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ABSTRACT Interactive multiobjective optimization methods incorporate preferences from a human deci-
sion maker in the optimization process iteratively. This allows the decision maker to focus on a subset of
solutions, learn about the underlying trade-offs among the conflicting objective functions in the problem
and adjust preferences during the solution process. Incorporating preference information allows computing
only solutions that are interesting to the decision maker, decreasing computation time significantly. Thus,
interactive methods have many strengths making them viable for various applications. However, there is a
lack of existing software frameworks to apply and experiment with interactive methods. We fill a gap in the
optimization software available and introduce DESDEO, a modular and open source Python framework for
interactive multiobjective optimization. DESDEO’s modular structure enables implementing new interactive
methods and reusing previously implemented ones and their functionalities. Both scalarization-based and
evolutionary methods are supported, and DESDEO allows hybridizing interactive methods of both types in
novel ways and enables even switching the method during the solution process. Moreover, DESDEO also
supports defining multiobjective optimization problems of different kinds, such as data-driven or simulation-
based problems. We discuss DESDEO’s modular structure in detail and demonstrate its capabilities in four
carefully chosen use cases aimed at helping readers unfamiliar with DESDEO get started using it. We also
give an example on how DESDEO can be extended with a graphical user interface. Overall, DESDEO offers
a much-needed toolbox for researchers and practitioners to efficiently develop and apply interactive methods
in new ways – both in academia and industry.

INDEX TERMS Data-driven multiobjective optimization, evolutionary computation, interactive methods,
multi-criteria decision making, nonlinear optimization, open source software, Pareto optimization.

I. INTRODUCTION
Optimization in many real-life problems is typically char-
acterized by several conflicting objectives to be consid-
ered simultaneously. In these multiobjective optimization
problems, the presence of conflicting objectives results in
many so-called Pareto optimal solutions with different trade-
offs instead of a single optimal solution. These solutions
are incomparable without additional information. Therefore,
there is a need for a domain expert, referred to as a decision
maker (DM), to ultimately choose one of the Pareto optimal
solutions as the final one based on his/her preferences.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

Different types of methods have been developed for solv-
ing multiobjective optimization problems in the multiple
criteria decision making (MCDM) (e.g., [1]–[3]) and evo-
lutionary multiobjective optimization (EMO) (e.g., [4], [5])
communities. Most MCDM methods incorporate a DM’s
preferences to focus on subsets of the Pareto optimal solutions
reflecting the interests of the DM. These methods have a
strong theoretical background and can guarantee Pareto opti-
mality (see, e.g., [3]). Most MCDM methods use so-called
scalarization or scalarizing functions to transform the origi-
nal multiobjective optimization problem with the preference
information into a scalarized problem (with a single objec-
tive) to be optimized. After this transformation, an appropri-
ate single-objective optimizationmethod is to be used to solve
the scalarized problem. By carefully selecting the scalarizing
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function, one can guarantee getting a Pareto optimal solu-
tion for the original problem so that the DM’s preferences
are considered. With different preferences, one can typically
get different Pareto optimal solutions. For comparisons of
different scalarizing functions, see, e.g., [6], [7]. In contrast,
EMO methods handle a population of solutions at a time and
generate several approximated Pareto optimal solutions to
represent different Pareto optimal solutions. They often start
from a random set of solutions and use different selection,
mutation and recombination operators to create the next gen-
eration of solutions. Because of their heuristic nature, they
cannot guarantee Pareto optimality, but they can be applied to
challenging problems with, e.g., discontinuous or nonconvex
functions.

One can classify different multiobjective optimization
methods based on when a DM with preference information
takes part in the solution process [1], [3]. A no preference
method is applied in absence of preferences. The DM may
provide his/her preferences before or after the solution pro-
cess in a priori or a posteriori methods, respectively. In a pri-
ori methods, theDMprovides hopes and expectations, and the
method tries to find the best matching solution. In contrast,
a representative set of Pareto optimal solutions is generated
in a posteriori methods for the DM to choose from.

The fourth class of methods, known as interactive multi-
objective optimization methods, involves the DM during the
solution process. In this way, the DM iteratively provides
his/her preferences while gradually gaining further insight
into the problem and learning about hidden limitations such
as the feasibility of the preferences and attainable solu-
tions [8]. Therefore, the DM has a chance to modify his/her
preferences based on new insight and learning. Moreover,
the cognitive load set on the DM (at a time) is usually
low compared to other methods, e.g., a posteriori methods.
Indeed, the DM can focus the search on a subset of solutions
and only consider Pareto optimal solutions of interest. This
also saves computational resources. Because of these reasons,
we consider here interactive methods. As mentioned, they
consist of iterations. At each iteration, the DM sees a solution
or some solutions reflecting the provided preferences and can
adjust the preferences to eventually find the most preferred
solution. Thanks to learning, the confidence of the DM grows
during the solution process.

The DM can provide various types of preference informa-
tion. Examples of them include so-called reference points
whose components represent desired values for objective
functions (also called aspiration levels), ranges for acceptable
objective function values, classification, pairwise compar-
isons and selecting desired or undesired solutions out of a
subset, to name a few (see, e.g., [3], [9]).

Over the years, different interactive methods have been
developed in the literature, and they have shown their poten-
tial in various applications, see, e.g., [10]. They differ
from each other mainly in terms of preference informa-
tion used, how solutions reflecting preferences are gen-
erated, and what kind of information is provided to the

DM [3], [8], [11]. However, their implementations are done
in isolation, and they are not readily available. Even though
most interactive methods utilize similar components (such
as types of preference information, scalarizing functions,
sampling techniques), each method has a different way
of implementation. These issues slow down the practical
usage of interactive methods from different perspectives
and introduces various challenges, which we have listed as
follows:

1) It is not easy to find implementations of different inter-
active methods to be applied.

2) Identifying the most suitable interactive methods to be
used in various real-life applications is challenging.

3) Comparing interactive methods is difficult because of
the lack of having various interactive methods within
the same framework.

4) Utilizing the implemented methods or some parts of
their implementation in new developments is hard,
so every new construction needs to be started from
scratch.

5) The lack of openness limits applicability.
6) The iterative nature of the interactive methods, together

with some standard components, enables switching
between methods in different iterations of the solution
process, at least in theory. Nonetheless, separate imple-
mentations have been preventing the chance of testing
this exciting idea.

To the best of our knowledge, only one framework has
been developed for interactive methods, which, to some
extent, aims to address the listed issues. It is the so-called
DESDEO framework [12]. However, the version discussed
in [12] had practical issues in its implementation, overall
structure, and modularity and was, thus, not ready for broader
usage and extensions. For these reasons, there was a need to
first re-structure and then to re-implement a new DESDEO
framework, which is introduced in this paper. The new frame-
work has a clear potential in addressing all the six listed
challenges.

The newDESDEO framework implemented in Python [13]
has a modular structure and , thus, involves reusable modules
that can be utilized for implementing new interactivemethods
or modifying the existing ones. DESDEO enables solving
computationally expensive simulation-based and data-driven
problems using surrogate models, including uncertainty con-
siderations. It contains implementations of several old and
new interactive methods by various developers covering
methods of bothMCDM and EMO types. Thanks to the mod-
ular structure, new or revised methods can be conveniently
included in the framework.

DESDEO consists of packages and modules. We introduce
them and also demonstrate how DESDEO can be applied
to solve problems with analytical expressions as well as
data-driven and simulation based problems. The strengths of
DESDEO include the option to hybridize scalarization based
and evolutionary methods and the convenience of comparing
different methods in the same environment. For instance,
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there is no need to specify the problem to be solved for each
method separately.

The modular structure enables hybridization between dif-
ferent types of methods. By hybridization, we mean the
ability to use final or intermediate results of one method
in another method, such as generating approximated Pareto
optimal solutions utilizing an EMO method and using the
solutions in an MCDMmethod or switching the method dur-
ing the solution process, e.g., when the DM wants to change
the type of preference information. This opens up new oppor-
tunities for utilizing different features of various methods
while the DM is not limited to using only one method or one
type of preferences. Various visualizations and a graphical
user interface are also being developedwith a similar modular
structure in mind. The methods implemented in DESDEO
can be utilized by anyone who has basic programming skills
in Python, which has become a widely-used programming
language in data and business analytics. Since the framework
is open source, it is readily available for various applica-
tions and can be conveniently tailored for different problems,
if needed. It is naturally also open to new contributions and
anybody interested is welcome to contribute.

The rest of the paper is structured as follows. In Section II ,
we outline the general concepts and notations of multiobjec-
tive optimization that we use in this paper, briefly review the
related open source frameworks for multiobjective optimiza-
tion in the literature, and overview some interactive methods
(referred to in this paper). Section III is targeted at readers
interested in contributing to the development of DESDEO.
For this, the framework structure introducing packages, mod-
ules, and external dependencies is described in detail. Those
who only wish to apply the framework for solving multiob-
jective optimization problems can skip Section III and focus
on four diverse illustrative use cases outlined in Section IV.
In Section IV, we also give a basic example of a graphical
user interface that can be implemented to ease interaction
between the interactive methods in DESDEO and the DM.
In Section V, we discuss the potential of the modular frame-
work, such as adjusting or hybridizing methods and creat-
ing user interfaces for various interactive methods. Finally,
we conclude in Section VI.

II. BACKGROUND
In this section, we first introduce the main notation and
concepts used in this paper. We then survey the state-of-
the-art of open source software frameworks available for
multiobjective optimization. Finally, we very briefly outline
some of the interactive methods referred to in the use cases
considered in Section IV.

A. MULTIOBJECTIVE OPTIMIZATION
We consider the following form of multiobjective optimiza-
tion problems minimizing k ≥ 2 objective functions [3]:

min f(x) = (f1(x), . . . , fk (x))

s.t. x ∈ S, (1)

where fi : S → R (i = 1, . . . , k) are objective functions
and x = (x1, . . . , xn)T is a vector of n decision variables in
the feasible region S ⊂ Rn defined by constraint functions.
Without loss of generality, we here assume that all functions
are to be minimized. If some function fi is to be maximized,
it is equivalent to minimize −fi.

A decision (variable) vector x∗ ∈ S is called Pareto optimal
if there exists no x ∈ S, so that for all i, fi(x) ≤ fi(x∗)
and for some j, fj(x) < fj(x∗). The image of Pareto optimal
decision vectors in the objective space Rk is called a Pareto
front and it consists of Pareto optimal objective vectors. In the
definition of Pareto optimality, a solution is not dominated
by any other feasible solution. As we deal with evolutionary
methods that cannot guarantee Pareto optimality, we also use
the term nondominated solutions. They are not dominated by
any solution in the solution set considered (typically referred
to as a population), but are not necessarily Pareto optimal.

The best and the worst possible values of objective func-
tions in the Pareto front are represented by an ideal and a nadir
point, respectively. The components of the ideal point can
be calculated by optimizing each objective function subject
to S as a single-objective optimization problem. In contrast,
computing the nadir point is difficult in practice as the set
of all Pareto optimal solutions is unknown. However, some
methods (e.g., a payoff table [14]) are available that can
approximate the nadir point (see e.g., [3] and references
therein).

B. DATA-DRIVEN MULTIOBJECTIVE OPTIMIZATION
As mentioned in the introduction, DESDEO can be applied
to solve different types of multiobjective optimization prob-
lems. Typically, the analytical forms of objective functions
and constraints cannot be formulated in most real-life prob-
lems. In some cases, simulation models can be used to
evaluate function values. In other cases, the objective or con-
straints values must be gained from some real experiences (or
laboratory experiments). In either case, evaluating the func-
tion values is usually expensive from different perspectives.
Therefore, so-called surrogate models can be utilized instead
of the original expensive models or experiments.

On the other hand, in today’s digital societies, various data
from different sources are continuously recorded, which can
be used as a new source of information in decision making.
Making the most of the data available can lead to data-driven
optimization problems. In this case, no other information than
the data is available, giving no other option than fitting surro-
gate models to formulate functions for optimization problems
based on the data. Then, surrogate models approximate the
objective or constraint values.

Different types of surrogate models, such as probabilistic
(e.g., Bayesian network [15] andMarkov chain Monte Carlo)
or machine learning techniques (e.g., radial basis func-
tions [16], Kriging or Gaussian processes [17], [18], support
vector regression [19], and neural networks [20], [21]) exist
and can be utilized to derive functions for multiobjective
optimization problems. Most of these techniques are freely
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available in different Python packages and libraries, which
can be used within the DESDEO framework.

C. LITERATURE REVIEW ON OPEN SOURCE
FRAMEWORKS FOR MULTIOBJECTIVE
OPTIMIZATION
Wehave surveyed open source frameworks for multiobjective
optimization problems. We do not consider closed source
and commercial software implementations because they do
not provide an opportunity to adjust the methods to one’s
needs in the way open source software does. Several open
source software frameworks have been proposed in the lit-
erature. Each of them has its own strengths and limitations
and differs in some nuances from the others. In general, many
aspects should be considered when selecting an appropriate
framework for one’s needs. For example, familiarity with the
programming language used to implement the framework, the
characteristics of the problem to be solved, the availability
of visualization tools, and an exemplary user interface can
influence the selection of a framework.

Table 1 summarizes well-known open source frameworks
proposed for solving multiobjective optimization problems.
We also list some common frameworks with a modular struc-
ture, where multiobjective optimization methods can be cre-
ated. Besides the name and the programming language used,
the table lists whether the frameworks focus onmultiobjective
optimization, includeMCDMor EMO types of methods, pro-
vide a decision-making mechanism where a DM can provide
his/her preference information and choose the most preferred
solution, visualization tools, and a user interface. The table
also states whether the framework has a modular structure
or not. In the following, we briefly describe each of the
frameworks.

DEAP [22] and Inspyred [23] do not focus specifically
on multiobjective optimization but provide Python imple-
mentations of e.g., genetic algorithms, simulated annealing,
and differential evolution. The (a posteriori) EMO method
NSGA-II for multiobjective optimization is also included.
Since these two frameworks have been developed with a
modular structure, moremultiobjective optimizationmethods
can be developed by using the modules available in the
framework. Inspyred includes further nature-inspired opti-
mization algorithms such as particle swarm optimization and
ant colony optimization.

vOptSolver [24] has been implemented in the Julia lan-
guage. It integrates several exact algorithms for multiobjec-
tive linear optimization problems (including mixed-integer
problems).

Platypus [25] involves Python implementations of several
well-known EMO methods concentrating, thus, on multi-
objective optimization. It also includes an analysis tool for
visual comparison of EMO methods by applying some per-
formance indicators.

MOEA [26] is a Java-based framework that enables auto-
matic parallelization of methods across multiple processor

cores. It includes most of the state-of-the-art a posteriori
EMO methods.

PyGMO [27] is a Python extension of PaGMO (C++) [28]
which has implementations of a variety of single- and mul-
tiobjective optimization methods and real-life engineering
problems in an object-oriented architecture. Automatic par-
allelization of the implemented methods enables using the
underlying multicore architecture efficiently.

jMetalPy [29] extends the Java-based framework
jMetal [30] (which contains metaheuristic methods like evo-
lutionary methods) for multiobjective optimization to be used
in Python. jMetalPy provides improved data analysis, interac-
tive visualization of Pareto optimal solutions, and increased
computational performance by applying libraries available in
Python. Additionally, jMetalPy facilitates parallel computing
for computationally expensive problems.

Pymoo [31] is a multiobjective optimization framework in
Python and offers evolutionary methods for single- and mul-
tiobjective optimization problems. It involves several visu-
alization techniques for illustrating results and well-known
indicators to compare the performance of the methods.

Finally, PlatEMO [32] is an open source framework
developed in MATLAB including many EMO methods,
widely used performance indicators, and benchmark prob-
lems. It also has a graphical user interface. However, one
should note that even though the implementation is openly
available, a MATLAB license is required to use it. There-
fore, while being commercial software, PlatEMO still allows
adjusting its implementation to meet specific needs.

The frameworks mentioned so far do not contain inter-
active methods. They include either MCDM or EMO types
of methods, but not both, and only one of the frameworks
comes with a user interface. As this summary shows, overall,
DESDEO is unique since it is the only open source frame-
work including interactive methods. Thus, DESDEO fills
a gap in the software available in the multiobjective opti-
mization community. DESDEO has a clear modular structure
making it easy for users and developers to contribute new
contents. Importantly, DESDEO involves both MCDM and
EMO types of methods, enabling hybridizing and switching
between methods depending on needs and application areas.
Moreover, elements for building custom graphical user inter-
faces for efficient interaction between the DM and interactive
methods are a planned future inclusion in DESDEO. These
elements are currently under active development and are to
be included as additional packages in DESDEO eventually.
Therefore, visualization and user interface (UI) items for
DESDEO are in parentheses in Table 1 for the time being.
However, specialized non-modular graphical user interfaces
have been developed for DESDEO in the past as seen in
Section IV-F.

D. SOME INTERACTIVE METHODS IMPLEMENTED
As mentioned earlier, different interactive multiobjective
optimization methods have been implemented in DESDEO.
In this section, we briefly introduce a few that are utilized
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TABLE 1. Summary of open source optimization frameworks. In the table, MO stands for multiobjective optimization.

later in Section IV: the reference point method [33], the
synchronous NIMBUS method [34] and the NAUTILUS
family [35] (particularly E-NAUTILUS [36] ) from MCDM
methods, and RVEA [37] and NSGA-III [38] from EMO
methods.

The reference point method [33] is a popular interactive
multiobjective optimization method in which the DM pro-
vides preferences as desired objective function values consti-
tuting a reference point. Then, at each iteration, k + 1 Pareto
optimal solutions reflecting the reference point are found by
utilizing an achievement scalarizing function. The DM can
iterate (i.e., compare solutions and provide new reference
points) until the most preferred solution is found.

In NIMBUS, starting from a Pareto optimal solution, a DM
expresses his/her preferences by classifying the objective
functions corresponding to the Pareto optimal solution into
up to five preference classes to indicate how the current
objectives should change to be more preferable to the DM.
In each iteration of NIMBUS, based on the DM’s preferences,
1–4 Pareto optimal solutions are generated and shown to the
DM (the DM decides how many new solutions (s)he wants to
see). Besides classification, the DM can ask for the desired
number of solutions generated between any two Pareto opti-
mal ones. Like other interactive methods, the solution process
continues until the DM has found his/her most preferred
solution.

The NAUTILUS family [35] contains interactive trade-
off-free methods. This means that the DM does not deal
with Pareto optimal solutions but gradually approaches the
Pareto front starting from an inferior solution (like a nadir
point). Then, following the DM’s preferences, all objectives
are simultaneously improved until a Pareto optimal solution is
reached. During the solution process, the ranges of objective
function values that still can be reached without trading-off
naturally shrink. Once a Pareto optimal solution is reached,
the solution process stops since it is no longer possible to pro-
ceed without trading-off. NAUTILUS variants vary regarding
the types of preference information used and how solutions
are generated in each iteration (see [35] for a comparison
of the differences). For example, in each iteration of the
original NAUTILUS [39] method, the DM ranks the objective

functions based on the preferred improvement of the current
objective values. In contrast, in NAUTILUS 2 [40], ratios of
improvement are provided by the DM. In E-NAUTILUS [36],
which is particularly developed for handling computationally
expensive problems, the DM can compare multiple solutions
(referred to as intermediate points) at each iteration. Finally,
NAUTILUS Navigator [41] integrates NAUTILUS with nav-
igation ideas [42], where the DM sees ranges of objective
function values that are still reachable from the current itera-
tion point shrinking in real-time and provides preferences as
desired aspiration levels and bounds not to be exceeded.

Besides MCDM type of methods, various interactive EMO
methods have also been developed and implemented in
DESDEO. They include interactive versions [43] of the ref-
erence vector-guided evolutionary algorithm (RVEA) [37]
and NSGA-III [38]. RVEA and NSGA-III are originally a
posteriori methods. The interactive version of NSGA-III has
been implemented, corresponding to how RVEA was made
interactive in [43]. The main type of preference information
used in both is a reference point, but other preference types
are also available for RVEA.

III. STRUCTURE OF THE DESDEO FRAMEWORK
In this section, we describe the structure of the DESDEO
framework, including packages of the framework and the
modules in each package. In addition, we discuss the purpose
of each package and its dependencies. We also consider the
implementation of the DESDEO framework and its external
dependencies. Lastly, we discuss the architectural choices
made in DESDEO that any aspiring developer and user of
the frameworks should be aware of. This section is intended
mostly for those interested in contributing to the framework’s
development. Those interested only in utilizing the frame-
work for solving multiobjective optimization problems may
proceed to Section IV.

A. PACKAGES AND MODULES
In the modular structure of DESDEO, each package is a
collection of modules, which contain class and function
definitions to tackle specific tasks in modeling and solving
multiobjective optimization problems interactively. The main
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packages, called core packages, and their individual modules
are presented in Figure 1. Each package has a well-defined
purpose and is built to address a certain set of tasks in interac-
tive multiobjective optimization methods. The modules may
depend on other packages lower in the structure, as shown in
Figure 2.

FIGURE 1. The main structure of the DESDEO framework with packages
and modules included in each package. Further packages and modules
can be added as needed.

FIGURE 2. The packages of DESDEO and their dependencies on each
other.

In Figure 2, the arrows represent the internal dependen-
cies of packages in DESDEO, e.g., the package desdeo-emo
depends on both the packages desdeo-tools and desdeo-
problem. A modular structure allows users to choose which
parts of the framework to use. For example, to model a
multiobjective optimization problem, one can use the desdeo-
problem package and avoid the needless inclusion of the other

packages. Additionally, having the framework structured in
a modular fashion eases the development of the framework
by encapsulating features and functionalities related to inter-
active multiobjective optimization in their own respective
packages.

In what follows, we describe packages included in
DESDEO and their dependencies on other packages. The
packages also depend on existing popular Python packages,
which are discussed further at the end of this section.

The desdeo-problem package contains features related to
the formulation and modeling of multiobjective optimiza-
tion problems. Problems can be analytical expressions of
functions depending on decision variables, or modeled based
on collected data related to the multiobjective optimization
problem (either utilizing data available or data obtained
by running a problem-specific simulator). The problem can
naturally also have constraint functions defining a feasible
region. Tools for problem formulation can be found in the
module problem. As already mentioned, surrogate models
may be trained and used to model functions of a multiob-
jective optimization problem based on data. For example,
Gaussian regression is available as a surrogate model but
any other machine learning-focused package can be used to
train surrogate models. The tools for building surrogates can
be found in the surrogatemodels module. Moreover, com-
monly utilized test problems in multiobjective optimization
can be found in the testproblems module. Such problems
include, for example, the DTLZ problems [44]. The desdeo-
problem package does not depend on any other package in the
DESDEO framework.

The desdeo-tools package contains utility tools that are
expected to be used during any phase of the optimization
process, irrespective of the method type (MCDM or EMO)
used for optimization. Such tools include abstractions for var-
ious preference elicitation techniques, scalarizing functions,
and nondominated sorting. The interaction module contains
methods to ease interaction between a DM and an interac-
tive multiobjective optimization method. The scalarization
module contains scalarization tools for transforming multi-
objective optimization problems into single-objective prob-
lems (incorporating preference information). As mentioned
in the introduction, we can get Pareto optimal solutions by
using appropriate scalarization functions, such as achieve-
ment scalarizing functions [45] and the scalarization function
of the ε-constraint method [2]. The maps module contains
tools for transforming objectives from one space to another,
such as e.g., the so-called preference incorporated space [46].
Finally, the solver module contains tools for solving scalar-
ized problems. These solversmust be appropriate for the char-
acteristics of the problem in question (considering, e.g., the
type of variables and the nature of functions involved). The
desdeo-tools package does not depend on any other package
in the DESDEO framework.

The desdeo-emo package is the repository of evolutionary
algorithms (EAs) and tools which are specifically used with
EMO methods. Besides interactive EMO methods, it has
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implementations of basic (a posteriori) EMO methods and
some a priori methods as they can be used as elements
of interactive ones. The package contains the following
modules: population, recombination, selection, EAs, surro-
gatemodelling, and utilities. The first three modules con-
tain abstractions representing the population, crossover and
mutation operators as well as selection operators. We use
these abstractions as building blocks to implement various
evolutionary algorithms in the EAs module. New EAs can be
implemented by either modifying the implementations in the
EAs module or by using the building blocks in other mod-
ules in entirely new ways. The surrogatemodelling module
implements certain EA based methods which are specifically
designed to train surrogate models. Finally, utilities contains
miscellaneous tools that are used by one or more EMOmeth-
ods, but do not fit in the other modules. The desdeo-emo
package depends on the desdeo-problem and desdeo-tools
packages.

As the name suggests, the desdeo-mcdm package con-
tains implementations of interactive multiobjective optimiza-
tion methods of the MCDM type (involving scalarization
functions to generate Pareto optimal solutions). The meth-
ods themselves are in the interactive module. For example,
the synchronous NIMBUS and methods belonging to the
NAUTILUS family are implemented in this module. The
utilities module contains various utilities often needed in
MCDM methods. For instance, the utilities include a payoff
table method for computing an ideal and an approximation
of the nadir point. The desdeo-mcdm package depends on the
desdeo-problem and desdeo-tools packages.

Besides the core packages of DESDEO discussed so far,
other packages can be, and have also been, developed based
on the packages discussed. Examples of these packages
consist of specialized graphical UIs and new experimental
interactive multiobjective optimization methods not mature
enough to be included in DESDEO yet. Due to their experi-
mental nature, we will not discuss these additional packages
further here.

As mentioned, the DESDEO framework has been imple-
mented in Python and is available online as open source
software on GitHub.1 The framework makes use of exist-
ing Python libraries in the SciPy ecosystem, most notably
NumPy [47], SciPy (the library) [48] and Pandas [49].
NumPy offers numerically efficient data structures, which
enables an efficient handling of array-like structures present
everywhere in the DESDEO framework. SciPy offers exist-
ing computational routines. For example, it offers excellent
optimization routines for optimizing constrained problems
with a single objective. As mentioned, this kind of problem
emerges, for instance, when scalarizing a multiobjective opti-
mization problem. In turn, Pandas has excellent and efficient
data manipulation routines. They are needed especially when
representing data-driven multiobjective optimization prob-
lems, which may sometimes consist of large amounts of data

1https://github.com/industrial-optimization-group/DESDEO

requiring extensive feature engineering before modeling a
multiobjective optimization problem.

For a more detailed description of each package and
module found in DESDEO, the reader is encouraged to
check DESDEO’s main documentation. The documenta-
tion is found online (https://desdeo.readthedocs.io/en/latest/)
where the individual documentation of each core package can
be found with additional details about implemented classes
and functions.

B. ARCHITECTURAL DECISIONS IN DESDEO
A couple of choices have been made during the development
of DESDEO. The user of the framework should keep them in
mind while developing or using the framework.

As mentioned in Section II, objective functions in mul-
tiobjective optimization problems can either be minimized
or maximized, but within the optimization methods in
DESDEO, functions are always assumed to be minimized.
This means that we convert functions to be maximized to
functions to be minimized and internally only deal with mini-
mization problems. This choice has been made to remove any
possible software bugs, confusion, and guesswork related to
keeping trackwhether an objective is to beminimized ormax-
imized, transforming problems from one type to another, and
parsing preference information. Naturally, when displaying
information related to a multiobjective optimization problem
and its solutions to a DM, the objectives are presented in their
original form. The task of making the conversion whenever
needed (also in the preference information) is the responsi-
bility of the UI.

As interactive multiobjective optimization methods vary in
the type of interaction and preference information required
from the DM, abstraction of interaction has been kept simple
and non-restrictive in DESDEO. Each interactive method
has at least two (object) methods: start and iterate.
As the name suggests, the former is always used to start a
method after it has been instantiated. Likewise, theiterate
method is then used for any subsequent interactions after
starting the method. Both the start and iterate meth-
ods return at least one request (Python) object. These
objects contain all the necessary information to carry out
a required interaction with the interactive method in their
content attribute, which is a Python dictionary. The con-
tents of a request may vary depending on the interactive
method, but each content dictionary in DESDEO comes
at least with a message entry meant to give a hint to
the user of what is expected of them interaction-wise. Each
request object has a response attribute, which is also
a dictionary. The response dictionary has its own entries,
which the user must define to continue iterating the interac-
tive method. After the entries of the response have been
defined, theiteratemethod can be invoked by giving it the
request containing the responsewith defined entries as
an argument. The iterate method will then return a new
request. Examples of this request-response struc-
ture can be found in the use cases in Section IV. However,
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it is not expected that a DM oneself would directly handle
these Python dictionaries. Instead, it is expected that some
external interface is used to facilitate interaction between a
DM and DESDEO. The request and response should
be mainly used to store and communicate information to and
from interactive methods available in DESDEO.

IV. USE CASES
In this section, we demonstrate how one can use the DESDEO
framework to define different types of problems and solve
them by applying interactive multiobjective optimization
methods. For simplicity, we use a river pollution problem
with five objective functions and two decision variables
presented in Section IV-A. In Section IV-B, we describe
how to define a problem with an analytical formulation and
solve it using the synchronous NIMBUS method [34]. This
method is in the desdeo-mcdm package and incorporates
classification types of preferences. Section IV-C is devoted
to defining and solving a data-driven problem. The inter-
active RVEA [43] method in the desdeo-emo package is
applied, where preference information is given as a reference
point. In Section IV-D, we consider some challenges of com-
putationally expensive problems and follow the three-stage
approach [50], where first, NSGA-III is utilized in a pre-
decision-making stage to generate nondominated solutions.
Then, a computationally inexpensive surrogate problem is
formed. In the decision-making stage, the DM applies the
interactive E-NAUTILUS [36] method to solve the surrogate
problem. There can also be a post-decision-making stage to
assure the Pareto optimality of the final solution. Here we
consider the first two stages as a hybrid way of using methods
within the DESDEO framework. Lastly, in Section IV-E we
demonstrate how the DM can switch interactive methods in
DESDEO to express his/her preferences in different ways.
This example also illustrates some of the advantages the
DESDEO environment provides. Finally, we discuss some
graphical user interfaces in Section IV-F.
Asmentioned, themain documentation ofDESDEO can be

found online (https://desdeo.readthedocs.io/en/latest/). The
documentation of each core package discussed in Section III,
can be readily accessed through the main documentation.
We advice the reader to check the documentation for any
additional details related to the use cases considered in
Sections IV-B, IV-C, IV-D, and IV-E. The examples shown
in these sections can also be found online in a Jupyter
Notebook.2

A. THE RIVER POLLUTION PROBLEM
The river pollution problem [51] considers a river close to a
city. There are two sources of pollution: industrial pollution
from a fishery and municipal waste from the city and two
treatment plants (in the fishery and the city). The pollution
is reported in pounds of biochemical oxygen demanding

2https://desdeo.readthedocs.io/en/latest/notebooks/four_simple_use_
cases.html

material (BOD), and water quality is measured in dissolved
oxygen concentration (DO).

Cleaning water in the city increases tax rate, and cleaning
in the fishery reduces the return on investment. The problem
is to improve the DO level in the city and at the municipality
border (f1 and f2, respectively) while, at the same time, max-
imizing the percent return on investment at the fishery (f3)
and minimizing addition to the city tax (f4). We consider a
variant of the problem [52] with one more objective to ensure
the treatment plants’ efficiency by keeping the proportional
amount of BOD removed from the water close to the ideal
value of 0.65 (f5). The corresponding multiobjective opti-
mization problem where all objectives have been converted
to be minimized is as follows:

min f1(x) = −4.07− 2.27x1
min f2(x) = −2.60− 0.03x1 − 0.02x2

−
0.01

1.39− x21
−

0.30

1.39− x22

min f3(x) = −8.21+
0.71

1.09− x21

min f4(x) = −0.96+
0.96

1.09− x22
min f5(x) = max{|x1 − 0.65|, |x2 − 0.65|}

s.t. 0.3 ≤ x1, x2 ≤ 1.0, (2)

where the proportional amounts of BOD removed from water
in the two treatment plants are, respectively, the decision
variables x1 and x2.

B. USE CASE 1: PROBLEM WITH AN ANALYTICAL
FORMULATION
DESDEO has good support for defining and optimizing
problems with analytical formulations. DESDEO provides
individual classes to define components of problem (1),
i.e., objective functions, variables, and constraint functions
separately. Box-constraints for variables are also supported.

Here we analytically define (2) and use modules of the
desdeo-problem package and NumPy. The imports needed
are shown in Source code 1. Notice that this problem has only
box-constraints.

SOURCE CODE 1. Needed imports for a problem defined analytically. The
class MOProblem is used to define a problem, the class Variable its
decision variables, and the class ScalarObjective the objective
functions.

We define the five objective functions as shown in Source
code 2 as individual functions. These functions are expected
to return a 1-dimensional NumPy array with each element
representing the respective objective value when evaluated
with one or more decision variable vectors. These decision
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variable vectors are stored in 2-dimensional NumPy arrays,
with each row representing a single vector. The defined
functions are then used in the ScalarObjective class to
instantiate new objects. Finally, each of the objects is stored
in a list.

SOURCE CODE 2. Defining the objective functions of problem (2).

The variables of the problem are defined similarly in
Source code 3. EachVariable object is instantiated by pro-
viding the variable’s name, initial value, and lower and upper
bound (i.e., box-constraints). The objects are then stored in a
list.

SOURCE CODE 3. Defining the variables and their bounds for problem (2).

Finally, we define the multiobjective optimization problem
by instantiating an MOProblem object in Source code 4
using the lists of ScalarObjectives and Variables
defined earlier. If the problem had additional constraints, they
would be defined in a similar way to objective functions
and provided as a third argument (constraints) to the
initialization method of the MOProblem class. However,
here we only have box-constraints, which were accounted for
when defining the variables in Source code 3.
As mentioned, we solve problem (2) in this case with the

synchronous NIMBUS method [34]. Since it needs the ideal

SOURCE CODE 4. Defining the multiobjective optimization problem
object of problem (2).

and nadir points, we approximate them with the payoff table
method found in the desdeo-mcdm package’s utilitiesmodule
in Source code 5.We store them inside the object defining our
problem to have easy access to them later.

SOURCE CODE 5. Applying the payoff table method to get
approximations of the ideal and nadir points.

SOURCE CODE 6. Instantiating a NIMBUS object and invoking its start
method. The start method returns two requests of which the second
one is irrelevant to this example and is therefore matched to an
underscore on line 5.

We can now start solving problem (2) using NIMBUS
as shown in Source code 6. After importing the NIMBUS
class, we instantiate an object of it by providing it
mo_problem, which was defined earlier. The start
method returns a classification_request, which is
used to interact with the method as described in Section III-B.
The message-entry found in the content attribute of
classification_request is printed in Console 1.
We remind the reader that in practice, a UI should han-
dle requests. An example of such can be found in
Section IV-F.

CONSOLE 1. The message printed in the request returned by NIMBUS.

As seen in Console 1, we have been provided with instruc-
tions on how to proceed. The content of the response,
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CONSOLE 2. The objective values of the initial solution computed by
NIMBUS, and the ideal and nadir points of the problem.

in the case of NIMBUS, also contains objective vectors,
which we can inspect by printing them as done in Console 2.

SOURCECODE 7. Defining a response with preference information
required by NIMBUS, and then iterating. Newly computed objective
vectors are then printed.

We then define a response in Source code 7 con-
taining preference information, in this case, classifications,
and continue iterating by invoking the iterate method of
NIMBUS. The new objective vectors computed in the first
iteration of NIMBUS are shown in Console 3.

CONSOLE 3. The objective vectors computed by NIMBUS based on the
classification given by the DM.

Iterations of the NIMBUS method may continue by defin-
ing new responses to the requests returned by subse-
quent invocations of the iteratemethod. According to the
definition of NIMBUS [34] the subsequent requests can
also prompt the DM to choose previously computed solutions
between which to compute additional solutions, or to select
previously computed solutions to be saved into an archive
for later viewing, for example. How each of the requests
is handled in practice and how information is displayed to
the DM depends on the choice of a UI, as stated before.
Here, we have only shown the information in textual format
to showcase the concepts of requests and responses,
which can be found in other interactive methods defined in
DESDEO as well.

C. USE CASE 2: DATA-DRIVEN PROBLEM
As mentioned, the DESDEO framework can be used to solve
data-driven problems by fitting surrogate models to the data.

This means that the data is assumed to contain samples of
decision variable values, and corresponding objective vectors
and surrogate models are fitted to represent each objective
function individually. To demonstrate this, in this use case,
we assume that we only have access to a small number of
data points generated before the initiation of the solution
process. We have generated data points for problem (2) by
sampling the feasible region in the decision space using
Latin hypercube sampling [53], and evaluated them using
the analytical functions to obtain the corresponding objective
vectors. A total of 100 points were sampled and the resulting
data set saved on disk. The structure of the dataset is shown in
Table 2, where the first row contains the names of the columns
(decision variables or objectives).

TABLE 2. Format of the raw data used for surrogate-assisted
optimization.

SOURCECODE 8. Formulating the problem using data.

We formulate the problem as shown in Source code 8. The
Pandas package is used for importing and handling the data as
shown in line 5 with the variable training_data. We can
now define the problem by instantiating a DataProblem
object. This is done by passing training data, names of the
decision variables and the objective functions, and the lower
and upper bounds of the decision variables. If these bounds
are not provided, the infimum and supremum of the dataset
are assumed to be the bounds.

In Source code 9, we show how the newly created
DataProblem object can be used to train surro-
gate models for the objectives. We begin by import-
ing the surrogate modeling technique of choice. Here,
we use the GaussianProcessRegressor class from
desdeo_problem, which is a wrapper around the scikit-
learn class of the same name. Similar wrappers can be defined
for other options of existing surrogate models. The modeling
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SOURCECODE 9. Training Gaussian process regression surrogate models
for the objectives.

algorithm and model parameters can be passed to the train
method of the DataProblem object, which automatically
trains the surrogate models for all objectives. Details about
advanced use cases of the train method, such as training
different kinds of surrogate models for different objectives,
can be found in the documentation of desdeo-emo. More
information about the model parameters is available in the
documentation of the package of the model used, in this case,
scikit-learn.

Once the surrogate models have been trained, we apply
here the interactive RVEA method from the desdeo-emo
package to solve the resulting problem using reference points
as preference information. In Source code 10, we pass
the problem variable as the first argument to the RVEA
instance. This is followed by two Boolean arguments:
interact=True and use_surrogates=True. The
first argument enables the use of an interactive version of
RVEA as presented in [43]. The second argument enables
RVEA to use the surrogate models as objectives in place
of analytical functions. Details about other arguments which
control various aspects of the evolutionary method can be
found in the documentation of desdeo-emo.

SOURCECODE 10. Using interactive RVEA to solve the surrogate problem.

We begin the interactive solution process by providing
the first reference point to evolver. This is done by
first calling the request method of evolver, which
returns refp_request and additional requests, irrele-
vant in this example, matched to underscores. This is sim-
ilar to the requests returned by the start method of
nimbus in the previous subsection. The refp_request
variable accepts preferences as a reference point. Similar to
classification_request in the previous subsection,
this object also has a content method and a response
attribute. The comment on line 11 in Source code 10

signifies the DM providing preferences to refp_request.
As mentioned in the previous subsection, this can be
achieved by a command-line interface, a graphical UI,
or by using a console environment, like IPython or Jupyter
Notebook.

In Console 4, we show how preferences can be defined.
The content attribute of refp_request can be shown
to the DM to describe the acceptable ranges of the pref-
erences (here, ranges for aspiration levels as components
of the reference point) and how the preference information
will be utilized in the method used. The DM then provides
preferences to the response attribute of refp_request
using a Pandas data frame. The names of the columns of
this data frame have to be the same as the objective function
names, and the values contained in the data frame reflect
the preferences of the DM in the form of a reference point.
The preference information can then be submitted to the
iterate method of the evolver object to run one iteration
of interactive RVEA. This involves running the evolutionary
method for a number of generations. This number can be
changed by the user using arguments of the RVEA class, and
the details can be found in the documentation.

CONSOLE 4. Checking the contents of the preference request object and
saving the DM’s preferences using a console environment.

After each iteration, the solutions generated can be
accessed through the individuals and objectives
attributes of evolver.population. The former con-
tains the decision variable vectors of the set of solutions,
whereas the latter contains the corresponding set of objective
vectors. The solutions received after one iteration of RVEA
are shown in Figure 3 in the parallel coordinates plot. As can
be seen, many solutions were found that follow the reference
point of the DM (denoted in green color) closely. If, however,
the DM is not satisfied with the results or wants to see
solutions in a different region of the objective space, the steps
shown in Console 4 can be repeated as many times as desired
with different preference information.
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FIGURE 3. Solutions obtained for the data-driven river pollution problem
after using RVEA for one iteration.

D. USE CASE 3: COMPUTATIONALLY EXPENSIVE
PROBLEM
Multiobjective optimization problems can involve expensive
function evaluations. In such cases, computing new solutions
in each iteration of an interactive method is not feasible
because of the long periods of time a DM would have to
wait to see new solutions. Instead, we can use an inter-
active multiobjective optimization method that works on a
computationally less expensive surrogate problem based on
a pre-computed representation of Pareto optimal solutions.
To get a representation, we can use, e.g., some a posteriori
methods like EMO methods. Here we use this simple, yet
quite effective, way as an example of combining methods
from the desdeo-mcdm and desdeo-emo packages.

SOURCECODE 11. Generating a representation of Pareto optimal
solutions for problem (2) using the desdeo-emo package.

We first generate a representative set approximating Pareto
optimal solutions for the river pollution problem (2) as shown
in Source code 11. For this, we apply NSGA-III (activated by
using the interact=False argument) as an a posteriori
method to get solutions for the problem as implemented in
Source code 4. The method is run until a pre-determined
termination criterion is met (the default being 1000 genera-
tions). After this, we can use the end method of the evolver
object to extract a representation of the Pareto front (i.e., non-
dominated solutions) from the population as individuals
(decision vectors) and pareto_set (objective vectors).
We then apply the E-NAUTILUS method [36] with the

generated set of nondominated solutions as its input. It
also needs estimates of the ideal and nadir points, typically
estimated from the available solutions. However, because
we have previously computed (in Section IV-B) the ideal

and (estimated) nadir points, we apply them. As mentioned
in Section II-D, the solution process starts with an inferior
solution and gradually approaches the Pareto front.

In Source code 12, we set up the E-NAUTILUS method
using the ENautilus class from the desdeo-mcdm package.
We invoke the start method as we did in the case of
NIMBUS in Section IV-B to start the solution process.We can
get a hint on how to progress by printing the message stored
in the request as done in Console 5.

SOURCECODE 12. Initializing the E-NAUTILUS method using the set of
solutions computed using NSGA-III and the previously computed ideal
and nadir points of problem (2).

CONSOLE 5. The help message returned by starting the E-NAUTILUS
method.

SOURCECODE 13. Specifying the number of iterations to be carried out
and the number of points to be shown in each iteration of the
E-NAUTILUS method.

A response to the request returned by the startmethod is
then defined in Source code 13. We choose five iterations and
want to see three intermediate points after each iteration. We
then continue iterating and get a new request from invoking
the iteratemethod, which contains the message displayed
in Console 6.

CONSOLE 6. The help message in a request returned from iterating the
E-NAUTILUS method after it has been started.

To address the message shown in Console 6, we first
inspect the intermediate points and bounds of the reachable
solutions computed in the first iteration of E-NAUTILUS in
Console 7.

In Source code 14, we define a response to the current
request and continue iterating by invoking the iterate
method. Subsequent iterations are carried out as shown in
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CONSOLE 7. Printing the intermediate points, upper bounds, and lower
bounds computed in the first iterations of E-NAUTILUS.

SOURCECODE 14. Expressing preference to be the second point shown in
Console 7 and iterating.

Source code 14.We show an example of this using a graphical
UI in the next subsection.

This way of exploring an existing representation of a Pareto
front is well suited for computationally expensive problems
since no expensive function evaluations are needed when
the DM is involved. Even though the problem in this exam-
ple is not really computationally expensive, the process of
first using an EMO method to compute a representation of
the Pareto optimal front, and then exploring it using the
E-NAUTILUS method is identical in a computationally
expensive case.

E. USE CASE 4: SWITCHING METHODS
As interactive multiobjective optimization methods vary
in the type of preference information they require from
a DM and the type of information they provide to the
DM, it is sometimes desirable to switch between itera-
tions to a method that is better suited to the changing
needs of the DM. The DESDEO environment enables this
kind of a switch even between different types of meth-
ods. To illustrate this, we consider an example, where we
have finished iterating with the E-NAUTILUS method as
described in Subsection IV-D and arrived at the solut-
ion[-6.27116931, -2.80042652,-3.46795271,
-6.57327201, 0.31967811]. Since this method uses
a set of solutions approximating the Pareto front, we can
improve the solution by utilizing the synchronous NIMBUS
method and considering the original problem (2) in its
analytical form. We can also think that we have applied
E-NAUTILUS as a trade-off-free method to find a good start-
ing point for NIMBUS and avoided anchoring at a randomly
selected starting point. From NIMBUS, we then switch to

applying the reference point method [33], that is, change the
preference information type from classifying the objectives
to providing a reference point.

To begin, we instantiate a NIMBUS object with the solution
we arrived at with E-NAUTILUS. We use this solution to
derive a Pareto optimal solution that NIMBUS starts with
in Source code 15. This solution is shown in Console 8.
Small improvements were made in the values of the third and
fourth objectives while the other objective values remained
unchanged. This is also an example of a possible realiza-
tion of the post-decision-making stage (mentioned at the
beginning of Section IV) to assure the Pareto optimality of
the solution found using E-NAUTILUS since EMO methods
(used here to generate the input set for E-NAUTILUS) cannot
guarantee Pareto optimality.

SOURCECODE 15. Instantiating a NIMBUS object with a specified starting
point and starting the method.

CONSOLE 8. Printing the solution to be classified in the first iteration of
synchronous NIMBUS in Source code 15.

SOURCECODE 16. Providing classification to synchronous NIMBUS and
iterating the method further.

Next, we take an iteration with the synchronous NIMBUS
using the classification shown in Source code 16. Based on
this preference information, the method provides four new
Pareto optimal solutions shown in Console 9. While inspect-
ing the solutions, we find the first to our liking, but we would
next like to provide a reference point instead of a classifica-
tion. Thus, we switch to using the reference point method in
the desdeo-mcdm module. We initialize the reference point
method by instantiating a ReferencePointMethod
object as done in Source code 17.
We provide the best (i.e., the solution we like the

most) NIMBUS solution ([-6.06739, -2.79173,
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CONSOLE 9. Printing the new solutions computed in Sourcecode 16.

SOURCECODE 17. Instantiating a reference point method object and
starting it.

-5.96145, -6.57333, 0.30863]) as the reference
point in Source code 18 by defining the reference point as
a part of the response. We get the solutions shown in
Console 10 and since the first one is so similar to the reference
point, we stop the solution process and select the first solution
as the final one.

SOURCECODE 18. Iterating with the reference point method by providing
a reference point.

CONSOLE 10. Printing the alternative solutions computed by the
reference point method after providing the reference point as done in
Source code 18.

If we were not satisfied yet, we could continue iterating
by providing a new reference point in a similar way to
what was done in Source code 18. We could also switch
back to the synchronous NIMBUS method by initializing a
NIMBUS object once more, as was done in Source Code 15.
In principle, we could also switch to an EMO method, for
example, by providing one of the solutions as a reference
point to RVEA similar to how it was done in Source code
10, while also switching back to the surrogate version of
problem (2). But in this case it makes no sense to switch
from Pareto optimal to approximated solutions. Naturally,

we are not limited to the interactive methods considered in
the use cases, but any method in DESDEO is applicable.
Without DESDEO, we would be forced to resort to switching
our whole working environment, which may require need-
less repetition, for example, redefining the same problem
multiple times (and possibly in a different syntax). Thanks
to DESDEO, we have all the methods, problems, and other
relevant information (e.g., solutions computed with different
methods) in the same environment, which allows to readily
switch methods and re-use already created information.

F. SOFTWARE APPLICATIONS BUILT UTILIZING DESDEO
So far, we have not really discussed UIs in the DESDEO
framework apart from using a console environment. However,
DESDEO is easy to extend to build more advanced software
applications, such as graphical user interfaces (GUIs), which
facilitate interaction between DMs and interactive methods.
In this section, we explore an example of such a GUI imple-
mented for a method in the desdeo-mcdm package. It is
naturally possible to implement similar GUIs for methods in
the desdeo-emo package as well.

We consider an interface implemented for E-NAUTILUS.
We have furthermore chosen a web interface because they are
accessible to anyone through any modern web browser. The
interface has been developed using the Python libraries plotly
and plotly-dash (https://plotly.com/) due to their ease of use
and versatility for developing web interfaces. However, there
is a significant lack in support for interactive visualizations in
these libraries, which we had to circumvent, leading to a lack
in general usability.

The web interface for E-NAUTILUS can be seen in
Figure 4. At the top of the interface, we have controls for
the DM to engage with E-NAUTILUS: the DM can choose
the most preferred intermediate point (labeled as ‘candidate’
in the figure) by using the radio buttons and click on the
‘ITERATE’-button to continue iterating. Below the controls,
there are three different ways to visualize information about
the intermediate points calculated: at the top left, a spider
plot showing the intermediate points (solid lines) and the best
reachable objective function values from each point (dashed
lines); at the top right, a parallel coordinate plot showing
only the intermediate points with the currently selected point
(using radio buttons) being highlighted in red; and at the
very bottom, the values of each intermediate point and their
best reachable values in a table with the currently selected
intermediate point highlighted in blue.

The spider plot in Figure 4 is worth a closer look. First, each
intermediate point can be explored by clicking the respective
point on the legend to the right of the plot. Second, the plot
also shows in black the intermediate point chosen by the DM
in the previous iteration. Showing the previously chosen point
was desired by a real DM in a practical application where
this interface was used. This is an example of a subjective
need that may arise when interacting with real DMs. Lastly,
it is worth comparing the information in Figure 4 to the
information outputted in Console 7 to see that the information
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FIGURE 4. The GUI of the E-NAUTILUS method implemented in plotly-dash. A toy multiobjective optimization problem with three objectives (INCOME,
QUALITY, VOLUME) to be maximized is shown.

shown for a single iteration in the web interface and the
console are virtually the same. In practice, the presented
interface simply handles the requests and responses

(discussed in Section III-B) as was done in Section IV-D.
In the E-NAUTILUS GUI, we have a different multiobjective
optimization problem with three objectives to be maximized
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instead of problem (2). We have chosen a problem with
fewer objectives for simplicity. Note that the arrows after the
function names remind of the maximization.

The interface described for E-NAUTILUS is available
online (https://desdeo.it.jyu.fi/dash) alongside an interface
implementation for NAUTILUS Navigator as well. The
source code for the interface shown is available on GitHub
online.3 To test the interfaces, we have provided the interested
reader with toy data online.4

V. POTENTIAL OF THE DESDEO FRAMEWORK
Because the DESDEO framework contains various interac-
tive methods, it enables versatile ways of applying them.
As said, the DM can conveniently switch the method during
the solution process. This can be desirable if (s)he wants to
change the type of preference information in the middle of the
solution process or get different types of information about
the problem. This opens up vast possibilities when the DM is
not forced to stick with a single method to be applied but can
select methods that best suit the different phases of the solu-
tion process (e.g., learning and decision phases [54]). This
potential has been considered in [55], where a generic multi-
agent architecture for interactive methods was proposed to
support DMs in selecting the most suited interactive method
based on preferred preference type and their needs in different
phases during the solution process. Without a framework like
DESDEO, switching the method is inconvenient; the problem
to be solved must be connected to individual multiobjective
optimization methods separately, and the solution history
with the previous method is not easily available.

DESDEO has clear potential in allowing researchers to
hybridize EMO and MCDM methods in novel ways. This
potential is not just limited to the example seen in Section IV,
where an EMOmethod was used to compute a representation
of a Pareto front, which was then explored using an MCDM
method. More innovative and advanced ways of combining
not just methods but also their individual components are
possible. This is because of the modular fashion in which
the various multiobjective optimization methods have been
implemented in DESDEO. Combining individual compo-
nents enables the development of new interactive methods,
which can be also included in DESDEO extending the frame-
work further. The IOPIS algorithm, described in [46], is an
example of such a method.

Moreover, DESDEO offers a promising basis for imple-
menting new interactive multiobjective optimization methods
that are not based on combining existing components. Due to
the modular structure, a developer can easily reuse already
implemented components and only add those that are not yet
available (if needed). For example, the desdeo-tools package
has awide variety of different tools ranging from achievement
scalarizing functions to fast nondominated sorting, which

3https://github.com/industrial-optimization-group/desdeo-dash
4https://github.com/industrial-optimization-

group/DESDEO/blob/master/docs/notebooks/data/toy_data.csv

can prove useful in implementing new methods. In addition,
experimenting with new methods and ideas in multiobjective
optimization is also made easy thanks to DESDEO and the
reusability of its components. DESDEO can also encourage
and lower the threshold for researchers to implement their
methods as open source code, contributing to the openness of
the research conducted in multiobjective optimization. This
way, DESDEO has the potential and is on a good track to
becoming a central hub for open implementations of interac-
tive multiobjective optimization methods.

Apart from being interesting from an academic per-
spective, DESDEO can naturally be utilized for modeling
and solving real-life problems from any field as long as
the problem can be modeled as a multiobjective optimization
problem. Depending on the type and requirements of the
problem, DESDEO might still lack certain features neces-
sary for modeling and solving the problem, which is also
one of the current limitations of DESDEO. However, due
to DESDEO’s modular structure and open source nature,
implementing these missing features is possible by anyone.
For example, the underlying optimization methods for single-
objective optimization problems arising in various interactive
methods in DESDEO can be changed to better account for
the type of problem being solved. Similarly, the crossover and
mutation operations in EMOmethods can also be customized
if need be. Lastly, in modeling a data-driven multiobjec-
tive optimization problem, almost any surrogate model can
be implemented and used. Obviously, existing features in
DESDEO can be combined with new features as well allow-
ing practitioners to save time and help them focus on solving
the problem at hand. In this way, DESDEO can be extended to
account for any kind of multiobjective optimization problem
from any field while decreasing the potential workload for
practitioners.

Being a software framework, DESDEO has a learning
curve to it, which means that a certain level of proficiency
in Python and multiobjective optimization is to be expected
from the user. This clearly limits the size of the potential user
base of DESDEO and is, therefore, one of the framework’s
major limitations at the present time. We already offer a
written documentation of DESDEO’s features, but to make
DESDEO even more accessible, we plan on including more
topical guides in the documentation on how to use DESDEO
(such as the ones presented in Section IV) and consider pro-
ducing tutorial videos on how to use DESDEO in the future.
This should help broaden DESDEO’s user base and allow
users to extend DESDEO to meet their individual needs.
All of this will help DESDEO grow further as a software
framework.

Comparison and identifying the best suited method for var-
ious needs are important. DESDEOdoes offer very promising
opportunities for comparing and validating different interac-
tive methods. This is vital and demanding because the DM
plays an important role in the solution process and conducting
experiments with human participants is challenging. To be
able to compare interactive methods, their performance needs
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to be evaluated and validated using appropriate quality indi-
cators. To the best of our knowledge, no quality indicators
for interactive methods have been proposed. For such quality
indicators, the desirable properties that qualify interactive
solution processes should be defined. In [56], a systematic
literature review of the assessments of interactive methods
is provided along with desirable properties for interactive
methods. This can be considered as the initial step towards
developing quality indicators for interactive methods. More-
over, there has been some interest in comparing interac-
tive methods with so-called artificial DMs in the literature
(e.g., [57]–[59]). Within the DESDEO framework, an arti-
ficial DM has recently been proposed to compare refer-
ence point-based interactive EMO methods [60]. DESDEO
provides an excellent platform for comparisons because it
involves various interactive methods within the same frame-
work. To utilize the opportunities available, we need artificial
DMs capable of handling different types of preferences and
methods.

VI. CONCLUSION
In this paper, we fill a gap in the optimization software
available. We introduced DESDEO: an open source multi-
objective optimization framework implemented in Python.
DESDEO makes interactive multiobjective optimization
methods openly available for both users and developers.
We introduced the modular structure of DESDEO and its
different packages and their modules. We also described
the purpose of each package and its dependencies and the
framework’s external dependencies. Besides, with a five-
objective optimization problem, we demonstrated how to use
the DESDEO framework to define different types of prob-
lems (i.e., with analytical expressions, data-driven, and com-
putationally expensive problems) and solve them by applying
and hybridizing interactivemultiobjective optimizationmeth-
ods of MCDM and EMO types.

The modularity of DESDEO eases developing new
methods and offers a convenient possibility of comparing dif-
ferent interactive methods. Furthermore, implementing dif-
ferent types of methods in the same framework, as done in
DESDEO, will start a new era in hybridization and allows
the DM to switch between methods in various iterations of
the solution process.

We also noted that for efficient interaction with the DM,
there is a need for interactive visualization tools and suitable
(graphical) UIs in multiobjective optimization, which is lack-
ing in the literature. We are addressing this practical concern
by actively developing a D3 (https://d3js.org/) based Type-
script library of interactive visualization components, such
as interactive parallel coordinate plots within DESDEO. Our
primary goal with this library is to provide the multiobjective
optimization community with new and needed tools to build
their own interfaces for interactive multiobjective optimiza-
tion; similar to the example seen in Section IV-F. To facilitate
the use of the packages in DESDEO to be extended to other
software, such as web based interfaces, we are also working

on a web API (application programming interface) through
which we can expose interactive methods in DESDEO to
enable their use in a variety of applications. The interested
reader can follow the latest developments of DESDEO via
its homepage (desdeo.it.jyu.fi). The realization of this vision
should make interactive multiobjective optimization methods
much more accessible in the future, not just for researchers
developing them, but also for the needs of applications in
various fields.
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