
services	 and	 data	 platforms.	 Section	 6	 presents	 common	 cloud	 vulnerabilities	 and	 attack	
vectors,	including	DoS	and	DDoS	attacks,	IoT	based	attacks,	and	insider	threats.	These	attack	
vectors	were	 selected	because	 they	 came	up	 repeatedly	 in	 scholarly	 sources.	 In	 addition,	
these	 vectors	 are	 both	 related	 to	 smart	 homes	 and	 cloud	 services.	 Section	 7	 discusses	
countering	cloud	cyberattacks	and	section	8	concludes	the	chapter.	
	
2 Artificial	intelligence	and	machine	learning	

Artificial	intelligence	(AI)	and	machine	learning	(ML)	are	disciplines	with	algorithms	capable	
of	 learning	 representations	 from	 data.	ML	 is	 a	 subset	 of	 AI	 (Nicholson).	ML	 contains	 the	
research	 areas	 of	 deep	 learning	 (DL)	 and	 deep	 reinforcement	 learning	 (DRL).	 Relations	 of	
these	 fields	 can	be	 seen	 as	 overlapping	 circles.	 AI	 refers	 to	 systems	 that	 simulate	 human	
behavior.	ML	refers	to	systems	capable	of	adapting	themselves	based	on	the	situation.	DL	
refers	to	the	actual	size	of	structure	of	the	ML	model.	This	applies	to	DRL	as	well,	but	DRL	is	
mainly	known	for	how	the	ML	model	learns.	Learning	is	based	on	an	action-feedback	loop.	

Artificial	Intelligence	is	used	in	cases	which	humans	consider	time-consuming	or	tedious,	
or	when	an	AI	model	can	be	trained	faster	than	programming	an	explicit	solution.	Tasks	in	
which	 AI	 and	ML	 algorithms	 have	 succeeded	 particularly	 well	 include	 image	 recognition,	
image	 classification,	 image	 generation,	 and	 natural	 language	 processing.	 They	 have	 also	
been	used	 for	 social	media	monitoring,	marketing,	 predictive	health	monitoring,	 robotics,	
fraud	 detection	 (appliedAI,	 2019).	 Burnap	 and	Williams	 (2015)	 used	ML	 for	 hate	 speech	
detection	from	Twitter	and	Zhao,	Zhong,	Zhang,	&	Su	(2016)	used	artificial	neural	networks	
(ANN)	to	predict	building	energy	usage.	

One	common	feature	among	these	 types	of	models	 is	 the	need	to	 train	 the	algorithms	
that	need	to	be	trained	(such	as	supervised	learning)	first	before	the	actual	use.	Supervised,	
unsupervised,	and	DRL	methods	are	used	widely.	Supervised	methods	refer	to	cases	where	
there	are	pre-labeled	data	for	the	training	of	the	algorithm.	Unsupervised	refers	to	cases	in	
which	 the	 ML	 algorithm	 estimates	 these	 labels	 itself.	 DRL	 is	 a	 special	 case	 of	 training	
algorithms	because	 it	uses	 feedback	 in	order	 to	 learn	and	that	 feedback	can	come	from	a	
human	expert	or	from	the	surrounding	system.	

In	 general,	 algorithmic	 learning	happens	based	on	data	 inputs	 and	 the	desired	output.	
Therefore	these	can	be	abstracted	into	a	functional	representation:	f(input)	=	output.	In	the	
case	of	neural	networks	(NN),	which	are	extremely	popular	in	ML	and	AI	research,	when	the	
algorithm	 learns,	 the	 training	changes	hidden	values	based	on	 the	 results	of	an	activation	
function	 for	 each	 node	 of	 the	 neural	 network.	 Training	 continues	 until	 the	 model	 has	
reached	a	sufficient	 level	of	accuracy.	Accuracy	 is	calculated	with	the	minimizing	function,	
which	 calculates	 the	 differences	 of	 predictions	 of	 the	 ML	 algorithm	 and	 the	 given	 true	
values.	

According	to	Ghahramani	(2015),	training	these	algorithms	means	that	they	learn	models	
that	represent	part	of	the	data	or	the	behavior	of	the	data.	Another	common	feature	is	that	
AI	 solutions	 tend	 to	 be	 data-intensive	 systems.	 For	 example,	 using	 the	 NSL-KDD	 dataset	
Potluri	&	Dietrich	 (2016)	 trained	 their	DNN	model	 in	parallel	 to	accelerate	 the	 learning	of	
different	attack	types.	They	did	not	have	enough	data	for	all	attack	types,	which	resulted	in	
decreased	 classification	 performance	 on	 those	 attack	 types.	 In	 order	 to	 perform	well,	 DL	
models	tend	to	need	 lots	of	quality	data	and	GPU	time.	Currently,	 there	 is	a	trend	among	
researchers	to	find	ways	to	lessen	the	number	of	data	samples.	
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3 Cyber	space	and	cyber	security	

The	word	 Cyber	 comes	 from	 the	Greek	word	 κυβερεω	 (kybereo),	which	means	 to	 direct,	
guide,	and	control.	Cyber	 refers	 to	 the	digital	world,	which	 includes	 the	surroundings	and	
being	 present	 in	 our	 daily	 lives.	 In	 the	 year	 1984,	 William	 Gibson’s	 Neuromancer	 novel	
connected	 the	words	 ”cyber”	 and	 ”space.”	 Defining	 cyberspace	 is	 still	 a	 challenging	 task.	
Cyberspace	 is	 described	 in	 United	 States	 Cyberspace	 Policy	 Review	 as	 an	 interdependent	
network	 of	 information	 technology	 infrastructures	 and	 includes	 the	 internet,	
telecommunications	network,	computer	systems,	and	embedded	processors	and	controllers	
in	 critical	 industries.	 Typical	 usage	 of	 the	 term	 also	 refers	 to	 the	 virtual	 environment	 of	
information	and	interactions	between	people.	(Cyberspace	policy	review)	Based	on	literacy	
review	 cybersecurity	 can	 be	 connected	 to	 cyberspace	 as	 follows:	 ”cybersecurity	 is	 the	
organization	 and	 collection	 of	 resources,	 processes,	 and	 structures	 used	 to	 protect	
cyberspace	and	cyberspace-enabled	systems	from	occurrences	that	misalign	de	jure	from	de	
facto	property	rights”	(Craigen,	Diakun-Thibault	&	Purse,	2014).		

There	is	no	universally	accepted	definition	of	cybersecurity,	but	the	term	is	broadly	used	
in	literacy.	Even	though	there	is	no	universal	definition	of	cybersecurity,	a	description	of	the	
word	 should	bind	human	and	 information	 system	component	 together.	Cybersecurity	 can	
be	 defined	 as	 a	 range	 of	 actions	 taken	 in	 defense	 against	 cyberattacks	 and	 their	
consequences	 and	 includes	 implementing	 the	 required	 countermeasures.	 Cybersecurity	 is	
built	on	the	threat	analysis	of	an	organization	or	institution.	The	structure	and	elements	of	
an	 organization’s	 cybersecurity	 strategy	 and	 its	 implementation	 program	 is	 based	 on	 the	
estimated	threats	and	risk	analyses.	In	many	cases,	it	becomes	necessary	to	prepare	several-
targeted	cybersecurity	strategies	and	guidelines	for	an	organization.	(Lehto,	2015,	3	-	29.)		

European	 commission	 defined	 cybersecurity	 in	 the	 Cybers	 Security	 Strategy	 of	 the	
European	Union	as	the	safeguards	and	actions	that	can	be	used	to	protect	the	cyber	domain	
both	 in	 the	 civilian	 and	 military	 fields,	 from	 those	 threats	 that	 are	 associated	 with	 its	
interdependent	 networks	 and	 information	 infrastructure	 or	 that	 may	 harm	 them.	
Cybersecurity	 strives	 to	 preserve	 the	 availability	 and	 integrity	 of	 the	 networks,	
infrastructure,	and	the	confidentiality	of	the	information	contained	therein.	(EUR-Lex)		

Original	 Martin	 C.	 Libicki’s	 model	 of	 cyberspace	 consisted	 of	 a	 three-layer	 model:	
semantic,	syntactic,	and	physical.	We	created	and	enhanced	our	unique	Libicki’s	model	by	
adding	 the	 cognitive	and	 the	 service	 layer	 into	 the	original	 Libicki’s	model	 for	 it	 to	better	
describe	 the	 cyber	 environment	 concerning	 a	 smart	 building	 concept	 discussed	 in	 this	
chapter.	

The	 physical	 layer	 is	 the	 first	 layer,	 which	 consists	 of	 physical	 components	 of	 an	
information	 network.	 The	 physical	 layer	 includes	 all	 the	 equipment	 necessary	 to	 send,	
receive,	 store,	 and	 interact	 with	 and	 through	 cyberspace.	 The	 hardware	 and	 devices	
concerned	are	e.g.,	cables,	 routers,	 switches,	 transmitters,	 receivers,	computers,	and	hard	
disks.	The	layer	acts	as	a	bridge	between	the	physical	layer	and	the	syntactic	layer.		

The	 syntactic	 layer	 uses	 protocols	 and	 software	 to	 send,	 receive,	 store,	 format,	 and	
present	gathered	data	through	the	physical	layer.	The	syntactic	layer	divides	into	sub-layers	
by	 using,	 for	 example,	 OSI-model	 (Open	 System	 Interconnection).	 The	 syntactic	 layer	 is	
responsible	for	interaction	between	the	devices	connected	to	the	network.	

The	 semantic	 layer	 contains	 all	 the	 information	 and	 gathered	 datasets	 from	 smart	
building’s	IoT	sensors	and	stores	them	into	data	storage,	such	as	data	warehouses,	located	
on	 cloud	 services	 (data	 platforms).	 All	 the	 data	 stored	 needs	 to	 be	 secure,	 and	 current	



5 
 

 
 

information	 security	 goals	 should	 be	 followed.	 Those	 information	 security	 goals	 being:	
confidentiality,	 integrity,	 availability	 of	 information,	 authenticity,	 accountability	 and	 non-
repudiation,	and	reliability.	(BS	ISO/IEC	27002,	2013)	

The	 service	 layer	 includes	 digital	 smart	 services	 that	 implement	 data	 gathered	 from	
smart	 building’s	 IoT	 sensors.	 Digital	 smart	 services	 can	 be,	 for	 example,	 smart	 lock,	
automatic	heating	adjusting	system,	snowplowing	service,	or	digital	caretaker.	The	service	
layer	also	includes	information	security	and	data	management	services.	

The	cognitive	layer’s	meaning	is	to	provide	an	environment	to	understand	visualized	and	
analyzed	 information.	 The	 information	 considered	 is	 beneficial	 for	 decision-makers	 who	
build	 and	maintain	 smart	 buildings.	On	 the	 cognitive	 layer,	 information	 gathered	 is	 being	
analyzed	to	form	a	contextual	understanding	of	information	for	a	decision-maker.	
 

	

Fig.	1	Libicki’s	model	of	Cyberspace	(modified	by	authors)	

4 Smart	buildings	and	services	

There	 are	 several	 types	 of	 smart	 buildings,	 such	 as	 smart	 homes,	 smart	 airports,	 smart	
hospitals,	 smart	 factories.	 For	 example,	 Alam,	 Reaz,	&	Ali	 (2014)	 define	 smart	 home	 as	 a	
home	that	has	sensors	and	appliances,	which	communicate	with	each	other	and	the	smart	
meter	 that	continuously	pushes	and	receives	 information	to	and	 from	the	smart	grid.	The	
Smart	grid	forms	from	the	union	of	 information	and	communication	technologies	with	the	
traditional	 power	 grid	 (Iyer	 &	 Agrawal,	 2010).	 This	 information	 transfer	 is	 intended	 to	
minimize	power	consumption.	

Authors	 define	 smart	 buildings	 loosely	 as	 buildings	 that	 have	 devices	 for	 energy	
consumption	optimization	of	the	structure	while	using	sensors	to	gather	data	of	the	building	
conditions	 and	 actuators	 to	 maintain	 building	 conditions	 at	 an	 acceptable	 level	 for	 all	
inhabitants	 using	 some	 guiding	 method	 that	 could	 be	 perceived	 intelligent,	 such	 as	 AI.	
Devices	and	applications	can	be	the	Internet	of	Things	(IoT)	devices	and	operate	under	many	
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different	 protocols,	 such	 as	 BTLE,	 PaaS	&	 IaaS,	 ZigBee,	 SFP.	 These	buildings	 are	meant	 to	
protect	 both	 inhabitants	 and	 IoT	 devices	 against	 elements	 of	 nature.	 Smart	 buildings	 can	
include	a	multitude	of	sub-systems,	such	as	smart	homes,	and	altering	energy	sources	and	
energy	source	combinations	since	some	of	them	might	be	energy	producers	and	consumers	
simultaneously.	 For	 example,	 Nagpal,	 Basu,	 &	 Staino	 (2018)	 suggested	 a	 concept	 of	
cooperative	 energy	 consumption	 optimization	 for	 use	 with	 buildings.	 They	 showed	 that	
building	automation	systems	(BAS)	could	be	used	together	for	a	cluster	of	buildings	with	the	
results	 leading	 to	 up	 to	 15	 percent	 reduction	 of	 energy	 consumption.	 On	 a	 similar	 note,	
Wang,	Lee	&	Yuen	(2018)	trained	an	ensemble	model	for	dynamic	short-term	cooling	load	
forecasting	of	a	building.		

Smart	 buildings	 are	 also	 cyber-physical	 (CP)	 systems	 that	 combine	 both	 the	 physical	
aspects	 of	 the	 building	 and	 cyber	 (virtual)	 aspects	 of	 the	 cloud-based	 solution.	 Physical	
attributes	include	building,	sensors,	and	actuators	(Legatiuk	et	al.,	2018).	Building	functions	
as	 the	 frame	 of	 the	 system,	 providing	 a	 place	 to	 integrate	 sensors	 and	 actuators	 while	
protecting	these	devices	against	weather	conditions	and	manipulation.	Sensors	gather	data	
from	 surroundings,	 which	 include	 the	 building	 itself.	 Actuators	 are	 devices	 that	 given	 a	
command	they	produce	an	action,	which	alters	device	settings	and	causes	some	change	in	
the	structure	eventually.	In	the	CP	system,	cyber	refers	to	making	decisions	in	the	cloud.	It	
can	use	knowledge	of	previous	measurements	and	calculation	 results	as	well	 as	 the	most	
current	measurements	from	the	sensors.	It	calculates	new	commands	for	the	actuators.	

Smart	 buildings	 and	 their	 sub-systems,	 such	 as	 structural	 health	 monitoring	 (SHM)	
systems	and	IoT	-based	devices,	should	be	made	to	follow	similar	guidelines	as	CP	systems	
since	 this	could	 improve	 the	gathering	and	utilization	of	data.	According	 to	Abate,	Budde,	
Cauchi,	Hoque,	&	Stoelinga	(2018),	high	reliability,	availability,	maintainability,	and	safety	–
standards	are	necessary.	Jiang	(2018),	although	having	a	focus	on	smart	factories,	suggests	
an	8C	architecture	or	guideline	for	CP	systems	as	an	improvement	for	design	known	as	5C	
architecture,	 those	 8	 Cs	 being	 connection,	 conversion,	 cyber,	 cognition,	 configuration,	
coalition,	 customer,	 and	 content.	 The	 last	 three	 Cs	 are	 providing	 more	 room	 for	 mass	
production	and	customization.		

For	collecting	data,	Legatiuk	et	al.	(2018)	recommend	that	these	kinds	of	systems	should	
be	 recorded	 mathematically.	 Sensors	 of	 the	 buildings	 or	 target	 structures	 ought	 to	 be	
modeled	mathematically	together	with	corresponding	measured	data.	These	should	then	be	
further	formulated	to	cover	also	sensor	groups	and	groups	of	sensor	groups.	This	approach	
comes	with	the	benefit	of	being	general	but	also	mathematically	precise.	On	the	downside,	
this	method	does	not	 provide	 suitable	 information	 for	 every	use	 case.	However,	Wang	&	
Srinivasan	(2017),	note	that	not	all	AI	approaches	need	a	high	level	of	structural	information	
about	 the	 building.	 Abate	 et	 al.	 (2018)	 suggest	 using	 fault	management	 trees	 (FMT)	with	
smart	building	maintenance	since	they	are	dynamic	event	trees	easing	the	decomposing	of	
fault	modes	of	the	system.	

Unused	data	has	 little	value.	Services	 that	utilize	 IoT,	wearable	devices,	portions	of	Big	
Data,	 and	 AI	 -based	 systems	 to	 ease	 the	 handling	 of	 the	 above-mentioned	 Big	 Data	 to	
provide	continuous,	 traceable,	and	preemptive	services	 for	customers	can	be	called	smart	
services.	These	services	are	often	novel.	

On	the	one	hand,	with	smart	buildings	and	smart	homes,	it	is	well	advised	to	consider	the	
physical	 aspects	 of	 possible	 services.	 For	 example,	 when	 considering	 smart	 services	 for	
smart	building	energy	usage	 control,	 Byun	&	Park	 (2011)	brought	 forth	 three	main	 issues	
with	 smart	 services	at	 the	 time:	 services	were	centralized	which	can	 lead	 to	performance	
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issues,	 fixed	 rule-based	 control	 is	 not	 necessarily	 capable	 of	 handling	 complex	 situations,	
and,	 lastly,	physical	parts	have	different	 lifetimes	and	sensor	nodes	 tend	 to	die	out.	Their	
proposed	 solution	was	 a	 self-adapting	 intelligent	 system	 that	 had	 been	 designed	 to	 have	
distributed	devices,	which	 could	 alter	 their	 functioning	based	on	measurements	 from	 the	
building,	 environment,	 and	 users.	 With	 a	 decentralized	 adaptive	 control	 system,	 it	 was	
possible	 to	 handle	 also	 the	 problem	 of	 dying	 batteries.	 On	 the	 other	 hand,	 transforming	
data	 into	 information	can	be	vital	 for	services.	For	example,	Dao,	Pongpaichet,	 Jalali,	Kim,	
Jain	 &	 Zettsu	 (2014)	 proposed	 a	 system	 based	 on	 cloud	 computing	 called	 EvIM	 that	
comprised	 both	 gathering	 data	 and	 using	 it	 for	 different	 services.	 The	 proposal	 made	 it	
possible	 to	 unite	 CP	 systems	 together	 with	 users	 and	 alleviated	 some	 of	 the	 rule-based	
rigidness	mentioned	above	while	providing	real-time	event	handling.	

Smart	buildings	bring	forth	yet	another	challenge,	and	that	is	the	preservation	of	privacy	
since	 there	 are	 different	 kinds	 of	 intelligent	 buildings,	 and	 some	 might	 be	 controlled	
together.	Therefore,	smart	services	should	be	such	that	they	do	not	expose	user(s)	or	user	
data	to	third	parties	without	user	consent.	Also,	according	to	Sta	(2017),	systems	should	be	
made	 capable	of	 handling	 imperfect	 information	when	dealing	with	Big	Data.	Digital	 twin	
should	be	used	with	smart	services,	as	well,	since	according	to	Qi,	Tao,	Zuo	&	Zhao	(2018)	
digital	 twin	 is	 versatile	 and	 combines	 both	 physical	 aspects	 and	 virtual	 aspects	 with	
connections	between	them.	Utilization	of	digital	twins	could	lead	to	a	simulation	of	various	
situations	and	eventually	to	better	smart	services.	Lim,	Kim,	Kim,	Heo,	Kim,	&	Maglio	(2018)	
remind	that	for	service	to	succeed	it	needs	to	bring	value	to	the	system.	
	
5 Cloud	services	and	data	platforms	

Cloud	computing	can	be	defined	in	various	ways	in	the	literature.	It	can	be	referred	to	as	a	
way	to	store	and	access	data	over	the	Internet	instead	of	one’s	computer’s	storage	media.	
Through	 cloud	 computing,	 a	 user	 with	 a	 pay-as-you-go	 pricing	 business	 model	 can	 rent	
computing	 power,	 database	 storage,	 applications,	 and	 other	 relevant	 IT	 resources.	
According	 to	 Karthikeyan	 &	 Thangavel	 (2018),	 Cloud	 computing	 can	 be	 thought	 of	 as	 a	
computing	paradigm	providing	dynamically	scalable	infrastructure	for	application,	data,	and	
file	storage.	A	large	pool	of	various	systems	is	connected	in	public	and	private	networks	to	
form	the	basis	of	the	paradigm.	

The	concept	of	cloud	computing	can	be	traced	back	to	the	1950s,	the	era	of	mainframe	
computers,	 which	 were	 accessible	 via	 thin	 terminal	 clients.	 The	 development	 towards	
nowadays	cloud	computing	started	in	the	1980s	with	cluster	computing.	Cluster	computing	
was	 followed	 by	 grid	 computing,	 focusing	 on	 solving	 significant	 problems	 with	 parallel	
computing.	 Grid	 computing	 lead	 to	 utility	 computing	 in	 the	 1990s	 offering	 computing	
resources	(clusters)	as	virtual	platforms	for	computing	with	a	metered	service.	Clusters	are	
usually	distributed	 locally	using	 the	same	hardware	and	operating	system,	which	provides	
the	possibility	to	use	them	as	a	supercomputer	by	using	the	pay-per-use	approach.	In	2001	
software	 as	 a	 service	 (SaaS)	 concept	 was	 introduced	 focusing	 on	 network-based	
subscription	 of	 applications.	 Figure	 2	 illustrates	 commonly	 agreed	 SPI	 (SaaS,	 PaaS,	 IaaS)	
framework	of	three	primary	services	provided	through	the	cloud.	

Public	cloud	service	 is	 the	most	widely	used	service	delivery	model	 in	cloud	computing	
currently	 available.	 Public	 clouds	 can	be	owned,	 operated,	 and	managed	by	 third	parties,	
such	 as	 government	 institutions,	 businesses,	 academic	 institutions,	 or	 a	 combination	 of	
them	 (Castro-Leon	&	Harmon,	2016).	 Public	 clouds	are	highly	 scalable,	 they	provide	 large	
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capacity,	and	shared	resources	require	minimal	IT	investments	and	decrease	operating	costs	
in	 the	 long	 run	 by	 using	 a	 pay-as-you-use	 –model	 (Usman,	 Bawazir	 &	 Kabir,	 2014).	 All	
customers	of	public	cloud	providers	share	the	same	pool	of	security	protections	without	a	
possibility	 to	 affect	 it.	 Major	 public	 providers	 in	 the	 market	 are	 Amazon	 Web	 Services	
(AWS),	Microsoft,	and	Google.	

Unlike	public	cloud	services,	private	cloud	services	are	 intended	for	a	single	enterprise.	
Private	 clouds	 provide	 better	 controls	 and	 data	 security,	 which	 public	 cloud	 services	 are	
lacking.	The	private	cloud	divides	 into	 two	categories,	 as	 follows:	1.	On-Premise	 (internal)	
Private	 Cloud,	 and	 2.	 Externally	 (External)	 Hosted	 Private	 Cloud.	 Internal	 clouds	 provide	
standardized	process	and	protection,	but	size	and	scalability	are	limited	and	operated	within	
one’s	own	data	center.	Internal	cloud	fits	for	applications	requiring	control	and	configuring	
capabilities	of	the	infrastructure	and	security.	External	clouds	are	externally	operated	with	a	
cloud	 provider,	 which	 produces	 an	 exclusive	 cloud	 environment	 ensuring	 a	 high	 level	 of	
privacy.	External	 clouds	 fit	 for	companies,	which	 require	a	highly	 secure	cloud	service	not	
sharing	of	physical	resources.	(Karthikeyan	&	Thangavel,	2018)	

Hybrid	clouds	combine	private	and	public	cloud	services.	Hybrid	cloud	services	 increase	
flexibility	 as	 hybrid	 cloud	 providers	 can	 use	 third-party	 cloud	 provider	 services	 in	 full	 or	
partially	 depending	 on	 the	 need.	 The	 hybrid	 cloud	 enhances	 the	 capabilities	 of	 a	 private	
cloud,	providing	a	possibility	to	use	public	cloud	services	when	e.g.,	the	computing	power	of	
a	private	cloud	is	not	enough.	(Karthikeyan	&	Thangavel,	2018)	To	eliminate	security	risks,	
an	enterprise	can	use	private	cloud	services	to	host	sensitive	and	critical	workloads	and	use	
3rd	party,	public	cloud	provider	services	to	host	less-critical	tasks	i.e.	testing	and	improving	
new	services.	The	hybrid	cloud	reduces	initial	investment	costs	when	developing	services	by	
using	a	pay-per-go	model	without	a	need	to	make	a	substantial	investment	beforehand.	

In	SPI	SaaS	model	software	is	 licensed	on	a	subscription	basis	or	by	pay-per-use	model.	
The	 cloud	 provider	 provides	 the	 hardware	 infrastructure	 and	 software	 applications,	 and	
applications	are	run,	for	example,	via	web	portals.	A	single	 instance	of	the	service	runs	on	
the	 cloud	 concerned,	 and	multiple	 users	 can	 access	 it.	 Customers	 do	 not	 need	 to	 worry	
about	 investment	 in	 infrastructure,	 licensing,	 and	 maintenance	 of	 the	 software	 or	
environment	scalability	issues,	as	they	are	the	provider’s	tasks.	Security,	customization,	and	
components	 can	 be	 issues	 on	 SaaS	 –layer	 as	 customers	 cannot	 control	 them.	 Service	 on	
SaaS	can	be	CRM,	email,	virtual	desktop,	communication,	or	games	(Goel	&	Sharma,	2014).	

In	 SPI	 PaaS	 model,	 the	 cloud	 service	 provider	 provides	 software	 and	 product	
development	 tools	 on	 its	 cloud	 infrastructure.	 The	 provider’s	 task	 is	 to	 offer	 system	
resources	 such	 as	 network,	 server,	 storage,	 operating	 systems,	 databases,	 development	
tools,	and	other	relevant	resources	to	customers.	The	customer	can	design,	implement,	and	
deploy	his/her	applications	into	the	cloud	service	and	run	them	there.	The	client	must	keep	
his/her	 deployed	 software	 updated	 to	 confirm	 security.	 The	 disadvantage	 of	 PaaS	 is	 the	
mandatory	use	of	the	service	provider’s	API.	Service	on	PaaS	can	be	e.g.,	execution	runtime,	
database,	web	server,	and	development	tools	(Goel	&	Sharma,	2014).	

In	 SPI	 IaaS	 model	 the	 cloud	 service	 provider	 controls	 and	 provides	 the	 infrastructure	
required	to	run	customer’s	developed	and	deployed	applications.	 IaaS	 layer	offers	storage	
and	computing	capabilities	as	a	service.	IaaS	model	also	provides	flexibility	in	the	means	of	
security	 as	 customers	 can	 also	 affect	 it.	 The	 customer	 needs	 to	make	 sure	 the	 software	
deployed	is	up	to	date,	configured,	and	appropriately	integrated.	Service	on	IaaS	–layer	can	
be	virtual	machines,	servers,	storage,	load	balancer,	or	network	(Goel	&	Sharma,	2014).	
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There	is	a	need	to	introduce	an	additional	Data-as-a-Service	(DaaS)	service	layer	into	SPI–
framework.	DaaS	provides	a	new	architecture	model	 in	which,	 for	example,	private	clouds	
can	be	 located	 inside	a	public	 cloud	 service.	DaaS	 is	 a	 service,	which	provides	means	and	
capabilities	 to	 transform	 raw	 stored	 data	 into	 meaningful	 assets	 e.g.,	 smart	 service	
development	 and/or	 analysis	 from	 various	 data	 sources,	 such	 as	 databases,	 data	
warehouses,	data	lakes,	filesystems,	applications,	data	science	platforms,	applications,	and	
BI	 tools.	 DaaS	 provides	 functions	 such	 as	 collection,	 integration,	 enrichment,	 curation,	
contextualization,	aggregating,	and	analysis	of	the	data	(Randall,	2016).	

Instead	of	copying	or	moving	all	the	data	from	data	sources	into	a	data	warehouse	or	a	
monolithic	data	lake,	DaaS	services	can	be	implemented	between	them	to	gather	the	data	
required.	Data	lakes	and	data	warehouses	(DW)	are	centralized	storage	repositories	that	can	
store	a	significant	amount	of	data.	Repositories	are	different	as	data	lakes	can	store	data	in	
native/raw	(both	structured	and	unstructured)	format	and	DW	handles	only	structured	and	
cleansed	 data.	 Both	 repositories	 can	 be	 used	 as	 a	 source	 for	 DaaS	 and	 in	 conjunction	 to	
complement	each	other.	DaaS	can	decrease	 redundancy	and	cut	costs	by	placing	 relevant	
data	into	one	location,	providing	data	usage	and	modification	for	many	users	through	one	
convenient	service.	Regardless	of	data	 location,	 structure,	and	size,	DaaS	enables	users	 to	
examine,	classify,	and	analyze	the	data.	Users	can	use	analytics	tools	they	favor	the	most,	
such	as	Python,	QlikSense,	and	R.	

One	way	 to	use	DaaS	 service	 is	 through	Amazon	 (AWS)	or	Azure	 cloud	 services,	which	
offer	 Data-as-a-Service	 functionalities	 in	 conjunction	 with	 open	 source	 Dremio	 DaaS	
platform	solution.	Cloud	platforms	generally	provide	various	kinds	of	solutions	and	services	
for	computing,	security,	AI,	and	storing,	managing,	and	analyzing	the	data.	Amazon	object-
oriented	 Simple	 Storage	 Service	 (S3)	 or	 Azure	 cloud	 service	 can	 be	 connected	 to	 Dremio	
DaaS	 service	 to	 discover	 and	 explore,	 curate,	 share,	 and	 analyze	 the	 data.	 The	 Dremio	
service	 includes	 data	 catalog,	 which	 provides	 a	 way	 to	 find	 and	 explore	 real	 and	 virtual	
datasets,	 which	 are	 automatically	 updated	 when	 new	 data	 source	 is	 added	 and	 when	
datasets	 evolve.	 Dremio	 also	 supports	 SQL	 syntax	 for	 advanced	 transformations,	 learning	
about	 the	 data	 and	 various	 kinds	 of	 transformations	 recommendations.	 Dremio	 can	 be	
deployed	on-premises	or	in	a	public	cloud	service.	(Dremio,	2019)	

	

	

Fig.	2	SPI	service	model	(Mather,	Kamaraswamy,	Latif,	2009)	
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6 Cloud	service	security	

6.1	 Situational	awareness	in	the	cyber	world	

Digitalization	 is	 taking	 significant	 steps	 ahead	 continuously.	 Due	 to	 digital	 transformation	
advances,	organizations	are	accelerating	the	migration	of	data	to	the	cloud	services	creating	
an	enormous	 increase	 in	attack	surface	and	numerous	amounts	of	novel	 types	of	risks	 for	
organizations	 to	manage.	 At	 the	 same	 time,	 cyberattackers	 are	 using	more	 sophisticated	
attack	methods	to	penetrate	an	organization’s	defenses	that	more	and	more	located	on	the	
cloud	service.	Generally,	organizations	react	after	the	cyber	 incident	has	already	occurred.	
To	prepare	for	cyber-attacks	in	advance,	organizations	should	assess	their	cyber	risk	profile	
beforehand,	 fix	 current	 problems	 and	 proactively	 manage	 the	 defense.	 Situational	
awareness	is	the	key	to	surviving	in	the	cyber	world.	

Situational	awareness	 is	a	 crucial	asset	 for	an	organization,	as	without	 it,	organizations	
cannot	build	functioning	cybersecurity	resilience.	Organizations	would	need	to	clarify	what	
are	potential	threats,	what	kind	of	harm	could	they	provide,	and	what	do	they	mean	to	the	
organization.	Organizations	may	feel	familiar	with	attacks	they	confronted	in	the	past	years,	
but	 they	may	 still	 lack	 the	 ability	 to	deal	with	 current	more	 sophisticated,	 advanced,	 and	
emerging	 attack	 methods.	 Updating	 situational	 awareness	 concerning	 these	 kinds	 of	
emerging	threats	should	be	in	high	priority.	

Threat,	vulnerability,	risk,	and	asset	form	an	intertwined	entity	in	the	cyber	world	(Lehto,	
2015,	 3	 -	 29.).	 According	 to	 Threat	 Analysis	 Group	 (2010),	 the	 asset	 can	 mean	 people,	
tangible	or	 intangible	valued	property	and	 information,	such	as	databases,	 software	code,	
and	information	system	records.	The	asset	is	a	resource	that	has	to	be	protected.	The	threat	
is	a	hazardous	cyber	event	that	can	exploit	the	vulnerability,	accidentally	or	intentionally	to	
obtain,	damage,	or	destroy	an	asset.	Vulnerability	is	a	weakness	or	gap	in	the	security	of	the	
system	 that	 can	 be	 exploited	 by	 threats	 to	 get	 unauthorized	 access	 to	 an	 asset.	
Vulnerabilities	can	be	divided	 into	human	actions,	processes,	or	 technologies	according	to	
where	 they	 exist.	 Risk	 is	 the	 potential	 of	 the	 expected	 damage,	 loss	 or	 destruction	 of	 an	
asset,	and	it	can	be	seen	as	the	intersection	of	assets,	threats,	and	vulnerabilities.	It	can	be	
assessed	 from	 the	 viewpoint	 of	 its	 economic	 consequences	 or	 loss	 of	 loss	 at	 face	 value	
(Lehto,	2015,	3	-	29).	

According	 to	ENISA	 (2018,	p.	125)	Threat	 Landscape	Report	2018,	an	attack	vector	 is	a	
path	or	means	by	which	a	threat	agent,	for	example,	hacker	or	cracker,	can	gain	access	to	a	
computer	 or	 network	 server,	 abuse	 weaknesses	 to	 achieve	 a	 specific	 outcome.	 Attack	
vectors	 include	 viruses,	 e-mail	 attachments,	 WWW-pages,	 chat	 rooms,	 and	 deception.	
Cybercriminals	continuously	seek	new	attack	vectors	they	can	utilize	in	attacking	e.g.,	cloud	
service	infrastructure.	There	exist	various	attack	vectors,	which	threaten	cloud	services,	but	
some	 of	 the	 common	 ones	 are	 AI/machine	 learning-based	 attacks,	 DoS/DDoS	 attacks,	
insider	threats,	IoT		attacks.	

6.2	 Utilizing	artificial	intelligence	in	cyber-attacks	

Artificial	 intelligence	 can	be	used	when	executing	 targeted	attacks.	An	attacker	 can	 teach	
and	utilize	AI	algorithms	to	recognize	persons	who	are	the	most	suitable	target	victims	and	
provide	 them	with	malware.	 A	 perpetrator	 can	 also	 use	 AI	 to	 gain	 information	 from	 the	
target	 security	 solution	 through	 the	 perpetrator’s	 reconnaissance	 actions	 on	 the	 target	
network.	Attacks	towards	IoT	devices	are	substantially	growing,	and	due	to	underestimation	
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of	 the	 situation,	 IoT	devices	 generally	 lack	necessary	 security	measures	 and	use	 relatively	
weak	 default	 device	 credentials	 opening	 a	 way	 to	 malware	 penetration.	 An	 attacker	
targeting	 IoT	 devices	 could	 use	 AI,	 for	 example,	 to	 generate	 credentials,	 find	 new	
vulnerabilities,	 learn	 the	 standard	processes	and	behavior,	distribute	algorithms	across	 all	
the	nodes	of	a	botnet	for	collective	learning.	(Kubovič,	Košinár	&	Jánošík,	2018)	

Artificial	 intelligence	 can	 be	 taught	 to	 find	 a	way	 for	 new	 vulnerabilities	 by	 fuzzing,	 in	
which	an	attacker	provides	the	algorithm	with	invalid,	unexpected,	or	random	input	data.	AI	
can	also	be	a	powerful	technology	to	find	the	most	effective	way	to	attack.	An	attacker	can	
abstract	and	combine	attack	techniques	to	identify	the	most	effective	ways	of	attacking.	In	
the	case	of	detection	by	the	defender,	the	attacker	needs	to	rerun	the	algorithm	to	follow	a	
new	 learning	 path.	 Artificial	 intelligence	 can	 be	 utilized	 by	 the	 perpetrator	 in	 protecting	
himself	by	detecting	intruders	and	suspicious	nodes	in	their	networks.	The	perpetrator	can	
utilize	 artificial	 intelligence	 to	 spread	 disinformation,	 generate	 phishing	 emails	 and	 high-
quality	spam,	and	choose	the	best	target,	misuse	a	defender’s	AI	model	solution	as	a	black	
box.	He	might	use	the	same	configuration	in	identifying	what	kind	of	traffic	can	pass	through	
the	defenses,	and	so	on.	(Kubovič,	Košinár	&	Jánošík,	2018)		

A	 perpetrator	 can	 also	 utilize	 adversarial	 examples	 when	 attacking	 machine	 learning	
models	used,	e.g.,	 in	cloud	services,	such	as	convolutional	 (CNN)	neural	networks	or	deep	
neural	 networks	 (DNNs),	 which	 can	 be	 used	 in	 implementing	 smart	 building	 services.	
Adversarial	examples	can	be	malicious	 inputs	to	DNNs	providing	erroneous	model	outputs	
while	 appearing	 to	 be	 unmodified	 in	 human	 eyes.	 This	 incident	 knocks	 out	 the	 classifier.	
(Papernot,	McDaniel,	Goodfellow,	Jha,	Celik	&	Swami,	2017).	Adversarial	input	attacks	are	a	
threat	 to	CNNs	as	 instead	of	generalizing	well	 and	 learning	high-level	 representation	 (less	
prone	to	noise),	they	easily	learn	superficial	dataset	regularity	(Bursztein,	2018).	Defending	
against	adversarial	attacks	is	difficult	because	the	theoretical	model	of	adversarial	example	
crafting	process	is	hard	to	construct.	In	theory,	machine-learning	models	would	be	needed	
to	defend	against	them	to	produce	the	right	outputs	for	every	possible	input.	In	practice,	ML	
models	may	 only	work	 on	 a	 relatively	 small	 number	 of	 potential	 data	 available	 that	 they	
face;	 models	 may	 block	 one	 type	 of	 an	 attack,	 but	 leave	 vulnerabilities	 open	 for	 the	
perpetrator	to	exploit.	(Goodfellow,	Papernot,	Huang,	Duan,	Abbeel&	Clark,	2017).	

6.1 Common	attack	vectors	

6.1.1	 DoS–	and	DDoS	–attacks	

A	Denial-of-Service	 (DoS)	 is	 a	malicious	 attempt	 in	which	 the	 perpetrator	 tries	 to	 disrupt	
data	 traffic	 to	 targeted	 service	with	 limited	 bandwidth,	machine	 or	 network	 resource	 by	
overloading	the	resource	with	a	flood	of	traffic	intending	to	make	the	service	low	or	make	it	
temporarily	 or	 entirely	 unusable	 (Gillespie,	 2016).	 The	 DoS	 attack	 can	 be	 described	 as	 a	
traffic	 jam	 hitting	 ordinary	 traffic	 on	 a	 highway	 by	 preventing	 its	 normal	 flow.	 A	 similar	
situation	can	happen	when	an	overwhelming	amount	of	people	are	in	the	midst	of	booking	
for	 concert	 tickets	 or	 buying	 discounted	 products	 at	 the	 same	 time	 when	 discounts	 are	
announced.	

There	are	various	DoS	attacks,	but	popular	ones	are	buffer	overflow,	ICMP	flood	(ping	of	
death)	and	TCP	SYN	flood	attacks.	In	a	buffer	overflow,	attack	the	perpetrator	sends	more	
traffic	 than	 the	 target	 system	 can	 handle.	 In	 an	 ICMP	 attack,	 the	 attacker	 sends	 a	 huge	
amount	of	spoofed	large-sized	ICMP	echo	requests	to	target	host	enforcing	each	computer	
on	 the	 target	network	 to	ping	 instead	of	 just	 the	 target	computer	attempting	 to	 switch	 it	
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offline	 or	 keep	 it	 busy.	 TCP	 SYN	 flood	 uses	 a	 three-way	 handshake	 trying	 to	 make	 a	
connection	 with	 an	 invalid	 return	 address	 without	 completing	 the	 handshake.	 (Elleithy,	
Blagovic,	Cheng	&	Sideleau,	2006)		

	A	Distributed-Denial-of-Service	(DDos)	is	similar	to	DoS	attack,	but	it	takes	advantage	of	
several	 compromised	 computers	 when	 carrying	 out	 an	 attack.	 Exploited	 ‘cluster’	 of	
machines	may	consist	of	ordinary	hacked	computers	or	IoT	‘bots’	or	‘zombies’	devices	and	
commanded	 by	 an	 attacker.	 Using	 bots	 provides	 means	 for	 attackers	 to	 use	 various	 IP	
addresses	from	different	areas	of	the	world	at	the	same	time,	making	it	more	complicated	
for	service	providers	to	defend	themselves	from	incoming	attacks	as	blocking	one	IP	address	
will	not	make	much	of	a	difference.	(Gillespie,	2016)	Detecting	the	location	of	an	attack	is	a	
challenging	task	as	the	attack	system	can	be	randomly	distributed.	Distributed	DDoS	attacks	
are	 used	 for	 the	 reason	 it	 is	 challenging	 to	 be	 detected;	 it	 is	 also	 efficient	 and	 cheap	 to	
execute	due	to	hacked	zombie	computers.	Usually,	DDoS	attacks	 focus	to	do	damage	to	a	
victim	 for	 personal	 reasons,	 gain	 material	 benefits	 or	 popularity.	 Through	 DDoS	 attacks	
cloud	services	could	get	jammed,	and	the	data	become	inaccessible.	

6.1.2	 IoT	based	attacks		

IoT	 sensors	 can	 gather	 data	 from	 the	 real	 world	 by	measuring	 the	 physical	 quantity	 and	
converting	it	into	a	signal	and	eventually	data	for	the	digital	domain.	These	days,	there	are	
estimated	to	exist	more	than	50	billion	sensors	connected	via	IoT.	According	to	HP	security	
research	(2014),	80	%	had	privacy	concerns	and	bad	passwords,	70	%	had	lacked	encryption,	
60	%	had	vulnerabilities	 in	UI	and	 insecure	updates.	According	to	Gartner,	there	are	more	
than	6	billion	relatively	vulnerable	IoT	devices	on	the	Globe.	Therefore,	IoT	devices	provide	
an	excellent	attack	surface	for	cybercriminals	targeting	cloud	services.	A	vast	amount	of	IoT	
devices	 still	 use	 default	 login	 credentials,	 which	makes	 penetrating	 the	 defenses	 an	 easy	
task.	DDoS	attacks	also	pose	a	significant	risk	on	IoT	devices,	which	became	true	in	2016	in	
the	 form	 of	Mirai	 botnet	 malware	 reaching	 up	 to	 1	 Tbps	 of	 traffic	 through	 hundreds	 of	
thousands	 of	 compromised	 IoT	 devices.	 (Wani,	 2018)	 In	 IoT	 poisoning	 attacks,	 utilizing	
adversaries	can	cause	remarkable	risks	on	sensors	when	manipulating	the	training	data	by	
altering	 the	 sensor's	 measurements.	 Poisoning	 attacks	 greatly	 decrease	 performance	
causing	 misclassification	 or	 other	 kind	 of	 bad	 behavior.	 Through	 poisoning	 attacks,	
backdoors	 and	 neural	 Trojans	 are	 sneaked	 in.	 To	 prevent	 this	 kind	 of	 incident,	 collecting	
poisonous	data	and	training	an	arbitrary	supervised	learning	model	could	work	as	a	defense	
strategy.	(Baracaldo,	Chen,	Ludwig	&	Safavi,	2018)		

IoT	 devices'	 vulnerabilities	 can	 be	 divided	 into	 system	 hardware	 or	 system	 software-
based	vulnerabilities.	System	hardware	is	vulnerable	to	exposure	since	the	devices	are	often	
left	 unattended.	 Through	 exposure,	 the	 attacker	might	 steal	 the	 device,	 extract	 sensitive	
data,	modify	the	device's	programming,	or	replace	the	original	device	with	a	malicious	one.	
(Padmavathi,	Shanmugapriya	et	al.,	2009).	 In	this	case,	the	data	in	the	cloud	service	might	
get	tampered,	and	therefore	the	reliability	is	decreased.	

IoT	devices'	software	vulnerabilities	are	linked	to	application	software,	control	software,	
and	operating	systems.	Through	system	software,	 the	attackers	can	execute,	 for	example,	
access	attacks	or	privacy	attacks.	In	an	access	attack,	an	unauthorized	person	gains	access	to	
networks	or	devices	in	which	they	have	no	permission	to	enter.	(Abomhara	&	Køien,	2014).	
Attack	can	also	affect	the	cloud	services,	to	which	the	devices	are	connected.	According	to	
Abomhara	&	Køien	(2014),	the	access	attack	can	be	targeted	at	the	physical	machine	or	to	
IP-connected	devices.		
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Privacy	attacks	are	directed,	for	example,	to	data	mining,	cyber	espionage,	and	tracking.	
IoT	 devices'	 information	 can	 be	 highly	 sensitive	 since	 the	 collected	 data	 can	 be,	 in	 some	
cases	linked	to	one's	home	or	workplace.	Through	IoT	device	hacking	an	attacker	might	be	
able	to	tell	when	there	are	people	inside	the	building,	what	are	they	doing	at	the	moment,	
and	so	forth.	

6.1.3	 Insider	threats	

Insider	 threats	 are	 substantial	 and	 increasing	 problem	 causing	 significant	 risk	 to	
organizations.	 Bonderud	 (2018)	 claims	 that	 one	 in	 the	 four	 attacks	 start	 inside	 corporate	
networks.	 Insider	 threat	 is	 a	 current	 or	 former	 employee,	 contractor,	 or	 business	 partner	
who	 has	 or	 had	 authorized	 access	 to	 an	 organization's	 network,	 system,	 or	 data,	 and	
intentionally	 exceeded	or	misused	access	which	negatively	 affected	 to	 the	 confidentiality,	
integrity,	or	availability	of	the	organization's	information	system	(Costa,	2017).	Cloud	service	
can	 be	 targeted	 by	 an	 insider	 threat	 conducted	 by,	 for	 example,	 rogue	 administrator,	 an	
employee	utilizing	cloud	weaknesses	for	unauthorized	access,	or	an	insider	who	uses	cloud	
service	resources	to	execute	attacks	against	an	organization's	IT	infrastructure.	Motivations	
for	 conducting	 attacks	 can	 be	 e.g.,	 financial	 aspect,	 theft	 of	 sensitive	 information,	
intellectual	property,	or	fraud.	

According	 to	 Ca	 Technologies	 report	 (2018),	 accidental	 or	 unintentional	 insider	 threat	
causes	 the	most	 considerable	 risk	 (51	%)	 to	 the	organization,	 and	malicious	or	 deliberate	
risk	 is	the	second	largest	risk	(47	%).	Regular	employees	pose	the	most	significant	security	
threat	 of	 56	 %	 to	 the	 organization,	 privileged	 IT	 users/admins	 55	 %,	 contractors/service	
providers,	 or	 temporary	workers	 42	%.	 The	most	 vulnerable	 data	 is	 confidential	 business	
information	such	as	financials,	customer	data,	or	employee	data.	Cybercriminals	are	highly	
interested	in	the	organization's	databases	(50	%),	fileservers	(46	%),	cloud	applications	(39	
%)	 and	 cloud	 infrastructure	 (36	 %).	 According	 to	 the	 report,	 up	 to	 90	 %	 of	 companies	
surveyed,	felt	vulnerable	to	insider	threats.		

Cloud	 services	 can	 be	 targeted	 by	 an	 insider	 threat	 conducted	 by	 e.g.,	 rogue	
administrator,	an	employee	utilizing	cloud	weaknesses	for	unauthorized	access	or	an	insider	
who	 uses	 cloud	 service	 resources	 to	 execute	 attacks	 against	 an	 organization's	 IT	
infrastructure.	 Motivations	 for	 conducting	 attacks	 can	 be,	 for	 example,	 financial	 aspect,	
theft	of	sensitive	information,	intellectual	property,	or	fraud.	Shaw,	Ruby,	and	Jerrold	(1998)	
identified	a	coherent	cluster	of	risk	factors	characteristic	of	a	vulnerable	subgroup	of	critical	
information	 technology	 insiders.	 The	 factors	 that	 reduce	 inhibitions	 against	 potentially	
damaging	 acts	 are	 negative	 personal	 and	 social	 experiences,	 reduced	 loyalty	 towards	 the	
organization,	 personal	 and	 professional	 frustration,	 and	 ethical	 "flexibility,"	 feeling	 of	
entitlement,	 anger,	 and	 lack	 of	 empathy.	 Also,	 stressors	 like	 family	 problems,	 substance	
abuse,	disappointments	at	work,	and	threatened	layoffs	may	trigger	insider	attacks.	(Shaw,	
Ruby,	and	Jerrold,	1998)	
	
7 Countering	cloud	cyberattacks	

7.1	 Encrypting	the	data	

Cloud	services	are	becoming	more	and	more	popular	due	to	 the	organization’s	 interest	 in	
deploying	applications	and	store	their	data	into	cloud	service	platforms.	Cloud	services	are	
also	 gaining	 attention	 among	 smart	 building	 administrators.	 Cloud	 services	 provide	many	
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kinds	of	benefits,	but	one	of	the	biggest	worries	is	confidentiality.	Organizations	have	to	be	
sure	that	 the	cloud	service	provider	has	stored	their	data	securely,	and	proper	encryption	
methods	 have	 been	 used.	 Cryptographic	 algorithms	 provide	 a	 means	 to	 secure	 the	 data	
concerned,	 but	 they	 also	 limit	 the	 functionality	of	 the	 cloud	 storage.	According	 to	Gupta,	
Ghakraborty	&	Rajput	(2015)	two	main	categories	of	encryptions,	symmetric	(e.g.,	DES,	AES,	
3-DES,	 RC6,	 IDEA,	 Blowfish)	 and	 asymmetric	 (e.g.,	 RSA,	 ECC,	 Elgamal),	 are	 being	 used	 in	
cryptography	 to	 achieve	 confidentiality,	 integrity,	 availability,	 and	 authentication.	 While	
using	 symmetric	 algorithms,	 encryption	 and	 decryption	 use	 the	 same	 algorithm	 and	 the	
same	 key	 to	 encipher	 and	 decipher	 the	 message.	 Symmetrical	 algorithms	 are	 useful	 to	
ensure	 confidentiality,	 integrity,	 and	 availability,	 but	 not	 authenticity.	 Asymmetric	
algorithms	use	two	keys,	one	is	a	private	key,	which	only	recipient	knows	and	the	other	is	a	
public	key,	which	everyone	knows.	Both	of	the	keys	can	be	used	to	encrypt	and	decrypt	the	
message.	Asymmetric	algorithms	provide	better	key	sharing	than	symmetric	algorithms,	but	
they	 are	 slower	 than	 symmetric	 algorithms.	 Asymmetric	 encryption	 is	 slower	 than	
symmetric	 one	 due	 to	 the	 longer	 key	 lengths	 used	 and	 complexity	 of	 the	 encryption	
algorithms	used.	Conventionally	 known	cloud	 service	providers,	 e.g.,	Google	 cloud	 service	
platform,	use	AES128	and	AES256,	Amazon	AWS	AES128,	AES192,	and	AES256	symmetrical	
algorithms	and	asymmetric	RSA	and	Elliptic	Curve	Cryptography	algorithms.		

Encryption	 keys	 should	 be	 kept	 on	 a	 separate	 server	 on	 a	 storage	 block.	 Especially	
sensitive	 data	 needs	 to	 be	 encrypted	 after	 it	 is	 collected	 or	 created	 and	uploaded	 to	 the	
cloud	 service	 data	 storage	 or	 an	 organization’s	 private	 cloud	 service	 after	 the	 encryption	
process.	The	process	mentioned	may	also	bring	out	issues	as	if	the	data	has	been	uploaded	
to	 the	cloud	 service	 is	encrypted	and	 then	 later	downloaded	onto	another	media,	 it	does	
not	already	have	the	decryption	key	providing	useless	encrypted	data.	(Business.com,	2018)	
Using	homomorphic	encryption	could	circumvent	this	issue	by	allowing	data	to	be	sent	the	
cloud	 service	 to	 be	 analyzed	 without	 having	 to	 decrypt	 it	 first.	 Using	 homomorphic	
encryption	provides	only	users	needed	to	be	able	to	analyze	the	data	leaving	cloud	service	
providers	no	chance	to	know	what	kind	of	information	is	contained	on	the	data.	(Machmeier	
&	Kunzke,	2019)	

7.2	IoT	based	attacks	

IoT	devices	typically	are	low	powered,	they	have	low	storage,	low	computing	resources,	and	
they	 have	been	massively	 deployed	 and	 connected	 to	 each	other.	 Partly	 due	 to	 a	 lack	 of	
resources,	 they	 are	 vulnerable	 to	 many	 kinds	 of	 cyber	 threats.	 Encryption	 provides	 an	
effective	countermeasure,	and	nowadays,	encryption	is	becoming	a	more	and	more	crucial	
part	of	IoT	sensor	devices	in	various	environments	that	formerly	did	not	require	it.	

Ordinary	cryptography	methods,	such	as	AES	encryption	and	SHA-hashing,	RSA	signing	is	
widely	used	in	systems,	which	have	enough	processing	power	and	memory.	They	are	not	fit	
for	 IoT	 sensor	 networks	 providing	 considerably	 less	 capability.	 Elliptic	 curve	 cryptography	
has	been	successfully	applied	on	sensor	nodes	though.	Therefore,	lightweight	cryptography	
methods	are	being	developed	and	standardized	 to	provide	suitable	means	 for	 IoT	sensors	
with	fewer	resources.	An	adversary	attack	poses	a	real	threat	to	an	 IoT	sensor	and	sensor	
nodes	by	eavesdropping	and	modifying	the	data.	Hence,	be	able	to	provide	a	secure	routing	
protocol	 to	ensure	authentication,	availability,	and	 integrity	 is	vital.	Handful	of	 lightweight	
cryptography	protocols	and	primitives	has	been	standardized	as	the	ISO/ICE	29121	standard	
and	primitives	have	been	included	in	IPSec	and	TLS.	



15 
 

 
 

According	to	Buchanan,	Li,	and	Asif	(2018),	the	disadvantage	of	lightweight	cryptography	
is	 less	 secured	 than	 conventional	 ones	 due	 to	 limited	 resources	 on	 sensors.	 Lightweight	
cryptography	implementations	are	usually	bound	to	use	short	key	sizes,	which	increase	the	
risk	 for	 key-related	 attacks.	 Sometimes	 read-only	 (masking)	 technology	 is	 used	 to	
permanently	 burn	 keys	 into	 IoT	 device	 chips	 to	 decrease	 key	 space	 consumed.	 When	
considering	 lightweight	 cryptography,	 IoT	 device	 clock,	 memory,	 storing	 internal	 and	 key	
states	should	be	evaluated.		

Using	proper	authentication	and	data	encryption	alone	 is	not	enough	for	ensuring	data	
security.	According	 to	Chang	adversary	attacks	 can	be	 injected	 into	 sensor	nodes	 through	
compromised	nodes.	 Intrusion	detection	 systems	 (IDS)	 can	be	used	 to	monitor	 suspicious	
and	anomalous	patterns	of	activity,	which	are	different	compared	to	ordinary	and	expected	
behavior.	It	is	widely	assumed	that	an	intruder	has	significantly	different	behavioral	patterns	
than	 legitimate	users	usually	have	 in	 the	network.	Rule-based	 IDSs	 can	be	used	 to	detect	
known	 patterns	 of	 intrusions,	 and	 anomaly-based	 IDSs	 can	 be	 used	 to	 detect	 new	 or	
unknown	intrusions.	Anomaly-based	IDSs	provide	notably	higher	false	alarm	rates	compared	
to	rule-based	IDSs.	
Focusing	 on	 proper	 authentication	 and	 encryption	 and	 using	 intrusion	 detection	 systems	
can	secure	IoT	devices.	To	prevent	any	incidents,	collecting	poisonous	data,	and	training	an	
arbitrary	 supervised	 learning	 model	 could	 work	 as	 a	 defense	 strategy.	 (Baracaldo,	 Chen,	
Ludwig	&	Safavi,	2018).	IoT	devices	can	be	secured	by	focusing	on	confidentiality,	integrity,	
authentication,	accountability,	auditing,	and	privacy.	(Abomhara	&	Køien,	2014).	Overall,	the	
benefits	of	IoT	devices	are	exceeding	the	downsides.	

7.3	 AI	based	tools	in	countering	cloud	cyberattacks	

7.3.1	 Insider	attacks	

Existing	data	protection	techniques	can	be	effective	against	 insider	attacks	 if	 implemented	
carefully	and	in	the	right	way.	Current	technologies	to	prevent	insider	threats	are	Data	Loss	
Prevention	 (DLP),	 encryption,	 identity,	 and	 access	 management	 solutions.	 In	 detecting	
active	 insider	 threats,	 organizations	 can	 utilize,	 for	 example,	 intrusion	 detection	 and	
prevention	 (IDS)	 services,	 log	management,	 Security	 Information	 and	 Event	Management	
System	 (SIEM)	 platforms,	User	Activity	Monitoring	 (UAM),	 Privileged	Access	Management	
(PAM),	DLP.	

The	monitoring	of	sensitive	assets	can	be	utilized	in	order	to	prevent	and	restrict	insider	
threats	 that	 organizations	 are	 facing.	According	 to	 Ca	 Technologies	 report	 (2018),	 78%	of	
organizations	inventory	and	monitor	all	or	most	of	their	key	assets,	and	more	than	93%	of	
them	 monitor	 access	 to	 sensitive	 data.	 Due	 to	 the	 increase	 in	 insider	 threat	 volume,	
organizations	 have	 begun	 to	 utilize	 User	 Behavior	 Analytics	 (UBA)	 tools	 and	 solutions	 to	
detect,	classify,	and	alert	anomalous	behavior.	Finding	insiders	who	cause	the	highest	risk	is	
a	 crucial	 part	 of	 threat	 prevention.	 Organizations	 can	 monitor	 their	 behavior	 and	 work	
patterns,	such	as	hostility	 towards	colleagues,	missing	work,	an	excessive	amount	of	work	
outside	 ordinary	 working	 hours,	 declined	 performance.	 In	 addition	 to	 UBA	 monitoring,	
comprehensive	data	access,	movement	analysis,	and	security	analytics	can	be	utilized.		

Various	 solutions	 can	 be	 used	 to	 tackle	 insider	 threat	 issues,	 such	 as	Darktrace	Vectra	
Cognito.	Darktrace	 uses	 the	 Enterprise	 Immune	 System	 technology	 (EIS)	 utilizing	machine	
learning	 algorithms	 and	 mathematical	 principles	 to	 detect	 anomalies.	 EIS	 can	 adapt	 and	
automatically	 learn	user,	device,	or	an	 information	network	behavior	to	 identify	behaviors	
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reflecting	threats,	such	as	an	insider	threat.	Darktrace	uses	mathematical	approaches,	such	
as	Bayesian	estimation	to	produce	behavioral	models	for	individual	people	and	devices	they	
use	to	detect	unusual	behavior	and	reveal	possible	 insider	attack.	Darktrace	(2018)	Vectra	
Cognito	 works	 in	 a	 bit	 similar	 way	 as	 Darktrace,	 and	 it	 continuously	 learns	 from	 an	
organization's	 network	 activity.	 Cognito	 uses	 data	 science,	 supervised	 and	 unsupervised	
machine	learning,	and	behavioral	analytics	to	reveal	attack	behaviors	and	attacks	such	as	an	
insider	 attack.	 Vectra	 Cognito	 can	monitor	 and	 detect	 suspicious	 access	 to	 critical	 assets,	
policy	violations	related	to,	for	example,	cloud	service	usage,	or	another	means	of	moving	
data.	(Vectra	Cognito,	2019)	

To	lower	the	risk	of	insider	attacks	towards	cloud	services,	an	organization	should	avoid	
management	 errors.	 According	 to	 Shaw,	 Ruby,	 and	 Jerrold	 (1998),	 organizations	 should	
understand	the	personality	and	motivation	of	the	at-risk	employee.	Clear	and	standardized	
rules	 about	 the	 use	 of	 company	 information	 systems	 should	 be	 created.	 Also,	 the	
consequences	of	misuse	should	be	made	clear,	and	rule	violations	should	be	enforced.	

7.3.2	 DoS/DDoS	attacks	

DoS	and	DDoS	attacks	are	ones	of	the	most	frequent,	causing	significant	damage,	and	they	
impact	cloud	service	performance.	These	kinds	of	attacks	can	be	tricky	to	detect	and	block	
as	the	attack	traffic	can	be	easily	tangled	with	legitimate	traffic	causing	it	to	be	challenging	
to	trace.	Especially	application	layer	(Layer	7)	DoS	attacks	can	be	hard	to	detect	as	the	traffic	
appears	 to	 be	 like	 regular	 traffic	 with	 complete	 Transmission	 Control	 Protocol	 (TCP)	
connections	and	following	protocol	 rules.	Therefore,	 these	attacks	can	target	applications,	
which	bypass	the	firewall	(Ballal,	Prasad,	Rajappa	&	Khader,	2018).	

Often	security	experts	who	deal	with	these	kinds	of	issues	are	busy,	so	additional	means	
to	deal	with	these	attacks	are	needed.	There	exist	various	tools	to	treat	the	problem,	such	
as	the	PatternEx	AI2	platform,	that	can	predict	incoming	cyber-attacks,	such	as	DoS	or	DDoS.	
AI2	 uses	 three	 different	 unsupervised	 machine-learning	 methods	 and	 clusters	 data	 into	
patterns	 showing	 the	 top	 abnormal	 events	 to	 security	 analysts	 for	 further	 analysis	 to	
confirm	 attacks	 are	 real	 attacks.	 In	 the	 following	 phase,	 the	 platform	 builds	 a	 supervised	
model	 for	 the	 next	 set	 of	 data,	 which	 enables	 further	 active	 learning.	 This	 process	 will	
eventually	improve	the	attack	detection	rate	of	the	algorithms	requiring	less	security	analyst	
time.	Currently,	AI2	is	able	to	detect	up	to	85	%	of	attacks	while	false	positives	are	reduced	
by	factor	5.	(Conner-Simons,	2016)	

Classical	 DDoS	 defense	 tools	 take	 advantage	 of	 rate-limiting	 and	 manual	 signature	
creation	in	mitigating	cyber-attacks.	Rate	limiting	tends	to	produce	a	significant	amount	of	
false	 positives	 while	 providing	 effective	 means	 in	 mitigating	 attacks.	 Manual	 signatures	
created	 can	 be	 then	 utilized	 to	 prevent	 or	 decrease	 the	 amount	 of	 false-positive	 results.	
Identifying	 the	 attack	 traffic	 is	 time-consuming	 as	 it	 requires	 human	 security	 analysts	 to	
analyze	the	attack	vector,	and	it	can	be	only	done	when	the	attack	is	already	started.	Hence,	
time	to	mitigation	increases	resulting	in	ineffective	defense	strategy.	(Radware,	2018)	

Radware	Defense	Pro	offers	means	to	prevent,	protect	and	mitigate	DDoS	and	IoT	botnet	
attacks,	 such	 as	 fast-moving,	 high	 volume,	 encrypted	 or	 short-duration	 attacks,	 and	 IoT	
attacks,	 such	 as	 Mirai,	 Pulse,	 Burst,	 DNS,	 TLS/SSL,	 PDoS	 and	 Ransom	 Denial-of-Service	
(RDoS).	Defense	Pro	provides	 behavioral	mitigation	 capabilities	 to	 circumvent	 the	manual	
signature	 creation	 and	 rate-limiting	 problems.	 It	 uses	 automatic	 machine-learning	
algorithms	to	create	signatures	and	adapt	defenses	in	changing	attack-vector	environment.	
Defense	Pro	can	learn	real-time	behavior	of	legitimate	traffic	and	to	quickly	detect	an	attack	
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when	 rate	 and	 rate-invariant	 parameters	 indicate	 an	 anomaly	 compared	 to	 legitimate	
traffic.	 Defense	 Pro	 offers	 negative	 and	 positive	 protection	 models	 and	 rate	 limiting,	
ensuring	zero	time	to	mitigation	with	scarce	human	cybersecurity	professional	intervention.	
(Radware,	2019)	

Reblaze	 offers	 DoS/DDoS	 protection	 solution	 that	 provides	 defense	 from	DDoS	 botnet	
assaults	 until	 single	 malformed-packet	 DoS	 attempts.	 The	 Reblaze	 solution	 protection	
mechanism	 if	 effective	 against	 various	 forms	 of	 DoS/DDoS	 attack	 vectors,	 such	 as	
amplification	 and	 reflection	 attacks,	 application-layer	 vulnerabilities,	 malicious	 inputs,	
protocol	exploits,	volumetric	flooding,	resource	depletion,	and	exhaustion.	Reblaze	provides	
DoS/DDoS	 protection	 towards	 attacks	 on	 ISO/OSI	 layers	 3	 (network),	 4	 (transport),	 and	 7	
(application)	and	blocks	attacks	in	the	cloud	service.	Full	protection	from	DDoS	attacks	is	not	
common	 to	 many	 so-called	 “DDoS	 solutions,”	 but	 layers	 3	 and	 4	 are	 protected	 more	
comprehensively.	 Reblaze	 can	 run	 natively	 on	 Google	 Cloud	 Platform	 and	 integrate	 with	
Cloud	Armor	service.	 It	augments	Cloud	Armor’s	capabilities	and	uses	Machine	Learning	in	
self-learning	and	adapting	when	there	will	be	changes	in	the	cyber	threat	environment.	The	
learning	process	is	automated	and	constantly	adapting.	It	provides	pattern	recognition	and	
behavioral	analysis	to	detect	early-stage	attacks	generating	a	small	amount	of	false-positive	
results.	(Reblaze,	2019) 

7.4	 Utilizing	AI	and	ML	based	methods	in	combating	cyberattacks	

It	 is	 challenging	 to	 protect	 against	 insider	 threats,	 DoS/DDoS	 attacks,	 and	 adversarial	
attacks.	 Due	 to	 the	 increased	 amount	 of	 Big	 Data,	 AI,	 and	 ML	 methods	 are	 needed	 to	
combat	 these	 threats.	 Insider	 threats	 are	 challenging	 for	 AI,	 since	 not	 necessarily	 all	
malicious	influence	on	the	user	can	be	prevented.	According	to	Le,	Khanchi,	Zincir-Heywood	
&	Heywood	(2018),	insecure	habits	of	the	user	can	be	used	as	adversarial	examples	for	AI-
based	 IDS.	Therefore,	human	experts	shouldn't	be	allowed	to	decide	what	data	they	 label	
when	using	supervised	learning	on	AI	models.	Gavai,	Sricharan,	Gunning,	Hanley,	Singhal	&	
Rolleston	(2015)	compared	supervised	and	unsupervised	ML	models	while	investigating	the	
usage	 of	 employees'	 social	 and	 web	 usage	 data,	 such	 as	 email	 frequency	 and	 machine	
access	 patterns,	 as	 possible	 features	 for	 the	 detection	 and	 prevention	 of	 insider	 threats.	
They	 found	their	unsupervised	model	 to	exceed	their	 supervised	model	by	a	 few	percent.	
Zhang,	Zheng,	Wen,	Xu,	Wang,	Yu	&	Meng	(2018)	studied	a	way	to	classify	possible	insider	
threats	based	on	user	behavior	logs.	They	used	long-short	term	memory	NN	(LSTM),	which	
is	used	typically	for	sequences,	in	order	to	find	anomalies	from	role-based	user	log	data.	

DoS/DDoS	attacks	are	dangerous	attacks	because	they	can	be	hard	to	detect	in	the	early	
stages	 of	 the	 attack,	malicious	 packages	 can	 hide	 between	 legitimate	 traffic,	 attacks	 can	
inconvenience	the	target	server,	and	the	attacker	can	hide	among	zombie	computers,	which	
might	 be	 IoT	 devices.	 AI	 and	ML	 techniques	 are	 needed	 for	 the	 automated	 detection	 of	
DOS/DDOS	attacks.	According	 to	Diro	&	Chilamkurti	 (2018),	 the	 interconnectivity	of	 smart	
cities	is	a	potentially	tempting	playground	for	attackers.	Rangaraju,	Sriramoju,	Sarma	(2018)	
list	 in	 their	 article	 several	 ML	 techniques,	 such	 as	 Naïve	 Bayes	 (NB),	 Support	 Vector	
Machines	 (SVM)	 and	 genetic	 algorithms,	 that	 are	 used	 for	 detection	 and	 prevention	 of	
cyberattacks.	 NB	 as	 well	 as	 SVM	 are	 techniques	 based	 on	 probability	 while	 the	 genetic	
algorithm	 is	 an	 umbrella	 term	 for	 algorithms	 that	 are	 inspired	 by	 evolutionary	 theorem.	
Rathore	 &	 Park	 (2018)	 introduced	 their	 fog-computing	 framework	 against	 distributed	
attacks	that	used	an	extreme	learning	machine	(ELM)	for	faster	generalization.	Instead,	Han,	
Yang,	 Sun,	 Huang,	 &	 Su	 (2018)	 proposed	 a	 defensive	 framework	 that	 focused	 on	 the	
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detection	 of	DDOS	 attacks	 both	 on	 data	 plane	 and	 on	 control	 plane	while	 collaboratively	
distributing	 attack	 load	 on	multiple	 defense	 applications.	 The	NN	model	 that	 the	 authors	
used	was	a	stacked	combination	of	autoencoder	and	softmax-classifier,	which	could	detect	
a	multitude	of	DDOS-attack	types.		

Adversarial	attacks	can	be	defended	against	with	AI	in	some	cases.	Both	CNN's	and	DNN's	
are	commonly	known	to	be	susceptible	to	this	cyber-attack	type.	Since	no	system	is	perfect,	
it	is	best	to	assume	that	all	AI	systems	are	vulnerable	to	adversarial	attacks.	

Adversarial	training	means	modifying	legitimate	inputs	to	make	AI	classifier	to	learn	to	be	
more	 robust	 (Tramèr,	Kurakin,	Papernot,	Goodfellow,	Boneh,	&	McDaniel,	2018).	 In	other	
words,	the	use	of	various	counts	of	modified	inputs	used	together	with	unmodified	inputs	in	
the	training	stage	helps	NNs	to	compact	against	false	(modified)	inputs	by	broadening	their	
"understanding,"	where	understanding	refers	to	what	the	inputs	would	mean	to	a	human.	
The	creation	of	modified	inputs	is	typically	done	using	two	NNs	of	which	the	first	one	tries	to	
produce	 falsified	 inputs,	 and	 the	 second	 one	 attempts	 to	 classify	 inputs	 as	 true	 or	 false.	
Many	 ways	 to	 alter	 input	 data	 exists.	 Ganin,	 Ustinova,	 Ajakan,	 Germain,	 Larochelle,	
Laviolette,	Marchand	&	Lempitsky	(2016)	suggested	training	classifiers	with	either	labeled	or	
unlabeled	 training	data,	which	 come	 from	a	different	 distribution	 than	 the	 intended	data	
but	 have	 the	 same	 features.	 This	 is	 also	 known	 as	 domain	 adaptation,	 hence	 the	 name	
domain-adversarial	neural	networks	(DANN).	However,	with	this	method,	features	need	to	
exist	 in	 both	 domains	 and	 remain	 the	 same.	 Samangouei,	 Kabkab,	 &	 Chellappa	 (2018)	
proposed	a	new	structure	to	protect	NN	used	for	classification	called	Defense-GAN.	It	finds	
similar	input	as	given	from	its	database	and	uses	that	as	input	for	the	classifying	NN	model.	
This	has	the	benefit	of	protecting	against	adversarial	attacks	geared	towards	the	classifier;	
however,	 it	 seems	 likely	 that	 the	 AI	 system	 would	 have	 to	 have	 a	 comprehensive	 and	
specific	input	domain	to	function	properly	as	part	of	the	CP	system.	

Defensive	 distillation	 has	 also	 been	 used	 in	 attempts	 to	 train	 NN	 models	 to	 resist	
adversarial	attacks.	Goldblum,	Fowl,	Feizi,	&	Goldstein	(2019)	presented	adversarial	robust	
distillation	 (ARD)	 which	 can	 help	 smaller	 NNs	 to	 lean	 robustness	 of	 a	 bigger	 model.	
According	to	Papernot	&	McDaniel	(2016),	defensive	distillation	is	done	by	first	training	an	
NN	model,	where	the	last	layer	is	a	softmax-layer,	with	a	labeled	dataset.	Then	this	model	
predicts	 new	 probability	 values	 from	 the	 training	 set.	 Using	 original	 input	 as	 input	 and	
output	from	the	first	NN,	a	second	NN	model	(has	softmax-layer)	can	be	taught.	However,	
there	 is	 a	 trick;	 a	 term	 called	 "temperature"	 in	 the	 softmax-layers.	 If	 the	 temperature	 is	
greater	than	1,	the	probabilities	get	distributed	more	uniformly,	meaning	that	for	each	class	
these	probabilities	are	very	nearly	the	same,	when	the	temperature	goes	to	 infinity.	 If	the	
temperature	is	1,	softmax-function	will	output	probabilities	closer	to	one	that	corresponds	
with	most	likely	class	labels.	Both	NNs	are	to	be	trained	with	the	same	temperature	values	
that	 are	 greater	 than	 one,	 but	 after	 training	 of	 the	 second	 NN	 model	 is	 done,	 its	
temperature	 is	 set	 to	 one.	 According	 to	 a	 short	 article	written	 by	 Papernot	 et	 al.	 (2016),	
defensive	distillation	can	work	against	adversarial	attacks.	However,	according	to	Carlini,	&	
Wagner	 (2016),	 defensive	 distillation	 does	 not	 necessarily	 work	 against	 carefully	
constructed	adversarial	attacks.	

Adversarial	noise	removal	 refers	 to	 techniques	 that	can	help	reduce	the	effect	of	 input	
noise	 typical	 to	 adversarial	 attacks.	 Gu	&	 Rigazio	 (2015)	 tried	 both	 adding	 extra	 noise	 to	
image	 inputs	 and	 removing	 noise	 with	 the	 usage	 of	 autoencoders.	 They	 found	 that	
autoencoders	work	well	 for	 noise	 reduction	 but	 using	 them	 together	with	 the	 original	 AI	
model	 leaves	 the	 compound	 model	 still	 vulnerable	 to	 even	 smaller	 adversarial	 noise.	
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According	to	Liang,	Li,	Su,	Li,	Shi,	&	Wang	(2019),	when	inputs	are	images,	varying	de-noising	
techniques	 should	 be	 used	 based	 on	 the	 image	 space,	 since	 over	 and	 under	 de-noising	
should	 be	 avoided.	 Possible	 input	 transformation	 techniques	 can	 be	 bit-depth	 reduction,	
compression,	 total	 variance	 minimization,	 image	 quilting	 (Guo,	 Rana,	 Cissé,	 &	 van	 der	
Maaten,	2018),	scalar	quantization,	and	smoothing	spatial	filtering	(Liang	et	al.,	2019).	Guo	
et	al.	(2018)	managed	to	defend	against	90	percent	of	black-box	attacks,	while	Liang	et	al.	
(2019)	managed	to	get	a	high	94	percent	F1-score.		

Sometimes	if	one	model	does	not	work,	its	performance	may	be	possible	to	increase	with	
an	 ensemble.	 Ensembles	 typically	 refer	 to	 a	 NN	 that	 takes	 outputs	 of	 other	 NNs	 or	 ML	
models	 as	 its	 input	 and	 calculates	 new	 output	 for	 the	 entire	 system.	 The	 beauty	 of	 an	
ensemble	 is	that	 it	can	produce	more	acceptable	results	compared	to	a	single	ML	-model.	
For	 example,	 Jia,	 Huang,	 Liu,	 &	Ma	 (2017)	 devised	 an	 ensemble	 classifier	 model	 for	 the	
detection	 of	 DDOS	 attacks.	 This	model	 consisted	 of	 Bagging,	 k-Nearest	Neighbors	 (k-NN),	
and	 Random	 Forest,	 which	 were	 each	 trained	 and	 tested	 with	 cross-validation.	 Jia	 et	 al.	
(2017)	reported	that	their	model	reached	similar	classification	results	as	the	Random	Forest	
method	 on	 its	 beating	 Bagging	 and	 K-NN	 with	 a	 significantly	 higher	 true	 negative	 score.	
Other	 kinds	 of	 ensembles	 exist.	 Sengupta	 (2017)	 proposed	 a	model	 that	 uses	 several	NN	
models	 as	 defenders	 against	 adversarial	 attacks.	 This	 would	 make	 attacking	 a	 black-box	
model	 challenging,	 since	 defenders	 could	 alternate	 and	 therefore	 obscure	 decision	
boundaries.	Tramèr	et	al.	(2018)	used	an	ensemble	of	different	adversarial	attack	models	to	
train	 a	 defensive	 NN.	 They	 showed	 that,	 in	 some	 cases,	 learned	 robustness	 from	 some	
attack	could	be	transferred	and	it	can	be	used	similarly	against	other	attacks.	
	
8 	Conclusion	

Artificial	Intelligence	in	protecting	smart	building’s	cloud	service	infrastructure	represents	a	
potential	research	area	as	the	importance	of	cybersecurity	in	cloud	services	is	growing.	This	
chapter	presented	a	 general	 overview	of	 cyberspace,	 artificial	 intelligence,	 cloud	 services,	
smart	buildings,	and	typical	attack	vectors	a	perpetrator	can	utilize	when	attacking	towards	
cloud	services.	

Cloud	 services	 are	 becoming	 even	more	 popular	 these	 days	 due	 to	 the	 organization’s	
interest	 in	 deploying	 applications	 and	 store	 data	 into	 cloud	 services.	 Cloud	 services	 can	
provide	many	benefits,	but	they	also	pose	risks	in	security	issues.	Organizations	need	to	be	
sure	that	robust	encryption	methods	are	used	in	storing	and	transferring	data.	In	the	smart	
home	context,	 data	 can	be	gathered	 through	 IoT	 sensors,	which	are	 commonly	 known	as	
vulnerable	towards	cyberattacks.	Ordinary	cryptographic	encryption	methods	cannot	always	
be	 used	 due	 to	 lack	 of	 processing	 power,	 storage	 space,	 and	 computing	 resources	 of	 IoT	
sensors.	 Lightweight	 cryptography	methods	 can	be	 applied,	 but	 they	 are	 less	 secure	 than	
conventional	methods.	Even	proper	authentication	and	data	encryption	alone	is	not	enough	
for	 ensuring	 data	 security	 allowing	 perpetrators	 to	 use	 e.g.,	 adversarial	 attacks	 when	
attacking	the	cloud	service.	 In	countering	cyber-attacks,	proper	AI-	and	ML-models	can	be	
utilized.	

Various	 solutions,	 which	 can	 be	 utilized	 in	 countering	 cyberattacks	 towards	 common	
attack	 vectors,	 exist.	 The	 solutions	 presented	 in	 this	 paper	 are	 Darktrace	 Vectra	 Cognito,	
PatternEx	 AI2	 platform,	 Radware	 Defence	 Pro,	 and	 Reblaze.	 Vectra	 Cognito	 utilizing	 ML	
algorithms	and	mathematical	principles	in	detecting	anomalies	can	be	used	in	tackling	e.g.,	
with	 insider	 threat	 issues.	 The	 solution	 produces	 behavioral	models	 for	 individual	 people	
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and	 devices	 they	 use	 to	 detect	 unusual	 behavior	 and	 reveal	 possible	 insider	 attack.	
PatternEx	AI2	platform	can	be	used	 in	predicting	 incoming	 cyberattacks,	 such	as	DoS	and	
DDoS.	 AI2	 utilizes	 unsupervised	 ML	 methods	 to	 present	 abnormal	 events	 to	 security	
specialists	for	further	analysis	to	confirm	attacks	are	real	and	produce	a	supervised	model	
for	 further	 active	 learning.	AI2	 is	 estimated	 to	 reach	85%	of	detection	accuracy.	Radware	
Defence	 Pro	 offer	 means	 to	 detect	 and	 mitigate	 DDoS	 and	 IoT	 botnet	 attacks	 using	 ML	
algorithms	to	create	signatures	in	real-time	and	adapt	defenses.	Defense	Pro	can	separate	
anomalous	 attack	 traffic	 from	 legitimate	 one	 and	 to	 provide	 protection	models	 ensuring	
zero	 time	 to	 mitigation.	 Reblaze’s	 solution	 is	 to	 provide	 protection	 against	 DDoS	 botnet	
assaults	until	single	malformed-packet	DoS	attempts.	Reblaze’s	specialty	is	to	provide	more	
comprehensive	 protection	 than	 competing	 solutions	 against	 incoming	 DoS/DDoS	 attacks	
enabling	ISO/OSI	layers	3	(network)	and	4	(transport)	protection	blocking	incoming	attacks	
towards	 cloud	 service.	 The	 solution	 integrates	 natively	 on	 public	 cloud	 service	 providers,	
such	as	Google	Cloud	Platform	utilizing	ML	algorithms	 in	 self-learning	and	adapting	under	
the	continuous	change	in	the	cyber	threat	environment.	The	solution	is	able	to	detect	early-
stage	 attacks	 by	 using	 behavioral	 analysis	 and	 pattern	 recognition	 generating	 a	 small	
amount	of	false-positive	results.	

The	results	 indicate	 that	artificial	 intelligence	can	be	used	to	prevent	cyberattacks	with	
some	reservations.	The	architecture	of	chosen	defensive	AI	model,	defensive	plan	of	the	CP	
system,	and	how	the	model	has	been	trained,	determines	how	well	artificial	intelligence	can	
combat	attack	vectors.	Architecture	and	defensive	plan	of	the	CP	system	can	help	alleviate	
attacks	 on	 the	 CP	 system	 and	 the	 AI	 model,	 while	 under	 DDOS	 attack,	 for	 example,	 the	
system	might	 start	 new	defensive	programs	 to	mitigate	 load	 caused	by	 the	 attack.	When	
training	models,	utilizing	different	data	manipulation	schemes,	such	as	adversarial	 training	
and	 defensive	 distillation,	 is	 important	 but	 not	 guaranteed	 to	 work	 perfectly.	 Classifiers	
trained	with	adversarial	examples	are	more	robust	than	classifiers	trained	with	regular	data,	
and	 this	 robustness	 can	 be	 transferred	 to	 other	 models.	 It	 was	 asserted	 that	 ensemble	
models	 could	 improve	artificial	 intelligence	performance,	 and	 it	was	 found	 that	ensemble	
training	could	do	that	as	well.	Training	of	models	remains	to	be	time-consuming.	

Smart	homes,	smart	building	maintenance,	and	cloud	services	will	get	more	popular	over	
the	 years.	 Artificial	 intelligence	 is	 a	 huge	 part	 of	 that	 change.	 Artificial	 intelligence	 in	
protecting	 cloud	 services	 will	 gain	 more	 popularity	 in	 the	 future	 since	 current	 trends	
indicate	 that	 the	 number	 of	 cyber-attacks	 is	 increasing.	 For	 safety,	 various	 cyber	 threats	
towards	cloud	services	should	be	researched	thoroughly,	and	the	adversarial	attacks	require	
further	research.	
	
References	

Abate,	 A,	 Budde,	 C	 E,	 Cauchi,	 N,	 Hoque,	 K	 A,	 &Stoelinga,	 M.	 (2018).	 Assessment	 of	
Maintenance	 Policies	 for	 Smart	 Buildings:	 Application	 of	 Formal	 Methods	 to	 Fault	
Maintenance	 Trees.	 European	 Conference	 of	 the	 Prognostics	 and	 Health	 Management	
Society	(2018).	

Abomhara,	 M.,	 &	 Køien,	 G.	 M.	 (2014,	 May).	 Security	 and	 privacy	 in	 the	 Internet	
of	 Things:	 Current	 status	 and	 open	 issues.	 In	 Privacy	 and	 Security	 in	 Mobile	
Systems	(PRISMS),	2014	International	Conference	on	(pp.	1-8).	IEEE.	



21 
 

 
 

Alam,	M,	R,	Reaz,	M	B	I,	Ali,	M	A	M.	(2012).	"A	review	of	smart	homes—Past	present	and	
future",	 IEEE	Trans.	 Syst.	Man	Cybern.	C	Appl.	Rev.),	 vol.	42,	no.	6,	pp.	1190-1203,	Nov.	
2012.s	

appliedAI.	Accessed	August	5th	2019https://appliedai.com/use-cases/1	
Ballal	 S,	 Prasad	 L	 S,	 Rajappa	 M	 &	 Khader	 A.	 (2018).	 Bumper	 to	 bumper:	 detecting	 and	
mitigating	DoS	 and	DDoS	 attacks	 on	 the	 cloud.	 SecurityIntelligence.	 Accessed	 16.8.2019	
https://securityintelligence.com/bumper-to-bumper-detecting-and-mitigating-dos-and-
ddos-attacks-on-the-cloud-part-1.	

Baracaldo	N,	Chen	B,	Ludwig	H	&Safavi	A.	 (2018).	Detecting	poisoning	attacks	on	machine	
learning	in	IoT	environments.	IEEE	international	congress	on	internet	of	things	(ICIOT),	San	
Fransisco,	CA,	USA.	

Bayuk	J	L,	Healey	J,	Rohmeyer	P,	Sachs	M	H,	Schmidt	J,	Weiss	J.	(2012).	Cyber	security	policy	
guidebook,	first	edition.	Wiley	&	Sons	Inc,	USA.	

Bonderud	 D.	 (2018).	 Breaking	 bad	 behavior:	 can	 AI	 combat	 insider	 threats?	
SecurityIntelligence.	 Accessed	 9.8.2019	 https://securityintelligence.com/breaking-bad-
behavior-can-ai-combat-insider-threats.	

BS	 ISO/IEC	27002.	(2013).	 Information	technology	–	security	techniques	–	code	of	practice	
for	 information	 security	 management.The	 British	 Standards	 Institution.	 BSI	 Standards	
Limited,	Swizerland.	

Buchanan	W	 J,	 Li	 S	&	Asif	 R.	 (2018).	 Lightweight	 cryptography	methods.	 Journal	 of	 cyber	
security	technology,	Vol.	1(3-4),	187-201.	

Business.com.	 (2018)	 Cloud	 encryption:	 using	 data	 encryption	 in	 the	 cloud.	 Accessed	
4.8.2019	https://www.business.com/articles/cloud-data-encryption.	

Burnap,	 P.	 &	 Williams,	 M.,	 L.	 (2015).	 Cyber	 Hate	 Speech	 on	 Twitter:	 An	 Application	 of	
Machine	Classification	and	Statistical	Modeling	for	Policy	and	Decision	Making	
https://doi.org/10.1002/poi3.85	.	Accessed	August	7th	2019.	

Ca	 technologies.	 (2018).	 Insider	 threat	 report.	 Cybersecurity	 insiders.	 Accessed	 12.8.2019	
https://www.ca.com/content/dam/ca/us/files/ebook/insider-threat-report.pdf	

Castro-Leon	E,	Harmon	R.	(2016).	Cloud	as	a	service:	understanding	the	service	 innovation	
ecosystem.	Apress,	USA.	

Carlini	N,	Wagner	D.	 (2016).	 Defensive	Distillation	 is	Not	 Robust	 to	Adversarial	 Examples.	
ArXiv:	1607.04311v1	[cs.CR]	14	Jul	2016	

Chang	 Z.	 Wireless	 and	 internet	 of	 things	 (IoT)	 security.	 Department	 of	 Mathematical	
Information	 Technology.	 University	 of	 Jyväskylä,	 Finland.	 Accessed	 9.8.2019	
users.jyu.fi/~timoh/TIES327/Wireless.pdf.	

Costa	D.	(2017).	CERT	definition	of	‘insider	threat’.	Software	engineering	institute,	Cargenie	
Mellon,	University.	Accessed	9.8.2019	https://insights.sei.cmu.edu/insider-
threat/2017/03/cert-definition-of-insider-threat---updated.html.	

Craigen	 D,	 Diakun-Thibault	 N,	 Purse	 R.	 (2014).	 Security	 in	 cyberspace.	 Targeting	 nations,	
infrastructures,	individuals.	Bloomsbury	publishing,	New	York.	

Cyberspace	policy	review.	Assuring	a	trusted	and	resilient	information	and	communications	
Infrastructure.https://www.energy.gov/sites/prod/files/cioprod/documents/	
Cyberspace_Policy_Review_final.pdf	

Dao	M-S,	Pongpaichet	S,	Jalali	L,	Kim	K,	Jain	R,	Zettsu		K.	 (2014).	A	Real-Time	Complex	Event		
Dixcovery	Platform	for	Cyper-Physical-Social	Systems.	ICMR	2014,	April	1-4,	Glasgow,	UK.	

Deshpande	N.	(2009).	Artificial	intelligence.	Technical	publications.	University	of	Pune,	India.	



22 
 

Diro	 A	 A,	 Chilamkurti	 N.	 (2018).	 Distributed	 attack	 detection	 scheme	 using	 deep	 learning	
approach	 for	 Internet	of	 Things.	 Future	Generation	Computer	 Systems,	 volume	82,	May	
2018,	761-768.	

Darktrace.	 (2018).	 Darktrace	 enterprise	 –	 detects	 and	 classifies	 cyber-threats	 across	 your	
entire	 enterprise.	 Darktrace.	 Accessed	 12.8.2019	
https://www.darktrace.com/en/products.	

Dremio.	(2019).	Enabling	Data-as-a-Service	for	AWS	and	R.		
Elleithy	K,	 Blagovic	D,	 Cheng	W	&	Sideleau	P.	 (2006).	Denial	 of	 service	 attack	 techniques:	
analysis,	 implementation	 and	 comparison.	 Journal	 of	 Systemics,	 Cybernetics	 and	
Informatics.	3.	66-71.	

ENISA.	 (2018).	 ENISA	 threat	 landscape	 report	 2018	 –	 15	 top	 cyberthreats	 and	 trends.	
European	Union	agency	for	network	and	information	security.	

EUR-Lex.	 (2013).	 Access	 to	 European	 Union	 law.	 Joint	 communication	 of	 the	 European	
parliament,	the	council,	the	European	economic	and	social	committee	and	the	committee	
of	the	regions.	Cyber	Security	strategy	of	the	European	Union:	an	open,	safe	and	secure	
cyberspace.	Document	number	52013JC0001.	

Ganin	 Y,	 Ustinova	 E,	 Ajakan	 H,	 Germain	 P,	 Larochelle	 H,	 Laviolette	 F,	 Marchand	 M,	
Lempitsky	V.	(2016).	Domain-Adversarial	Training	of	Neural	Networks.	Journal	of	Machine	
Learning	Research	17,	2016,	1-35.	

Gavai	G,	Sricharan	K,	Gunning	D,	Hanley	 J,	 Singhal	M,	Rolleston	R.	 (2015).	Supervised	and	
Unsupervised	methods	to	detect	Insider	Threat	from	Enterprise	Social	and	Online	Activity	
Data.	JoWUA,	Volume	6,	number	4.			DOI:10.22667/JOWUA.2015.12.31.047	

Ghahramani,	 Z.	 (2015).	 Probabilistic	 machine	 learning	 and	 artificial	 intelligence.	 Nature	
volume	521,	pages	452–459	(28	May	2015).	

Gillespie	A.	(2016).	Cybercrime	–	Key	issues	and	debates.	Routledge,	New	York.	
Goel	 N,	 Sharma	 T.	 (2014).	 Cloud	 computing	 –	 SPI	 framework,	 deployment	 models,	
challenges.	 International	 journal	 of	 emerging	 technology	 and	 advanced	 engineering.	
International	conference	on	advanced	deployments	in	engineering	and	technology,	India.	

Goldblum	 M,	 Fowl	 L,	 Feizi	 S,	 Goldstein	 T.	 (2019).	 Adversarially	 Robust	 Distillation.	
ArXiv:1905.09747v1	[cs.LG]	23	May	2019.	

Goodfellow	I,	Papernot	N,	Huang	S,	Duan	R,	Abbeel	P	&	Clark	J.	(2017).	Attacking	machine	
learning	 with	 adversarial	 examples.	 OpenAI.	 Accessed	 3.8.2019	
https://openai.com/blog/adversarial-example-research	

Gu	S,	Rigazio	L.	(2015).	Towards	Deep	Neural	Network	Architectures	Robust	to	Adversarial	
Examples.	ArXiv:1412.5068v4	[cs.LG]	9	Apr	2015.	

Guo	 C,	 Rana	M,	 Cissé	M,	 van	 der	Maaten	 L.	 (2018).	 Countering	Adversarial	 Images	Using	
Input	Transformations.	ArXiv:1711.00117v3	[cs.CV]	25	Jan	2018.	

Gupta	D,	Ghakraborty	P	S	&	Rajput	P.	 (2015).	Cloud	security	using	encryption	 techniques.	
International	journal	of	advances	research	in	computer	science	and	software	engineering,	
5(2),	SRM	University,	India.	

Han	B,	Yang	X,	Sun	Z,	Huang	J,	Su	J.	(2018).	OverWatch:	A	Cross-Plane	DDOS	Attack	Defense	
Framework	with	Collaborative	Intelligence	in	SDN.	Hindawi,	Security	and	Communication	
Networks,	Volume	2018.	https://doi.org/10.1155/2018/9649643.	

HP	security	research.	(2014).	Internet	of	things	research	study.	Accessed	7.8.2019	http://d-
russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW.pdf	

Iyer,	G,	Agrawal,	 P.	 (2010).	 Smart	 power	 grids,	 42nd	 Southeastern	 Symposium	on	 System	
Theory	(SSST),	IEEE	(2010),	pp.	152-155.	



23 
 

 
 

Jia	 B,	 Huang	 X,	 Liu	 R,	 Ma	 Y.	 (2017).	 A	 DDOS	 Attack	 Detection	Method	 Based	 on	 Hybrid	
Heterogenous	 Multiclassifier	 Ensemble	 Learning.	 Hindawi,	 Journal	 of	 Electrical	 and	
Computer	Engineering,	Volume	2017,	https://doi.org/10.1155/2017/4975343.	

Jiang,	 J-R.	 (2018).	An	 improved	 cyber-physical	 systems	architecture	 for	 Industry	4.0	 smart	
factories.	Advances	in	Mechanical	Engineering,	2018,	Vol.	10(6),	1-15.	

Karthikeyan	 P,	 Thangavel	 M.	 (2018).	 Applications	 of	 security,	 mobile,	 analytic	 and	 cloud	
(SMAC)	technologies	 for	effective	 information	processing	and	management.	A	volume	 in	
the	advances	in	computer	and	electrical	engineering	(ACEE)	book	series.	IGI	Global,	USA.	

Kubovič	O,	 Košinár	 P	&Jánošík	 J.	 (2018).	 Can	 artificial	 intelligence	power	 future	malware?	
ESET	white	paper.	

Le	D	C,	Khanchi	 S,	 Zincir-Heywood	A	N,	Heywood	M	 I.	 (2018).	Benchmarking	Evolutionary	
Computation	 Approaches	 to	 Insider	 Threat	 Detection.	 Association	 for	 Computing	
Machinery.	https://doi.org/10.1145/3205455.3205612.	

Legatiuk	D,	Smarsly	K.	(2018).	An	abstract	approach	towards	modeling	intelligent	structural	
system.	9th	EWSHM,	UK.	CC-BY-NC	license	4.0.		

Lehto	M.	(2008).	Phoenomena	in	the	cyber	world.	Cyber	security:	analytics,	technology	and	
automation.	Springer,	Berlin.	

Lehto	M.	(2015).	Phenomena	 in	the	cyber	world.	Cyber	security:	analytics,	technology	and	
automation.	Springer,	Berlin.	

Liang	B,	 Li	H,	Su	M,	Li	X,	Shi	W,	Wang	X.	 (2019).	Detecting	Adversarial	 Image	Examples	 in	
Deep	Neural	Networks	with	Adaptive	Noise	Reduction.	ArXiv:1705.08378v5	 [cs.CR]	9	 Jan	
2019.	

Libicki	 MC.	 (2007).	 Conquest	 in	 cyberspace	 –	 national	 security	 and	 information	 warfare.	
Cambridge	University	press,	New	York	

Lim,	C,	Kim,	K-H,	Kim,	M-J,	Heo,	J-Y,	Kim,	K-J,	&	Maglio,	P	P.	(2018).	From	data	to	value:	A	
nine-factor	 framework	 for	 data	 -based	 value	 creation	 in	 information-intensive	 services.	
International	Journal	of	Information	Management	39,	2018,	121-135.	

Machmeier	C	&Kunzke	F.	(2019).	How	safeguarding	sensitive	data	could	lead	to	smarter	AI.	
Sap	 News	 Center.	 Accessed	 4.8.2019	 https://news.sap.com/2019/01/homomorphic-
encryption-safeguarding-sensitive-data-smarter-ai.	

Mather	 T,	 Kamaraswamy	 S,	 Latif	 S.	 (2009).	 Cloud	 security	 and	 privacy	 –	 an	 enterprise	
perspective	on	risks	and	compliances,	O’Reilly	Media	Inc.,	USA.	

Nagpal,	 H,	 Basu,	 B,	 &	 Staino,	 A.	 (2018).	 Economic	 Model	 Predictive	 Control	 of	 Building	
Energy	 Systems	 in	 Cooperative	 Optimization	 Framework.	 ICC,	 January	 4-6,	 2018,	 IIT	
Kanpur,	India.	

Nicholson,	 C.	 Skymind.	 Accessed	 August	 5	 2019	 https://skymind.ai/wiki/ai-vs-machine-
learning-vs-deep-learning.	

Qi,	Q,	 Tao,	 F,	 Zuo,	 Y,	 Zhao,	 D.	 (2018).	 Digital	 Twin	 Service	 towards	 Smart	Manufacturing.	
Procedia	CIRP	72,	2018,	237-242.	

Padmavathi	 &	 Shanmugapriya	 et	 al.,	 (2009).	 A	 survey	 of	 attacks,	
security	 mechanisms	 and	 challenges	 in	 wireless	 sensor	 networks,	 arXiv	
preprint	arXiv:0909.0576.	

Papernot	 N,	 McDaniel	 P.	 (2016).	 On	 the	 Effectiveness	 of	 Defensive	 Distillation.	
ArXiv:1607.05113v1	[cs.CR]	18	Jul	2016	

Papernot	N,	McDaniel	P,	Goodfellow	I,	Jha	S,	Celic	Z	B,	Swami	A.	(2017).	Practical	black-box	
attacks	 against	 machine	 learning.	 Proceedings	 of	 the	 2017	 ACM	 Asia	 conference	 on	
computer	and	communications	security,	Abu	Dhabi,	UAE.	



24 
 

Potluri	 S,	 Diedrich	 C.	 (2016).	 Accelerated	 Deep	 Neural	 Networks	 for	 Enhanced	 Intrusion	
Detection	System.	2016	IEEE	21st	ETFA.	10.1109/ETFA.2016.7733515	

Radware.	(2018).	Machine-learning	automation	to	ensure	zero	time	to	mitigation.	Accessed	
16.8.2019	 https://www.radware.com/pleaseregister.aspx?returnurl=732862c3-5149-
4806-b060-ba20d2bca6eb	

Randal,	L.	(2016).	What	is	data	as	a	service?	The	3	key	dimensions.	BDQ	big	data	quarterly.	
http://www.dbta.com/BigDataQuarterly/Articles/What-is-Data-as-a-Service-The-3-Key-
Dimensions-114568.aspx	

Rangaraju	N	 K,	 Sriramoju	 S	 B,	 Sarma	 S.	 (2018).	 A	 Study	 on	Machine	 Learning	 Techniques	
Towards	 the	Detection	 of	 Distributed	Denial	 of	 Service	 Attacks.	 International	 Journal	 of	
Pure	and	Applied	Mathematics,	Volume	120,	No.	6	2018,	7407-7423.	

Reblaze.	(2019).	Comprehensive	DDoS	protection	DoS/DDoS	datasheet	–	web	application	&	
API	security.	Accessed	22.8.2019	https://www.reblaze.com/wp-content/uploads/2019/05	
/Reblaze-DDoS-Datasheet.pdf	

Schmidt	 M,	 Åhlund	 C.	 (2018).	 Samrt	 buildings	 as	 Cyber-Physical	 Systems:	 Data-driven	
predictive	 control	 strategies	 for	 energy	 efficiency.	 Renewable	 and	 Sustainable	 Energy	
Reviews,	Volume	90,	742-756. https://doi.org/10.1016/j.rser.2018.04.013 

Sengupta	S.	(2017).	Moving	Target	Defense:	A	Symbiotic	Framework	for	AI	&	Security.	Proc.	
of	the	16th	International	Conference	on	Autonomous	Agents	and	Multiagent	Systems.	

Shahapure	 N	 H,	 Jayarekha	 P.	 (2015).	 Replication:	 a	 technique	 for	 scalability	 in	 cloud	
computing.	International	journal	of	computer	applications	(0975	–	8887),	122(5).	

Sta,	H	B.	(2017).	Quality	and	the	efficiency	of	data	in	“Smart-Cities”.	Future	Gener.	Comput.	
Syst.,	0167-739X,	74	(2017),	pp.	409-416.	
Shaw,	 E.,	 Ruby,	 K.	 &	 Post,	 J.	 (1998).	 The	 Insider	 Threat	 to	 Information	 Systems.	 Security	
Awareness	Bulletin,	2(98).	

Threat	Analysis	Group	(Tag).	(2010).	Threat,	vulnerability,	risk	–	commonly	mixed	up	terms.	
Accessed	 31.7.2019	 https://www.threatanalysis.com/2010/05/03/threat-vulnerability-
risk-commonly-mixed-up-terms.	

Tramèr	F,	Kurakin	A,	Papernot	N,	Goodfellow	 I,	Boneh	D,	&	McDaniel	P.	 (2018).	Ensemble	
Adversarial	Training:	Attacks	and	Defenses.		ICLR	2018.	

Usman	S	H,	Bawazir	M	A,	Kabir	A	M.	 (2014).	Cloud	 computing:	 a	 strategy	 to	 improve	 the	
economy	 of	 Islamic	 societies.	 International	 journal	 of	 computer	 trends	 and	 technology	
(IJCTT),	9(7).	

Vectra	cognito.	(2019).	Vectra	security	that	thinks.	Artificial	intelligence	powered	automated	
threat	 hunting	 and	 network	 self-defense.	 Accessed	 12.8.2019	
https://www.beotech.rs/wp-content/uploads/2019/02/Vectra-Cognito-DataSheet.pdf.	

Wang,	Z,	Srinivasan,	R	S.	(2017).	A	review	of	artificial	intelligence	based	building	energy	use	
prediction:	 Contrasting	 the	 capabilities	 of	 single	 and	 ensemble	 prediction	 models.	
Renewable	and	Sustainable	Energy	Reviews	75,	3027,	796-808.	

Wani	 S	 Y.	 (2018).	 Internet	 of	 things	 (IoT)	 security	 and	 vulnerability.	 Research	 proposal.	
DOI:10.13140/RG.2.2.29633.40801.	

Zhang	 D,	 Zheng	 Y,	Wen	 Y,	 Xu	 Y,	Wang	 J,	 Yu	 Y,	Meng	 D.	 (2018).	 Role-based	 Log	 Analysis	
Applying	 Deep	 Learning	 for	 Insider	 Threat	 De	 tection.	 Association	 for	 Computing	
Machinery,	SecArch’18.	https://doi.org/10.1145/3267494.3267495.		

Zhao	 D,	 Zhong	 M,	 Zhang	 X,	 Su	 X.	 (2016).	 Energy	 consumption	 predicting	 model	 of	 VRV	
(Variable	 refrigerant	 volume)	 system	 in	 office	 buildings	 based	 on	 data	 mining.	 Energy	
2016,	102,	287-97.	


